Loading...
Note: File does not exist in v4.6.
1/*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008-2015 Intel Corporation
5 */
6
7#include <linux/oom.h>
8#include <linux/sched/mm.h>
9#include <linux/shmem_fs.h>
10#include <linux/slab.h>
11#include <linux/swap.h>
12#include <linux/pci.h>
13#include <linux/dma-buf.h>
14#include <linux/vmalloc.h>
15#include <drm/i915_drm.h>
16
17#include "i915_trace.h"
18
19static bool shrinker_lock(struct drm_i915_private *i915,
20 unsigned int flags,
21 bool *unlock)
22{
23 struct mutex *m = &i915->drm.struct_mutex;
24
25 switch (mutex_trylock_recursive(m)) {
26 case MUTEX_TRYLOCK_RECURSIVE:
27 *unlock = false;
28 return true;
29
30 case MUTEX_TRYLOCK_FAILED:
31 *unlock = false;
32 if (flags & I915_SHRINK_ACTIVE &&
33 mutex_lock_killable_nested(m, I915_MM_SHRINKER) == 0)
34 *unlock = true;
35 return *unlock;
36
37 case MUTEX_TRYLOCK_SUCCESS:
38 *unlock = true;
39 return true;
40 }
41
42 BUG();
43}
44
45static void shrinker_unlock(struct drm_i915_private *i915, bool unlock)
46{
47 if (!unlock)
48 return;
49
50 mutex_unlock(&i915->drm.struct_mutex);
51}
52
53static bool swap_available(void)
54{
55 return get_nr_swap_pages() > 0;
56}
57
58static bool can_release_pages(struct drm_i915_gem_object *obj)
59{
60 /* Consider only shrinkable ojects. */
61 if (!i915_gem_object_is_shrinkable(obj))
62 return false;
63
64 /* Only report true if by unbinding the object and putting its pages
65 * we can actually make forward progress towards freeing physical
66 * pages.
67 *
68 * If the pages are pinned for any other reason than being bound
69 * to the GPU, simply unbinding from the GPU is not going to succeed
70 * in releasing our pin count on the pages themselves.
71 */
72 if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count))
73 return false;
74
75 /* If any vma are "permanently" pinned, it will prevent us from
76 * reclaiming the obj->mm.pages. We only allow scanout objects to claim
77 * a permanent pin, along with a few others like the context objects.
78 * To simplify the scan, and to avoid walking the list of vma under the
79 * object, we just check the count of its permanently pinned.
80 */
81 if (READ_ONCE(obj->pin_global))
82 return false;
83
84 /* We can only return physical pages to the system if we can either
85 * discard the contents (because the user has marked them as being
86 * purgeable) or if we can move their contents out to swap.
87 */
88 return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
89}
90
91static bool unsafe_drop_pages(struct drm_i915_gem_object *obj,
92 unsigned long shrink)
93{
94 unsigned long flags;
95
96 flags = 0;
97 if (shrink & I915_SHRINK_ACTIVE)
98 flags = I915_GEM_OBJECT_UNBIND_ACTIVE;
99
100 if (i915_gem_object_unbind(obj, flags) == 0)
101 __i915_gem_object_put_pages(obj, I915_MM_SHRINKER);
102
103 return !i915_gem_object_has_pages(obj);
104}
105
106static void try_to_writeback(struct drm_i915_gem_object *obj,
107 unsigned int flags)
108{
109 switch (obj->mm.madv) {
110 case I915_MADV_DONTNEED:
111 i915_gem_object_truncate(obj);
112 case __I915_MADV_PURGED:
113 return;
114 }
115
116 if (flags & I915_SHRINK_WRITEBACK)
117 i915_gem_object_writeback(obj);
118}
119
120/**
121 * i915_gem_shrink - Shrink buffer object caches
122 * @i915: i915 device
123 * @target: amount of memory to make available, in pages
124 * @nr_scanned: optional output for number of pages scanned (incremental)
125 * @shrink: control flags for selecting cache types
126 *
127 * This function is the main interface to the shrinker. It will try to release
128 * up to @target pages of main memory backing storage from buffer objects.
129 * Selection of the specific caches can be done with @flags. This is e.g. useful
130 * when purgeable objects should be removed from caches preferentially.
131 *
132 * Note that it's not guaranteed that released amount is actually available as
133 * free system memory - the pages might still be in-used to due to other reasons
134 * (like cpu mmaps) or the mm core has reused them before we could grab them.
135 * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
136 * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
137 *
138 * Also note that any kind of pinning (both per-vma address space pins and
139 * backing storage pins at the buffer object level) result in the shrinker code
140 * having to skip the object.
141 *
142 * Returns:
143 * The number of pages of backing storage actually released.
144 */
145unsigned long
146i915_gem_shrink(struct drm_i915_private *i915,
147 unsigned long target,
148 unsigned long *nr_scanned,
149 unsigned int shrink)
150{
151 const struct {
152 struct list_head *list;
153 unsigned int bit;
154 } phases[] = {
155 { &i915->mm.purge_list, ~0u },
156 {
157 &i915->mm.shrink_list,
158 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND
159 },
160 { NULL, 0 },
161 }, *phase;
162 intel_wakeref_t wakeref = 0;
163 unsigned long count = 0;
164 unsigned long scanned = 0;
165 bool unlock;
166
167 if (!shrinker_lock(i915, shrink, &unlock))
168 return 0;
169
170 /*
171 * When shrinking the active list, we should also consider active
172 * contexts. Active contexts are pinned until they are retired, and
173 * so can not be simply unbound to retire and unpin their pages. To
174 * shrink the contexts, we must wait until the gpu is idle and
175 * completed its switch to the kernel context. In short, we do
176 * not have a good mechanism for idling a specific context.
177 */
178
179 trace_i915_gem_shrink(i915, target, shrink);
180
181 /*
182 * Unbinding of objects will require HW access; Let us not wake the
183 * device just to recover a little memory. If absolutely necessary,
184 * we will force the wake during oom-notifier.
185 */
186 if (shrink & I915_SHRINK_BOUND) {
187 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm);
188 if (!wakeref)
189 shrink &= ~I915_SHRINK_BOUND;
190 }
191
192 /*
193 * As we may completely rewrite the (un)bound list whilst unbinding
194 * (due to retiring requests) we have to strictly process only
195 * one element of the list at the time, and recheck the list
196 * on every iteration.
197 *
198 * In particular, we must hold a reference whilst removing the
199 * object as we may end up waiting for and/or retiring the objects.
200 * This might release the final reference (held by the active list)
201 * and result in the object being freed from under us. This is
202 * similar to the precautions the eviction code must take whilst
203 * removing objects.
204 *
205 * Also note that although these lists do not hold a reference to
206 * the object we can safely grab one here: The final object
207 * unreferencing and the bound_list are both protected by the
208 * dev->struct_mutex and so we won't ever be able to observe an
209 * object on the bound_list with a reference count equals 0.
210 */
211 for (phase = phases; phase->list; phase++) {
212 struct list_head still_in_list;
213 struct drm_i915_gem_object *obj;
214 unsigned long flags;
215
216 if ((shrink & phase->bit) == 0)
217 continue;
218
219 INIT_LIST_HEAD(&still_in_list);
220
221 /*
222 * We serialize our access to unreferenced objects through
223 * the use of the struct_mutex. While the objects are not
224 * yet freed (due to RCU then a workqueue) we still want
225 * to be able to shrink their pages, so they remain on
226 * the unbound/bound list until actually freed.
227 */
228 spin_lock_irqsave(&i915->mm.obj_lock, flags);
229 while (count < target &&
230 (obj = list_first_entry_or_null(phase->list,
231 typeof(*obj),
232 mm.link))) {
233 list_move_tail(&obj->mm.link, &still_in_list);
234
235 if (shrink & I915_SHRINK_VMAPS &&
236 !is_vmalloc_addr(obj->mm.mapping))
237 continue;
238
239 if (!(shrink & I915_SHRINK_ACTIVE) &&
240 i915_gem_object_is_framebuffer(obj))
241 continue;
242
243 if (!(shrink & I915_SHRINK_BOUND) &&
244 atomic_read(&obj->bind_count))
245 continue;
246
247 if (!can_release_pages(obj))
248 continue;
249
250 if (!kref_get_unless_zero(&obj->base.refcount))
251 continue;
252
253 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
254
255 if (unsafe_drop_pages(obj, shrink)) {
256 /* May arrive from get_pages on another bo */
257 mutex_lock_nested(&obj->mm.lock,
258 I915_MM_SHRINKER);
259 if (!i915_gem_object_has_pages(obj)) {
260 try_to_writeback(obj, shrink);
261 count += obj->base.size >> PAGE_SHIFT;
262 }
263 mutex_unlock(&obj->mm.lock);
264 }
265
266 scanned += obj->base.size >> PAGE_SHIFT;
267 i915_gem_object_put(obj);
268
269 spin_lock_irqsave(&i915->mm.obj_lock, flags);
270 }
271 list_splice_tail(&still_in_list, phase->list);
272 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
273 }
274
275 if (shrink & I915_SHRINK_BOUND)
276 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
277
278 shrinker_unlock(i915, unlock);
279
280 if (nr_scanned)
281 *nr_scanned += scanned;
282 return count;
283}
284
285/**
286 * i915_gem_shrink_all - Shrink buffer object caches completely
287 * @i915: i915 device
288 *
289 * This is a simple wraper around i915_gem_shrink() to aggressively shrink all
290 * caches completely. It also first waits for and retires all outstanding
291 * requests to also be able to release backing storage for active objects.
292 *
293 * This should only be used in code to intentionally quiescent the gpu or as a
294 * last-ditch effort when memory seems to have run out.
295 *
296 * Returns:
297 * The number of pages of backing storage actually released.
298 */
299unsigned long i915_gem_shrink_all(struct drm_i915_private *i915)
300{
301 intel_wakeref_t wakeref;
302 unsigned long freed = 0;
303
304 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
305 freed = i915_gem_shrink(i915, -1UL, NULL,
306 I915_SHRINK_BOUND |
307 I915_SHRINK_UNBOUND |
308 I915_SHRINK_ACTIVE);
309 }
310
311 return freed;
312}
313
314static unsigned long
315i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
316{
317 struct drm_i915_private *i915 =
318 container_of(shrinker, struct drm_i915_private, mm.shrinker);
319 unsigned long num_objects;
320 unsigned long count;
321
322 count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT;
323 num_objects = READ_ONCE(i915->mm.shrink_count);
324
325 /*
326 * Update our preferred vmscan batch size for the next pass.
327 * Our rough guess for an effective batch size is roughly 2
328 * available GEM objects worth of pages. That is we don't want
329 * the shrinker to fire, until it is worth the cost of freeing an
330 * entire GEM object.
331 */
332 if (num_objects) {
333 unsigned long avg = 2 * count / num_objects;
334
335 i915->mm.shrinker.batch =
336 max((i915->mm.shrinker.batch + avg) >> 1,
337 128ul /* default SHRINK_BATCH */);
338 }
339
340 return count;
341}
342
343static unsigned long
344i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
345{
346 struct drm_i915_private *i915 =
347 container_of(shrinker, struct drm_i915_private, mm.shrinker);
348 unsigned long freed;
349 bool unlock;
350
351 sc->nr_scanned = 0;
352
353 if (!shrinker_lock(i915, 0, &unlock))
354 return SHRINK_STOP;
355
356 freed = i915_gem_shrink(i915,
357 sc->nr_to_scan,
358 &sc->nr_scanned,
359 I915_SHRINK_BOUND |
360 I915_SHRINK_UNBOUND |
361 I915_SHRINK_WRITEBACK);
362 if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) {
363 intel_wakeref_t wakeref;
364
365 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
366 freed += i915_gem_shrink(i915,
367 sc->nr_to_scan - sc->nr_scanned,
368 &sc->nr_scanned,
369 I915_SHRINK_ACTIVE |
370 I915_SHRINK_BOUND |
371 I915_SHRINK_UNBOUND |
372 I915_SHRINK_WRITEBACK);
373 }
374 }
375
376 shrinker_unlock(i915, unlock);
377
378 return sc->nr_scanned ? freed : SHRINK_STOP;
379}
380
381static int
382i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
383{
384 struct drm_i915_private *i915 =
385 container_of(nb, struct drm_i915_private, mm.oom_notifier);
386 struct drm_i915_gem_object *obj;
387 unsigned long unevictable, available, freed_pages;
388 intel_wakeref_t wakeref;
389 unsigned long flags;
390
391 freed_pages = 0;
392 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
393 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
394 I915_SHRINK_BOUND |
395 I915_SHRINK_UNBOUND |
396 I915_SHRINK_WRITEBACK);
397
398 /* Because we may be allocating inside our own driver, we cannot
399 * assert that there are no objects with pinned pages that are not
400 * being pointed to by hardware.
401 */
402 available = unevictable = 0;
403 spin_lock_irqsave(&i915->mm.obj_lock, flags);
404 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
405 if (!can_release_pages(obj))
406 unevictable += obj->base.size >> PAGE_SHIFT;
407 else
408 available += obj->base.size >> PAGE_SHIFT;
409 }
410 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
411
412 if (freed_pages || available)
413 pr_info("Purging GPU memory, %lu pages freed, "
414 "%lu pages still pinned, %lu pages left available.\n",
415 freed_pages, unevictable, available);
416
417 *(unsigned long *)ptr += freed_pages;
418 return NOTIFY_DONE;
419}
420
421static int
422i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
423{
424 struct drm_i915_private *i915 =
425 container_of(nb, struct drm_i915_private, mm.vmap_notifier);
426 struct i915_vma *vma, *next;
427 unsigned long freed_pages = 0;
428 intel_wakeref_t wakeref;
429 bool unlock;
430
431 if (!shrinker_lock(i915, 0, &unlock))
432 return NOTIFY_DONE;
433
434 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
435 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
436 I915_SHRINK_BOUND |
437 I915_SHRINK_UNBOUND |
438 I915_SHRINK_VMAPS);
439
440 /* We also want to clear any cached iomaps as they wrap vmap */
441 mutex_lock(&i915->ggtt.vm.mutex);
442 list_for_each_entry_safe(vma, next,
443 &i915->ggtt.vm.bound_list, vm_link) {
444 unsigned long count = vma->node.size >> PAGE_SHIFT;
445
446 if (!vma->iomap || i915_vma_is_active(vma))
447 continue;
448
449 mutex_unlock(&i915->ggtt.vm.mutex);
450 if (i915_vma_unbind(vma) == 0)
451 freed_pages += count;
452 mutex_lock(&i915->ggtt.vm.mutex);
453 }
454 mutex_unlock(&i915->ggtt.vm.mutex);
455
456 shrinker_unlock(i915, unlock);
457
458 *(unsigned long *)ptr += freed_pages;
459 return NOTIFY_DONE;
460}
461
462void i915_gem_driver_register__shrinker(struct drm_i915_private *i915)
463{
464 i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
465 i915->mm.shrinker.count_objects = i915_gem_shrinker_count;
466 i915->mm.shrinker.seeks = DEFAULT_SEEKS;
467 i915->mm.shrinker.batch = 4096;
468 WARN_ON(register_shrinker(&i915->mm.shrinker));
469
470 i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
471 WARN_ON(register_oom_notifier(&i915->mm.oom_notifier));
472
473 i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
474 WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier));
475}
476
477void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915)
478{
479 WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier));
480 WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier));
481 unregister_shrinker(&i915->mm.shrinker);
482}
483
484void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
485 struct mutex *mutex)
486{
487 bool unlock = false;
488
489 if (!IS_ENABLED(CONFIG_LOCKDEP))
490 return;
491
492 if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) {
493 mutex_acquire(&i915->drm.struct_mutex.dep_map,
494 I915_MM_NORMAL, 0, _RET_IP_);
495 unlock = true;
496 }
497
498 fs_reclaim_acquire(GFP_KERNEL);
499
500 /*
501 * As we invariably rely on the struct_mutex within the shrinker,
502 * but have a complicated recursion dance, taint all the mutexes used
503 * within the shrinker with the struct_mutex. For completeness, we
504 * taint with all subclass of struct_mutex, even though we should
505 * only need tainting by I915_MM_NORMAL to catch possible ABBA
506 * deadlocks from using struct_mutex inside @mutex.
507 */
508 mutex_acquire(&i915->drm.struct_mutex.dep_map,
509 I915_MM_SHRINKER, 0, _RET_IP_);
510
511 mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_);
512 mutex_release(&mutex->dep_map, 0, _RET_IP_);
513
514 mutex_release(&i915->drm.struct_mutex.dep_map, 0, _RET_IP_);
515
516 fs_reclaim_release(GFP_KERNEL);
517
518 if (unlock)
519 mutex_release(&i915->drm.struct_mutex.dep_map, 0, _RET_IP_);
520}
521
522#define obj_to_i915(obj__) to_i915((obj__)->base.dev)
523
524void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj)
525{
526 /*
527 * We can only be called while the pages are pinned or when
528 * the pages are released. If pinned, we should only be called
529 * from a single caller under controlled conditions; and on release
530 * only one caller may release us. Neither the two may cross.
531 */
532 if (!list_empty(&obj->mm.link)) { /* pinned by caller */
533 struct drm_i915_private *i915 = obj_to_i915(obj);
534 unsigned long flags;
535
536 spin_lock_irqsave(&i915->mm.obj_lock, flags);
537 GEM_BUG_ON(list_empty(&obj->mm.link));
538
539 list_del_init(&obj->mm.link);
540 i915->mm.shrink_count--;
541 i915->mm.shrink_memory -= obj->base.size;
542
543 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
544 }
545}
546
547static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj,
548 struct list_head *head)
549{
550 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
551 GEM_BUG_ON(!list_empty(&obj->mm.link));
552
553 if (i915_gem_object_is_shrinkable(obj)) {
554 struct drm_i915_private *i915 = obj_to_i915(obj);
555 unsigned long flags;
556
557 spin_lock_irqsave(&i915->mm.obj_lock, flags);
558 GEM_BUG_ON(!kref_read(&obj->base.refcount));
559
560 list_add_tail(&obj->mm.link, head);
561 i915->mm.shrink_count++;
562 i915->mm.shrink_memory += obj->base.size;
563
564 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
565 }
566}
567
568void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj)
569{
570 __i915_gem_object_make_shrinkable(obj,
571 &obj_to_i915(obj)->mm.shrink_list);
572}
573
574void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj)
575{
576 __i915_gem_object_make_shrinkable(obj,
577 &obj_to_i915(obj)->mm.purge_list);
578}