Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/slab.h>
  30#include <linux/module.h>
  31#include <drm/drmP.h>
 
  32#include <drm/drm_crtc.h>
  33#include <drm/drm_crtc_helper.h>
 
 
 
  34#include "psb_drv.h"
  35#include "psb_intel_drv.h"
  36#include "psb_intel_reg.h"
  37#include "gma_display.h"
  38#include <drm/drm_dp_helper.h>
  39
  40/**
  41 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
  42 * 				 aux algorithm
  43 * @running: set by the algo indicating whether an i2c is ongoing or whether
  44 * 	     the i2c bus is quiescent
  45 * @address: i2c target address for the currently ongoing transfer
  46 * @aux_ch: driver callback to transfer a single byte of the i2c payload
  47 */
  48struct i2c_algo_dp_aux_data {
  49	bool running;
  50	u16 address;
  51	int (*aux_ch) (struct i2c_adapter *adapter,
  52		       int mode, uint8_t write_byte,
  53		       uint8_t *read_byte);
  54};
  55
  56/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
  57static int
  58i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
  59			    uint8_t write_byte, uint8_t *read_byte)
  60{
  61	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  62	int ret;
  63
  64	ret = (*algo_data->aux_ch)(adapter, mode,
  65				   write_byte, read_byte);
  66	return ret;
  67}
  68
  69/*
  70 * I2C over AUX CH
  71 */
  72
  73/*
  74 * Send the address. If the I2C link is running, this 'restarts'
  75 * the connection with the new address, this is used for doing
  76 * a write followed by a read (as needed for DDC)
  77 */
  78static int
  79i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
  80{
  81	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  82	int mode = MODE_I2C_START;
  83	int ret;
  84
  85	if (reading)
  86		mode |= MODE_I2C_READ;
  87	else
  88		mode |= MODE_I2C_WRITE;
  89	algo_data->address = address;
  90	algo_data->running = true;
  91	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
  92	return ret;
  93}
  94
  95/*
  96 * Stop the I2C transaction. This closes out the link, sending
  97 * a bare address packet with the MOT bit turned off
  98 */
  99static void
 100i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
 101{
 102	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 103	int mode = MODE_I2C_STOP;
 104
 105	if (reading)
 106		mode |= MODE_I2C_READ;
 107	else
 108		mode |= MODE_I2C_WRITE;
 109	if (algo_data->running) {
 110		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
 111		algo_data->running = false;
 112	}
 113}
 114
 115/*
 116 * Write a single byte to the current I2C address, the
 117 * the I2C link must be running or this returns -EIO
 118 */
 119static int
 120i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
 121{
 122	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 123	int ret;
 124
 125	if (!algo_data->running)
 126		return -EIO;
 127
 128	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
 129	return ret;
 130}
 131
 132/*
 133 * Read a single byte from the current I2C address, the
 134 * I2C link must be running or this returns -EIO
 135 */
 136static int
 137i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
 138{
 139	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 140	int ret;
 141
 142	if (!algo_data->running)
 143		return -EIO;
 144
 145	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
 146	return ret;
 147}
 148
 149static int
 150i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
 151		     struct i2c_msg *msgs,
 152		     int num)
 153{
 154	int ret = 0;
 155	bool reading = false;
 156	int m;
 157	int b;
 158
 159	for (m = 0; m < num; m++) {
 160		u16 len = msgs[m].len;
 161		u8 *buf = msgs[m].buf;
 162		reading = (msgs[m].flags & I2C_M_RD) != 0;
 163		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
 164		if (ret < 0)
 165			break;
 166		if (reading) {
 167			for (b = 0; b < len; b++) {
 168				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
 169				if (ret < 0)
 170					break;
 171			}
 172		} else {
 173			for (b = 0; b < len; b++) {
 174				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
 175				if (ret < 0)
 176					break;
 177			}
 178		}
 179		if (ret < 0)
 180			break;
 181	}
 182	if (ret >= 0)
 183		ret = num;
 184	i2c_algo_dp_aux_stop(adapter, reading);
 185	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
 186	return ret;
 187}
 188
 189static u32
 190i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
 191{
 192	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
 193	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
 194	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
 195	       I2C_FUNC_10BIT_ADDR;
 196}
 197
 198static const struct i2c_algorithm i2c_dp_aux_algo = {
 199	.master_xfer	= i2c_algo_dp_aux_xfer,
 200	.functionality	= i2c_algo_dp_aux_functionality,
 201};
 202
 203static void
 204i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
 205{
 206	(void) i2c_algo_dp_aux_address(adapter, 0, false);
 207	(void) i2c_algo_dp_aux_stop(adapter, false);
 208}
 209
 210static int
 211i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
 212{
 213	adapter->algo = &i2c_dp_aux_algo;
 214	adapter->retries = 3;
 215	i2c_dp_aux_reset_bus(adapter);
 216	return 0;
 217}
 218
 219/*
 220 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
 221 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
 222 */
 223static int
 224i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
 225{
 226	int error;
 227
 228	error = i2c_dp_aux_prepare_bus(adapter);
 229	if (error)
 230		return error;
 231	error = i2c_add_adapter(adapter);
 232	return error;
 233}
 234
 235#define _wait_for(COND, MS, W) ({ \
 236        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
 237        int ret__ = 0;                                                  \
 238        while (! (COND)) {                                              \
 239                if (time_after(jiffies, timeout__)) {                   \
 240                        ret__ = -ETIMEDOUT;                             \
 241                        break;                                          \
 242                }                                                       \
 243                if (W && !in_dbg_master()) msleep(W);                   \
 244        }                                                               \
 245        ret__;                                                          \
 246})      
 247
 248#define wait_for(COND, MS) _wait_for(COND, MS, 1)
 249
 250#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
 251
 252#define DP_LINK_CONFIGURATION_SIZE	9
 253
 254#define CDV_FAST_LINK_TRAIN	1
 255
 256struct cdv_intel_dp {
 257	uint32_t output_reg;
 258	uint32_t DP;
 259	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
 260	bool has_audio;
 261	int force_audio;
 262	uint32_t color_range;
 263	uint8_t link_bw;
 264	uint8_t lane_count;
 265	uint8_t dpcd[4];
 266	struct gma_encoder *encoder;
 267	struct i2c_adapter adapter;
 268	struct i2c_algo_dp_aux_data algo;
 269	uint8_t	train_set[4];
 270	uint8_t link_status[DP_LINK_STATUS_SIZE];
 271	int panel_power_up_delay;
 272	int panel_power_down_delay;
 273	int panel_power_cycle_delay;
 274	int backlight_on_delay;
 275	int backlight_off_delay;
 276	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
 277	bool panel_on;
 278};
 279
 280struct ddi_regoff {
 281	uint32_t	PreEmph1;
 282	uint32_t	PreEmph2;
 283	uint32_t	VSwing1;
 284	uint32_t	VSwing2;
 285	uint32_t	VSwing3;
 286	uint32_t	VSwing4;
 287	uint32_t	VSwing5;
 288};
 289
 290static struct ddi_regoff ddi_DP_train_table[] = {
 291	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
 292	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
 293	.VSwing5 = 0x8158,},
 294	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
 295	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
 296	.VSwing5 = 0x8258,},
 297};
 298
 299static uint32_t dp_vswing_premph_table[] = {
 300        0x55338954,	0x4000,
 301        0x554d8954,	0x2000,
 302        0x55668954,	0,
 303        0x559ac0d4,	0x6000,
 304};
 305/**
 306 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 307 * @intel_dp: DP struct
 308 *
 309 * If a CPU or PCH DP output is attached to an eDP panel, this function
 310 * will return true, and false otherwise.
 311 */
 312static bool is_edp(struct gma_encoder *encoder)
 313{
 314	return encoder->type == INTEL_OUTPUT_EDP;
 315}
 316
 317
 318static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
 319static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
 320static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
 321
 322static int
 323cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
 324{
 325	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 326	int max_lane_count = 4;
 327
 328	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 329		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 330		switch (max_lane_count) {
 331		case 1: case 2: case 4:
 332			break;
 333		default:
 334			max_lane_count = 4;
 335		}
 336	}
 337	return max_lane_count;
 338}
 339
 340static int
 341cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
 342{
 343	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 344	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 345
 346	switch (max_link_bw) {
 347	case DP_LINK_BW_1_62:
 348	case DP_LINK_BW_2_7:
 349		break;
 350	default:
 351		max_link_bw = DP_LINK_BW_1_62;
 352		break;
 353	}
 354	return max_link_bw;
 355}
 356
 357static int
 358cdv_intel_dp_link_clock(uint8_t link_bw)
 359{
 360	if (link_bw == DP_LINK_BW_2_7)
 361		return 270000;
 362	else
 363		return 162000;
 364}
 365
 366static int
 367cdv_intel_dp_link_required(int pixel_clock, int bpp)
 368{
 369	return (pixel_clock * bpp + 7) / 8;
 370}
 371
 372static int
 373cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 374{
 375	return (max_link_clock * max_lanes * 19) / 20;
 376}
 377
 378static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
 379{
 380	struct drm_device *dev = intel_encoder->base.dev;
 381	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 382	u32 pp;
 383
 384	if (intel_dp->panel_on) {
 385		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
 386		return;
 387	}	
 388	DRM_DEBUG_KMS("\n");
 389
 390	pp = REG_READ(PP_CONTROL);
 391
 392	pp |= EDP_FORCE_VDD;
 393	REG_WRITE(PP_CONTROL, pp);
 394	REG_READ(PP_CONTROL);
 395	msleep(intel_dp->panel_power_up_delay);
 396}
 397
 398static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
 399{
 400	struct drm_device *dev = intel_encoder->base.dev;
 401	u32 pp;
 402
 403	DRM_DEBUG_KMS("\n");
 404	pp = REG_READ(PP_CONTROL);
 405
 406	pp &= ~EDP_FORCE_VDD;
 407	REG_WRITE(PP_CONTROL, pp);
 408	REG_READ(PP_CONTROL);
 409
 410}
 411
 412/* Returns true if the panel was already on when called */
 413static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
 414{
 415	struct drm_device *dev = intel_encoder->base.dev;
 416	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 417	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
 418
 419	if (intel_dp->panel_on)
 420		return true;
 421
 422	DRM_DEBUG_KMS("\n");
 423	pp = REG_READ(PP_CONTROL);
 424	pp &= ~PANEL_UNLOCK_MASK;
 425
 426	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
 427	REG_WRITE(PP_CONTROL, pp);
 428	REG_READ(PP_CONTROL);
 429
 430	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
 431		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
 432		intel_dp->panel_on = false;
 433	} else
 434		intel_dp->panel_on = true;	
 435	msleep(intel_dp->panel_power_up_delay);
 436
 437	return false;
 438}
 439
 440static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
 441{
 442	struct drm_device *dev = intel_encoder->base.dev;
 443	u32 pp, idle_off_mask = PP_ON ;
 444	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 445
 446	DRM_DEBUG_KMS("\n");
 447
 448	pp = REG_READ(PP_CONTROL);
 449
 450	if ((pp & POWER_TARGET_ON) == 0) 
 451		return;
 452
 453	intel_dp->panel_on = false;
 454	pp &= ~PANEL_UNLOCK_MASK;
 455	/* ILK workaround: disable reset around power sequence */
 456
 457	pp &= ~POWER_TARGET_ON;
 458	pp &= ~EDP_FORCE_VDD;
 459	pp &= ~EDP_BLC_ENABLE;
 460	REG_WRITE(PP_CONTROL, pp);
 461	REG_READ(PP_CONTROL);
 462	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
 463
 464	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
 465		DRM_DEBUG_KMS("Error in turning off Panel\n");	
 466	}
 467
 468	msleep(intel_dp->panel_power_cycle_delay);
 469	DRM_DEBUG_KMS("Over\n");
 470}
 471
 472static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
 473{
 474	struct drm_device *dev = intel_encoder->base.dev;
 475	u32 pp;
 476
 477	DRM_DEBUG_KMS("\n");
 478	/*
 479	 * If we enable the backlight right away following a panel power
 480	 * on, we may see slight flicker as the panel syncs with the eDP
 481	 * link.  So delay a bit to make sure the image is solid before
 482	 * allowing it to appear.
 483	 */
 484	msleep(300);
 485	pp = REG_READ(PP_CONTROL);
 486
 487	pp |= EDP_BLC_ENABLE;
 488	REG_WRITE(PP_CONTROL, pp);
 489	gma_backlight_enable(dev);
 490}
 491
 492static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
 493{
 494	struct drm_device *dev = intel_encoder->base.dev;
 495	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 496	u32 pp;
 497
 498	DRM_DEBUG_KMS("\n");
 499	gma_backlight_disable(dev);
 500	msleep(10);
 501	pp = REG_READ(PP_CONTROL);
 502
 503	pp &= ~EDP_BLC_ENABLE;
 504	REG_WRITE(PP_CONTROL, pp);
 505	msleep(intel_dp->backlight_off_delay);
 506}
 507
 508static int
 509cdv_intel_dp_mode_valid(struct drm_connector *connector,
 510		    struct drm_display_mode *mode)
 511{
 512	struct gma_encoder *encoder = gma_attached_encoder(connector);
 513	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 514	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
 515	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
 516	struct drm_psb_private *dev_priv = connector->dev->dev_private;
 517
 518	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
 519		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
 520			return MODE_PANEL;
 521		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
 522			return MODE_PANEL;
 523	}
 524
 525	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 526	   which are outside spec tolerances but somehow work by magic */
 527	if (!is_edp(encoder) &&
 528	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
 529	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
 530		return MODE_CLOCK_HIGH;
 531
 532	if (is_edp(encoder)) {
 533	    if (cdv_intel_dp_link_required(mode->clock, 24)
 534	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
 535		return MODE_CLOCK_HIGH;
 536		
 537	}
 538	if (mode->clock < 10000)
 539		return MODE_CLOCK_LOW;
 540
 541	return MODE_OK;
 542}
 543
 544static uint32_t
 545pack_aux(uint8_t *src, int src_bytes)
 546{
 547	int	i;
 548	uint32_t v = 0;
 549
 550	if (src_bytes > 4)
 551		src_bytes = 4;
 552	for (i = 0; i < src_bytes; i++)
 553		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 554	return v;
 555}
 556
 557static void
 558unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 559{
 560	int i;
 561	if (dst_bytes > 4)
 562		dst_bytes = 4;
 563	for (i = 0; i < dst_bytes; i++)
 564		dst[i] = src >> ((3-i) * 8);
 565}
 566
 567static int
 568cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
 569		uint8_t *send, int send_bytes,
 570		uint8_t *recv, int recv_size)
 571{
 572	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 573	uint32_t output_reg = intel_dp->output_reg;
 574	struct drm_device *dev = encoder->base.dev;
 575	uint32_t ch_ctl = output_reg + 0x10;
 576	uint32_t ch_data = ch_ctl + 4;
 577	int i;
 578	int recv_bytes;
 579	uint32_t status;
 580	uint32_t aux_clock_divider;
 581	int try, precharge;
 582
 583	/* The clock divider is based off the hrawclk,
 584	 * and would like to run at 2MHz. So, take the
 585	 * hrawclk value and divide by 2 and use that
 586	 * On CDV platform it uses 200MHz as hrawclk.
 587	 *
 588	 */
 589	aux_clock_divider = 200 / 2;
 590
 591	precharge = 4;
 592	if (is_edp(encoder))
 593		precharge = 10;
 594
 595	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
 596		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
 597			  REG_READ(ch_ctl));
 598		return -EBUSY;
 599	}
 600
 601	/* Must try at least 3 times according to DP spec */
 602	for (try = 0; try < 5; try++) {
 603		/* Load the send data into the aux channel data registers */
 604		for (i = 0; i < send_bytes; i += 4)
 605			REG_WRITE(ch_data + i,
 606				   pack_aux(send + i, send_bytes - i));
 607	
 608		/* Send the command and wait for it to complete */
 609		REG_WRITE(ch_ctl,
 610			   DP_AUX_CH_CTL_SEND_BUSY |
 611			   DP_AUX_CH_CTL_TIME_OUT_400us |
 612			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 613			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 614			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 615			   DP_AUX_CH_CTL_DONE |
 616			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 617			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 618		for (;;) {
 619			status = REG_READ(ch_ctl);
 620			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 621				break;
 622			udelay(100);
 623		}
 624	
 625		/* Clear done status and any errors */
 626		REG_WRITE(ch_ctl,
 627			   status |
 628			   DP_AUX_CH_CTL_DONE |
 629			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 630			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 631		if (status & DP_AUX_CH_CTL_DONE)
 632			break;
 633	}
 634
 635	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 636		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 637		return -EBUSY;
 638	}
 639
 640	/* Check for timeout or receive error.
 641	 * Timeouts occur when the sink is not connected
 642	 */
 643	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 644		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 645		return -EIO;
 646	}
 647
 648	/* Timeouts occur when the device isn't connected, so they're
 649	 * "normal" -- don't fill the kernel log with these */
 650	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 651		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 652		return -ETIMEDOUT;
 653	}
 654
 655	/* Unload any bytes sent back from the other side */
 656	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 657		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 658	if (recv_bytes > recv_size)
 659		recv_bytes = recv_size;
 660	
 661	for (i = 0; i < recv_bytes; i += 4)
 662		unpack_aux(REG_READ(ch_data + i),
 663			   recv + i, recv_bytes - i);
 664
 665	return recv_bytes;
 666}
 667
 668/* Write data to the aux channel in native mode */
 669static int
 670cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
 671			  uint16_t address, uint8_t *send, int send_bytes)
 672{
 673	int ret;
 674	uint8_t	msg[20];
 675	int msg_bytes;
 676	uint8_t	ack;
 677
 678	if (send_bytes > 16)
 679		return -1;
 680	msg[0] = DP_AUX_NATIVE_WRITE << 4;
 681	msg[1] = address >> 8;
 682	msg[2] = address & 0xff;
 683	msg[3] = send_bytes - 1;
 684	memcpy(&msg[4], send, send_bytes);
 685	msg_bytes = send_bytes + 4;
 686	for (;;) {
 687		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
 688		if (ret < 0)
 689			return ret;
 690		ack >>= 4;
 691		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
 692			break;
 693		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 694			udelay(100);
 695		else
 696			return -EIO;
 697	}
 698	return send_bytes;
 699}
 700
 701/* Write a single byte to the aux channel in native mode */
 702static int
 703cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
 704			    uint16_t address, uint8_t byte)
 705{
 706	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
 707}
 708
 709/* read bytes from a native aux channel */
 710static int
 711cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
 712			 uint16_t address, uint8_t *recv, int recv_bytes)
 713{
 714	uint8_t msg[4];
 715	int msg_bytes;
 716	uint8_t reply[20];
 717	int reply_bytes;
 718	uint8_t ack;
 719	int ret;
 720
 721	msg[0] = DP_AUX_NATIVE_READ << 4;
 722	msg[1] = address >> 8;
 723	msg[2] = address & 0xff;
 724	msg[3] = recv_bytes - 1;
 725
 726	msg_bytes = 4;
 727	reply_bytes = recv_bytes + 1;
 728
 729	for (;;) {
 730		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
 731				      reply, reply_bytes);
 732		if (ret == 0)
 733			return -EPROTO;
 734		if (ret < 0)
 735			return ret;
 736		ack = reply[0] >> 4;
 737		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
 738			memcpy(recv, reply + 1, ret - 1);
 739			return ret - 1;
 740		}
 741		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 742			udelay(100);
 743		else
 744			return -EIO;
 745	}
 746}
 747
 748static int
 749cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 750		    uint8_t write_byte, uint8_t *read_byte)
 751{
 752	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 753	struct cdv_intel_dp *intel_dp = container_of(adapter,
 754						struct cdv_intel_dp,
 755						adapter);
 756	struct gma_encoder *encoder = intel_dp->encoder;
 757	uint16_t address = algo_data->address;
 758	uint8_t msg[5];
 759	uint8_t reply[2];
 760	unsigned retry;
 761	int msg_bytes;
 762	int reply_bytes;
 763	int ret;
 764
 765	/* Set up the command byte */
 766	if (mode & MODE_I2C_READ)
 767		msg[0] = DP_AUX_I2C_READ << 4;
 768	else
 769		msg[0] = DP_AUX_I2C_WRITE << 4;
 770
 771	if (!(mode & MODE_I2C_STOP))
 772		msg[0] |= DP_AUX_I2C_MOT << 4;
 773
 774	msg[1] = address >> 8;
 775	msg[2] = address;
 776
 777	switch (mode) {
 778	case MODE_I2C_WRITE:
 779		msg[3] = 0;
 780		msg[4] = write_byte;
 781		msg_bytes = 5;
 782		reply_bytes = 1;
 783		break;
 784	case MODE_I2C_READ:
 785		msg[3] = 0;
 786		msg_bytes = 4;
 787		reply_bytes = 2;
 788		break;
 789	default:
 790		msg_bytes = 3;
 791		reply_bytes = 1;
 792		break;
 793	}
 794
 795	for (retry = 0; retry < 5; retry++) {
 796		ret = cdv_intel_dp_aux_ch(encoder,
 797				      msg, msg_bytes,
 798				      reply, reply_bytes);
 799		if (ret < 0) {
 800			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 801			return ret;
 802		}
 803
 804		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
 805		case DP_AUX_NATIVE_REPLY_ACK:
 806			/* I2C-over-AUX Reply field is only valid
 807			 * when paired with AUX ACK.
 808			 */
 809			break;
 810		case DP_AUX_NATIVE_REPLY_NACK:
 811			DRM_DEBUG_KMS("aux_ch native nack\n");
 812			return -EREMOTEIO;
 813		case DP_AUX_NATIVE_REPLY_DEFER:
 814			udelay(100);
 815			continue;
 816		default:
 817			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 818				  reply[0]);
 819			return -EREMOTEIO;
 820		}
 821
 822		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
 823		case DP_AUX_I2C_REPLY_ACK:
 824			if (mode == MODE_I2C_READ) {
 825				*read_byte = reply[1];
 826			}
 827			return reply_bytes - 1;
 828		case DP_AUX_I2C_REPLY_NACK:
 829			DRM_DEBUG_KMS("aux_i2c nack\n");
 830			return -EREMOTEIO;
 831		case DP_AUX_I2C_REPLY_DEFER:
 832			DRM_DEBUG_KMS("aux_i2c defer\n");
 833			udelay(100);
 834			break;
 835		default:
 836			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 837			return -EREMOTEIO;
 838		}
 839	}
 840
 841	DRM_ERROR("too many retries, giving up\n");
 842	return -EREMOTEIO;
 843}
 844
 845static int
 846cdv_intel_dp_i2c_init(struct gma_connector *connector,
 847		      struct gma_encoder *encoder, const char *name)
 848{
 849	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 850	int ret;
 851
 852	DRM_DEBUG_KMS("i2c_init %s\n", name);
 853
 854	intel_dp->algo.running = false;
 855	intel_dp->algo.address = 0;
 856	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
 857
 858	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 859	intel_dp->adapter.owner = THIS_MODULE;
 860	intel_dp->adapter.class = I2C_CLASS_DDC;
 861	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 862	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 863	intel_dp->adapter.algo_data = &intel_dp->algo;
 864	intel_dp->adapter.dev.parent = connector->base.kdev;
 865
 866	if (is_edp(encoder))
 867		cdv_intel_edp_panel_vdd_on(encoder);
 868	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
 869	if (is_edp(encoder))
 870		cdv_intel_edp_panel_vdd_off(encoder);
 871	
 872	return ret;
 873}
 874
 875static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
 876	struct drm_display_mode *adjusted_mode)
 877{
 878	adjusted_mode->hdisplay = fixed_mode->hdisplay;
 879	adjusted_mode->hsync_start = fixed_mode->hsync_start;
 880	adjusted_mode->hsync_end = fixed_mode->hsync_end;
 881	adjusted_mode->htotal = fixed_mode->htotal;
 882
 883	adjusted_mode->vdisplay = fixed_mode->vdisplay;
 884	adjusted_mode->vsync_start = fixed_mode->vsync_start;
 885	adjusted_mode->vsync_end = fixed_mode->vsync_end;
 886	adjusted_mode->vtotal = fixed_mode->vtotal;
 887
 888	adjusted_mode->clock = fixed_mode->clock;
 889
 890	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
 891}
 892
 893static bool
 894cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
 895		    struct drm_display_mode *adjusted_mode)
 896{
 897	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
 898	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
 899	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 900	int lane_count, clock;
 901	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
 902	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
 903	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 904	int refclock = mode->clock;
 905	int bpp = 24;
 906
 907	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
 908		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
 909		refclock = intel_dp->panel_fixed_mode->clock;
 910		bpp = dev_priv->edp.bpp;
 911	}
 912
 913	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 914		for (clock = max_clock; clock >= 0; clock--) {
 915			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
 916
 917			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
 918				intel_dp->link_bw = bws[clock];
 919				intel_dp->lane_count = lane_count;
 920				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 921				DRM_DEBUG_KMS("Display port link bw %02x lane "
 922						"count %d clock %d\n",
 923				       intel_dp->link_bw, intel_dp->lane_count,
 924				       adjusted_mode->clock);
 925				return true;
 926			}
 927		}
 928	}
 929	if (is_edp(intel_encoder)) {
 930		/* okay we failed just pick the highest */
 931		intel_dp->lane_count = max_lane_count;
 932		intel_dp->link_bw = bws[max_clock];
 933		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 934		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 935			      "count %d clock %d\n",
 936			      intel_dp->link_bw, intel_dp->lane_count,
 937			      adjusted_mode->clock);
 938
 939		return true;
 940	}
 941	return false;
 942}
 943
 944struct cdv_intel_dp_m_n {
 945	uint32_t	tu;
 946	uint32_t	gmch_m;
 947	uint32_t	gmch_n;
 948	uint32_t	link_m;
 949	uint32_t	link_n;
 950};
 951
 952static void
 953cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
 954{
 955	/*
 956	while (*num > 0xffffff || *den > 0xffffff) {
 957		*num >>= 1;
 958		*den >>= 1;
 959	}*/
 960	uint64_t value, m;
 961	m = *num;
 962	value = m * (0x800000);
 963	m = do_div(value, *den);
 964	*num = value;
 965	*den = 0x800000;
 966}
 967
 968static void
 969cdv_intel_dp_compute_m_n(int bpp,
 970		     int nlanes,
 971		     int pixel_clock,
 972		     int link_clock,
 973		     struct cdv_intel_dp_m_n *m_n)
 974{
 975	m_n->tu = 64;
 976	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
 977	m_n->gmch_n = link_clock * nlanes;
 978	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 979	m_n->link_m = pixel_clock;
 980	m_n->link_n = link_clock;
 981	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 982}
 983
 984void
 985cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 986		 struct drm_display_mode *adjusted_mode)
 987{
 988	struct drm_device *dev = crtc->dev;
 989	struct drm_psb_private *dev_priv = dev->dev_private;
 990	struct drm_mode_config *mode_config = &dev->mode_config;
 991	struct drm_encoder *encoder;
 992	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 993	int lane_count = 4, bpp = 24;
 994	struct cdv_intel_dp_m_n m_n;
 995	int pipe = gma_crtc->pipe;
 996
 997	/*
 998	 * Find the lane count in the intel_encoder private
 999	 */
1000	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1001		struct gma_encoder *intel_encoder;
1002		struct cdv_intel_dp *intel_dp;
1003
1004		if (encoder->crtc != crtc)
1005			continue;
1006
1007		intel_encoder = to_gma_encoder(encoder);
1008		intel_dp = intel_encoder->dev_priv;
1009		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1010			lane_count = intel_dp->lane_count;
1011			break;
1012		} else if (is_edp(intel_encoder)) {
1013			lane_count = intel_dp->lane_count;
1014			bpp = dev_priv->edp.bpp;
1015			break;
1016		}
1017	}
1018
1019	/*
1020	 * Compute the GMCH and Link ratios. The '3' here is
1021	 * the number of bytes_per_pixel post-LUT, which we always
1022	 * set up for 8-bits of R/G/B, or 3 bytes total.
1023	 */
1024	cdv_intel_dp_compute_m_n(bpp, lane_count,
1025			     mode->clock, adjusted_mode->clock, &m_n);
1026
1027	{
1028		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1029			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1030			   m_n.gmch_m);
1031		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1032		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1033		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1034	}
1035}
1036
1037static void
1038cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1039		  struct drm_display_mode *adjusted_mode)
1040{
1041	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1042	struct drm_crtc *crtc = encoder->crtc;
1043	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1044	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1045	struct drm_device *dev = encoder->dev;
1046
1047	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1048	intel_dp->DP |= intel_dp->color_range;
1049
1050	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1051		intel_dp->DP |= DP_SYNC_HS_HIGH;
1052	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1053		intel_dp->DP |= DP_SYNC_VS_HIGH;
1054
1055	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1056
1057	switch (intel_dp->lane_count) {
1058	case 1:
1059		intel_dp->DP |= DP_PORT_WIDTH_1;
1060		break;
1061	case 2:
1062		intel_dp->DP |= DP_PORT_WIDTH_2;
1063		break;
1064	case 4:
1065		intel_dp->DP |= DP_PORT_WIDTH_4;
1066		break;
1067	}
1068	if (intel_dp->has_audio)
1069		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1070
1071	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1072	intel_dp->link_configuration[0] = intel_dp->link_bw;
1073	intel_dp->link_configuration[1] = intel_dp->lane_count;
1074
1075	/*
1076	 * Check for DPCD version > 1.1 and enhanced framing support
1077	 */
1078	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1079	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1080		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1081		intel_dp->DP |= DP_ENHANCED_FRAMING;
1082	}
1083
1084	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1085	if (gma_crtc->pipe == 1)
1086		intel_dp->DP |= DP_PIPEB_SELECT;
1087
1088	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1089	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1090	if (is_edp(intel_encoder)) {
1091		uint32_t pfit_control;
1092		cdv_intel_edp_panel_on(intel_encoder);
1093
1094		if (mode->hdisplay != adjusted_mode->hdisplay ||
1095			    mode->vdisplay != adjusted_mode->vdisplay)
1096			pfit_control = PFIT_ENABLE;
1097		else
1098			pfit_control = 0;
1099
1100		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1101
1102		REG_WRITE(PFIT_CONTROL, pfit_control);
1103	}
1104}
1105
1106
1107/* If the sink supports it, try to set the power state appropriately */
1108static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1109{
1110	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1111	int ret, i;
1112
1113	/* Should have a valid DPCD by this point */
1114	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1115		return;
1116
1117	if (mode != DRM_MODE_DPMS_ON) {
1118		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1119						  DP_SET_POWER_D3);
1120		if (ret != 1)
1121			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1122	} else {
1123		/*
1124		 * When turning on, we need to retry for 1ms to give the sink
1125		 * time to wake up.
1126		 */
1127		for (i = 0; i < 3; i++) {
1128			ret = cdv_intel_dp_aux_native_write_1(encoder,
1129							  DP_SET_POWER,
1130							  DP_SET_POWER_D0);
1131			if (ret == 1)
1132				break;
1133			udelay(1000);
1134		}
1135	}
1136}
1137
1138static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1139{
1140	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1141	int edp = is_edp(intel_encoder);
1142
1143	if (edp) {
1144		cdv_intel_edp_backlight_off(intel_encoder);
1145		cdv_intel_edp_panel_off(intel_encoder);
1146		cdv_intel_edp_panel_vdd_on(intel_encoder);
1147        }
1148	/* Wake up the sink first */
1149	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1150	cdv_intel_dp_link_down(intel_encoder);
1151	if (edp)
1152		cdv_intel_edp_panel_vdd_off(intel_encoder);
1153}
1154
1155static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1156{
1157	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1158	int edp = is_edp(intel_encoder);
1159
1160	if (edp)
1161		cdv_intel_edp_panel_on(intel_encoder);
1162	cdv_intel_dp_start_link_train(intel_encoder);
1163	cdv_intel_dp_complete_link_train(intel_encoder);
1164	if (edp)
1165		cdv_intel_edp_backlight_on(intel_encoder);
1166}
1167
1168static void
1169cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1170{
1171	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1172	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1173	struct drm_device *dev = encoder->dev;
1174	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1175	int edp = is_edp(intel_encoder);
1176
1177	if (mode != DRM_MODE_DPMS_ON) {
1178		if (edp) {
1179			cdv_intel_edp_backlight_off(intel_encoder);
1180			cdv_intel_edp_panel_vdd_on(intel_encoder);
1181		}
1182		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1183		cdv_intel_dp_link_down(intel_encoder);
1184		if (edp) {
1185			cdv_intel_edp_panel_vdd_off(intel_encoder);
1186			cdv_intel_edp_panel_off(intel_encoder);
1187		}
1188	} else {
1189        	if (edp)
1190			cdv_intel_edp_panel_on(intel_encoder);
1191		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1192		if (!(dp_reg & DP_PORT_EN)) {
1193			cdv_intel_dp_start_link_train(intel_encoder);
1194			cdv_intel_dp_complete_link_train(intel_encoder);
1195		}
1196		if (edp)
1197        		cdv_intel_edp_backlight_on(intel_encoder);
1198	}
1199}
1200
1201/*
1202 * Native read with retry for link status and receiver capability reads for
1203 * cases where the sink may still be asleep.
1204 */
1205static bool
1206cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1207			       uint8_t *recv, int recv_bytes)
1208{
1209	int ret, i;
1210
1211	/*
1212	 * Sinks are *supposed* to come up within 1ms from an off state,
1213	 * but we're also supposed to retry 3 times per the spec.
1214	 */
1215	for (i = 0; i < 3; i++) {
1216		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1217					       recv_bytes);
1218		if (ret == recv_bytes)
1219			return true;
1220		udelay(1000);
1221	}
1222
1223	return false;
1224}
1225
1226/*
1227 * Fetch AUX CH registers 0x202 - 0x207 which contain
1228 * link status information
1229 */
1230static bool
1231cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1232{
1233	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1234	return cdv_intel_dp_aux_native_read_retry(encoder,
1235					      DP_LANE0_1_STATUS,
1236					      intel_dp->link_status,
1237					      DP_LINK_STATUS_SIZE);
1238}
1239
1240static uint8_t
1241cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1242		     int r)
1243{
1244	return link_status[r - DP_LANE0_1_STATUS];
1245}
1246
1247static uint8_t
1248cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1249				 int lane)
1250{
1251	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1252	int	    s = ((lane & 1) ?
1253			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1254			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1255	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1256
1257	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1258}
1259
1260static uint8_t
1261cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1262				      int lane)
1263{
1264	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1265	int	    s = ((lane & 1) ?
1266			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1267			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1268	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1269
1270	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1271}
1272
1273
1274#if 0
1275static char	*voltage_names[] = {
1276	"0.4V", "0.6V", "0.8V", "1.2V"
1277};
1278static char	*pre_emph_names[] = {
1279	"0dB", "3.5dB", "6dB", "9.5dB"
1280};
1281static char	*link_train_names[] = {
1282	"pattern 1", "pattern 2", "idle", "off"
1283};
1284#endif
1285
1286#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1287/*
1288static uint8_t
1289cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1290{
1291	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1292	case DP_TRAIN_VOLTAGE_SWING_400:
1293		return DP_TRAIN_PRE_EMPHASIS_6;
1294	case DP_TRAIN_VOLTAGE_SWING_600:
1295		return DP_TRAIN_PRE_EMPHASIS_6;
1296	case DP_TRAIN_VOLTAGE_SWING_800:
1297		return DP_TRAIN_PRE_EMPHASIS_3_5;
1298	case DP_TRAIN_VOLTAGE_SWING_1200:
1299	default:
1300		return DP_TRAIN_PRE_EMPHASIS_0;
1301	}
1302}
1303*/
1304static void
1305cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1306{
1307	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1308	uint8_t v = 0;
1309	uint8_t p = 0;
1310	int lane;
1311
1312	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1313		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1314		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1315
1316		if (this_v > v)
1317			v = this_v;
1318		if (this_p > p)
1319			p = this_p;
1320	}
1321	
1322	if (v >= CDV_DP_VOLTAGE_MAX)
1323		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1324
1325	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1326		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1327		
1328	for (lane = 0; lane < 4; lane++)
1329		intel_dp->train_set[lane] = v | p;
1330}
1331
1332
1333static uint8_t
1334cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1335		      int lane)
1336{
1337	int i = DP_LANE0_1_STATUS + (lane >> 1);
1338	int s = (lane & 1) * 4;
1339	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1340
1341	return (l >> s) & 0xf;
1342}
1343
1344/* Check for clock recovery is done on all channels */
1345static bool
1346cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1347{
1348	int lane;
1349	uint8_t lane_status;
1350
1351	for (lane = 0; lane < lane_count; lane++) {
1352		lane_status = cdv_intel_get_lane_status(link_status, lane);
1353		if ((lane_status & DP_LANE_CR_DONE) == 0)
1354			return false;
1355	}
1356	return true;
1357}
1358
1359/* Check to see if channel eq is done on all channels */
1360#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1361			 DP_LANE_CHANNEL_EQ_DONE|\
1362			 DP_LANE_SYMBOL_LOCKED)
1363static bool
1364cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1365{
1366	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1367	uint8_t lane_align;
1368	uint8_t lane_status;
1369	int lane;
1370
1371	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1372					  DP_LANE_ALIGN_STATUS_UPDATED);
1373	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1374		return false;
1375	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1376		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1377		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1378			return false;
1379	}
1380	return true;
1381}
1382
1383static bool
1384cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1385			uint32_t dp_reg_value,
1386			uint8_t dp_train_pat)
1387{
1388	
1389	struct drm_device *dev = encoder->base.dev;
1390	int ret;
1391	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1392
1393	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1394	REG_READ(intel_dp->output_reg);
1395
1396	ret = cdv_intel_dp_aux_native_write_1(encoder,
1397				    DP_TRAINING_PATTERN_SET,
1398				    dp_train_pat);
1399
1400	if (ret != 1) {
1401		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1402				dp_train_pat);
1403		return false;
1404	}
1405
1406	return true;
1407}
1408
1409
1410static bool
1411cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1412			uint8_t dp_train_pat)
1413{
1414	
1415	int ret;
1416	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1417
1418	ret = cdv_intel_dp_aux_native_write(encoder,
1419					DP_TRAINING_LANE0_SET,
1420					intel_dp->train_set,
1421					intel_dp->lane_count);
1422
1423	if (ret != intel_dp->lane_count) {
1424		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1425				intel_dp->train_set[0], intel_dp->lane_count);
1426		return false;
1427	}
1428	return true;
1429}
1430
1431static void
1432cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1433{
1434	struct drm_device *dev = encoder->base.dev;
1435	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1436	struct ddi_regoff *ddi_reg;
1437	int vswing, premph, index;
1438
1439	if (intel_dp->output_reg == DP_B)
1440		ddi_reg = &ddi_DP_train_table[0];
1441	else
1442		ddi_reg = &ddi_DP_train_table[1];
1443
1444	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1445	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1446				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1447
1448	if (vswing + premph > 3)
1449		return;
1450#ifdef CDV_FAST_LINK_TRAIN
1451	return;
1452#endif
1453	DRM_DEBUG_KMS("Test2\n");
1454	//return ;
1455	cdv_sb_reset(dev);
1456	/* ;Swing voltage programming
1457        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1458	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1459
1460	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1461	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1462
1463	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1464	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1465	 */
1466	index = (vswing + premph) * 2;
1467	if (premph == 1 && vswing == 1) {
1468		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1469	} else
1470		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1471
1472	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1473	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1474		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1475	else
1476		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1477
1478	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1479	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1480
1481	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1482	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1483
1484	/* ;Pre emphasis programming
1485	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1486	 */
1487	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1488
1489	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1490	index = 2 * premph + 1;
1491	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1492	return;	
1493}
1494
1495
1496/* Enable corresponding port and start training pattern 1 */
1497static void
1498cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1499{
1500	struct drm_device *dev = encoder->base.dev;
1501	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1502	int i;
1503	uint8_t voltage;
1504	bool clock_recovery = false;
1505	int tries;
1506	u32 reg;
1507	uint32_t DP = intel_dp->DP;
1508
1509	DP |= DP_PORT_EN;
1510	DP &= ~DP_LINK_TRAIN_MASK;
1511		
1512	reg = DP;	
1513	reg |= DP_LINK_TRAIN_PAT_1;
1514	/* Enable output, wait for it to become active */
1515	REG_WRITE(intel_dp->output_reg, reg);
1516	REG_READ(intel_dp->output_reg);
1517	gma_wait_for_vblank(dev);
1518
1519	DRM_DEBUG_KMS("Link config\n");
1520	/* Write the link configuration data */
1521	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1522				  intel_dp->link_configuration,
1523				  2);
1524
1525	memset(intel_dp->train_set, 0, 4);
1526	voltage = 0;
1527	tries = 0;
1528	clock_recovery = false;
1529
1530	DRM_DEBUG_KMS("Start train\n");
1531		reg = DP | DP_LINK_TRAIN_PAT_1;
1532
1533
1534	for (;;) {
1535		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1536		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1537				intel_dp->train_set[0],
1538				intel_dp->link_configuration[0],
1539				intel_dp->link_configuration[1]);
1540
1541		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1542			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1543		}
1544		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1545		/* Set training pattern 1 */
1546
1547		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1548
1549		udelay(200);
1550		if (!cdv_intel_dp_get_link_status(encoder))
1551			break;
1552
1553		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1554				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1555				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1556
1557		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1558			DRM_DEBUG_KMS("PT1 train is done\n");
1559			clock_recovery = true;
1560			break;
1561		}
1562
1563		/* Check to see if we've tried the max voltage */
1564		for (i = 0; i < intel_dp->lane_count; i++)
1565			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1566				break;
1567		if (i == intel_dp->lane_count)
1568			break;
1569
1570		/* Check to see if we've tried the same voltage 5 times */
1571		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1572			++tries;
1573			if (tries == 5)
1574				break;
1575		} else
1576			tries = 0;
1577		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1578
1579		/* Compute new intel_dp->train_set as requested by target */
1580		cdv_intel_get_adjust_train(encoder);
1581
1582	}
1583
1584	if (!clock_recovery) {
1585		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1586	}
1587	
1588	intel_dp->DP = DP;
1589}
1590
1591static void
1592cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1593{
1594	struct drm_device *dev = encoder->base.dev;
1595	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1596	bool channel_eq = false;
1597	int tries, cr_tries;
1598	u32 reg;
1599	uint32_t DP = intel_dp->DP;
1600
1601	/* channel equalization */
1602	tries = 0;
1603	cr_tries = 0;
1604	channel_eq = false;
1605
1606	DRM_DEBUG_KMS("\n");
1607		reg = DP | DP_LINK_TRAIN_PAT_2;
1608
1609	for (;;) {
1610
1611		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1612				intel_dp->train_set[0],
1613				intel_dp->link_configuration[0],
1614				intel_dp->link_configuration[1]);
1615        	/* channel eq pattern */
1616
1617		if (!cdv_intel_dp_set_link_train(encoder, reg,
1618					     DP_TRAINING_PATTERN_2)) {
1619			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1620		}
1621		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1622
1623		if (cr_tries > 5) {
1624			DRM_ERROR("failed to train DP, aborting\n");
1625			cdv_intel_dp_link_down(encoder);
1626			break;
1627		}
1628
1629		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1630
1631		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1632
1633		udelay(1000);
1634		if (!cdv_intel_dp_get_link_status(encoder))
1635			break;
1636
1637		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1638				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1639				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1640
1641		/* Make sure clock is still ok */
1642		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1643			cdv_intel_dp_start_link_train(encoder);
1644			cr_tries++;
1645			continue;
1646		}
1647
1648		if (cdv_intel_channel_eq_ok(encoder)) {
1649			DRM_DEBUG_KMS("PT2 train is done\n");
1650			channel_eq = true;
1651			break;
1652		}
1653
1654		/* Try 5 times, then try clock recovery if that fails */
1655		if (tries > 5) {
1656			cdv_intel_dp_link_down(encoder);
1657			cdv_intel_dp_start_link_train(encoder);
1658			tries = 0;
1659			cr_tries++;
1660			continue;
1661		}
1662
1663		/* Compute new intel_dp->train_set as requested by target */
1664		cdv_intel_get_adjust_train(encoder);
1665		++tries;
1666
1667	}
1668
1669	reg = DP | DP_LINK_TRAIN_OFF;
1670
1671	REG_WRITE(intel_dp->output_reg, reg);
1672	REG_READ(intel_dp->output_reg);
1673	cdv_intel_dp_aux_native_write_1(encoder,
1674				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1675}
1676
1677static void
1678cdv_intel_dp_link_down(struct gma_encoder *encoder)
1679{
1680	struct drm_device *dev = encoder->base.dev;
1681	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1682	uint32_t DP = intel_dp->DP;
1683
1684	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1685		return;
1686
1687	DRM_DEBUG_KMS("\n");
1688
1689
1690	{
1691		DP &= ~DP_LINK_TRAIN_MASK;
1692		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1693	}
1694	REG_READ(intel_dp->output_reg);
1695
1696	msleep(17);
1697
1698	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1699	REG_READ(intel_dp->output_reg);
1700}
1701
1702static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1703{
1704	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1705	enum drm_connector_status status;
1706
1707	status = connector_status_disconnected;
1708	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1709				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1710	{
1711		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1712			status = connector_status_connected;
1713	}
1714	if (status == connector_status_connected)
1715		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1716			intel_dp->dpcd[0], intel_dp->dpcd[1],
1717			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1718	return status;
1719}
1720
1721/**
1722 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1723 *
1724 * \return true if DP port is connected.
1725 * \return false if DP port is disconnected.
1726 */
1727static enum drm_connector_status
1728cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1729{
1730	struct gma_encoder *encoder = gma_attached_encoder(connector);
1731	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1732	enum drm_connector_status status;
1733	struct edid *edid = NULL;
1734	int edp = is_edp(encoder);
1735
1736	intel_dp->has_audio = false;
1737
1738	if (edp)
1739		cdv_intel_edp_panel_vdd_on(encoder);
1740	status = cdv_dp_detect(encoder);
1741	if (status != connector_status_connected) {
1742		if (edp)
1743			cdv_intel_edp_panel_vdd_off(encoder);
1744		return status;
1745        }
1746
1747	if (intel_dp->force_audio) {
1748		intel_dp->has_audio = intel_dp->force_audio > 0;
1749	} else {
1750		edid = drm_get_edid(connector, &intel_dp->adapter);
1751		if (edid) {
1752			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1753			kfree(edid);
1754		}
1755	}
1756	if (edp)
1757		cdv_intel_edp_panel_vdd_off(encoder);
1758
1759	return connector_status_connected;
1760}
1761
1762static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1763{
1764	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1765	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1766	struct edid *edid = NULL;
1767	int ret = 0;
1768	int edp = is_edp(intel_encoder);
1769
1770
1771	edid = drm_get_edid(connector, &intel_dp->adapter);
1772	if (edid) {
1773		drm_mode_connector_update_edid_property(connector, edid);
1774		ret = drm_add_edid_modes(connector, edid);
1775		kfree(edid);
1776	}
1777
1778	if (is_edp(intel_encoder)) {
1779		struct drm_device *dev = connector->dev;
1780		struct drm_psb_private *dev_priv = dev->dev_private;
1781		
1782		cdv_intel_edp_panel_vdd_off(intel_encoder);
1783		if (ret) {
1784			if (edp && !intel_dp->panel_fixed_mode) {
1785				struct drm_display_mode *newmode;
1786				list_for_each_entry(newmode, &connector->probed_modes,
1787					    head) {
1788					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1789						intel_dp->panel_fixed_mode =
1790							drm_mode_duplicate(dev, newmode);
1791						break;
1792					}
1793				}
1794			}
1795
1796			return ret;
1797		}
1798		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1799			intel_dp->panel_fixed_mode =
1800				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1801			if (intel_dp->panel_fixed_mode) {
1802				intel_dp->panel_fixed_mode->type |=
1803					DRM_MODE_TYPE_PREFERRED;
1804			}
1805		}
1806		if (intel_dp->panel_fixed_mode != NULL) {
1807			struct drm_display_mode *mode;
1808			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1809			drm_mode_probed_add(connector, mode);
1810			return 1;
1811		}
1812	}
1813
1814	return ret;
1815}
1816
1817static bool
1818cdv_intel_dp_detect_audio(struct drm_connector *connector)
1819{
1820	struct gma_encoder *encoder = gma_attached_encoder(connector);
1821	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1822	struct edid *edid;
1823	bool has_audio = false;
1824	int edp = is_edp(encoder);
1825
1826	if (edp)
1827		cdv_intel_edp_panel_vdd_on(encoder);
1828
1829	edid = drm_get_edid(connector, &intel_dp->adapter);
1830	if (edid) {
1831		has_audio = drm_detect_monitor_audio(edid);
1832		kfree(edid);
1833	}
1834	if (edp)
1835		cdv_intel_edp_panel_vdd_off(encoder);
1836
1837	return has_audio;
1838}
1839
1840static int
1841cdv_intel_dp_set_property(struct drm_connector *connector,
1842		      struct drm_property *property,
1843		      uint64_t val)
1844{
1845	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1846	struct gma_encoder *encoder = gma_attached_encoder(connector);
1847	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1848	int ret;
1849
1850	ret = drm_object_property_set_value(&connector->base, property, val);
1851	if (ret)
1852		return ret;
1853
1854	if (property == dev_priv->force_audio_property) {
1855		int i = val;
1856		bool has_audio;
1857
1858		if (i == intel_dp->force_audio)
1859			return 0;
1860
1861		intel_dp->force_audio = i;
1862
1863		if (i == 0)
1864			has_audio = cdv_intel_dp_detect_audio(connector);
1865		else
1866			has_audio = i > 0;
1867
1868		if (has_audio == intel_dp->has_audio)
1869			return 0;
1870
1871		intel_dp->has_audio = has_audio;
1872		goto done;
1873	}
1874
1875	if (property == dev_priv->broadcast_rgb_property) {
1876		if (val == !!intel_dp->color_range)
1877			return 0;
1878
1879		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1880		goto done;
1881	}
1882
1883	return -EINVAL;
1884
1885done:
1886	if (encoder->base.crtc) {
1887		struct drm_crtc *crtc = encoder->base.crtc;
1888		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1889					 crtc->x, crtc->y,
1890					 crtc->primary->fb);
1891	}
1892
1893	return 0;
1894}
1895
1896static void
1897cdv_intel_dp_destroy(struct drm_connector *connector)
1898{
1899	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1900	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1901
1902	if (is_edp(gma_encoder)) {
1903	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1904		if (intel_dp->panel_fixed_mode) {
1905			kfree(intel_dp->panel_fixed_mode);
1906			intel_dp->panel_fixed_mode = NULL;
1907		}
1908	}
1909	i2c_del_adapter(&intel_dp->adapter);
1910	drm_connector_unregister(connector);
1911	drm_connector_cleanup(connector);
1912	kfree(connector);
1913}
1914
1915static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1916{
1917	drm_encoder_cleanup(encoder);
1918}
1919
1920static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1921	.dpms = cdv_intel_dp_dpms,
1922	.mode_fixup = cdv_intel_dp_mode_fixup,
1923	.prepare = cdv_intel_dp_prepare,
1924	.mode_set = cdv_intel_dp_mode_set,
1925	.commit = cdv_intel_dp_commit,
1926};
1927
1928static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1929	.dpms = drm_helper_connector_dpms,
1930	.detect = cdv_intel_dp_detect,
1931	.fill_modes = drm_helper_probe_single_connector_modes,
1932	.set_property = cdv_intel_dp_set_property,
1933	.destroy = cdv_intel_dp_destroy,
1934};
1935
1936static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1937	.get_modes = cdv_intel_dp_get_modes,
1938	.mode_valid = cdv_intel_dp_mode_valid,
1939	.best_encoder = gma_best_encoder,
1940};
1941
1942static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1943	.destroy = cdv_intel_dp_encoder_destroy,
1944};
1945
1946
1947static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1948{
1949	cdv_intel_attach_force_audio_property(connector);
1950	cdv_intel_attach_broadcast_rgb_property(connector);
1951}
1952
1953/* check the VBT to see whether the eDP is on DP-D port */
1954static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1955{
1956	struct drm_psb_private *dev_priv = dev->dev_private;
1957	struct child_device_config *p_child;
1958	int i;
1959
1960	if (!dev_priv->child_dev_num)
1961		return false;
1962
1963	for (i = 0; i < dev_priv->child_dev_num; i++) {
1964		p_child = dev_priv->child_dev + i;
1965
1966		if (p_child->dvo_port == PORT_IDPC &&
1967		    p_child->device_type == DEVICE_TYPE_eDP)
1968			return true;
1969	}
1970	return false;
1971}
1972
1973/* Cedarview display clock gating
1974
1975   We need this disable dot get correct behaviour while enabling
1976   DP/eDP. TODO - investigate if we can turn it back to normality
1977   after enabling */
1978static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1979{
1980	u32 reg_value;
1981	reg_value = REG_READ(DSPCLK_GATE_D);
1982
1983	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1984			DPUNIT_PIPEA_GATE_DISABLE |
1985			DPCUNIT_CLOCK_GATE_DISABLE |
1986			DPLSUNIT_CLOCK_GATE_DISABLE |
1987			DPOUNIT_CLOCK_GATE_DISABLE |
1988		 	DPIOUNIT_CLOCK_GATE_DISABLE);	
1989
1990	REG_WRITE(DSPCLK_GATE_D, reg_value);
1991
1992	udelay(500);		
1993}
1994
1995void
1996cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1997{
1998	struct gma_encoder *gma_encoder;
1999	struct gma_connector *gma_connector;
2000	struct drm_connector *connector;
2001	struct drm_encoder *encoder;
2002	struct cdv_intel_dp *intel_dp;
2003	const char *name = NULL;
2004	int type = DRM_MODE_CONNECTOR_DisplayPort;
2005
2006	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
2007	if (!gma_encoder)
2008		return;
2009        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
2010        if (!gma_connector)
2011                goto err_connector;
2012	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
2013	if (!intel_dp)
2014	        goto err_priv;
2015
2016	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
2017		type = DRM_MODE_CONNECTOR_eDP;
2018
2019	connector = &gma_connector->base;
2020	encoder = &gma_encoder->base;
2021
2022	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
2023	drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs,
2024			 DRM_MODE_ENCODER_TMDS, NULL);
2025
2026	gma_connector_attach_encoder(gma_connector, gma_encoder);
2027
2028	if (type == DRM_MODE_CONNECTOR_DisplayPort)
2029		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2030        else
2031		gma_encoder->type = INTEL_OUTPUT_EDP;
2032
2033
2034	gma_encoder->dev_priv=intel_dp;
2035	intel_dp->encoder = gma_encoder;
2036	intel_dp->output_reg = output_reg;
2037	
2038	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
2039	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
2040
2041	connector->polled = DRM_CONNECTOR_POLL_HPD;
2042	connector->interlace_allowed = false;
2043	connector->doublescan_allowed = false;
2044
2045	drm_connector_register(connector);
2046
2047	/* Set up the DDC bus. */
2048	switch (output_reg) {
2049		case DP_B:
2050			name = "DPDDC-B";
2051			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2052			break;
2053		case DP_C:
2054			name = "DPDDC-C";
2055			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2056			break;
2057	}
2058
2059	cdv_disable_intel_clock_gating(dev);
2060
2061	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2062        /* FIXME:fail check */
2063	cdv_intel_dp_add_properties(connector);
2064
2065	if (is_edp(gma_encoder)) {
2066		int ret;
2067		struct edp_power_seq cur;
2068                u32 pp_on, pp_off, pp_div;
2069		u32 pwm_ctrl;
2070
2071		pp_on = REG_READ(PP_CONTROL);
2072		pp_on &= ~PANEL_UNLOCK_MASK;
2073	        pp_on |= PANEL_UNLOCK_REGS;
2074		
2075		REG_WRITE(PP_CONTROL, pp_on);
2076
2077		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2078		pwm_ctrl |= PWM_PIPE_B;
2079		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2080
2081                pp_on = REG_READ(PP_ON_DELAYS);
2082                pp_off = REG_READ(PP_OFF_DELAYS);
2083                pp_div = REG_READ(PP_DIVISOR);
2084	
2085		/* Pull timing values out of registers */
2086                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2087                        PANEL_POWER_UP_DELAY_SHIFT;
2088
2089                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2090                        PANEL_LIGHT_ON_DELAY_SHIFT;
2091
2092                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2093                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2094
2095                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2096                        PANEL_POWER_DOWN_DELAY_SHIFT;
2097
2098                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2099                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2100
2101                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2102                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2103
2104
2105		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2106                intel_dp->backlight_on_delay = cur.t8 / 10;
2107                intel_dp->backlight_off_delay = cur.t9 / 10;
2108                intel_dp->panel_power_down_delay = cur.t10 / 10;
2109                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2110
2111                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2112                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2113                              intel_dp->panel_power_cycle_delay);
2114
2115                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2116                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2117
2118
2119		cdv_intel_edp_panel_vdd_on(gma_encoder);
2120		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2121					       intel_dp->dpcd,
2122					       sizeof(intel_dp->dpcd));
2123		cdv_intel_edp_panel_vdd_off(gma_encoder);
2124		if (ret == 0) {
2125			/* if this fails, presume the device is a ghost */
2126			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2127			cdv_intel_dp_encoder_destroy(encoder);
2128			cdv_intel_dp_destroy(connector);
2129			goto err_priv;
2130		} else {
2131        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2132				intel_dp->dpcd[0], intel_dp->dpcd[1], 
2133				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2134			
2135		}
2136		/* The CDV reference driver moves pnale backlight setup into the displays that
2137		   have a backlight: this is a good idea and one we should probably adopt, however
2138		   we need to migrate all the drivers before we can do that */
2139                /*cdv_intel_panel_setup_backlight(dev); */
2140	}
2141	return;
2142
2143err_priv:
2144	kfree(gma_connector);
2145err_connector:
2146	kfree(gma_encoder);
2147}
v5.4
   1/*
   2 * Copyright © 2012 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
 
  29#include <linux/module.h>
  30#include <linux/slab.h>
  31
  32#include <drm/drm_crtc.h>
  33#include <drm/drm_crtc_helper.h>
  34#include <drm/drm_dp_helper.h>
  35
  36#include "gma_display.h"
  37#include "psb_drv.h"
  38#include "psb_intel_drv.h"
  39#include "psb_intel_reg.h"
 
 
  40
  41/**
  42 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
  43 * 				 aux algorithm
  44 * @running: set by the algo indicating whether an i2c is ongoing or whether
  45 * 	     the i2c bus is quiescent
  46 * @address: i2c target address for the currently ongoing transfer
  47 * @aux_ch: driver callback to transfer a single byte of the i2c payload
  48 */
  49struct i2c_algo_dp_aux_data {
  50	bool running;
  51	u16 address;
  52	int (*aux_ch) (struct i2c_adapter *adapter,
  53		       int mode, uint8_t write_byte,
  54		       uint8_t *read_byte);
  55};
  56
  57/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
  58static int
  59i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
  60			    uint8_t write_byte, uint8_t *read_byte)
  61{
  62	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  63	int ret;
  64
  65	ret = (*algo_data->aux_ch)(adapter, mode,
  66				   write_byte, read_byte);
  67	return ret;
  68}
  69
  70/*
  71 * I2C over AUX CH
  72 */
  73
  74/*
  75 * Send the address. If the I2C link is running, this 'restarts'
  76 * the connection with the new address, this is used for doing
  77 * a write followed by a read (as needed for DDC)
  78 */
  79static int
  80i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
  81{
  82	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  83	int mode = MODE_I2C_START;
  84	int ret;
  85
  86	if (reading)
  87		mode |= MODE_I2C_READ;
  88	else
  89		mode |= MODE_I2C_WRITE;
  90	algo_data->address = address;
  91	algo_data->running = true;
  92	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
  93	return ret;
  94}
  95
  96/*
  97 * Stop the I2C transaction. This closes out the link, sending
  98 * a bare address packet with the MOT bit turned off
  99 */
 100static void
 101i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
 102{
 103	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 104	int mode = MODE_I2C_STOP;
 105
 106	if (reading)
 107		mode |= MODE_I2C_READ;
 108	else
 109		mode |= MODE_I2C_WRITE;
 110	if (algo_data->running) {
 111		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
 112		algo_data->running = false;
 113	}
 114}
 115
 116/*
 117 * Write a single byte to the current I2C address, the
 118 * the I2C link must be running or this returns -EIO
 119 */
 120static int
 121i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
 122{
 123	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 124	int ret;
 125
 126	if (!algo_data->running)
 127		return -EIO;
 128
 129	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
 130	return ret;
 131}
 132
 133/*
 134 * Read a single byte from the current I2C address, the
 135 * I2C link must be running or this returns -EIO
 136 */
 137static int
 138i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
 139{
 140	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 141	int ret;
 142
 143	if (!algo_data->running)
 144		return -EIO;
 145
 146	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
 147	return ret;
 148}
 149
 150static int
 151i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
 152		     struct i2c_msg *msgs,
 153		     int num)
 154{
 155	int ret = 0;
 156	bool reading = false;
 157	int m;
 158	int b;
 159
 160	for (m = 0; m < num; m++) {
 161		u16 len = msgs[m].len;
 162		u8 *buf = msgs[m].buf;
 163		reading = (msgs[m].flags & I2C_M_RD) != 0;
 164		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
 165		if (ret < 0)
 166			break;
 167		if (reading) {
 168			for (b = 0; b < len; b++) {
 169				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
 170				if (ret < 0)
 171					break;
 172			}
 173		} else {
 174			for (b = 0; b < len; b++) {
 175				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
 176				if (ret < 0)
 177					break;
 178			}
 179		}
 180		if (ret < 0)
 181			break;
 182	}
 183	if (ret >= 0)
 184		ret = num;
 185	i2c_algo_dp_aux_stop(adapter, reading);
 186	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
 187	return ret;
 188}
 189
 190static u32
 191i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
 192{
 193	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
 194	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
 195	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
 196	       I2C_FUNC_10BIT_ADDR;
 197}
 198
 199static const struct i2c_algorithm i2c_dp_aux_algo = {
 200	.master_xfer	= i2c_algo_dp_aux_xfer,
 201	.functionality	= i2c_algo_dp_aux_functionality,
 202};
 203
 204static void
 205i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
 206{
 207	(void) i2c_algo_dp_aux_address(adapter, 0, false);
 208	(void) i2c_algo_dp_aux_stop(adapter, false);
 209}
 210
 211static int
 212i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
 213{
 214	adapter->algo = &i2c_dp_aux_algo;
 215	adapter->retries = 3;
 216	i2c_dp_aux_reset_bus(adapter);
 217	return 0;
 218}
 219
 220/*
 221 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
 222 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
 223 */
 224static int
 225i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
 226{
 227	int error;
 228
 229	error = i2c_dp_aux_prepare_bus(adapter);
 230	if (error)
 231		return error;
 232	error = i2c_add_adapter(adapter);
 233	return error;
 234}
 235
 236#define _wait_for(COND, MS, W) ({ \
 237        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
 238        int ret__ = 0;                                                  \
 239        while (! (COND)) {                                              \
 240                if (time_after(jiffies, timeout__)) {                   \
 241                        ret__ = -ETIMEDOUT;                             \
 242                        break;                                          \
 243                }                                                       \
 244                if (W && !in_dbg_master()) msleep(W);                   \
 245        }                                                               \
 246        ret__;                                                          \
 247})      
 248
 249#define wait_for(COND, MS) _wait_for(COND, MS, 1)
 250
 251#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
 252
 253#define DP_LINK_CONFIGURATION_SIZE	9
 254
 255#define CDV_FAST_LINK_TRAIN	1
 256
 257struct cdv_intel_dp {
 258	uint32_t output_reg;
 259	uint32_t DP;
 260	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
 261	bool has_audio;
 262	int force_audio;
 263	uint32_t color_range;
 264	uint8_t link_bw;
 265	uint8_t lane_count;
 266	uint8_t dpcd[4];
 267	struct gma_encoder *encoder;
 268	struct i2c_adapter adapter;
 269	struct i2c_algo_dp_aux_data algo;
 270	uint8_t	train_set[4];
 271	uint8_t link_status[DP_LINK_STATUS_SIZE];
 272	int panel_power_up_delay;
 273	int panel_power_down_delay;
 274	int panel_power_cycle_delay;
 275	int backlight_on_delay;
 276	int backlight_off_delay;
 277	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
 278	bool panel_on;
 279};
 280
 281struct ddi_regoff {
 282	uint32_t	PreEmph1;
 283	uint32_t	PreEmph2;
 284	uint32_t	VSwing1;
 285	uint32_t	VSwing2;
 286	uint32_t	VSwing3;
 287	uint32_t	VSwing4;
 288	uint32_t	VSwing5;
 289};
 290
 291static struct ddi_regoff ddi_DP_train_table[] = {
 292	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
 293	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
 294	.VSwing5 = 0x8158,},
 295	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
 296	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
 297	.VSwing5 = 0x8258,},
 298};
 299
 300static uint32_t dp_vswing_premph_table[] = {
 301        0x55338954,	0x4000,
 302        0x554d8954,	0x2000,
 303        0x55668954,	0,
 304        0x559ac0d4,	0x6000,
 305};
 306/**
 307 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 308 * @intel_dp: DP struct
 309 *
 310 * If a CPU or PCH DP output is attached to an eDP panel, this function
 311 * will return true, and false otherwise.
 312 */
 313static bool is_edp(struct gma_encoder *encoder)
 314{
 315	return encoder->type == INTEL_OUTPUT_EDP;
 316}
 317
 318
 319static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
 320static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
 321static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
 322
 323static int
 324cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
 325{
 326	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 327	int max_lane_count = 4;
 328
 329	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 330		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 331		switch (max_lane_count) {
 332		case 1: case 2: case 4:
 333			break;
 334		default:
 335			max_lane_count = 4;
 336		}
 337	}
 338	return max_lane_count;
 339}
 340
 341static int
 342cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
 343{
 344	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 345	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 346
 347	switch (max_link_bw) {
 348	case DP_LINK_BW_1_62:
 349	case DP_LINK_BW_2_7:
 350		break;
 351	default:
 352		max_link_bw = DP_LINK_BW_1_62;
 353		break;
 354	}
 355	return max_link_bw;
 356}
 357
 358static int
 359cdv_intel_dp_link_clock(uint8_t link_bw)
 360{
 361	if (link_bw == DP_LINK_BW_2_7)
 362		return 270000;
 363	else
 364		return 162000;
 365}
 366
 367static int
 368cdv_intel_dp_link_required(int pixel_clock, int bpp)
 369{
 370	return (pixel_clock * bpp + 7) / 8;
 371}
 372
 373static int
 374cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 375{
 376	return (max_link_clock * max_lanes * 19) / 20;
 377}
 378
 379static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
 380{
 381	struct drm_device *dev = intel_encoder->base.dev;
 382	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 383	u32 pp;
 384
 385	if (intel_dp->panel_on) {
 386		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
 387		return;
 388	}	
 389	DRM_DEBUG_KMS("\n");
 390
 391	pp = REG_READ(PP_CONTROL);
 392
 393	pp |= EDP_FORCE_VDD;
 394	REG_WRITE(PP_CONTROL, pp);
 395	REG_READ(PP_CONTROL);
 396	msleep(intel_dp->panel_power_up_delay);
 397}
 398
 399static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
 400{
 401	struct drm_device *dev = intel_encoder->base.dev;
 402	u32 pp;
 403
 404	DRM_DEBUG_KMS("\n");
 405	pp = REG_READ(PP_CONTROL);
 406
 407	pp &= ~EDP_FORCE_VDD;
 408	REG_WRITE(PP_CONTROL, pp);
 409	REG_READ(PP_CONTROL);
 410
 411}
 412
 413/* Returns true if the panel was already on when called */
 414static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
 415{
 416	struct drm_device *dev = intel_encoder->base.dev;
 417	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 418	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
 419
 420	if (intel_dp->panel_on)
 421		return true;
 422
 423	DRM_DEBUG_KMS("\n");
 424	pp = REG_READ(PP_CONTROL);
 425	pp &= ~PANEL_UNLOCK_MASK;
 426
 427	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
 428	REG_WRITE(PP_CONTROL, pp);
 429	REG_READ(PP_CONTROL);
 430
 431	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
 432		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
 433		intel_dp->panel_on = false;
 434	} else
 435		intel_dp->panel_on = true;	
 436	msleep(intel_dp->panel_power_up_delay);
 437
 438	return false;
 439}
 440
 441static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
 442{
 443	struct drm_device *dev = intel_encoder->base.dev;
 444	u32 pp, idle_off_mask = PP_ON ;
 445	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 446
 447	DRM_DEBUG_KMS("\n");
 448
 449	pp = REG_READ(PP_CONTROL);
 450
 451	if ((pp & POWER_TARGET_ON) == 0) 
 452		return;
 453
 454	intel_dp->panel_on = false;
 455	pp &= ~PANEL_UNLOCK_MASK;
 456	/* ILK workaround: disable reset around power sequence */
 457
 458	pp &= ~POWER_TARGET_ON;
 459	pp &= ~EDP_FORCE_VDD;
 460	pp &= ~EDP_BLC_ENABLE;
 461	REG_WRITE(PP_CONTROL, pp);
 462	REG_READ(PP_CONTROL);
 463	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
 464
 465	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
 466		DRM_DEBUG_KMS("Error in turning off Panel\n");	
 467	}
 468
 469	msleep(intel_dp->panel_power_cycle_delay);
 470	DRM_DEBUG_KMS("Over\n");
 471}
 472
 473static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
 474{
 475	struct drm_device *dev = intel_encoder->base.dev;
 476	u32 pp;
 477
 478	DRM_DEBUG_KMS("\n");
 479	/*
 480	 * If we enable the backlight right away following a panel power
 481	 * on, we may see slight flicker as the panel syncs with the eDP
 482	 * link.  So delay a bit to make sure the image is solid before
 483	 * allowing it to appear.
 484	 */
 485	msleep(300);
 486	pp = REG_READ(PP_CONTROL);
 487
 488	pp |= EDP_BLC_ENABLE;
 489	REG_WRITE(PP_CONTROL, pp);
 490	gma_backlight_enable(dev);
 491}
 492
 493static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
 494{
 495	struct drm_device *dev = intel_encoder->base.dev;
 496	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 497	u32 pp;
 498
 499	DRM_DEBUG_KMS("\n");
 500	gma_backlight_disable(dev);
 501	msleep(10);
 502	pp = REG_READ(PP_CONTROL);
 503
 504	pp &= ~EDP_BLC_ENABLE;
 505	REG_WRITE(PP_CONTROL, pp);
 506	msleep(intel_dp->backlight_off_delay);
 507}
 508
 509static enum drm_mode_status
 510cdv_intel_dp_mode_valid(struct drm_connector *connector,
 511		    struct drm_display_mode *mode)
 512{
 513	struct gma_encoder *encoder = gma_attached_encoder(connector);
 514	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 515	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
 516	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
 517	struct drm_psb_private *dev_priv = connector->dev->dev_private;
 518
 519	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
 520		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
 521			return MODE_PANEL;
 522		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
 523			return MODE_PANEL;
 524	}
 525
 526	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 527	   which are outside spec tolerances but somehow work by magic */
 528	if (!is_edp(encoder) &&
 529	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
 530	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
 531		return MODE_CLOCK_HIGH;
 532
 533	if (is_edp(encoder)) {
 534	    if (cdv_intel_dp_link_required(mode->clock, 24)
 535	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
 536		return MODE_CLOCK_HIGH;
 537		
 538	}
 539	if (mode->clock < 10000)
 540		return MODE_CLOCK_LOW;
 541
 542	return MODE_OK;
 543}
 544
 545static uint32_t
 546pack_aux(uint8_t *src, int src_bytes)
 547{
 548	int	i;
 549	uint32_t v = 0;
 550
 551	if (src_bytes > 4)
 552		src_bytes = 4;
 553	for (i = 0; i < src_bytes; i++)
 554		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 555	return v;
 556}
 557
 558static void
 559unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 560{
 561	int i;
 562	if (dst_bytes > 4)
 563		dst_bytes = 4;
 564	for (i = 0; i < dst_bytes; i++)
 565		dst[i] = src >> ((3-i) * 8);
 566}
 567
 568static int
 569cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
 570		uint8_t *send, int send_bytes,
 571		uint8_t *recv, int recv_size)
 572{
 573	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 574	uint32_t output_reg = intel_dp->output_reg;
 575	struct drm_device *dev = encoder->base.dev;
 576	uint32_t ch_ctl = output_reg + 0x10;
 577	uint32_t ch_data = ch_ctl + 4;
 578	int i;
 579	int recv_bytes;
 580	uint32_t status;
 581	uint32_t aux_clock_divider;
 582	int try, precharge;
 583
 584	/* The clock divider is based off the hrawclk,
 585	 * and would like to run at 2MHz. So, take the
 586	 * hrawclk value and divide by 2 and use that
 587	 * On CDV platform it uses 200MHz as hrawclk.
 588	 *
 589	 */
 590	aux_clock_divider = 200 / 2;
 591
 592	precharge = 4;
 593	if (is_edp(encoder))
 594		precharge = 10;
 595
 596	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
 597		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
 598			  REG_READ(ch_ctl));
 599		return -EBUSY;
 600	}
 601
 602	/* Must try at least 3 times according to DP spec */
 603	for (try = 0; try < 5; try++) {
 604		/* Load the send data into the aux channel data registers */
 605		for (i = 0; i < send_bytes; i += 4)
 606			REG_WRITE(ch_data + i,
 607				   pack_aux(send + i, send_bytes - i));
 608	
 609		/* Send the command and wait for it to complete */
 610		REG_WRITE(ch_ctl,
 611			   DP_AUX_CH_CTL_SEND_BUSY |
 612			   DP_AUX_CH_CTL_TIME_OUT_400us |
 613			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 614			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 615			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 616			   DP_AUX_CH_CTL_DONE |
 617			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 618			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 619		for (;;) {
 620			status = REG_READ(ch_ctl);
 621			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 622				break;
 623			udelay(100);
 624		}
 625	
 626		/* Clear done status and any errors */
 627		REG_WRITE(ch_ctl,
 628			   status |
 629			   DP_AUX_CH_CTL_DONE |
 630			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 631			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 632		if (status & DP_AUX_CH_CTL_DONE)
 633			break;
 634	}
 635
 636	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 637		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 638		return -EBUSY;
 639	}
 640
 641	/* Check for timeout or receive error.
 642	 * Timeouts occur when the sink is not connected
 643	 */
 644	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 645		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 646		return -EIO;
 647	}
 648
 649	/* Timeouts occur when the device isn't connected, so they're
 650	 * "normal" -- don't fill the kernel log with these */
 651	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 652		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 653		return -ETIMEDOUT;
 654	}
 655
 656	/* Unload any bytes sent back from the other side */
 657	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 658		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 659	if (recv_bytes > recv_size)
 660		recv_bytes = recv_size;
 661	
 662	for (i = 0; i < recv_bytes; i += 4)
 663		unpack_aux(REG_READ(ch_data + i),
 664			   recv + i, recv_bytes - i);
 665
 666	return recv_bytes;
 667}
 668
 669/* Write data to the aux channel in native mode */
 670static int
 671cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
 672			  uint16_t address, uint8_t *send, int send_bytes)
 673{
 674	int ret;
 675	uint8_t	msg[20];
 676	int msg_bytes;
 677	uint8_t	ack;
 678
 679	if (send_bytes > 16)
 680		return -1;
 681	msg[0] = DP_AUX_NATIVE_WRITE << 4;
 682	msg[1] = address >> 8;
 683	msg[2] = address & 0xff;
 684	msg[3] = send_bytes - 1;
 685	memcpy(&msg[4], send, send_bytes);
 686	msg_bytes = send_bytes + 4;
 687	for (;;) {
 688		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
 689		if (ret < 0)
 690			return ret;
 691		ack >>= 4;
 692		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
 693			break;
 694		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 695			udelay(100);
 696		else
 697			return -EIO;
 698	}
 699	return send_bytes;
 700}
 701
 702/* Write a single byte to the aux channel in native mode */
 703static int
 704cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
 705			    uint16_t address, uint8_t byte)
 706{
 707	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
 708}
 709
 710/* read bytes from a native aux channel */
 711static int
 712cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
 713			 uint16_t address, uint8_t *recv, int recv_bytes)
 714{
 715	uint8_t msg[4];
 716	int msg_bytes;
 717	uint8_t reply[20];
 718	int reply_bytes;
 719	uint8_t ack;
 720	int ret;
 721
 722	msg[0] = DP_AUX_NATIVE_READ << 4;
 723	msg[1] = address >> 8;
 724	msg[2] = address & 0xff;
 725	msg[3] = recv_bytes - 1;
 726
 727	msg_bytes = 4;
 728	reply_bytes = recv_bytes + 1;
 729
 730	for (;;) {
 731		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
 732				      reply, reply_bytes);
 733		if (ret == 0)
 734			return -EPROTO;
 735		if (ret < 0)
 736			return ret;
 737		ack = reply[0] >> 4;
 738		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
 739			memcpy(recv, reply + 1, ret - 1);
 740			return ret - 1;
 741		}
 742		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
 743			udelay(100);
 744		else
 745			return -EIO;
 746	}
 747}
 748
 749static int
 750cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 751		    uint8_t write_byte, uint8_t *read_byte)
 752{
 753	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 754	struct cdv_intel_dp *intel_dp = container_of(adapter,
 755						struct cdv_intel_dp,
 756						adapter);
 757	struct gma_encoder *encoder = intel_dp->encoder;
 758	uint16_t address = algo_data->address;
 759	uint8_t msg[5];
 760	uint8_t reply[2];
 761	unsigned retry;
 762	int msg_bytes;
 763	int reply_bytes;
 764	int ret;
 765
 766	/* Set up the command byte */
 767	if (mode & MODE_I2C_READ)
 768		msg[0] = DP_AUX_I2C_READ << 4;
 769	else
 770		msg[0] = DP_AUX_I2C_WRITE << 4;
 771
 772	if (!(mode & MODE_I2C_STOP))
 773		msg[0] |= DP_AUX_I2C_MOT << 4;
 774
 775	msg[1] = address >> 8;
 776	msg[2] = address;
 777
 778	switch (mode) {
 779	case MODE_I2C_WRITE:
 780		msg[3] = 0;
 781		msg[4] = write_byte;
 782		msg_bytes = 5;
 783		reply_bytes = 1;
 784		break;
 785	case MODE_I2C_READ:
 786		msg[3] = 0;
 787		msg_bytes = 4;
 788		reply_bytes = 2;
 789		break;
 790	default:
 791		msg_bytes = 3;
 792		reply_bytes = 1;
 793		break;
 794	}
 795
 796	for (retry = 0; retry < 5; retry++) {
 797		ret = cdv_intel_dp_aux_ch(encoder,
 798				      msg, msg_bytes,
 799				      reply, reply_bytes);
 800		if (ret < 0) {
 801			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 802			return ret;
 803		}
 804
 805		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
 806		case DP_AUX_NATIVE_REPLY_ACK:
 807			/* I2C-over-AUX Reply field is only valid
 808			 * when paired with AUX ACK.
 809			 */
 810			break;
 811		case DP_AUX_NATIVE_REPLY_NACK:
 812			DRM_DEBUG_KMS("aux_ch native nack\n");
 813			return -EREMOTEIO;
 814		case DP_AUX_NATIVE_REPLY_DEFER:
 815			udelay(100);
 816			continue;
 817		default:
 818			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 819				  reply[0]);
 820			return -EREMOTEIO;
 821		}
 822
 823		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
 824		case DP_AUX_I2C_REPLY_ACK:
 825			if (mode == MODE_I2C_READ) {
 826				*read_byte = reply[1];
 827			}
 828			return reply_bytes - 1;
 829		case DP_AUX_I2C_REPLY_NACK:
 830			DRM_DEBUG_KMS("aux_i2c nack\n");
 831			return -EREMOTEIO;
 832		case DP_AUX_I2C_REPLY_DEFER:
 833			DRM_DEBUG_KMS("aux_i2c defer\n");
 834			udelay(100);
 835			break;
 836		default:
 837			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 838			return -EREMOTEIO;
 839		}
 840	}
 841
 842	DRM_ERROR("too many retries, giving up\n");
 843	return -EREMOTEIO;
 844}
 845
 846static int
 847cdv_intel_dp_i2c_init(struct gma_connector *connector,
 848		      struct gma_encoder *encoder, const char *name)
 849{
 850	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
 851	int ret;
 852
 853	DRM_DEBUG_KMS("i2c_init %s\n", name);
 854
 855	intel_dp->algo.running = false;
 856	intel_dp->algo.address = 0;
 857	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
 858
 859	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 860	intel_dp->adapter.owner = THIS_MODULE;
 861	intel_dp->adapter.class = I2C_CLASS_DDC;
 862	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 863	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 864	intel_dp->adapter.algo_data = &intel_dp->algo;
 865	intel_dp->adapter.dev.parent = connector->base.kdev;
 866
 867	if (is_edp(encoder))
 868		cdv_intel_edp_panel_vdd_on(encoder);
 869	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
 870	if (is_edp(encoder))
 871		cdv_intel_edp_panel_vdd_off(encoder);
 872	
 873	return ret;
 874}
 875
 876static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
 877	struct drm_display_mode *adjusted_mode)
 878{
 879	adjusted_mode->hdisplay = fixed_mode->hdisplay;
 880	adjusted_mode->hsync_start = fixed_mode->hsync_start;
 881	adjusted_mode->hsync_end = fixed_mode->hsync_end;
 882	adjusted_mode->htotal = fixed_mode->htotal;
 883
 884	adjusted_mode->vdisplay = fixed_mode->vdisplay;
 885	adjusted_mode->vsync_start = fixed_mode->vsync_start;
 886	adjusted_mode->vsync_end = fixed_mode->vsync_end;
 887	adjusted_mode->vtotal = fixed_mode->vtotal;
 888
 889	adjusted_mode->clock = fixed_mode->clock;
 890
 891	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
 892}
 893
 894static bool
 895cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
 896		    struct drm_display_mode *adjusted_mode)
 897{
 898	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
 899	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
 900	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
 901	int lane_count, clock;
 902	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
 903	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
 904	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 905	int refclock = mode->clock;
 906	int bpp = 24;
 907
 908	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
 909		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
 910		refclock = intel_dp->panel_fixed_mode->clock;
 911		bpp = dev_priv->edp.bpp;
 912	}
 913
 914	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 915		for (clock = max_clock; clock >= 0; clock--) {
 916			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
 917
 918			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
 919				intel_dp->link_bw = bws[clock];
 920				intel_dp->lane_count = lane_count;
 921				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 922				DRM_DEBUG_KMS("Display port link bw %02x lane "
 923						"count %d clock %d\n",
 924				       intel_dp->link_bw, intel_dp->lane_count,
 925				       adjusted_mode->clock);
 926				return true;
 927			}
 928		}
 929	}
 930	if (is_edp(intel_encoder)) {
 931		/* okay we failed just pick the highest */
 932		intel_dp->lane_count = max_lane_count;
 933		intel_dp->link_bw = bws[max_clock];
 934		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
 935		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 936			      "count %d clock %d\n",
 937			      intel_dp->link_bw, intel_dp->lane_count,
 938			      adjusted_mode->clock);
 939
 940		return true;
 941	}
 942	return false;
 943}
 944
 945struct cdv_intel_dp_m_n {
 946	uint32_t	tu;
 947	uint32_t	gmch_m;
 948	uint32_t	gmch_n;
 949	uint32_t	link_m;
 950	uint32_t	link_n;
 951};
 952
 953static void
 954cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
 955{
 956	/*
 957	while (*num > 0xffffff || *den > 0xffffff) {
 958		*num >>= 1;
 959		*den >>= 1;
 960	}*/
 961	uint64_t value, m;
 962	m = *num;
 963	value = m * (0x800000);
 964	m = do_div(value, *den);
 965	*num = value;
 966	*den = 0x800000;
 967}
 968
 969static void
 970cdv_intel_dp_compute_m_n(int bpp,
 971		     int nlanes,
 972		     int pixel_clock,
 973		     int link_clock,
 974		     struct cdv_intel_dp_m_n *m_n)
 975{
 976	m_n->tu = 64;
 977	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
 978	m_n->gmch_n = link_clock * nlanes;
 979	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 980	m_n->link_m = pixel_clock;
 981	m_n->link_n = link_clock;
 982	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 983}
 984
 985void
 986cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 987		 struct drm_display_mode *adjusted_mode)
 988{
 989	struct drm_device *dev = crtc->dev;
 990	struct drm_psb_private *dev_priv = dev->dev_private;
 991	struct drm_mode_config *mode_config = &dev->mode_config;
 992	struct drm_encoder *encoder;
 993	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
 994	int lane_count = 4, bpp = 24;
 995	struct cdv_intel_dp_m_n m_n;
 996	int pipe = gma_crtc->pipe;
 997
 998	/*
 999	 * Find the lane count in the intel_encoder private
1000	 */
1001	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1002		struct gma_encoder *intel_encoder;
1003		struct cdv_intel_dp *intel_dp;
1004
1005		if (encoder->crtc != crtc)
1006			continue;
1007
1008		intel_encoder = to_gma_encoder(encoder);
1009		intel_dp = intel_encoder->dev_priv;
1010		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1011			lane_count = intel_dp->lane_count;
1012			break;
1013		} else if (is_edp(intel_encoder)) {
1014			lane_count = intel_dp->lane_count;
1015			bpp = dev_priv->edp.bpp;
1016			break;
1017		}
1018	}
1019
1020	/*
1021	 * Compute the GMCH and Link ratios. The '3' here is
1022	 * the number of bytes_per_pixel post-LUT, which we always
1023	 * set up for 8-bits of R/G/B, or 3 bytes total.
1024	 */
1025	cdv_intel_dp_compute_m_n(bpp, lane_count,
1026			     mode->clock, adjusted_mode->clock, &m_n);
1027
1028	{
1029		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1030			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1031			   m_n.gmch_m);
1032		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1033		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1034		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1035	}
1036}
1037
1038static void
1039cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1040		  struct drm_display_mode *adjusted_mode)
1041{
1042	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1043	struct drm_crtc *crtc = encoder->crtc;
1044	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1045	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1046	struct drm_device *dev = encoder->dev;
1047
1048	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1049	intel_dp->DP |= intel_dp->color_range;
1050
1051	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1052		intel_dp->DP |= DP_SYNC_HS_HIGH;
1053	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1054		intel_dp->DP |= DP_SYNC_VS_HIGH;
1055
1056	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1057
1058	switch (intel_dp->lane_count) {
1059	case 1:
1060		intel_dp->DP |= DP_PORT_WIDTH_1;
1061		break;
1062	case 2:
1063		intel_dp->DP |= DP_PORT_WIDTH_2;
1064		break;
1065	case 4:
1066		intel_dp->DP |= DP_PORT_WIDTH_4;
1067		break;
1068	}
1069	if (intel_dp->has_audio)
1070		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1071
1072	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1073	intel_dp->link_configuration[0] = intel_dp->link_bw;
1074	intel_dp->link_configuration[1] = intel_dp->lane_count;
1075
1076	/*
1077	 * Check for DPCD version > 1.1 and enhanced framing support
1078	 */
1079	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1080	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1081		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1082		intel_dp->DP |= DP_ENHANCED_FRAMING;
1083	}
1084
1085	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1086	if (gma_crtc->pipe == 1)
1087		intel_dp->DP |= DP_PIPEB_SELECT;
1088
1089	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1090	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1091	if (is_edp(intel_encoder)) {
1092		uint32_t pfit_control;
1093		cdv_intel_edp_panel_on(intel_encoder);
1094
1095		if (mode->hdisplay != adjusted_mode->hdisplay ||
1096			    mode->vdisplay != adjusted_mode->vdisplay)
1097			pfit_control = PFIT_ENABLE;
1098		else
1099			pfit_control = 0;
1100
1101		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1102
1103		REG_WRITE(PFIT_CONTROL, pfit_control);
1104	}
1105}
1106
1107
1108/* If the sink supports it, try to set the power state appropriately */
1109static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1110{
1111	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1112	int ret, i;
1113
1114	/* Should have a valid DPCD by this point */
1115	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1116		return;
1117
1118	if (mode != DRM_MODE_DPMS_ON) {
1119		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1120						  DP_SET_POWER_D3);
1121		if (ret != 1)
1122			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1123	} else {
1124		/*
1125		 * When turning on, we need to retry for 1ms to give the sink
1126		 * time to wake up.
1127		 */
1128		for (i = 0; i < 3; i++) {
1129			ret = cdv_intel_dp_aux_native_write_1(encoder,
1130							  DP_SET_POWER,
1131							  DP_SET_POWER_D0);
1132			if (ret == 1)
1133				break;
1134			udelay(1000);
1135		}
1136	}
1137}
1138
1139static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1140{
1141	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1142	int edp = is_edp(intel_encoder);
1143
1144	if (edp) {
1145		cdv_intel_edp_backlight_off(intel_encoder);
1146		cdv_intel_edp_panel_off(intel_encoder);
1147		cdv_intel_edp_panel_vdd_on(intel_encoder);
1148        }
1149	/* Wake up the sink first */
1150	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1151	cdv_intel_dp_link_down(intel_encoder);
1152	if (edp)
1153		cdv_intel_edp_panel_vdd_off(intel_encoder);
1154}
1155
1156static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1157{
1158	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1159	int edp = is_edp(intel_encoder);
1160
1161	if (edp)
1162		cdv_intel_edp_panel_on(intel_encoder);
1163	cdv_intel_dp_start_link_train(intel_encoder);
1164	cdv_intel_dp_complete_link_train(intel_encoder);
1165	if (edp)
1166		cdv_intel_edp_backlight_on(intel_encoder);
1167}
1168
1169static void
1170cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1171{
1172	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1173	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1174	struct drm_device *dev = encoder->dev;
1175	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1176	int edp = is_edp(intel_encoder);
1177
1178	if (mode != DRM_MODE_DPMS_ON) {
1179		if (edp) {
1180			cdv_intel_edp_backlight_off(intel_encoder);
1181			cdv_intel_edp_panel_vdd_on(intel_encoder);
1182		}
1183		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1184		cdv_intel_dp_link_down(intel_encoder);
1185		if (edp) {
1186			cdv_intel_edp_panel_vdd_off(intel_encoder);
1187			cdv_intel_edp_panel_off(intel_encoder);
1188		}
1189	} else {
1190        	if (edp)
1191			cdv_intel_edp_panel_on(intel_encoder);
1192		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1193		if (!(dp_reg & DP_PORT_EN)) {
1194			cdv_intel_dp_start_link_train(intel_encoder);
1195			cdv_intel_dp_complete_link_train(intel_encoder);
1196		}
1197		if (edp)
1198        		cdv_intel_edp_backlight_on(intel_encoder);
1199	}
1200}
1201
1202/*
1203 * Native read with retry for link status and receiver capability reads for
1204 * cases where the sink may still be asleep.
1205 */
1206static bool
1207cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1208			       uint8_t *recv, int recv_bytes)
1209{
1210	int ret, i;
1211
1212	/*
1213	 * Sinks are *supposed* to come up within 1ms from an off state,
1214	 * but we're also supposed to retry 3 times per the spec.
1215	 */
1216	for (i = 0; i < 3; i++) {
1217		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1218					       recv_bytes);
1219		if (ret == recv_bytes)
1220			return true;
1221		udelay(1000);
1222	}
1223
1224	return false;
1225}
1226
1227/*
1228 * Fetch AUX CH registers 0x202 - 0x207 which contain
1229 * link status information
1230 */
1231static bool
1232cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1233{
1234	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1235	return cdv_intel_dp_aux_native_read_retry(encoder,
1236					      DP_LANE0_1_STATUS,
1237					      intel_dp->link_status,
1238					      DP_LINK_STATUS_SIZE);
1239}
1240
1241static uint8_t
1242cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1243		     int r)
1244{
1245	return link_status[r - DP_LANE0_1_STATUS];
1246}
1247
1248static uint8_t
1249cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1250				 int lane)
1251{
1252	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1253	int	    s = ((lane & 1) ?
1254			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1255			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1256	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1257
1258	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1259}
1260
1261static uint8_t
1262cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1263				      int lane)
1264{
1265	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1266	int	    s = ((lane & 1) ?
1267			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1268			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1269	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1270
1271	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1272}
1273
1274
1275#if 0
1276static char	*voltage_names[] = {
1277	"0.4V", "0.6V", "0.8V", "1.2V"
1278};
1279static char	*pre_emph_names[] = {
1280	"0dB", "3.5dB", "6dB", "9.5dB"
1281};
1282static char	*link_train_names[] = {
1283	"pattern 1", "pattern 2", "idle", "off"
1284};
1285#endif
1286
1287#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1288/*
1289static uint8_t
1290cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1291{
1292	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1293	case DP_TRAIN_VOLTAGE_SWING_400:
1294		return DP_TRAIN_PRE_EMPHASIS_6;
1295	case DP_TRAIN_VOLTAGE_SWING_600:
1296		return DP_TRAIN_PRE_EMPHASIS_6;
1297	case DP_TRAIN_VOLTAGE_SWING_800:
1298		return DP_TRAIN_PRE_EMPHASIS_3_5;
1299	case DP_TRAIN_VOLTAGE_SWING_1200:
1300	default:
1301		return DP_TRAIN_PRE_EMPHASIS_0;
1302	}
1303}
1304*/
1305static void
1306cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1307{
1308	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1309	uint8_t v = 0;
1310	uint8_t p = 0;
1311	int lane;
1312
1313	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1314		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1315		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1316
1317		if (this_v > v)
1318			v = this_v;
1319		if (this_p > p)
1320			p = this_p;
1321	}
1322	
1323	if (v >= CDV_DP_VOLTAGE_MAX)
1324		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1325
1326	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1327		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1328		
1329	for (lane = 0; lane < 4; lane++)
1330		intel_dp->train_set[lane] = v | p;
1331}
1332
1333
1334static uint8_t
1335cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1336		      int lane)
1337{
1338	int i = DP_LANE0_1_STATUS + (lane >> 1);
1339	int s = (lane & 1) * 4;
1340	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1341
1342	return (l >> s) & 0xf;
1343}
1344
1345/* Check for clock recovery is done on all channels */
1346static bool
1347cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1348{
1349	int lane;
1350	uint8_t lane_status;
1351
1352	for (lane = 0; lane < lane_count; lane++) {
1353		lane_status = cdv_intel_get_lane_status(link_status, lane);
1354		if ((lane_status & DP_LANE_CR_DONE) == 0)
1355			return false;
1356	}
1357	return true;
1358}
1359
1360/* Check to see if channel eq is done on all channels */
1361#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1362			 DP_LANE_CHANNEL_EQ_DONE|\
1363			 DP_LANE_SYMBOL_LOCKED)
1364static bool
1365cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1366{
1367	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1368	uint8_t lane_align;
1369	uint8_t lane_status;
1370	int lane;
1371
1372	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1373					  DP_LANE_ALIGN_STATUS_UPDATED);
1374	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1375		return false;
1376	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1377		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1378		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1379			return false;
1380	}
1381	return true;
1382}
1383
1384static bool
1385cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1386			uint32_t dp_reg_value,
1387			uint8_t dp_train_pat)
1388{
1389	
1390	struct drm_device *dev = encoder->base.dev;
1391	int ret;
1392	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1393
1394	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1395	REG_READ(intel_dp->output_reg);
1396
1397	ret = cdv_intel_dp_aux_native_write_1(encoder,
1398				    DP_TRAINING_PATTERN_SET,
1399				    dp_train_pat);
1400
1401	if (ret != 1) {
1402		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1403				dp_train_pat);
1404		return false;
1405	}
1406
1407	return true;
1408}
1409
1410
1411static bool
1412cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1413			uint8_t dp_train_pat)
1414{
1415	
1416	int ret;
1417	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1418
1419	ret = cdv_intel_dp_aux_native_write(encoder,
1420					DP_TRAINING_LANE0_SET,
1421					intel_dp->train_set,
1422					intel_dp->lane_count);
1423
1424	if (ret != intel_dp->lane_count) {
1425		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1426				intel_dp->train_set[0], intel_dp->lane_count);
1427		return false;
1428	}
1429	return true;
1430}
1431
1432static void
1433cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1434{
1435	struct drm_device *dev = encoder->base.dev;
1436	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1437	struct ddi_regoff *ddi_reg;
1438	int vswing, premph, index;
1439
1440	if (intel_dp->output_reg == DP_B)
1441		ddi_reg = &ddi_DP_train_table[0];
1442	else
1443		ddi_reg = &ddi_DP_train_table[1];
1444
1445	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1446	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1447				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1448
1449	if (vswing + premph > 3)
1450		return;
1451#ifdef CDV_FAST_LINK_TRAIN
1452	return;
1453#endif
1454	DRM_DEBUG_KMS("Test2\n");
1455	//return ;
1456	cdv_sb_reset(dev);
1457	/* ;Swing voltage programming
1458        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1459	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1460
1461	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1462	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1463
1464	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1465	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1466	 */
1467	index = (vswing + premph) * 2;
1468	if (premph == 1 && vswing == 1) {
1469		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1470	} else
1471		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1472
1473	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1474	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1475		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1476	else
1477		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1478
1479	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1480	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1481
1482	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1483	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1484
1485	/* ;Pre emphasis programming
1486	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1487	 */
1488	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1489
1490	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1491	index = 2 * premph + 1;
1492	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1493	return;	
1494}
1495
1496
1497/* Enable corresponding port and start training pattern 1 */
1498static void
1499cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1500{
1501	struct drm_device *dev = encoder->base.dev;
1502	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1503	int i;
1504	uint8_t voltage;
1505	bool clock_recovery = false;
1506	int tries;
1507	u32 reg;
1508	uint32_t DP = intel_dp->DP;
1509
1510	DP |= DP_PORT_EN;
1511	DP &= ~DP_LINK_TRAIN_MASK;
1512		
1513	reg = DP;	
1514	reg |= DP_LINK_TRAIN_PAT_1;
1515	/* Enable output, wait for it to become active */
1516	REG_WRITE(intel_dp->output_reg, reg);
1517	REG_READ(intel_dp->output_reg);
1518	gma_wait_for_vblank(dev);
1519
1520	DRM_DEBUG_KMS("Link config\n");
1521	/* Write the link configuration data */
1522	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1523				  intel_dp->link_configuration,
1524				  2);
1525
1526	memset(intel_dp->train_set, 0, 4);
1527	voltage = 0;
1528	tries = 0;
1529	clock_recovery = false;
1530
1531	DRM_DEBUG_KMS("Start train\n");
1532		reg = DP | DP_LINK_TRAIN_PAT_1;
1533
1534
1535	for (;;) {
1536		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1537		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1538				intel_dp->train_set[0],
1539				intel_dp->link_configuration[0],
1540				intel_dp->link_configuration[1]);
1541
1542		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1543			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1544		}
1545		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1546		/* Set training pattern 1 */
1547
1548		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1549
1550		udelay(200);
1551		if (!cdv_intel_dp_get_link_status(encoder))
1552			break;
1553
1554		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1555				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1556				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1557
1558		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1559			DRM_DEBUG_KMS("PT1 train is done\n");
1560			clock_recovery = true;
1561			break;
1562		}
1563
1564		/* Check to see if we've tried the max voltage */
1565		for (i = 0; i < intel_dp->lane_count; i++)
1566			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1567				break;
1568		if (i == intel_dp->lane_count)
1569			break;
1570
1571		/* Check to see if we've tried the same voltage 5 times */
1572		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1573			++tries;
1574			if (tries == 5)
1575				break;
1576		} else
1577			tries = 0;
1578		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1579
1580		/* Compute new intel_dp->train_set as requested by target */
1581		cdv_intel_get_adjust_train(encoder);
1582
1583	}
1584
1585	if (!clock_recovery) {
1586		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1587	}
1588	
1589	intel_dp->DP = DP;
1590}
1591
1592static void
1593cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1594{
1595	struct drm_device *dev = encoder->base.dev;
1596	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1597	bool channel_eq = false;
1598	int tries, cr_tries;
1599	u32 reg;
1600	uint32_t DP = intel_dp->DP;
1601
1602	/* channel equalization */
1603	tries = 0;
1604	cr_tries = 0;
1605	channel_eq = false;
1606
1607	DRM_DEBUG_KMS("\n");
1608		reg = DP | DP_LINK_TRAIN_PAT_2;
1609
1610	for (;;) {
1611
1612		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1613				intel_dp->train_set[0],
1614				intel_dp->link_configuration[0],
1615				intel_dp->link_configuration[1]);
1616        	/* channel eq pattern */
1617
1618		if (!cdv_intel_dp_set_link_train(encoder, reg,
1619					     DP_TRAINING_PATTERN_2)) {
1620			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1621		}
1622		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1623
1624		if (cr_tries > 5) {
1625			DRM_ERROR("failed to train DP, aborting\n");
1626			cdv_intel_dp_link_down(encoder);
1627			break;
1628		}
1629
1630		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1631
1632		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1633
1634		udelay(1000);
1635		if (!cdv_intel_dp_get_link_status(encoder))
1636			break;
1637
1638		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1639				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1640				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1641
1642		/* Make sure clock is still ok */
1643		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1644			cdv_intel_dp_start_link_train(encoder);
1645			cr_tries++;
1646			continue;
1647		}
1648
1649		if (cdv_intel_channel_eq_ok(encoder)) {
1650			DRM_DEBUG_KMS("PT2 train is done\n");
1651			channel_eq = true;
1652			break;
1653		}
1654
1655		/* Try 5 times, then try clock recovery if that fails */
1656		if (tries > 5) {
1657			cdv_intel_dp_link_down(encoder);
1658			cdv_intel_dp_start_link_train(encoder);
1659			tries = 0;
1660			cr_tries++;
1661			continue;
1662		}
1663
1664		/* Compute new intel_dp->train_set as requested by target */
1665		cdv_intel_get_adjust_train(encoder);
1666		++tries;
1667
1668	}
1669
1670	reg = DP | DP_LINK_TRAIN_OFF;
1671
1672	REG_WRITE(intel_dp->output_reg, reg);
1673	REG_READ(intel_dp->output_reg);
1674	cdv_intel_dp_aux_native_write_1(encoder,
1675				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1676}
1677
1678static void
1679cdv_intel_dp_link_down(struct gma_encoder *encoder)
1680{
1681	struct drm_device *dev = encoder->base.dev;
1682	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1683	uint32_t DP = intel_dp->DP;
1684
1685	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1686		return;
1687
1688	DRM_DEBUG_KMS("\n");
1689
1690
1691	{
1692		DP &= ~DP_LINK_TRAIN_MASK;
1693		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1694	}
1695	REG_READ(intel_dp->output_reg);
1696
1697	msleep(17);
1698
1699	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1700	REG_READ(intel_dp->output_reg);
1701}
1702
1703static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1704{
1705	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1706	enum drm_connector_status status;
1707
1708	status = connector_status_disconnected;
1709	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1710				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1711	{
1712		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1713			status = connector_status_connected;
1714	}
1715	if (status == connector_status_connected)
1716		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1717			intel_dp->dpcd[0], intel_dp->dpcd[1],
1718			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1719	return status;
1720}
1721
1722/**
1723 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1724 *
1725 * \return true if DP port is connected.
1726 * \return false if DP port is disconnected.
1727 */
1728static enum drm_connector_status
1729cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1730{
1731	struct gma_encoder *encoder = gma_attached_encoder(connector);
1732	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1733	enum drm_connector_status status;
1734	struct edid *edid = NULL;
1735	int edp = is_edp(encoder);
1736
1737	intel_dp->has_audio = false;
1738
1739	if (edp)
1740		cdv_intel_edp_panel_vdd_on(encoder);
1741	status = cdv_dp_detect(encoder);
1742	if (status != connector_status_connected) {
1743		if (edp)
1744			cdv_intel_edp_panel_vdd_off(encoder);
1745		return status;
1746        }
1747
1748	if (intel_dp->force_audio) {
1749		intel_dp->has_audio = intel_dp->force_audio > 0;
1750	} else {
1751		edid = drm_get_edid(connector, &intel_dp->adapter);
1752		if (edid) {
1753			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1754			kfree(edid);
1755		}
1756	}
1757	if (edp)
1758		cdv_intel_edp_panel_vdd_off(encoder);
1759
1760	return connector_status_connected;
1761}
1762
1763static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1764{
1765	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1766	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1767	struct edid *edid = NULL;
1768	int ret = 0;
1769	int edp = is_edp(intel_encoder);
1770
1771
1772	edid = drm_get_edid(connector, &intel_dp->adapter);
1773	if (edid) {
1774		drm_connector_update_edid_property(connector, edid);
1775		ret = drm_add_edid_modes(connector, edid);
1776		kfree(edid);
1777	}
1778
1779	if (is_edp(intel_encoder)) {
1780		struct drm_device *dev = connector->dev;
1781		struct drm_psb_private *dev_priv = dev->dev_private;
1782		
1783		cdv_intel_edp_panel_vdd_off(intel_encoder);
1784		if (ret) {
1785			if (edp && !intel_dp->panel_fixed_mode) {
1786				struct drm_display_mode *newmode;
1787				list_for_each_entry(newmode, &connector->probed_modes,
1788					    head) {
1789					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1790						intel_dp->panel_fixed_mode =
1791							drm_mode_duplicate(dev, newmode);
1792						break;
1793					}
1794				}
1795			}
1796
1797			return ret;
1798		}
1799		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1800			intel_dp->panel_fixed_mode =
1801				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1802			if (intel_dp->panel_fixed_mode) {
1803				intel_dp->panel_fixed_mode->type |=
1804					DRM_MODE_TYPE_PREFERRED;
1805			}
1806		}
1807		if (intel_dp->panel_fixed_mode != NULL) {
1808			struct drm_display_mode *mode;
1809			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1810			drm_mode_probed_add(connector, mode);
1811			return 1;
1812		}
1813	}
1814
1815	return ret;
1816}
1817
1818static bool
1819cdv_intel_dp_detect_audio(struct drm_connector *connector)
1820{
1821	struct gma_encoder *encoder = gma_attached_encoder(connector);
1822	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1823	struct edid *edid;
1824	bool has_audio = false;
1825	int edp = is_edp(encoder);
1826
1827	if (edp)
1828		cdv_intel_edp_panel_vdd_on(encoder);
1829
1830	edid = drm_get_edid(connector, &intel_dp->adapter);
1831	if (edid) {
1832		has_audio = drm_detect_monitor_audio(edid);
1833		kfree(edid);
1834	}
1835	if (edp)
1836		cdv_intel_edp_panel_vdd_off(encoder);
1837
1838	return has_audio;
1839}
1840
1841static int
1842cdv_intel_dp_set_property(struct drm_connector *connector,
1843		      struct drm_property *property,
1844		      uint64_t val)
1845{
1846	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1847	struct gma_encoder *encoder = gma_attached_encoder(connector);
1848	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1849	int ret;
1850
1851	ret = drm_object_property_set_value(&connector->base, property, val);
1852	if (ret)
1853		return ret;
1854
1855	if (property == dev_priv->force_audio_property) {
1856		int i = val;
1857		bool has_audio;
1858
1859		if (i == intel_dp->force_audio)
1860			return 0;
1861
1862		intel_dp->force_audio = i;
1863
1864		if (i == 0)
1865			has_audio = cdv_intel_dp_detect_audio(connector);
1866		else
1867			has_audio = i > 0;
1868
1869		if (has_audio == intel_dp->has_audio)
1870			return 0;
1871
1872		intel_dp->has_audio = has_audio;
1873		goto done;
1874	}
1875
1876	if (property == dev_priv->broadcast_rgb_property) {
1877		if (val == !!intel_dp->color_range)
1878			return 0;
1879
1880		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1881		goto done;
1882	}
1883
1884	return -EINVAL;
1885
1886done:
1887	if (encoder->base.crtc) {
1888		struct drm_crtc *crtc = encoder->base.crtc;
1889		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1890					 crtc->x, crtc->y,
1891					 crtc->primary->fb);
1892	}
1893
1894	return 0;
1895}
1896
1897static void
1898cdv_intel_dp_destroy(struct drm_connector *connector)
1899{
1900	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1901	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1902
1903	if (is_edp(gma_encoder)) {
1904	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1905		kfree(intel_dp->panel_fixed_mode);
1906		intel_dp->panel_fixed_mode = NULL;
 
 
1907	}
1908	i2c_del_adapter(&intel_dp->adapter);
1909	drm_connector_unregister(connector);
1910	drm_connector_cleanup(connector);
1911	kfree(connector);
1912}
1913
1914static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1915{
1916	drm_encoder_cleanup(encoder);
1917}
1918
1919static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1920	.dpms = cdv_intel_dp_dpms,
1921	.mode_fixup = cdv_intel_dp_mode_fixup,
1922	.prepare = cdv_intel_dp_prepare,
1923	.mode_set = cdv_intel_dp_mode_set,
1924	.commit = cdv_intel_dp_commit,
1925};
1926
1927static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1928	.dpms = drm_helper_connector_dpms,
1929	.detect = cdv_intel_dp_detect,
1930	.fill_modes = drm_helper_probe_single_connector_modes,
1931	.set_property = cdv_intel_dp_set_property,
1932	.destroy = cdv_intel_dp_destroy,
1933};
1934
1935static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1936	.get_modes = cdv_intel_dp_get_modes,
1937	.mode_valid = cdv_intel_dp_mode_valid,
1938	.best_encoder = gma_best_encoder,
1939};
1940
1941static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1942	.destroy = cdv_intel_dp_encoder_destroy,
1943};
1944
1945
1946static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1947{
1948	cdv_intel_attach_force_audio_property(connector);
1949	cdv_intel_attach_broadcast_rgb_property(connector);
1950}
1951
1952/* check the VBT to see whether the eDP is on DP-D port */
1953static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1954{
1955	struct drm_psb_private *dev_priv = dev->dev_private;
1956	struct child_device_config *p_child;
1957	int i;
1958
1959	if (!dev_priv->child_dev_num)
1960		return false;
1961
1962	for (i = 0; i < dev_priv->child_dev_num; i++) {
1963		p_child = dev_priv->child_dev + i;
1964
1965		if (p_child->dvo_port == PORT_IDPC &&
1966		    p_child->device_type == DEVICE_TYPE_eDP)
1967			return true;
1968	}
1969	return false;
1970}
1971
1972/* Cedarview display clock gating
1973
1974   We need this disable dot get correct behaviour while enabling
1975   DP/eDP. TODO - investigate if we can turn it back to normality
1976   after enabling */
1977static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1978{
1979	u32 reg_value;
1980	reg_value = REG_READ(DSPCLK_GATE_D);
1981
1982	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1983			DPUNIT_PIPEA_GATE_DISABLE |
1984			DPCUNIT_CLOCK_GATE_DISABLE |
1985			DPLSUNIT_CLOCK_GATE_DISABLE |
1986			DPOUNIT_CLOCK_GATE_DISABLE |
1987		 	DPIOUNIT_CLOCK_GATE_DISABLE);	
1988
1989	REG_WRITE(DSPCLK_GATE_D, reg_value);
1990
1991	udelay(500);		
1992}
1993
1994void
1995cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1996{
1997	struct gma_encoder *gma_encoder;
1998	struct gma_connector *gma_connector;
1999	struct drm_connector *connector;
2000	struct drm_encoder *encoder;
2001	struct cdv_intel_dp *intel_dp;
2002	const char *name = NULL;
2003	int type = DRM_MODE_CONNECTOR_DisplayPort;
2004
2005	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
2006	if (!gma_encoder)
2007		return;
2008        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
2009        if (!gma_connector)
2010                goto err_connector;
2011	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
2012	if (!intel_dp)
2013	        goto err_priv;
2014
2015	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
2016		type = DRM_MODE_CONNECTOR_eDP;
2017
2018	connector = &gma_connector->base;
2019	encoder = &gma_encoder->base;
2020
2021	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
2022	drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs,
2023			 DRM_MODE_ENCODER_TMDS, NULL);
2024
2025	gma_connector_attach_encoder(gma_connector, gma_encoder);
2026
2027	if (type == DRM_MODE_CONNECTOR_DisplayPort)
2028		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2029        else
2030		gma_encoder->type = INTEL_OUTPUT_EDP;
2031
2032
2033	gma_encoder->dev_priv=intel_dp;
2034	intel_dp->encoder = gma_encoder;
2035	intel_dp->output_reg = output_reg;
2036	
2037	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
2038	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
2039
2040	connector->polled = DRM_CONNECTOR_POLL_HPD;
2041	connector->interlace_allowed = false;
2042	connector->doublescan_allowed = false;
2043
2044	drm_connector_register(connector);
2045
2046	/* Set up the DDC bus. */
2047	switch (output_reg) {
2048		case DP_B:
2049			name = "DPDDC-B";
2050			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2051			break;
2052		case DP_C:
2053			name = "DPDDC-C";
2054			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2055			break;
2056	}
2057
2058	cdv_disable_intel_clock_gating(dev);
2059
2060	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2061        /* FIXME:fail check */
2062	cdv_intel_dp_add_properties(connector);
2063
2064	if (is_edp(gma_encoder)) {
2065		int ret;
2066		struct edp_power_seq cur;
2067                u32 pp_on, pp_off, pp_div;
2068		u32 pwm_ctrl;
2069
2070		pp_on = REG_READ(PP_CONTROL);
2071		pp_on &= ~PANEL_UNLOCK_MASK;
2072	        pp_on |= PANEL_UNLOCK_REGS;
2073		
2074		REG_WRITE(PP_CONTROL, pp_on);
2075
2076		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2077		pwm_ctrl |= PWM_PIPE_B;
2078		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2079
2080                pp_on = REG_READ(PP_ON_DELAYS);
2081                pp_off = REG_READ(PP_OFF_DELAYS);
2082                pp_div = REG_READ(PP_DIVISOR);
2083	
2084		/* Pull timing values out of registers */
2085                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2086                        PANEL_POWER_UP_DELAY_SHIFT;
2087
2088                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2089                        PANEL_LIGHT_ON_DELAY_SHIFT;
2090
2091                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2092                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2093
2094                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2095                        PANEL_POWER_DOWN_DELAY_SHIFT;
2096
2097                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2098                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2099
2100                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2101                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2102
2103
2104		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2105                intel_dp->backlight_on_delay = cur.t8 / 10;
2106                intel_dp->backlight_off_delay = cur.t9 / 10;
2107                intel_dp->panel_power_down_delay = cur.t10 / 10;
2108                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2109
2110                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2111                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2112                              intel_dp->panel_power_cycle_delay);
2113
2114                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2115                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2116
2117
2118		cdv_intel_edp_panel_vdd_on(gma_encoder);
2119		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2120					       intel_dp->dpcd,
2121					       sizeof(intel_dp->dpcd));
2122		cdv_intel_edp_panel_vdd_off(gma_encoder);
2123		if (ret == 0) {
2124			/* if this fails, presume the device is a ghost */
2125			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2126			cdv_intel_dp_encoder_destroy(encoder);
2127			cdv_intel_dp_destroy(connector);
2128			goto err_priv;
2129		} else {
2130        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2131				intel_dp->dpcd[0], intel_dp->dpcd[1], 
2132				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2133			
2134		}
2135		/* The CDV reference driver moves pnale backlight setup into the displays that
2136		   have a backlight: this is a good idea and one we should probably adopt, however
2137		   we need to migrate all the drivers before we can do that */
2138                /*cdv_intel_panel_setup_backlight(dev); */
2139	}
2140	return;
2141
2142err_priv:
2143	kfree(gma_connector);
2144err_connector:
2145	kfree(gma_encoder);
2146}