Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1/* SPDX-License-Identifier: MIT */
   2/*
   3 * Copyright (C) 2017 Google, Inc.
   4 *
   5 * Authors:
   6 * Sean Paul <seanpaul@chromium.org>
   7 */
   8
   9#include <linux/component.h>
  10#include <linux/i2c.h>
  11#include <linux/random.h>
  12
  13#include <drm/drm_hdcp.h>
  14#include <drm/i915_component.h>
  15
  16#include "i915_reg.h"
  17#include "intel_display_power.h"
  18#include "intel_display_types.h"
  19#include "intel_hdcp.h"
  20#include "intel_sideband.h"
  21
  22#define KEY_LOAD_TRIES	5
  23#define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS	50
  24#define HDCP2_LC_RETRY_CNT			3
  25
  26static
  27bool intel_hdcp_is_ksv_valid(u8 *ksv)
  28{
  29	int i, ones = 0;
  30	/* KSV has 20 1's and 20 0's */
  31	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
  32		ones += hweight8(ksv[i]);
  33	if (ones != 20)
  34		return false;
  35
  36	return true;
  37}
  38
  39static
  40int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
  41			       const struct intel_hdcp_shim *shim, u8 *bksv)
  42{
  43	int ret, i, tries = 2;
  44
  45	/* HDCP spec states that we must retry the bksv if it is invalid */
  46	for (i = 0; i < tries; i++) {
  47		ret = shim->read_bksv(intel_dig_port, bksv);
  48		if (ret)
  49			return ret;
  50		if (intel_hdcp_is_ksv_valid(bksv))
  51			break;
  52	}
  53	if (i == tries) {
  54		DRM_DEBUG_KMS("Bksv is invalid\n");
  55		return -ENODEV;
  56	}
  57
  58	return 0;
  59}
  60
  61/* Is HDCP1.4 capable on Platform and Sink */
  62bool intel_hdcp_capable(struct intel_connector *connector)
  63{
  64	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
  65	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
  66	bool capable = false;
  67	u8 bksv[5];
  68
  69	if (!shim)
  70		return capable;
  71
  72	if (shim->hdcp_capable) {
  73		shim->hdcp_capable(intel_dig_port, &capable);
  74	} else {
  75		if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
  76			capable = true;
  77	}
  78
  79	return capable;
  80}
  81
  82/* Is HDCP2.2 capable on Platform and Sink */
  83bool intel_hdcp2_capable(struct intel_connector *connector)
  84{
  85	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
  86	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
  87	struct intel_hdcp *hdcp = &connector->hdcp;
  88	bool capable = false;
  89
  90	/* I915 support for HDCP2.2 */
  91	if (!hdcp->hdcp2_supported)
  92		return false;
  93
  94	/* MEI interface is solid */
  95	mutex_lock(&dev_priv->hdcp_comp_mutex);
  96	if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
  97		mutex_unlock(&dev_priv->hdcp_comp_mutex);
  98		return false;
  99	}
 100	mutex_unlock(&dev_priv->hdcp_comp_mutex);
 101
 102	/* Sink's capability for HDCP2.2 */
 103	hdcp->shim->hdcp_2_2_capable(intel_dig_port, &capable);
 104
 105	return capable;
 106}
 107
 108static inline bool intel_hdcp_in_use(struct intel_connector *connector)
 109{
 110	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
 111	enum port port = connector->encoder->port;
 112	u32 reg;
 113
 114	reg = I915_READ(PORT_HDCP_STATUS(port));
 115	return reg & HDCP_STATUS_ENC;
 116}
 117
 118static inline bool intel_hdcp2_in_use(struct intel_connector *connector)
 119{
 120	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
 121	enum port port = connector->encoder->port;
 122	u32 reg;
 123
 124	reg = I915_READ(HDCP2_STATUS_DDI(port));
 125	return reg & LINK_ENCRYPTION_STATUS;
 126}
 127
 128static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
 129				    const struct intel_hdcp_shim *shim)
 130{
 131	int ret, read_ret;
 132	bool ksv_ready;
 133
 134	/* Poll for ksv list ready (spec says max time allowed is 5s) */
 135	ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
 136							 &ksv_ready),
 137			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
 138			 100 * 1000);
 139	if (ret)
 140		return ret;
 141	if (read_ret)
 142		return read_ret;
 143	if (!ksv_ready)
 144		return -ETIMEDOUT;
 145
 146	return 0;
 147}
 148
 149static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
 150{
 151	struct i915_power_domains *power_domains = &dev_priv->power_domains;
 152	struct i915_power_well *power_well;
 153	enum i915_power_well_id id;
 154	bool enabled = false;
 155
 156	/*
 157	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
 158	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
 159	 */
 160	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 161		id = HSW_DISP_PW_GLOBAL;
 162	else
 163		id = SKL_DISP_PW_1;
 164
 165	mutex_lock(&power_domains->lock);
 166
 167	/* PG1 (power well #1) needs to be enabled */
 168	for_each_power_well(dev_priv, power_well) {
 169		if (power_well->desc->id == id) {
 170			enabled = power_well->desc->ops->is_enabled(dev_priv,
 171								    power_well);
 172			break;
 173		}
 174	}
 175	mutex_unlock(&power_domains->lock);
 176
 177	/*
 178	 * Another req for hdcp key loadability is enabled state of pll for
 179	 * cdclk. Without active crtc we wont land here. So we are assuming that
 180	 * cdclk is already on.
 181	 */
 182
 183	return enabled;
 184}
 185
 186static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
 187{
 188	I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
 189	I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
 190		   HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
 191}
 192
 193static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
 194{
 195	int ret;
 196	u32 val;
 197
 198	val = I915_READ(HDCP_KEY_STATUS);
 199	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
 200		return 0;
 201
 202	/*
 203	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
 204	 * out of reset. So if Key is not already loaded, its an error state.
 205	 */
 206	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 207		if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
 208			return -ENXIO;
 209
 210	/*
 211	 * Initiate loading the HDCP key from fuses.
 212	 *
 213	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
 214	 * platforms except BXT and GLK, differ in the key load trigger process
 215	 * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
 216	 */
 217	if (IS_GEN9_BC(dev_priv)) {
 218		ret = sandybridge_pcode_write(dev_priv,
 219					      SKL_PCODE_LOAD_HDCP_KEYS, 1);
 220		if (ret) {
 221			DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
 222			          ret);
 223			return ret;
 224		}
 225	} else {
 226		I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
 227	}
 228
 229	/* Wait for the keys to load (500us) */
 230	ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
 231					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
 232					10, 1, &val);
 233	if (ret)
 234		return ret;
 235	else if (!(val & HDCP_KEY_LOAD_STATUS))
 236		return -ENXIO;
 237
 238	/* Send Aksv over to PCH display for use in authentication */
 239	I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
 240
 241	return 0;
 242}
 243
 244/* Returns updated SHA-1 index */
 245static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
 246{
 247	I915_WRITE(HDCP_SHA_TEXT, sha_text);
 248	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
 249		DRM_ERROR("Timed out waiting for SHA1 ready\n");
 250		return -ETIMEDOUT;
 251	}
 252	return 0;
 253}
 254
 255static
 256u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port)
 257{
 258	enum port port = intel_dig_port->base.port;
 259	switch (port) {
 260	case PORT_A:
 261		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
 262	case PORT_B:
 263		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
 264	case PORT_C:
 265		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
 266	case PORT_D:
 267		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
 268	case PORT_E:
 269		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
 270	default:
 271		break;
 272	}
 273	DRM_ERROR("Unknown port %d\n", port);
 274	return -EINVAL;
 275}
 276
 277static
 278int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port,
 279				const struct intel_hdcp_shim *shim,
 280				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
 281{
 282	struct drm_i915_private *dev_priv;
 283	u32 vprime, sha_text, sha_leftovers, rep_ctl;
 284	int ret, i, j, sha_idx;
 285
 286	dev_priv = intel_dig_port->base.base.dev->dev_private;
 287
 288	/* Process V' values from the receiver */
 289	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
 290		ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
 291		if (ret)
 292			return ret;
 293		I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
 294	}
 295
 296	/*
 297	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
 298	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
 299	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
 300	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
 301	 * index will keep track of our progress through the 64 bytes as well as
 302	 * helping us work the 40-bit KSVs through our 32-bit register.
 303	 *
 304	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
 305	 */
 306	sha_idx = 0;
 307	sha_text = 0;
 308	sha_leftovers = 0;
 309	rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port);
 310	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
 311	for (i = 0; i < num_downstream; i++) {
 312		unsigned int sha_empty;
 313		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
 314
 315		/* Fill up the empty slots in sha_text and write it out */
 316		sha_empty = sizeof(sha_text) - sha_leftovers;
 317		for (j = 0; j < sha_empty; j++)
 318			sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
 319
 320		ret = intel_write_sha_text(dev_priv, sha_text);
 321		if (ret < 0)
 322			return ret;
 323
 324		/* Programming guide writes this every 64 bytes */
 325		sha_idx += sizeof(sha_text);
 326		if (!(sha_idx % 64))
 327			I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
 328
 329		/* Store the leftover bytes from the ksv in sha_text */
 330		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
 331		sha_text = 0;
 332		for (j = 0; j < sha_leftovers; j++)
 333			sha_text |= ksv[sha_empty + j] <<
 334					((sizeof(sha_text) - j - 1) * 8);
 335
 336		/*
 337		 * If we still have room in sha_text for more data, continue.
 338		 * Otherwise, write it out immediately.
 339		 */
 340		if (sizeof(sha_text) > sha_leftovers)
 341			continue;
 342
 343		ret = intel_write_sha_text(dev_priv, sha_text);
 344		if (ret < 0)
 345			return ret;
 346		sha_leftovers = 0;
 347		sha_text = 0;
 348		sha_idx += sizeof(sha_text);
 349	}
 350
 351	/*
 352	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
 353	 * bytes are leftover from the last ksv, we might be able to fit them
 354	 * all in sha_text (first 2 cases), or we might need to split them up
 355	 * into 2 writes (last 2 cases).
 356	 */
 357	if (sha_leftovers == 0) {
 358		/* Write 16 bits of text, 16 bits of M0 */
 359		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
 360		ret = intel_write_sha_text(dev_priv,
 361					   bstatus[0] << 8 | bstatus[1]);
 362		if (ret < 0)
 363			return ret;
 364		sha_idx += sizeof(sha_text);
 365
 366		/* Write 32 bits of M0 */
 367		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
 368		ret = intel_write_sha_text(dev_priv, 0);
 369		if (ret < 0)
 370			return ret;
 371		sha_idx += sizeof(sha_text);
 372
 373		/* Write 16 bits of M0 */
 374		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
 375		ret = intel_write_sha_text(dev_priv, 0);
 376		if (ret < 0)
 377			return ret;
 378		sha_idx += sizeof(sha_text);
 379
 380	} else if (sha_leftovers == 1) {
 381		/* Write 24 bits of text, 8 bits of M0 */
 382		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
 383		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
 384		/* Only 24-bits of data, must be in the LSB */
 385		sha_text = (sha_text & 0xffffff00) >> 8;
 386		ret = intel_write_sha_text(dev_priv, sha_text);
 387		if (ret < 0)
 388			return ret;
 389		sha_idx += sizeof(sha_text);
 390
 391		/* Write 32 bits of M0 */
 392		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
 393		ret = intel_write_sha_text(dev_priv, 0);
 394		if (ret < 0)
 395			return ret;
 396		sha_idx += sizeof(sha_text);
 397
 398		/* Write 24 bits of M0 */
 399		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
 400		ret = intel_write_sha_text(dev_priv, 0);
 401		if (ret < 0)
 402			return ret;
 403		sha_idx += sizeof(sha_text);
 404
 405	} else if (sha_leftovers == 2) {
 406		/* Write 32 bits of text */
 407		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
 408		sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
 409		ret = intel_write_sha_text(dev_priv, sha_text);
 410		if (ret < 0)
 411			return ret;
 412		sha_idx += sizeof(sha_text);
 413
 414		/* Write 64 bits of M0 */
 415		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
 416		for (i = 0; i < 2; i++) {
 417			ret = intel_write_sha_text(dev_priv, 0);
 418			if (ret < 0)
 419				return ret;
 420			sha_idx += sizeof(sha_text);
 421		}
 422	} else if (sha_leftovers == 3) {
 423		/* Write 32 bits of text */
 424		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
 425		sha_text |= bstatus[0] << 24;
 426		ret = intel_write_sha_text(dev_priv, sha_text);
 427		if (ret < 0)
 428			return ret;
 429		sha_idx += sizeof(sha_text);
 430
 431		/* Write 8 bits of text, 24 bits of M0 */
 432		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
 433		ret = intel_write_sha_text(dev_priv, bstatus[1]);
 434		if (ret < 0)
 435			return ret;
 436		sha_idx += sizeof(sha_text);
 437
 438		/* Write 32 bits of M0 */
 439		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
 440		ret = intel_write_sha_text(dev_priv, 0);
 441		if (ret < 0)
 442			return ret;
 443		sha_idx += sizeof(sha_text);
 444
 445		/* Write 8 bits of M0 */
 446		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
 447		ret = intel_write_sha_text(dev_priv, 0);
 448		if (ret < 0)
 449			return ret;
 450		sha_idx += sizeof(sha_text);
 451	} else {
 452		DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
 453			      sha_leftovers);
 454		return -EINVAL;
 455	}
 456
 457	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
 458	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
 459	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
 460		ret = intel_write_sha_text(dev_priv, 0);
 461		if (ret < 0)
 462			return ret;
 463		sha_idx += sizeof(sha_text);
 464	}
 465
 466	/*
 467	 * Last write gets the length of the concatenation in bits. That is:
 468	 *  - 5 bytes per device
 469	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
 470	 */
 471	sha_text = (num_downstream * 5 + 10) * 8;
 472	ret = intel_write_sha_text(dev_priv, sha_text);
 473	if (ret < 0)
 474		return ret;
 475
 476	/* Tell the HW we're done with the hash and wait for it to ACK */
 477	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
 478	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
 479				  HDCP_SHA1_COMPLETE, 1)) {
 480		DRM_ERROR("Timed out waiting for SHA1 complete\n");
 481		return -ETIMEDOUT;
 482	}
 483	if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
 484		DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
 485		return -ENXIO;
 486	}
 487
 488	return 0;
 489}
 490
 491/* Implements Part 2 of the HDCP authorization procedure */
 492static
 493int intel_hdcp_auth_downstream(struct intel_connector *connector)
 494{
 495	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
 496	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
 497	struct drm_device *dev = connector->base.dev;
 498	u8 bstatus[2], num_downstream, *ksv_fifo;
 499	int ret, i, tries = 3;
 500
 501	ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
 502	if (ret) {
 503		DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
 504		return ret;
 505	}
 506
 507	ret = shim->read_bstatus(intel_dig_port, bstatus);
 508	if (ret)
 509		return ret;
 510
 511	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
 512	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
 513		DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
 514		return -EPERM;
 515	}
 516
 517	/*
 518	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
 519	 * the HDCP encryption. That implies that repeater can't have its own
 520	 * display. As there is no consumption of encrypted content in the
 521	 * repeater with 0 downstream devices, we are failing the
 522	 * authentication.
 523	 */
 524	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
 525	if (num_downstream == 0) {
 526		DRM_DEBUG_KMS("Repeater with zero downstream devices\n");
 527		return -EINVAL;
 528	}
 529
 530	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
 531	if (!ksv_fifo) {
 532		DRM_DEBUG_KMS("Out of mem: ksv_fifo\n");
 533		return -ENOMEM;
 534	}
 535
 536	ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
 537	if (ret)
 538		goto err;
 539
 540	if (drm_hdcp_check_ksvs_revoked(dev, ksv_fifo, num_downstream)) {
 541		DRM_ERROR("Revoked Ksv(s) in ksv_fifo\n");
 542		ret = -EPERM;
 543		goto err;
 544	}
 545
 546	/*
 547	 * When V prime mismatches, DP Spec mandates re-read of
 548	 * V prime atleast twice.
 549	 */
 550	for (i = 0; i < tries; i++) {
 551		ret = intel_hdcp_validate_v_prime(intel_dig_port, shim,
 552						  ksv_fifo, num_downstream,
 553						  bstatus);
 554		if (!ret)
 555			break;
 556	}
 557
 558	if (i == tries) {
 559		DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
 560		goto err;
 561	}
 562
 563	DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
 564		      num_downstream);
 565	ret = 0;
 566err:
 567	kfree(ksv_fifo);
 568	return ret;
 569}
 570
 571/* Implements Part 1 of the HDCP authorization procedure */
 572static int intel_hdcp_auth(struct intel_connector *connector)
 573{
 574	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
 575	struct intel_hdcp *hdcp = &connector->hdcp;
 576	struct drm_device *dev = connector->base.dev;
 577	const struct intel_hdcp_shim *shim = hdcp->shim;
 578	struct drm_i915_private *dev_priv;
 579	enum port port;
 580	unsigned long r0_prime_gen_start;
 581	int ret, i, tries = 2;
 582	union {
 583		u32 reg[2];
 584		u8 shim[DRM_HDCP_AN_LEN];
 585	} an;
 586	union {
 587		u32 reg[2];
 588		u8 shim[DRM_HDCP_KSV_LEN];
 589	} bksv;
 590	union {
 591		u32 reg;
 592		u8 shim[DRM_HDCP_RI_LEN];
 593	} ri;
 594	bool repeater_present, hdcp_capable;
 595
 596	dev_priv = intel_dig_port->base.base.dev->dev_private;
 597
 598	port = intel_dig_port->base.port;
 599
 600	/*
 601	 * Detects whether the display is HDCP capable. Although we check for
 602	 * valid Bksv below, the HDCP over DP spec requires that we check
 603	 * whether the display supports HDCP before we write An. For HDMI
 604	 * displays, this is not necessary.
 605	 */
 606	if (shim->hdcp_capable) {
 607		ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
 608		if (ret)
 609			return ret;
 610		if (!hdcp_capable) {
 611			DRM_DEBUG_KMS("Panel is not HDCP capable\n");
 612			return -EINVAL;
 613		}
 614	}
 615
 616	/* Initialize An with 2 random values and acquire it */
 617	for (i = 0; i < 2; i++)
 618		I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32());
 619	I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN);
 620
 621	/* Wait for An to be acquired */
 622	if (intel_de_wait_for_set(dev_priv, PORT_HDCP_STATUS(port),
 623				  HDCP_STATUS_AN_READY, 1)) {
 624		DRM_ERROR("Timed out waiting for An\n");
 625		return -ETIMEDOUT;
 626	}
 627
 628	an.reg[0] = I915_READ(PORT_HDCP_ANLO(port));
 629	an.reg[1] = I915_READ(PORT_HDCP_ANHI(port));
 630	ret = shim->write_an_aksv(intel_dig_port, an.shim);
 631	if (ret)
 632		return ret;
 633
 634	r0_prime_gen_start = jiffies;
 635
 636	memset(&bksv, 0, sizeof(bksv));
 637
 638	ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
 639	if (ret < 0)
 640		return ret;
 641
 642	if (drm_hdcp_check_ksvs_revoked(dev, bksv.shim, 1)) {
 643		DRM_ERROR("BKSV is revoked\n");
 644		return -EPERM;
 645	}
 646
 647	I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]);
 648	I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]);
 649
 650	ret = shim->repeater_present(intel_dig_port, &repeater_present);
 651	if (ret)
 652		return ret;
 653	if (repeater_present)
 654		I915_WRITE(HDCP_REP_CTL,
 655			   intel_hdcp_get_repeater_ctl(intel_dig_port));
 656
 657	ret = shim->toggle_signalling(intel_dig_port, true);
 658	if (ret)
 659		return ret;
 660
 661	I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC);
 662
 663	/* Wait for R0 ready */
 664	if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
 665		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
 666		DRM_ERROR("Timed out waiting for R0 ready\n");
 667		return -ETIMEDOUT;
 668	}
 669
 670	/*
 671	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
 672	 * some monitors can take longer than this. We'll set the timeout at
 673	 * 300ms just to be sure.
 674	 *
 675	 * On DP, there's an R0_READY bit available but no such bit
 676	 * exists on HDMI. Since the upper-bound is the same, we'll just do
 677	 * the stupid thing instead of polling on one and not the other.
 678	 */
 679	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
 680
 681	tries = 3;
 682
 683	/*
 684	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
 685	 * of R0 mismatch.
 686	 */
 687	for (i = 0; i < tries; i++) {
 688		ri.reg = 0;
 689		ret = shim->read_ri_prime(intel_dig_port, ri.shim);
 690		if (ret)
 691			return ret;
 692		I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
 693
 694		/* Wait for Ri prime match */
 695		if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
 696		    (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
 697			break;
 698	}
 699
 700	if (i == tries) {
 701		DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
 702			      I915_READ(PORT_HDCP_STATUS(port)));
 703		return -ETIMEDOUT;
 704	}
 705
 706	/* Wait for encryption confirmation */
 707	if (intel_de_wait_for_set(dev_priv, PORT_HDCP_STATUS(port),
 708				  HDCP_STATUS_ENC,
 709				  ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
 710		DRM_ERROR("Timed out waiting for encryption\n");
 711		return -ETIMEDOUT;
 712	}
 713
 714	/*
 715	 * XXX: If we have MST-connected devices, we need to enable encryption
 716	 * on those as well.
 717	 */
 718
 719	if (repeater_present)
 720		return intel_hdcp_auth_downstream(connector);
 721
 722	DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
 723	return 0;
 724}
 725
 726static int _intel_hdcp_disable(struct intel_connector *connector)
 727{
 728	struct intel_hdcp *hdcp = &connector->hdcp;
 729	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
 730	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
 731	enum port port = intel_dig_port->base.port;
 732	int ret;
 733
 734	DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
 735		      connector->base.name, connector->base.base.id);
 736
 737	hdcp->hdcp_encrypted = false;
 738	I915_WRITE(PORT_HDCP_CONF(port), 0);
 739	if (intel_de_wait_for_clear(dev_priv, PORT_HDCP_STATUS(port), ~0,
 740				    ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
 741		DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
 742		return -ETIMEDOUT;
 743	}
 744
 745	ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
 746	if (ret) {
 747		DRM_ERROR("Failed to disable HDCP signalling\n");
 748		return ret;
 749	}
 750
 751	DRM_DEBUG_KMS("HDCP is disabled\n");
 752	return 0;
 753}
 754
 755static int _intel_hdcp_enable(struct intel_connector *connector)
 756{
 757	struct intel_hdcp *hdcp = &connector->hdcp;
 758	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
 759	int i, ret, tries = 3;
 760
 761	DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
 762		      connector->base.name, connector->base.base.id);
 763
 764	if (!hdcp_key_loadable(dev_priv)) {
 765		DRM_ERROR("HDCP key Load is not possible\n");
 766		return -ENXIO;
 767	}
 768
 769	for (i = 0; i < KEY_LOAD_TRIES; i++) {
 770		ret = intel_hdcp_load_keys(dev_priv);
 771		if (!ret)
 772			break;
 773		intel_hdcp_clear_keys(dev_priv);
 774	}
 775	if (ret) {
 776		DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
 777		return ret;
 778	}
 779
 780	/* Incase of authentication failures, HDCP spec expects reauth. */
 781	for (i = 0; i < tries; i++) {
 782		ret = intel_hdcp_auth(connector);
 783		if (!ret) {
 784			hdcp->hdcp_encrypted = true;
 785			return 0;
 786		}
 787
 788		DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
 789
 790		/* Ensuring HDCP encryption and signalling are stopped. */
 791		_intel_hdcp_disable(connector);
 792	}
 793
 794	DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
 795	return ret;
 796}
 797
 798static inline
 799struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
 800{
 801	return container_of(hdcp, struct intel_connector, hdcp);
 802}
 803
 804/* Implements Part 3 of the HDCP authorization procedure */
 805static int intel_hdcp_check_link(struct intel_connector *connector)
 806{
 807	struct intel_hdcp *hdcp = &connector->hdcp;
 808	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
 809	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
 810	enum port port = intel_dig_port->base.port;
 811	int ret = 0;
 812
 813	mutex_lock(&hdcp->mutex);
 814
 815	/* Check_link valid only when HDCP1.4 is enabled */
 816	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
 817	    !hdcp->hdcp_encrypted) {
 818		ret = -EINVAL;
 819		goto out;
 820	}
 821
 822	if (WARN_ON(!intel_hdcp_in_use(connector))) {
 823		DRM_ERROR("%s:%d HDCP link stopped encryption,%x\n",
 824			  connector->base.name, connector->base.base.id,
 825			  I915_READ(PORT_HDCP_STATUS(port)));
 826		ret = -ENXIO;
 827		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
 828		schedule_work(&hdcp->prop_work);
 829		goto out;
 830	}
 831
 832	if (hdcp->shim->check_link(intel_dig_port)) {
 833		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
 834			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
 835			schedule_work(&hdcp->prop_work);
 836		}
 837		goto out;
 838	}
 839
 840	DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
 841		      connector->base.name, connector->base.base.id);
 842
 843	ret = _intel_hdcp_disable(connector);
 844	if (ret) {
 845		DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
 846		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
 847		schedule_work(&hdcp->prop_work);
 848		goto out;
 849	}
 850
 851	ret = _intel_hdcp_enable(connector);
 852	if (ret) {
 853		DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
 854		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
 855		schedule_work(&hdcp->prop_work);
 856		goto out;
 857	}
 858
 859out:
 860	mutex_unlock(&hdcp->mutex);
 861	return ret;
 862}
 863
 864static void intel_hdcp_prop_work(struct work_struct *work)
 865{
 866	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
 867					       prop_work);
 868	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
 869	struct drm_device *dev = connector->base.dev;
 870
 871	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
 872	mutex_lock(&hdcp->mutex);
 873
 874	/*
 875	 * This worker is only used to flip between ENABLED/DESIRED. Either of
 876	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
 877	 * we're running just after hdcp has been disabled, so just exit
 878	 */
 879	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
 880		drm_hdcp_update_content_protection(&connector->base,
 881						   hdcp->value);
 882
 883	mutex_unlock(&hdcp->mutex);
 884	drm_modeset_unlock(&dev->mode_config.connection_mutex);
 885}
 886
 887bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
 888{
 889	/* PORT E doesn't have HDCP, and PORT F is disabled */
 890	return INTEL_GEN(dev_priv) >= 9 && port < PORT_E;
 891}
 892
 893static int
 894hdcp2_prepare_ake_init(struct intel_connector *connector,
 895		       struct hdcp2_ake_init *ake_data)
 896{
 897	struct hdcp_port_data *data = &connector->hdcp.port_data;
 898	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
 899	struct i915_hdcp_comp_master *comp;
 900	int ret;
 901
 902	mutex_lock(&dev_priv->hdcp_comp_mutex);
 903	comp = dev_priv->hdcp_master;
 904
 905	if (!comp || !comp->ops) {
 906		mutex_unlock(&dev_priv->hdcp_comp_mutex);
 907		return -EINVAL;
 908	}
 909
 910	ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
 911	if (ret)
 912		DRM_DEBUG_KMS("Prepare_ake_init failed. %d\n", ret);
 913	mutex_unlock(&dev_priv->hdcp_comp_mutex);
 914
 915	return ret;
 916}
 917
 918static int
 919hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
 920				struct hdcp2_ake_send_cert *rx_cert,
 921				bool *paired,
 922				struct hdcp2_ake_no_stored_km *ek_pub_km,
 923				size_t *msg_sz)
 924{
 925	struct hdcp_port_data *data = &connector->hdcp.port_data;
 926	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
 927	struct i915_hdcp_comp_master *comp;
 928	int ret;
 929
 930	mutex_lock(&dev_priv->hdcp_comp_mutex);
 931	comp = dev_priv->hdcp_master;
 932
 933	if (!comp || !comp->ops) {
 934		mutex_unlock(&dev_priv->hdcp_comp_mutex);
 935		return -EINVAL;
 936	}
 937
 938	ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
 939							 rx_cert, paired,
 940							 ek_pub_km, msg_sz);
 941	if (ret < 0)
 942		DRM_DEBUG_KMS("Verify rx_cert failed. %d\n", ret);
 943	mutex_unlock(&dev_priv->hdcp_comp_mutex);
 944
 945	return ret;
 946}
 947
 948static int hdcp2_verify_hprime(struct intel_connector *connector,
 949			       struct hdcp2_ake_send_hprime *rx_hprime)
 950{
 951	struct hdcp_port_data *data = &connector->hdcp.port_data;
 952	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
 953	struct i915_hdcp_comp_master *comp;
 954	int ret;
 955
 956	mutex_lock(&dev_priv->hdcp_comp_mutex);
 957	comp = dev_priv->hdcp_master;
 958
 959	if (!comp || !comp->ops) {
 960		mutex_unlock(&dev_priv->hdcp_comp_mutex);
 961		return -EINVAL;
 962	}
 963
 964	ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
 965	if (ret < 0)
 966		DRM_DEBUG_KMS("Verify hprime failed. %d\n", ret);
 967	mutex_unlock(&dev_priv->hdcp_comp_mutex);
 968
 969	return ret;
 970}
 971
 972static int
 973hdcp2_store_pairing_info(struct intel_connector *connector,
 974			 struct hdcp2_ake_send_pairing_info *pairing_info)
 975{
 976	struct hdcp_port_data *data = &connector->hdcp.port_data;
 977	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
 978	struct i915_hdcp_comp_master *comp;
 979	int ret;
 980
 981	mutex_lock(&dev_priv->hdcp_comp_mutex);
 982	comp = dev_priv->hdcp_master;
 983
 984	if (!comp || !comp->ops) {
 985		mutex_unlock(&dev_priv->hdcp_comp_mutex);
 986		return -EINVAL;
 987	}
 988
 989	ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
 990	if (ret < 0)
 991		DRM_DEBUG_KMS("Store pairing info failed. %d\n", ret);
 992	mutex_unlock(&dev_priv->hdcp_comp_mutex);
 993
 994	return ret;
 995}
 996
 997static int
 998hdcp2_prepare_lc_init(struct intel_connector *connector,
 999		      struct hdcp2_lc_init *lc_init)
1000{
1001	struct hdcp_port_data *data = &connector->hdcp.port_data;
1002	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1003	struct i915_hdcp_comp_master *comp;
1004	int ret;
1005
1006	mutex_lock(&dev_priv->hdcp_comp_mutex);
1007	comp = dev_priv->hdcp_master;
1008
1009	if (!comp || !comp->ops) {
1010		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1011		return -EINVAL;
1012	}
1013
1014	ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1015	if (ret < 0)
1016		DRM_DEBUG_KMS("Prepare lc_init failed. %d\n", ret);
1017	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1018
1019	return ret;
1020}
1021
1022static int
1023hdcp2_verify_lprime(struct intel_connector *connector,
1024		    struct hdcp2_lc_send_lprime *rx_lprime)
1025{
1026	struct hdcp_port_data *data = &connector->hdcp.port_data;
1027	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1028	struct i915_hdcp_comp_master *comp;
1029	int ret;
1030
1031	mutex_lock(&dev_priv->hdcp_comp_mutex);
1032	comp = dev_priv->hdcp_master;
1033
1034	if (!comp || !comp->ops) {
1035		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1036		return -EINVAL;
1037	}
1038
1039	ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1040	if (ret < 0)
1041		DRM_DEBUG_KMS("Verify L_Prime failed. %d\n", ret);
1042	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1043
1044	return ret;
1045}
1046
1047static int hdcp2_prepare_skey(struct intel_connector *connector,
1048			      struct hdcp2_ske_send_eks *ske_data)
1049{
1050	struct hdcp_port_data *data = &connector->hdcp.port_data;
1051	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1052	struct i915_hdcp_comp_master *comp;
1053	int ret;
1054
1055	mutex_lock(&dev_priv->hdcp_comp_mutex);
1056	comp = dev_priv->hdcp_master;
1057
1058	if (!comp || !comp->ops) {
1059		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1060		return -EINVAL;
1061	}
1062
1063	ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1064	if (ret < 0)
1065		DRM_DEBUG_KMS("Get session key failed. %d\n", ret);
1066	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1067
1068	return ret;
1069}
1070
1071static int
1072hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1073				      struct hdcp2_rep_send_receiverid_list
1074								*rep_topology,
1075				      struct hdcp2_rep_send_ack *rep_send_ack)
1076{
1077	struct hdcp_port_data *data = &connector->hdcp.port_data;
1078	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1079	struct i915_hdcp_comp_master *comp;
1080	int ret;
1081
1082	mutex_lock(&dev_priv->hdcp_comp_mutex);
1083	comp = dev_priv->hdcp_master;
1084
1085	if (!comp || !comp->ops) {
1086		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1087		return -EINVAL;
1088	}
1089
1090	ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1091							 rep_topology,
1092							 rep_send_ack);
1093	if (ret < 0)
1094		DRM_DEBUG_KMS("Verify rep topology failed. %d\n", ret);
1095	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1096
1097	return ret;
1098}
1099
1100static int
1101hdcp2_verify_mprime(struct intel_connector *connector,
1102		    struct hdcp2_rep_stream_ready *stream_ready)
1103{
1104	struct hdcp_port_data *data = &connector->hdcp.port_data;
1105	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1106	struct i915_hdcp_comp_master *comp;
1107	int ret;
1108
1109	mutex_lock(&dev_priv->hdcp_comp_mutex);
1110	comp = dev_priv->hdcp_master;
1111
1112	if (!comp || !comp->ops) {
1113		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1114		return -EINVAL;
1115	}
1116
1117	ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1118	if (ret < 0)
1119		DRM_DEBUG_KMS("Verify mprime failed. %d\n", ret);
1120	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1121
1122	return ret;
1123}
1124
1125static int hdcp2_authenticate_port(struct intel_connector *connector)
1126{
1127	struct hdcp_port_data *data = &connector->hdcp.port_data;
1128	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1129	struct i915_hdcp_comp_master *comp;
1130	int ret;
1131
1132	mutex_lock(&dev_priv->hdcp_comp_mutex);
1133	comp = dev_priv->hdcp_master;
1134
1135	if (!comp || !comp->ops) {
1136		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1137		return -EINVAL;
1138	}
1139
1140	ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1141	if (ret < 0)
1142		DRM_DEBUG_KMS("Enable hdcp auth failed. %d\n", ret);
1143	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1144
1145	return ret;
1146}
1147
1148static int hdcp2_close_mei_session(struct intel_connector *connector)
1149{
1150	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1151	struct i915_hdcp_comp_master *comp;
1152	int ret;
1153
1154	mutex_lock(&dev_priv->hdcp_comp_mutex);
1155	comp = dev_priv->hdcp_master;
1156
1157	if (!comp || !comp->ops) {
1158		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1159		return -EINVAL;
1160	}
1161
1162	ret = comp->ops->close_hdcp_session(comp->mei_dev,
1163					     &connector->hdcp.port_data);
1164	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1165
1166	return ret;
1167}
1168
1169static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1170{
1171	return hdcp2_close_mei_session(connector);
1172}
1173
1174/* Authentication flow starts from here */
1175static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1176{
1177	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1178	struct intel_hdcp *hdcp = &connector->hdcp;
1179	struct drm_device *dev = connector->base.dev;
1180	union {
1181		struct hdcp2_ake_init ake_init;
1182		struct hdcp2_ake_send_cert send_cert;
1183		struct hdcp2_ake_no_stored_km no_stored_km;
1184		struct hdcp2_ake_send_hprime send_hprime;
1185		struct hdcp2_ake_send_pairing_info pairing_info;
1186	} msgs;
1187	const struct intel_hdcp_shim *shim = hdcp->shim;
1188	size_t size;
1189	int ret;
1190
1191	/* Init for seq_num */
1192	hdcp->seq_num_v = 0;
1193	hdcp->seq_num_m = 0;
1194
1195	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1196	if (ret < 0)
1197		return ret;
1198
1199	ret = shim->write_2_2_msg(intel_dig_port, &msgs.ake_init,
1200				  sizeof(msgs.ake_init));
1201	if (ret < 0)
1202		return ret;
1203
1204	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_CERT,
1205				 &msgs.send_cert, sizeof(msgs.send_cert));
1206	if (ret < 0)
1207		return ret;
1208
1209	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1210		DRM_DEBUG_KMS("cert.rx_caps dont claim HDCP2.2\n");
1211		return -EINVAL;
1212	}
1213
1214	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1215
1216	if (drm_hdcp_check_ksvs_revoked(dev, msgs.send_cert.cert_rx.receiver_id,
1217					1)) {
1218		DRM_ERROR("Receiver ID is revoked\n");
1219		return -EPERM;
1220	}
1221
1222	/*
1223	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1224	 * stored also.
1225	 */
1226	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1227					      &hdcp->is_paired,
1228					      &msgs.no_stored_km, &size);
1229	if (ret < 0)
1230		return ret;
1231
1232	ret = shim->write_2_2_msg(intel_dig_port, &msgs.no_stored_km, size);
1233	if (ret < 0)
1234		return ret;
1235
1236	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1237				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1238	if (ret < 0)
1239		return ret;
1240
1241	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1242	if (ret < 0)
1243		return ret;
1244
1245	if (!hdcp->is_paired) {
1246		/* Pairing is required */
1247		ret = shim->read_2_2_msg(intel_dig_port,
1248					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1249					 &msgs.pairing_info,
1250					 sizeof(msgs.pairing_info));
1251		if (ret < 0)
1252			return ret;
1253
1254		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1255		if (ret < 0)
1256			return ret;
1257		hdcp->is_paired = true;
1258	}
1259
1260	return 0;
1261}
1262
1263static int hdcp2_locality_check(struct intel_connector *connector)
1264{
1265	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1266	struct intel_hdcp *hdcp = &connector->hdcp;
1267	union {
1268		struct hdcp2_lc_init lc_init;
1269		struct hdcp2_lc_send_lprime send_lprime;
1270	} msgs;
1271	const struct intel_hdcp_shim *shim = hdcp->shim;
1272	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1273
1274	for (i = 0; i < tries; i++) {
1275		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1276		if (ret < 0)
1277			continue;
1278
1279		ret = shim->write_2_2_msg(intel_dig_port, &msgs.lc_init,
1280				      sizeof(msgs.lc_init));
1281		if (ret < 0)
1282			continue;
1283
1284		ret = shim->read_2_2_msg(intel_dig_port,
1285					 HDCP_2_2_LC_SEND_LPRIME,
1286					 &msgs.send_lprime,
1287					 sizeof(msgs.send_lprime));
1288		if (ret < 0)
1289			continue;
1290
1291		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1292		if (!ret)
1293			break;
1294	}
1295
1296	return ret;
1297}
1298
1299static int hdcp2_session_key_exchange(struct intel_connector *connector)
1300{
1301	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1302	struct intel_hdcp *hdcp = &connector->hdcp;
1303	struct hdcp2_ske_send_eks send_eks;
1304	int ret;
1305
1306	ret = hdcp2_prepare_skey(connector, &send_eks);
1307	if (ret < 0)
1308		return ret;
1309
1310	ret = hdcp->shim->write_2_2_msg(intel_dig_port, &send_eks,
1311					sizeof(send_eks));
1312	if (ret < 0)
1313		return ret;
1314
1315	return 0;
1316}
1317
1318static
1319int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1320{
1321	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1322	struct intel_hdcp *hdcp = &connector->hdcp;
1323	union {
1324		struct hdcp2_rep_stream_manage stream_manage;
1325		struct hdcp2_rep_stream_ready stream_ready;
1326	} msgs;
1327	const struct intel_hdcp_shim *shim = hdcp->shim;
1328	int ret;
1329
1330	/* Prepare RepeaterAuth_Stream_Manage msg */
1331	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1332	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1333
1334	/* K no of streams is fixed as 1. Stored as big-endian. */
1335	msgs.stream_manage.k = cpu_to_be16(1);
1336
1337	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1338	msgs.stream_manage.streams[0].stream_id = 0;
1339	msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1340
1341	/* Send it to Repeater */
1342	ret = shim->write_2_2_msg(intel_dig_port, &msgs.stream_manage,
1343				  sizeof(msgs.stream_manage));
1344	if (ret < 0)
1345		return ret;
1346
1347	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_STREAM_READY,
1348				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1349	if (ret < 0)
1350		return ret;
1351
1352	hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1353	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1354
1355	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1356	if (ret < 0)
1357		return ret;
1358
1359	hdcp->seq_num_m++;
1360
1361	if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1362		DRM_DEBUG_KMS("seq_num_m roll over.\n");
1363		return -1;
1364	}
1365
1366	return 0;
1367}
1368
1369static
1370int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1371{
1372	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1373	struct intel_hdcp *hdcp = &connector->hdcp;
1374	struct drm_device *dev = connector->base.dev;
1375	union {
1376		struct hdcp2_rep_send_receiverid_list recvid_list;
1377		struct hdcp2_rep_send_ack rep_ack;
1378	} msgs;
1379	const struct intel_hdcp_shim *shim = hdcp->shim;
1380	u32 seq_num_v, device_cnt;
1381	u8 *rx_info;
1382	int ret;
1383
1384	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1385				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1386	if (ret < 0)
1387		return ret;
1388
1389	rx_info = msgs.recvid_list.rx_info;
1390
1391	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1392	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1393		DRM_DEBUG_KMS("Topology Max Size Exceeded\n");
1394		return -EINVAL;
1395	}
1396
1397	/* Converting and Storing the seq_num_v to local variable as DWORD */
1398	seq_num_v =
1399		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1400
1401	if (seq_num_v < hdcp->seq_num_v) {
1402		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1403		DRM_DEBUG_KMS("Seq_num_v roll over.\n");
1404		return -EINVAL;
1405	}
1406
1407	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1408		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1409	if (drm_hdcp_check_ksvs_revoked(dev, msgs.recvid_list.receiver_ids,
1410					device_cnt)) {
1411		DRM_ERROR("Revoked receiver ID(s) is in list\n");
1412		return -EPERM;
1413	}
1414
1415	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1416						    &msgs.recvid_list,
1417						    &msgs.rep_ack);
1418	if (ret < 0)
1419		return ret;
1420
1421	hdcp->seq_num_v = seq_num_v;
1422	ret = shim->write_2_2_msg(intel_dig_port, &msgs.rep_ack,
1423				  sizeof(msgs.rep_ack));
1424	if (ret < 0)
1425		return ret;
1426
1427	return 0;
1428}
1429
1430static int hdcp2_authenticate_repeater(struct intel_connector *connector)
1431{
1432	int ret;
1433
1434	ret = hdcp2_authenticate_repeater_topology(connector);
1435	if (ret < 0)
1436		return ret;
1437
1438	return hdcp2_propagate_stream_management_info(connector);
1439}
1440
1441static int hdcp2_authenticate_sink(struct intel_connector *connector)
1442{
1443	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1444	struct intel_hdcp *hdcp = &connector->hdcp;
1445	const struct intel_hdcp_shim *shim = hdcp->shim;
1446	int ret;
1447
1448	ret = hdcp2_authentication_key_exchange(connector);
1449	if (ret < 0) {
1450		DRM_DEBUG_KMS("AKE Failed. Err : %d\n", ret);
1451		return ret;
1452	}
1453
1454	ret = hdcp2_locality_check(connector);
1455	if (ret < 0) {
1456		DRM_DEBUG_KMS("Locality Check failed. Err : %d\n", ret);
1457		return ret;
1458	}
1459
1460	ret = hdcp2_session_key_exchange(connector);
1461	if (ret < 0) {
1462		DRM_DEBUG_KMS("SKE Failed. Err : %d\n", ret);
1463		return ret;
1464	}
1465
1466	if (shim->config_stream_type) {
1467		ret = shim->config_stream_type(intel_dig_port,
1468					       hdcp->is_repeater,
1469					       hdcp->content_type);
1470		if (ret < 0)
1471			return ret;
1472	}
1473
1474	if (hdcp->is_repeater) {
1475		ret = hdcp2_authenticate_repeater(connector);
1476		if (ret < 0) {
1477			DRM_DEBUG_KMS("Repeater Auth Failed. Err: %d\n", ret);
1478			return ret;
1479		}
1480	}
1481
1482	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1483	ret = hdcp2_authenticate_port(connector);
1484	if (ret < 0)
1485		return ret;
1486
1487	return ret;
1488}
1489
1490static int hdcp2_enable_encryption(struct intel_connector *connector)
1491{
1492	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1493	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1494	struct intel_hdcp *hdcp = &connector->hdcp;
1495	enum port port = connector->encoder->port;
1496	int ret;
1497
1498	WARN_ON(I915_READ(HDCP2_STATUS_DDI(port)) & LINK_ENCRYPTION_STATUS);
1499
1500	if (hdcp->shim->toggle_signalling) {
1501		ret = hdcp->shim->toggle_signalling(intel_dig_port, true);
1502		if (ret) {
1503			DRM_ERROR("Failed to enable HDCP signalling. %d\n",
1504				  ret);
1505			return ret;
1506		}
1507	}
1508
1509	if (I915_READ(HDCP2_STATUS_DDI(port)) & LINK_AUTH_STATUS) {
1510		/* Link is Authenticated. Now set for Encryption */
1511		I915_WRITE(HDCP2_CTL_DDI(port),
1512			   I915_READ(HDCP2_CTL_DDI(port)) |
1513			   CTL_LINK_ENCRYPTION_REQ);
1514	}
1515
1516	ret = intel_de_wait_for_set(dev_priv, HDCP2_STATUS_DDI(port),
1517				    LINK_ENCRYPTION_STATUS,
1518				    ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1519
1520	return ret;
1521}
1522
1523static int hdcp2_disable_encryption(struct intel_connector *connector)
1524{
1525	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1526	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1527	struct intel_hdcp *hdcp = &connector->hdcp;
1528	enum port port = connector->encoder->port;
1529	int ret;
1530
1531	WARN_ON(!(I915_READ(HDCP2_STATUS_DDI(port)) & LINK_ENCRYPTION_STATUS));
1532
1533	I915_WRITE(HDCP2_CTL_DDI(port),
1534		   I915_READ(HDCP2_CTL_DDI(port)) & ~CTL_LINK_ENCRYPTION_REQ);
1535
1536	ret = intel_de_wait_for_clear(dev_priv, HDCP2_STATUS_DDI(port),
1537				      LINK_ENCRYPTION_STATUS,
1538				      ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1539	if (ret == -ETIMEDOUT)
1540		DRM_DEBUG_KMS("Disable Encryption Timedout");
1541
1542	if (hdcp->shim->toggle_signalling) {
1543		ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
1544		if (ret) {
1545			DRM_ERROR("Failed to disable HDCP signalling. %d\n",
1546				  ret);
1547			return ret;
1548		}
1549	}
1550
1551	return ret;
1552}
1553
1554static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1555{
1556	int ret, i, tries = 3;
1557
1558	for (i = 0; i < tries; i++) {
1559		ret = hdcp2_authenticate_sink(connector);
1560		if (!ret)
1561			break;
1562
1563		/* Clearing the mei hdcp session */
1564		DRM_DEBUG_KMS("HDCP2.2 Auth %d of %d Failed.(%d)\n",
1565			      i + 1, tries, ret);
1566		if (hdcp2_deauthenticate_port(connector) < 0)
1567			DRM_DEBUG_KMS("Port deauth failed.\n");
1568	}
1569
1570	if (i != tries) {
1571		/*
1572		 * Ensuring the required 200mSec min time interval between
1573		 * Session Key Exchange and encryption.
1574		 */
1575		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1576		ret = hdcp2_enable_encryption(connector);
1577		if (ret < 0) {
1578			DRM_DEBUG_KMS("Encryption Enable Failed.(%d)\n", ret);
1579			if (hdcp2_deauthenticate_port(connector) < 0)
1580				DRM_DEBUG_KMS("Port deauth failed.\n");
1581		}
1582	}
1583
1584	return ret;
1585}
1586
1587static int _intel_hdcp2_enable(struct intel_connector *connector)
1588{
1589	struct intel_hdcp *hdcp = &connector->hdcp;
1590	int ret;
1591
1592	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1593		      connector->base.name, connector->base.base.id,
1594		      hdcp->content_type);
1595
1596	ret = hdcp2_authenticate_and_encrypt(connector);
1597	if (ret) {
1598		DRM_DEBUG_KMS("HDCP2 Type%d  Enabling Failed. (%d)\n",
1599			      hdcp->content_type, ret);
1600		return ret;
1601	}
1602
1603	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is enabled. Type %d\n",
1604		      connector->base.name, connector->base.base.id,
1605		      hdcp->content_type);
1606
1607	hdcp->hdcp2_encrypted = true;
1608	return 0;
1609}
1610
1611static int _intel_hdcp2_disable(struct intel_connector *connector)
1612{
1613	int ret;
1614
1615	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being Disabled\n",
1616		      connector->base.name, connector->base.base.id);
1617
1618	ret = hdcp2_disable_encryption(connector);
1619
1620	if (hdcp2_deauthenticate_port(connector) < 0)
1621		DRM_DEBUG_KMS("Port deauth failed.\n");
1622
1623	connector->hdcp.hdcp2_encrypted = false;
1624
1625	return ret;
1626}
1627
1628/* Implements the Link Integrity Check for HDCP2.2 */
1629static int intel_hdcp2_check_link(struct intel_connector *connector)
1630{
1631	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1632	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1633	struct intel_hdcp *hdcp = &connector->hdcp;
1634	enum port port = connector->encoder->port;
1635	int ret = 0;
1636
1637	mutex_lock(&hdcp->mutex);
1638
1639	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1640	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1641	    !hdcp->hdcp2_encrypted) {
1642		ret = -EINVAL;
1643		goto out;
1644	}
1645
1646	if (WARN_ON(!intel_hdcp2_in_use(connector))) {
1647		DRM_ERROR("HDCP2.2 link stopped the encryption, %x\n",
1648			  I915_READ(HDCP2_STATUS_DDI(port)));
1649		ret = -ENXIO;
1650		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1651		schedule_work(&hdcp->prop_work);
1652		goto out;
1653	}
1654
1655	ret = hdcp->shim->check_2_2_link(intel_dig_port);
1656	if (ret == HDCP_LINK_PROTECTED) {
1657		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1658			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1659			schedule_work(&hdcp->prop_work);
1660		}
1661		goto out;
1662	}
1663
1664	if (ret == HDCP_TOPOLOGY_CHANGE) {
1665		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1666			goto out;
1667
1668		DRM_DEBUG_KMS("HDCP2.2 Downstream topology change\n");
1669		ret = hdcp2_authenticate_repeater_topology(connector);
1670		if (!ret) {
1671			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1672			schedule_work(&hdcp->prop_work);
1673			goto out;
1674		}
1675		DRM_DEBUG_KMS("[%s:%d] Repeater topology auth failed.(%d)\n",
1676			      connector->base.name, connector->base.base.id,
1677			      ret);
1678	} else {
1679		DRM_DEBUG_KMS("[%s:%d] HDCP2.2 link failed, retrying auth\n",
1680			      connector->base.name, connector->base.base.id);
1681	}
1682
1683	ret = _intel_hdcp2_disable(connector);
1684	if (ret) {
1685		DRM_ERROR("[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1686			  connector->base.name, connector->base.base.id, ret);
1687		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1688		schedule_work(&hdcp->prop_work);
1689		goto out;
1690	}
1691
1692	ret = _intel_hdcp2_enable(connector);
1693	if (ret) {
1694		DRM_DEBUG_KMS("[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1695			      connector->base.name, connector->base.base.id,
1696			      ret);
1697		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1698		schedule_work(&hdcp->prop_work);
1699		goto out;
1700	}
1701
1702out:
1703	mutex_unlock(&hdcp->mutex);
1704	return ret;
1705}
1706
1707static void intel_hdcp_check_work(struct work_struct *work)
1708{
1709	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1710					       struct intel_hdcp,
1711					       check_work);
1712	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1713
1714	if (!intel_hdcp2_check_link(connector))
1715		schedule_delayed_work(&hdcp->check_work,
1716				      DRM_HDCP2_CHECK_PERIOD_MS);
1717	else if (!intel_hdcp_check_link(connector))
1718		schedule_delayed_work(&hdcp->check_work,
1719				      DRM_HDCP_CHECK_PERIOD_MS);
1720}
1721
1722static int i915_hdcp_component_bind(struct device *i915_kdev,
1723				    struct device *mei_kdev, void *data)
1724{
1725	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1726
1727	DRM_DEBUG("I915 HDCP comp bind\n");
1728	mutex_lock(&dev_priv->hdcp_comp_mutex);
1729	dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1730	dev_priv->hdcp_master->mei_dev = mei_kdev;
1731	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1732
1733	return 0;
1734}
1735
1736static void i915_hdcp_component_unbind(struct device *i915_kdev,
1737				       struct device *mei_kdev, void *data)
1738{
1739	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1740
1741	DRM_DEBUG("I915 HDCP comp unbind\n");
1742	mutex_lock(&dev_priv->hdcp_comp_mutex);
1743	dev_priv->hdcp_master = NULL;
1744	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1745}
1746
1747static const struct component_ops i915_hdcp_component_ops = {
1748	.bind   = i915_hdcp_component_bind,
1749	.unbind = i915_hdcp_component_unbind,
1750};
1751
1752static inline int initialize_hdcp_port_data(struct intel_connector *connector,
1753					    const struct intel_hdcp_shim *shim)
1754{
1755	struct intel_hdcp *hdcp = &connector->hdcp;
1756	struct hdcp_port_data *data = &hdcp->port_data;
1757
1758	data->port = connector->encoder->port;
1759	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1760	data->protocol = (u8)shim->protocol;
1761
1762	data->k = 1;
1763	if (!data->streams)
1764		data->streams = kcalloc(data->k,
1765					sizeof(struct hdcp2_streamid_type),
1766					GFP_KERNEL);
1767	if (!data->streams) {
1768		DRM_ERROR("Out of Memory\n");
1769		return -ENOMEM;
1770	}
1771
1772	data->streams[0].stream_id = 0;
1773	data->streams[0].stream_type = hdcp->content_type;
1774
1775	return 0;
1776}
1777
1778static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
1779{
1780	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
1781		return false;
1782
1783	return (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv) ||
1784		IS_KABYLAKE(dev_priv));
1785}
1786
1787void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
1788{
1789	int ret;
1790
1791	if (!is_hdcp2_supported(dev_priv))
1792		return;
1793
1794	mutex_lock(&dev_priv->hdcp_comp_mutex);
1795	WARN_ON(dev_priv->hdcp_comp_added);
1796
1797	dev_priv->hdcp_comp_added = true;
1798	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1799	ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
1800				  I915_COMPONENT_HDCP);
1801	if (ret < 0) {
1802		DRM_DEBUG_KMS("Failed at component add(%d)\n", ret);
1803		mutex_lock(&dev_priv->hdcp_comp_mutex);
1804		dev_priv->hdcp_comp_added = false;
1805		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1806		return;
1807	}
1808}
1809
1810static void intel_hdcp2_init(struct intel_connector *connector,
1811			     const struct intel_hdcp_shim *shim)
1812{
1813	struct intel_hdcp *hdcp = &connector->hdcp;
1814	int ret;
1815
1816	ret = initialize_hdcp_port_data(connector, shim);
1817	if (ret) {
1818		DRM_DEBUG_KMS("Mei hdcp data init failed\n");
1819		return;
1820	}
1821
1822	hdcp->hdcp2_supported = true;
1823}
1824
1825int intel_hdcp_init(struct intel_connector *connector,
1826		    const struct intel_hdcp_shim *shim)
1827{
1828	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1829	struct intel_hdcp *hdcp = &connector->hdcp;
1830	int ret;
1831
1832	if (!shim)
1833		return -EINVAL;
1834
1835	if (is_hdcp2_supported(dev_priv))
1836		intel_hdcp2_init(connector, shim);
1837
1838	ret =
1839	drm_connector_attach_content_protection_property(&connector->base,
1840							 hdcp->hdcp2_supported);
1841	if (ret) {
1842		hdcp->hdcp2_supported = false;
1843		kfree(hdcp->port_data.streams);
1844		return ret;
1845	}
1846
1847	hdcp->shim = shim;
1848	mutex_init(&hdcp->mutex);
1849	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
1850	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
1851	init_waitqueue_head(&hdcp->cp_irq_queue);
1852
1853	return 0;
1854}
1855
1856int intel_hdcp_enable(struct intel_connector *connector, u8 content_type)
1857{
1858	struct intel_hdcp *hdcp = &connector->hdcp;
1859	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
1860	int ret = -EINVAL;
1861
1862	if (!hdcp->shim)
1863		return -ENOENT;
1864
1865	mutex_lock(&hdcp->mutex);
1866	WARN_ON(hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
1867	hdcp->content_type = content_type;
1868
1869	/*
1870	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
1871	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
1872	 */
1873	if (intel_hdcp2_capable(connector)) {
1874		ret = _intel_hdcp2_enable(connector);
1875		if (!ret)
1876			check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
1877	}
1878
1879	/*
1880	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
1881	 * be attempted.
1882	 */
1883	if (ret && intel_hdcp_capable(connector) &&
1884	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
1885		ret = _intel_hdcp_enable(connector);
1886	}
1887
1888	if (!ret) {
1889		schedule_delayed_work(&hdcp->check_work, check_link_interval);
1890		hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1891		schedule_work(&hdcp->prop_work);
1892	}
1893
1894	mutex_unlock(&hdcp->mutex);
1895	return ret;
1896}
1897
1898int intel_hdcp_disable(struct intel_connector *connector)
1899{
1900	struct intel_hdcp *hdcp = &connector->hdcp;
1901	int ret = 0;
1902
1903	if (!hdcp->shim)
1904		return -ENOENT;
1905
1906	mutex_lock(&hdcp->mutex);
1907
1908	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1909		hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
1910		if (hdcp->hdcp2_encrypted)
1911			ret = _intel_hdcp2_disable(connector);
1912		else if (hdcp->hdcp_encrypted)
1913			ret = _intel_hdcp_disable(connector);
1914	}
1915
1916	mutex_unlock(&hdcp->mutex);
1917	cancel_delayed_work_sync(&hdcp->check_work);
1918	return ret;
1919}
1920
1921void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
1922{
1923	mutex_lock(&dev_priv->hdcp_comp_mutex);
1924	if (!dev_priv->hdcp_comp_added) {
1925		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1926		return;
1927	}
1928
1929	dev_priv->hdcp_comp_added = false;
1930	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1931
1932	component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
1933}
1934
1935void intel_hdcp_cleanup(struct intel_connector *connector)
1936{
1937	if (!connector->hdcp.shim)
1938		return;
1939
1940	mutex_lock(&connector->hdcp.mutex);
1941	kfree(connector->hdcp.port_data.streams);
1942	mutex_unlock(&connector->hdcp.mutex);
1943}
1944
1945void intel_hdcp_atomic_check(struct drm_connector *connector,
1946			     struct drm_connector_state *old_state,
1947			     struct drm_connector_state *new_state)
1948{
1949	u64 old_cp = old_state->content_protection;
1950	u64 new_cp = new_state->content_protection;
1951	struct drm_crtc_state *crtc_state;
1952
1953	if (!new_state->crtc) {
1954		/*
1955		 * If the connector is being disabled with CP enabled, mark it
1956		 * desired so it's re-enabled when the connector is brought back
1957		 */
1958		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
1959			new_state->content_protection =
1960				DRM_MODE_CONTENT_PROTECTION_DESIRED;
1961		return;
1962	}
1963
1964	/*
1965	 * Nothing to do if the state didn't change, or HDCP was activated since
1966	 * the last commit. And also no change in hdcp content type.
1967	 */
1968	if (old_cp == new_cp ||
1969	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
1970	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
1971		if (old_state->hdcp_content_type ==
1972				new_state->hdcp_content_type)
1973			return;
1974	}
1975
1976	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
1977						   new_state->crtc);
1978	crtc_state->mode_changed = true;
1979}
1980
1981/* Handles the CP_IRQ raised from the DP HDCP sink */
1982void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
1983{
1984	struct intel_hdcp *hdcp = &connector->hdcp;
1985
1986	if (!hdcp->shim)
1987		return;
1988
1989	atomic_inc(&connector->hdcp.cp_irq_count);
1990	wake_up_all(&connector->hdcp.cp_irq_queue);
1991
1992	schedule_delayed_work(&hdcp->check_work, 0);
1993}