Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 * TI EDMA DMA engine driver
   3 *
   4 * Copyright 2012 Texas Instruments
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation version 2.
   9 *
  10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  11 * kind, whether express or implied; without even the implied warranty
  12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/dmaengine.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/edma.h>
  19#include <linux/err.h>
  20#include <linux/init.h>
  21#include <linux/interrupt.h>
  22#include <linux/list.h>
  23#include <linux/module.h>
  24#include <linux/platform_device.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/of.h>
  28#include <linux/of_dma.h>
  29#include <linux/of_irq.h>
  30#include <linux/of_address.h>
  31#include <linux/of_device.h>
  32#include <linux/pm_runtime.h>
  33
  34#include <linux/platform_data/edma.h>
  35
  36#include "dmaengine.h"
  37#include "virt-dma.h"
  38
  39/* Offsets matching "struct edmacc_param" */
  40#define PARM_OPT		0x00
  41#define PARM_SRC		0x04
  42#define PARM_A_B_CNT		0x08
  43#define PARM_DST		0x0c
  44#define PARM_SRC_DST_BIDX	0x10
  45#define PARM_LINK_BCNTRLD	0x14
  46#define PARM_SRC_DST_CIDX	0x18
  47#define PARM_CCNT		0x1c
  48
  49#define PARM_SIZE		0x20
  50
  51/* Offsets for EDMA CC global channel registers and their shadows */
  52#define SH_ER			0x00	/* 64 bits */
  53#define SH_ECR			0x08	/* 64 bits */
  54#define SH_ESR			0x10	/* 64 bits */
  55#define SH_CER			0x18	/* 64 bits */
  56#define SH_EER			0x20	/* 64 bits */
  57#define SH_EECR			0x28	/* 64 bits */
  58#define SH_EESR			0x30	/* 64 bits */
  59#define SH_SER			0x38	/* 64 bits */
  60#define SH_SECR			0x40	/* 64 bits */
  61#define SH_IER			0x50	/* 64 bits */
  62#define SH_IECR			0x58	/* 64 bits */
  63#define SH_IESR			0x60	/* 64 bits */
  64#define SH_IPR			0x68	/* 64 bits */
  65#define SH_ICR			0x70	/* 64 bits */
  66#define SH_IEVAL		0x78
  67#define SH_QER			0x80
  68#define SH_QEER			0x84
  69#define SH_QEECR		0x88
  70#define SH_QEESR		0x8c
  71#define SH_QSER			0x90
  72#define SH_QSECR		0x94
  73#define SH_SIZE			0x200
  74
  75/* Offsets for EDMA CC global registers */
  76#define EDMA_REV		0x0000
  77#define EDMA_CCCFG		0x0004
  78#define EDMA_QCHMAP		0x0200	/* 8 registers */
  79#define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
  80#define EDMA_QDMAQNUM		0x0260
  81#define EDMA_QUETCMAP		0x0280
  82#define EDMA_QUEPRI		0x0284
  83#define EDMA_EMR		0x0300	/* 64 bits */
  84#define EDMA_EMCR		0x0308	/* 64 bits */
  85#define EDMA_QEMR		0x0310
  86#define EDMA_QEMCR		0x0314
  87#define EDMA_CCERR		0x0318
  88#define EDMA_CCERRCLR		0x031c
  89#define EDMA_EEVAL		0x0320
  90#define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
  91#define EDMA_QRAE		0x0380	/* 4 registers */
  92#define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
  93#define EDMA_QSTAT		0x0600	/* 2 registers */
  94#define EDMA_QWMTHRA		0x0620
  95#define EDMA_QWMTHRB		0x0624
  96#define EDMA_CCSTAT		0x0640
  97
  98#define EDMA_M			0x1000	/* global channel registers */
  99#define EDMA_ECR		0x1008
 100#define EDMA_ECRH		0x100C
 101#define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
 102#define EDMA_PARM		0x4000	/* PaRAM entries */
 103
 104#define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
 105
 106#define EDMA_DCHMAP		0x0100  /* 64 registers */
 107
 108/* CCCFG register */
 109#define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
 110#define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
 111#define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
 112#define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
 113#define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
 114#define CHMAP_EXIST		BIT(24)
 115
 116/* CCSTAT register */
 117#define EDMA_CCSTAT_ACTV	BIT(4)
 118
 119/*
 120 * Max of 20 segments per channel to conserve PaRAM slots
 121 * Also note that MAX_NR_SG should be atleast the no.of periods
 122 * that are required for ASoC, otherwise DMA prep calls will
 123 * fail. Today davinci-pcm is the only user of this driver and
 124 * requires atleast 17 slots, so we setup the default to 20.
 125 */
 126#define MAX_NR_SG		20
 127#define EDMA_MAX_SLOTS		MAX_NR_SG
 128#define EDMA_DESCRIPTORS	16
 129
 130#define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
 131#define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
 132#define EDMA_CONT_PARAMS_ANY		 1001
 133#define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
 134#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
 135
 136/* PaRAM slots are laid out like this */
 137struct edmacc_param {
 138	u32 opt;
 139	u32 src;
 140	u32 a_b_cnt;
 141	u32 dst;
 142	u32 src_dst_bidx;
 143	u32 link_bcntrld;
 144	u32 src_dst_cidx;
 145	u32 ccnt;
 146} __packed;
 147
 148/* fields in edmacc_param.opt */
 149#define SAM		BIT(0)
 150#define DAM		BIT(1)
 151#define SYNCDIM		BIT(2)
 152#define STATIC		BIT(3)
 153#define EDMA_FWID	(0x07 << 8)
 154#define TCCMODE		BIT(11)
 155#define EDMA_TCC(t)	((t) << 12)
 156#define TCINTEN		BIT(20)
 157#define ITCINTEN	BIT(21)
 158#define TCCHEN		BIT(22)
 159#define ITCCHEN		BIT(23)
 160
 161struct edma_pset {
 162	u32				len;
 163	dma_addr_t			addr;
 164	struct edmacc_param		param;
 165};
 166
 167struct edma_desc {
 168	struct virt_dma_desc		vdesc;
 169	struct list_head		node;
 170	enum dma_transfer_direction	direction;
 171	int				cyclic;
 172	int				absync;
 173	int				pset_nr;
 174	struct edma_chan		*echan;
 175	int				processed;
 176
 177	/*
 178	 * The following 4 elements are used for residue accounting.
 179	 *
 180	 * - processed_stat: the number of SG elements we have traversed
 181	 * so far to cover accounting. This is updated directly to processed
 182	 * during edma_callback and is always <= processed, because processed
 183	 * refers to the number of pending transfer (programmed to EDMA
 184	 * controller), where as processed_stat tracks number of transfers
 185	 * accounted for so far.
 186	 *
 187	 * - residue: The amount of bytes we have left to transfer for this desc
 188	 *
 189	 * - residue_stat: The residue in bytes of data we have covered
 190	 * so far for accounting. This is updated directly to residue
 191	 * during callbacks to keep it current.
 192	 *
 193	 * - sg_len: Tracks the length of the current intermediate transfer,
 194	 * this is required to update the residue during intermediate transfer
 195	 * completion callback.
 196	 */
 197	int				processed_stat;
 198	u32				sg_len;
 199	u32				residue;
 200	u32				residue_stat;
 201
 202	struct edma_pset		pset[0];
 203};
 204
 205struct edma_cc;
 206
 207struct edma_tc {
 208	struct device_node		*node;
 209	u16				id;
 210};
 211
 212struct edma_chan {
 213	struct virt_dma_chan		vchan;
 214	struct list_head		node;
 215	struct edma_desc		*edesc;
 216	struct edma_cc			*ecc;
 217	struct edma_tc			*tc;
 218	int				ch_num;
 219	bool				alloced;
 220	bool				hw_triggered;
 221	int				slot[EDMA_MAX_SLOTS];
 222	int				missed;
 223	struct dma_slave_config		cfg;
 224};
 225
 226struct edma_cc {
 227	struct device			*dev;
 228	struct edma_soc_info		*info;
 229	void __iomem			*base;
 230	int				id;
 231	bool				legacy_mode;
 232
 233	/* eDMA3 resource information */
 234	unsigned			num_channels;
 235	unsigned			num_qchannels;
 236	unsigned			num_region;
 237	unsigned			num_slots;
 238	unsigned			num_tc;
 239	bool				chmap_exist;
 240	enum dma_event_q		default_queue;
 241
 242	/*
 243	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
 244	 * in use by Linux or if it is allocated to be used by DSP.
 245	 */
 246	unsigned long *slot_inuse;
 247
 248	struct dma_device		dma_slave;
 249	struct dma_device		*dma_memcpy;
 250	struct edma_chan		*slave_chans;
 251	struct edma_tc			*tc_list;
 252	int				dummy_slot;
 253};
 254
 255/* dummy param set used to (re)initialize parameter RAM slots */
 256static const struct edmacc_param dummy_paramset = {
 257	.link_bcntrld = 0xffff,
 258	.ccnt = 1,
 259};
 260
 261#define EDMA_BINDING_LEGACY	0
 262#define EDMA_BINDING_TPCC	1
 263static const struct of_device_id edma_of_ids[] = {
 264	{
 265		.compatible = "ti,edma3",
 266		.data = (void *)EDMA_BINDING_LEGACY,
 267	},
 268	{
 269		.compatible = "ti,edma3-tpcc",
 270		.data = (void *)EDMA_BINDING_TPCC,
 271	},
 272	{}
 273};
 274
 275static const struct of_device_id edma_tptc_of_ids[] = {
 276	{ .compatible = "ti,edma3-tptc", },
 277	{}
 278};
 279
 280static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
 281{
 282	return (unsigned int)__raw_readl(ecc->base + offset);
 283}
 284
 285static inline void edma_write(struct edma_cc *ecc, int offset, int val)
 286{
 287	__raw_writel(val, ecc->base + offset);
 288}
 289
 290static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
 291			       unsigned or)
 292{
 293	unsigned val = edma_read(ecc, offset);
 294
 295	val &= and;
 296	val |= or;
 297	edma_write(ecc, offset, val);
 298}
 299
 300static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
 301{
 302	unsigned val = edma_read(ecc, offset);
 303
 304	val &= and;
 305	edma_write(ecc, offset, val);
 306}
 307
 308static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
 309{
 310	unsigned val = edma_read(ecc, offset);
 311
 312	val |= or;
 313	edma_write(ecc, offset, val);
 314}
 315
 316static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
 317					   int i)
 318{
 319	return edma_read(ecc, offset + (i << 2));
 320}
 321
 322static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
 323				    unsigned val)
 324{
 325	edma_write(ecc, offset + (i << 2), val);
 326}
 327
 328static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
 329				     unsigned and, unsigned or)
 330{
 331	edma_modify(ecc, offset + (i << 2), and, or);
 332}
 333
 334static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
 335				 unsigned or)
 336{
 337	edma_or(ecc, offset + (i << 2), or);
 338}
 339
 340static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
 341				  unsigned or)
 342{
 343	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
 344}
 345
 346static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
 347				     int j, unsigned val)
 348{
 349	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
 350}
 351
 352static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
 353{
 354	return edma_read(ecc, EDMA_SHADOW0 + offset);
 355}
 356
 357static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
 358						   int offset, int i)
 359{
 360	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
 361}
 362
 363static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
 364				      unsigned val)
 365{
 366	edma_write(ecc, EDMA_SHADOW0 + offset, val);
 367}
 368
 369static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
 370					    int i, unsigned val)
 371{
 372	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
 373}
 374
 375static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
 376					   int param_no)
 377{
 378	return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
 379}
 380
 381static inline void edma_param_write(struct edma_cc *ecc, int offset,
 382				    int param_no, unsigned val)
 383{
 384	edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
 385}
 386
 387static inline void edma_param_modify(struct edma_cc *ecc, int offset,
 388				     int param_no, unsigned and, unsigned or)
 389{
 390	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
 391}
 392
 393static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
 394				  unsigned and)
 395{
 396	edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
 397}
 398
 399static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
 400				 unsigned or)
 401{
 402	edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
 403}
 404
 405static inline void set_bits(int offset, int len, unsigned long *p)
 406{
 407	for (; len > 0; len--)
 408		set_bit(offset + (len - 1), p);
 409}
 410
 411static inline void clear_bits(int offset, int len, unsigned long *p)
 412{
 413	for (; len > 0; len--)
 414		clear_bit(offset + (len - 1), p);
 415}
 416
 417static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
 418					  int priority)
 419{
 420	int bit = queue_no * 4;
 421
 422	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 423}
 424
 425static void edma_set_chmap(struct edma_chan *echan, int slot)
 426{
 427	struct edma_cc *ecc = echan->ecc;
 428	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 429
 430	if (ecc->chmap_exist) {
 431		slot = EDMA_CHAN_SLOT(slot);
 432		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
 433	}
 434}
 435
 436static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
 437{
 438	struct edma_cc *ecc = echan->ecc;
 439	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 440
 441	if (enable) {
 442		edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
 443					 BIT(channel & 0x1f));
 444		edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
 445					 BIT(channel & 0x1f));
 446	} else {
 447		edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
 448					 BIT(channel & 0x1f));
 449	}
 450}
 451
 452/*
 453 * paRAM slot management functions
 454 */
 455static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
 456			    const struct edmacc_param *param)
 457{
 458	slot = EDMA_CHAN_SLOT(slot);
 459	if (slot >= ecc->num_slots)
 460		return;
 461	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
 462}
 463
 464static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
 465			   struct edmacc_param *param)
 466{
 467	slot = EDMA_CHAN_SLOT(slot);
 468	if (slot >= ecc->num_slots)
 469		return;
 470	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
 471}
 472
 473/**
 474 * edma_alloc_slot - allocate DMA parameter RAM
 475 * @ecc: pointer to edma_cc struct
 476 * @slot: specific slot to allocate; negative for "any unused slot"
 477 *
 478 * This allocates a parameter RAM slot, initializing it to hold a
 479 * dummy transfer.  Slots allocated using this routine have not been
 480 * mapped to a hardware DMA channel, and will normally be used by
 481 * linking to them from a slot associated with a DMA channel.
 482 *
 483 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 484 * slots may be allocated on behalf of DSP firmware.
 485 *
 486 * Returns the number of the slot, else negative errno.
 487 */
 488static int edma_alloc_slot(struct edma_cc *ecc, int slot)
 489{
 490	if (slot >= 0) {
 491		slot = EDMA_CHAN_SLOT(slot);
 492		/* Requesting entry paRAM slot for a HW triggered channel. */
 493		if (ecc->chmap_exist && slot < ecc->num_channels)
 494			slot = EDMA_SLOT_ANY;
 495	}
 496
 497	if (slot < 0) {
 498		if (ecc->chmap_exist)
 499			slot = 0;
 500		else
 501			slot = ecc->num_channels;
 502		for (;;) {
 503			slot = find_next_zero_bit(ecc->slot_inuse,
 504						  ecc->num_slots,
 505						  slot);
 506			if (slot == ecc->num_slots)
 507				return -ENOMEM;
 508			if (!test_and_set_bit(slot, ecc->slot_inuse))
 509				break;
 510		}
 511	} else if (slot >= ecc->num_slots) {
 512		return -EINVAL;
 513	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
 514		return -EBUSY;
 515	}
 516
 517	edma_write_slot(ecc, slot, &dummy_paramset);
 518
 519	return EDMA_CTLR_CHAN(ecc->id, slot);
 520}
 521
 522static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
 523{
 524	slot = EDMA_CHAN_SLOT(slot);
 525	if (slot >= ecc->num_slots)
 526		return;
 527
 528	edma_write_slot(ecc, slot, &dummy_paramset);
 529	clear_bit(slot, ecc->slot_inuse);
 530}
 531
 532/**
 533 * edma_link - link one parameter RAM slot to another
 534 * @ecc: pointer to edma_cc struct
 535 * @from: parameter RAM slot originating the link
 536 * @to: parameter RAM slot which is the link target
 537 *
 538 * The originating slot should not be part of any active DMA transfer.
 539 */
 540static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
 541{
 542	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
 543		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
 544
 545	from = EDMA_CHAN_SLOT(from);
 546	to = EDMA_CHAN_SLOT(to);
 547	if (from >= ecc->num_slots || to >= ecc->num_slots)
 548		return;
 549
 550	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
 551			  PARM_OFFSET(to));
 552}
 553
 554/**
 555 * edma_get_position - returns the current transfer point
 556 * @ecc: pointer to edma_cc struct
 557 * @slot: parameter RAM slot being examined
 558 * @dst:  true selects the dest position, false the source
 559 *
 560 * Returns the position of the current active slot
 561 */
 562static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
 563				    bool dst)
 564{
 565	u32 offs;
 566
 567	slot = EDMA_CHAN_SLOT(slot);
 568	offs = PARM_OFFSET(slot);
 569	offs += dst ? PARM_DST : PARM_SRC;
 570
 571	return edma_read(ecc, offs);
 572}
 573
 574/*
 575 * Channels with event associations will be triggered by their hardware
 576 * events, and channels without such associations will be triggered by
 577 * software.  (At this writing there is no interface for using software
 578 * triggers except with channels that don't support hardware triggers.)
 579 */
 580static void edma_start(struct edma_chan *echan)
 581{
 582	struct edma_cc *ecc = echan->ecc;
 583	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 584	int j = (channel >> 5);
 585	unsigned int mask = BIT(channel & 0x1f);
 586
 587	if (!echan->hw_triggered) {
 588		/* EDMA channels without event association */
 589		dev_dbg(ecc->dev, "ESR%d %08x\n", j,
 590			edma_shadow0_read_array(ecc, SH_ESR, j));
 591		edma_shadow0_write_array(ecc, SH_ESR, j, mask);
 592	} else {
 593		/* EDMA channel with event association */
 594		dev_dbg(ecc->dev, "ER%d %08x\n", j,
 595			edma_shadow0_read_array(ecc, SH_ER, j));
 596		/* Clear any pending event or error */
 597		edma_write_array(ecc, EDMA_ECR, j, mask);
 598		edma_write_array(ecc, EDMA_EMCR, j, mask);
 599		/* Clear any SER */
 600		edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 601		edma_shadow0_write_array(ecc, SH_EESR, j, mask);
 602		dev_dbg(ecc->dev, "EER%d %08x\n", j,
 603			edma_shadow0_read_array(ecc, SH_EER, j));
 604	}
 605}
 606
 607static void edma_stop(struct edma_chan *echan)
 608{
 609	struct edma_cc *ecc = echan->ecc;
 610	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 611	int j = (channel >> 5);
 612	unsigned int mask = BIT(channel & 0x1f);
 613
 614	edma_shadow0_write_array(ecc, SH_EECR, j, mask);
 615	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
 616	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 617	edma_write_array(ecc, EDMA_EMCR, j, mask);
 618
 619	/* clear possibly pending completion interrupt */
 620	edma_shadow0_write_array(ecc, SH_ICR, j, mask);
 621
 622	dev_dbg(ecc->dev, "EER%d %08x\n", j,
 623		edma_shadow0_read_array(ecc, SH_EER, j));
 624
 625	/* REVISIT:  consider guarding against inappropriate event
 626	 * chaining by overwriting with dummy_paramset.
 627	 */
 628}
 629
 630/*
 631 * Temporarily disable EDMA hardware events on the specified channel,
 632 * preventing them from triggering new transfers
 633 */
 634static void edma_pause(struct edma_chan *echan)
 635{
 636	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 637	unsigned int mask = BIT(channel & 0x1f);
 638
 639	edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
 640}
 641
 642/* Re-enable EDMA hardware events on the specified channel.  */
 643static void edma_resume(struct edma_chan *echan)
 644{
 645	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 646	unsigned int mask = BIT(channel & 0x1f);
 647
 648	edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
 649}
 650
 651static void edma_trigger_channel(struct edma_chan *echan)
 652{
 653	struct edma_cc *ecc = echan->ecc;
 654	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 655	unsigned int mask = BIT(channel & 0x1f);
 656
 657	edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
 658
 659	dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
 660		edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
 661}
 662
 663static void edma_clean_channel(struct edma_chan *echan)
 664{
 665	struct edma_cc *ecc = echan->ecc;
 666	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 667	int j = (channel >> 5);
 668	unsigned int mask = BIT(channel & 0x1f);
 669
 670	dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
 671	edma_shadow0_write_array(ecc, SH_ECR, j, mask);
 672	/* Clear the corresponding EMR bits */
 673	edma_write_array(ecc, EDMA_EMCR, j, mask);
 674	/* Clear any SER */
 675	edma_shadow0_write_array(ecc, SH_SECR, j, mask);
 676	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 677}
 678
 679/* Move channel to a specific event queue */
 680static void edma_assign_channel_eventq(struct edma_chan *echan,
 681				       enum dma_event_q eventq_no)
 682{
 683	struct edma_cc *ecc = echan->ecc;
 684	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 685	int bit = (channel & 0x7) * 4;
 686
 687	/* default to low priority queue */
 688	if (eventq_no == EVENTQ_DEFAULT)
 689		eventq_no = ecc->default_queue;
 690	if (eventq_no >= ecc->num_tc)
 691		return;
 692
 693	eventq_no &= 7;
 694	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
 695			  eventq_no << bit);
 696}
 697
 698static int edma_alloc_channel(struct edma_chan *echan,
 699			      enum dma_event_q eventq_no)
 700{
 701	struct edma_cc *ecc = echan->ecc;
 702	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 703
 704	/* ensure access through shadow region 0 */
 705	edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
 706
 707	/* ensure no events are pending */
 708	edma_stop(echan);
 709
 710	edma_setup_interrupt(echan, true);
 711
 712	edma_assign_channel_eventq(echan, eventq_no);
 713
 714	return 0;
 715}
 716
 717static void edma_free_channel(struct edma_chan *echan)
 718{
 719	/* ensure no events are pending */
 720	edma_stop(echan);
 721	/* REVISIT should probably take out of shadow region 0 */
 722	edma_setup_interrupt(echan, false);
 723}
 724
 725static inline struct edma_cc *to_edma_cc(struct dma_device *d)
 726{
 727	return container_of(d, struct edma_cc, dma_slave);
 728}
 729
 730static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 731{
 732	return container_of(c, struct edma_chan, vchan.chan);
 733}
 734
 735static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
 736{
 737	return container_of(tx, struct edma_desc, vdesc.tx);
 738}
 739
 740static void edma_desc_free(struct virt_dma_desc *vdesc)
 741{
 742	kfree(container_of(vdesc, struct edma_desc, vdesc));
 743}
 744
 745/* Dispatch a queued descriptor to the controller (caller holds lock) */
 746static void edma_execute(struct edma_chan *echan)
 747{
 748	struct edma_cc *ecc = echan->ecc;
 749	struct virt_dma_desc *vdesc;
 750	struct edma_desc *edesc;
 751	struct device *dev = echan->vchan.chan.device->dev;
 752	int i, j, left, nslots;
 753
 754	if (!echan->edesc) {
 755		/* Setup is needed for the first transfer */
 756		vdesc = vchan_next_desc(&echan->vchan);
 757		if (!vdesc)
 758			return;
 759		list_del(&vdesc->node);
 760		echan->edesc = to_edma_desc(&vdesc->tx);
 761	}
 762
 763	edesc = echan->edesc;
 764
 765	/* Find out how many left */
 766	left = edesc->pset_nr - edesc->processed;
 767	nslots = min(MAX_NR_SG, left);
 768	edesc->sg_len = 0;
 769
 770	/* Write descriptor PaRAM set(s) */
 771	for (i = 0; i < nslots; i++) {
 772		j = i + edesc->processed;
 773		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
 774		edesc->sg_len += edesc->pset[j].len;
 775		dev_vdbg(dev,
 776			 "\n pset[%d]:\n"
 777			 "  chnum\t%d\n"
 778			 "  slot\t%d\n"
 779			 "  opt\t%08x\n"
 780			 "  src\t%08x\n"
 781			 "  dst\t%08x\n"
 782			 "  abcnt\t%08x\n"
 783			 "  ccnt\t%08x\n"
 784			 "  bidx\t%08x\n"
 785			 "  cidx\t%08x\n"
 786			 "  lkrld\t%08x\n",
 787			 j, echan->ch_num, echan->slot[i],
 788			 edesc->pset[j].param.opt,
 789			 edesc->pset[j].param.src,
 790			 edesc->pset[j].param.dst,
 791			 edesc->pset[j].param.a_b_cnt,
 792			 edesc->pset[j].param.ccnt,
 793			 edesc->pset[j].param.src_dst_bidx,
 794			 edesc->pset[j].param.src_dst_cidx,
 795			 edesc->pset[j].param.link_bcntrld);
 796		/* Link to the previous slot if not the last set */
 797		if (i != (nslots - 1))
 798			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
 799	}
 800
 801	edesc->processed += nslots;
 802
 803	/*
 804	 * If this is either the last set in a set of SG-list transactions
 805	 * then setup a link to the dummy slot, this results in all future
 806	 * events being absorbed and that's OK because we're done
 807	 */
 808	if (edesc->processed == edesc->pset_nr) {
 809		if (edesc->cyclic)
 810			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
 811		else
 812			edma_link(ecc, echan->slot[nslots - 1],
 813				  echan->ecc->dummy_slot);
 814	}
 815
 816	if (echan->missed) {
 817		/*
 818		 * This happens due to setup times between intermediate
 819		 * transfers in long SG lists which have to be broken up into
 820		 * transfers of MAX_NR_SG
 821		 */
 822		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 823		edma_clean_channel(echan);
 824		edma_stop(echan);
 825		edma_start(echan);
 826		edma_trigger_channel(echan);
 827		echan->missed = 0;
 828	} else if (edesc->processed <= MAX_NR_SG) {
 829		dev_dbg(dev, "first transfer starting on channel %d\n",
 830			echan->ch_num);
 831		edma_start(echan);
 832	} else {
 833		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 834			echan->ch_num, edesc->processed);
 835		edma_resume(echan);
 836	}
 837}
 838
 839static int edma_terminate_all(struct dma_chan *chan)
 840{
 841	struct edma_chan *echan = to_edma_chan(chan);
 842	unsigned long flags;
 843	LIST_HEAD(head);
 844
 845	spin_lock_irqsave(&echan->vchan.lock, flags);
 846
 847	/*
 848	 * Stop DMA activity: we assume the callback will not be called
 849	 * after edma_dma() returns (even if it does, it will see
 850	 * echan->edesc is NULL and exit.)
 851	 */
 852	if (echan->edesc) {
 853		edma_stop(echan);
 854		/* Move the cyclic channel back to default queue */
 855		if (!echan->tc && echan->edesc->cyclic)
 856			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
 857		/*
 858		 * free the running request descriptor
 859		 * since it is not in any of the vdesc lists
 860		 */
 861		edma_desc_free(&echan->edesc->vdesc);
 862		echan->edesc = NULL;
 863	}
 864
 865	vchan_get_all_descriptors(&echan->vchan, &head);
 866	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 867	vchan_dma_desc_free_list(&echan->vchan, &head);
 868
 869	return 0;
 870}
 871
 872static void edma_synchronize(struct dma_chan *chan)
 873{
 874	struct edma_chan *echan = to_edma_chan(chan);
 875
 876	vchan_synchronize(&echan->vchan);
 877}
 878
 879static int edma_slave_config(struct dma_chan *chan,
 880	struct dma_slave_config *cfg)
 881{
 882	struct edma_chan *echan = to_edma_chan(chan);
 883
 884	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 885	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 886		return -EINVAL;
 887
 888	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 889
 890	return 0;
 891}
 892
 893static int edma_dma_pause(struct dma_chan *chan)
 894{
 895	struct edma_chan *echan = to_edma_chan(chan);
 896
 897	if (!echan->edesc)
 898		return -EINVAL;
 899
 900	edma_pause(echan);
 901	return 0;
 902}
 903
 904static int edma_dma_resume(struct dma_chan *chan)
 905{
 906	struct edma_chan *echan = to_edma_chan(chan);
 907
 908	edma_resume(echan);
 909	return 0;
 910}
 911
 912/*
 913 * A PaRAM set configuration abstraction used by other modes
 914 * @chan: Channel who's PaRAM set we're configuring
 915 * @pset: PaRAM set to initialize and setup.
 916 * @src_addr: Source address of the DMA
 917 * @dst_addr: Destination address of the DMA
 918 * @burst: In units of dev_width, how much to send
 919 * @dev_width: How much is the dev_width
 920 * @dma_length: Total length of the DMA transfer
 921 * @direction: Direction of the transfer
 922 */
 923static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 924			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 925			    unsigned int acnt, unsigned int dma_length,
 926			    enum dma_transfer_direction direction)
 927{
 928	struct edma_chan *echan = to_edma_chan(chan);
 929	struct device *dev = chan->device->dev;
 930	struct edmacc_param *param = &epset->param;
 931	int bcnt, ccnt, cidx;
 932	int src_bidx, dst_bidx, src_cidx, dst_cidx;
 933	int absync;
 934
 935	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 936	if (!burst)
 937		burst = 1;
 938	/*
 939	 * If the maxburst is equal to the fifo width, use
 940	 * A-synced transfers. This allows for large contiguous
 941	 * buffer transfers using only one PaRAM set.
 942	 */
 943	if (burst == 1) {
 944		/*
 945		 * For the A-sync case, bcnt and ccnt are the remainder
 946		 * and quotient respectively of the division of:
 947		 * (dma_length / acnt) by (SZ_64K -1). This is so
 948		 * that in case bcnt over flows, we have ccnt to use.
 949		 * Note: In A-sync tranfer only, bcntrld is used, but it
 950		 * only applies for sg_dma_len(sg) >= SZ_64K.
 951		 * In this case, the best way adopted is- bccnt for the
 952		 * first frame will be the remainder below. Then for
 953		 * every successive frame, bcnt will be SZ_64K-1. This
 954		 * is assured as bcntrld = 0xffff in end of function.
 955		 */
 956		absync = false;
 957		ccnt = dma_length / acnt / (SZ_64K - 1);
 958		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 959		/*
 960		 * If bcnt is non-zero, we have a remainder and hence an
 961		 * extra frame to transfer, so increment ccnt.
 962		 */
 963		if (bcnt)
 964			ccnt++;
 965		else
 966			bcnt = SZ_64K - 1;
 967		cidx = acnt;
 968	} else {
 969		/*
 970		 * If maxburst is greater than the fifo address_width,
 971		 * use AB-synced transfers where A count is the fifo
 972		 * address_width and B count is the maxburst. In this
 973		 * case, we are limited to transfers of C count frames
 974		 * of (address_width * maxburst) where C count is limited
 975		 * to SZ_64K-1. This places an upper bound on the length
 976		 * of an SG segment that can be handled.
 977		 */
 978		absync = true;
 979		bcnt = burst;
 980		ccnt = dma_length / (acnt * bcnt);
 981		if (ccnt > (SZ_64K - 1)) {
 982			dev_err(dev, "Exceeded max SG segment size\n");
 983			return -EINVAL;
 984		}
 985		cidx = acnt * bcnt;
 986	}
 987
 988	epset->len = dma_length;
 989
 990	if (direction == DMA_MEM_TO_DEV) {
 991		src_bidx = acnt;
 992		src_cidx = cidx;
 993		dst_bidx = 0;
 994		dst_cidx = 0;
 995		epset->addr = src_addr;
 996	} else if (direction == DMA_DEV_TO_MEM)  {
 997		src_bidx = 0;
 998		src_cidx = 0;
 999		dst_bidx = acnt;
1000		dst_cidx = cidx;
1001		epset->addr = dst_addr;
1002	} else if (direction == DMA_MEM_TO_MEM)  {
1003		src_bidx = acnt;
1004		src_cidx = cidx;
1005		dst_bidx = acnt;
1006		dst_cidx = cidx;
1007	} else {
1008		dev_err(dev, "%s: direction not implemented yet\n", __func__);
1009		return -EINVAL;
1010	}
1011
1012	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1013	/* Configure A or AB synchronized transfers */
1014	if (absync)
1015		param->opt |= SYNCDIM;
1016
1017	param->src = src_addr;
1018	param->dst = dst_addr;
1019
1020	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1021	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1022
1023	param->a_b_cnt = bcnt << 16 | acnt;
1024	param->ccnt = ccnt;
1025	/*
1026	 * Only time when (bcntrld) auto reload is required is for
1027	 * A-sync case, and in this case, a requirement of reload value
1028	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1029	 * and then later will be populated by edma_execute.
1030	 */
1031	param->link_bcntrld = 0xffffffff;
1032	return absync;
1033}
1034
1035static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1036	struct dma_chan *chan, struct scatterlist *sgl,
1037	unsigned int sg_len, enum dma_transfer_direction direction,
1038	unsigned long tx_flags, void *context)
1039{
1040	struct edma_chan *echan = to_edma_chan(chan);
1041	struct device *dev = chan->device->dev;
1042	struct edma_desc *edesc;
1043	dma_addr_t src_addr = 0, dst_addr = 0;
1044	enum dma_slave_buswidth dev_width;
1045	u32 burst;
1046	struct scatterlist *sg;
1047	int i, nslots, ret;
1048
1049	if (unlikely(!echan || !sgl || !sg_len))
1050		return NULL;
1051
1052	if (direction == DMA_DEV_TO_MEM) {
1053		src_addr = echan->cfg.src_addr;
1054		dev_width = echan->cfg.src_addr_width;
1055		burst = echan->cfg.src_maxburst;
1056	} else if (direction == DMA_MEM_TO_DEV) {
1057		dst_addr = echan->cfg.dst_addr;
1058		dev_width = echan->cfg.dst_addr_width;
1059		burst = echan->cfg.dst_maxburst;
1060	} else {
1061		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1062		return NULL;
1063	}
1064
1065	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1066		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1067		return NULL;
1068	}
1069
1070	edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1071			GFP_ATOMIC);
1072	if (!edesc) {
1073		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1074		return NULL;
1075	}
1076
1077	edesc->pset_nr = sg_len;
1078	edesc->residue = 0;
1079	edesc->direction = direction;
1080	edesc->echan = echan;
1081
1082	/* Allocate a PaRAM slot, if needed */
1083	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1084
1085	for (i = 0; i < nslots; i++) {
1086		if (echan->slot[i] < 0) {
1087			echan->slot[i] =
1088				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1089			if (echan->slot[i] < 0) {
1090				kfree(edesc);
1091				dev_err(dev, "%s: Failed to allocate slot\n",
1092					__func__);
1093				return NULL;
1094			}
1095		}
1096	}
1097
1098	/* Configure PaRAM sets for each SG */
1099	for_each_sg(sgl, sg, sg_len, i) {
1100		/* Get address for each SG */
1101		if (direction == DMA_DEV_TO_MEM)
1102			dst_addr = sg_dma_address(sg);
1103		else
1104			src_addr = sg_dma_address(sg);
1105
1106		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1107				       dst_addr, burst, dev_width,
1108				       sg_dma_len(sg), direction);
1109		if (ret < 0) {
1110			kfree(edesc);
1111			return NULL;
1112		}
1113
1114		edesc->absync = ret;
1115		edesc->residue += sg_dma_len(sg);
1116
1117		/* If this is the last in a current SG set of transactions,
1118		   enable interrupts so that next set is processed */
1119		if (!((i+1) % MAX_NR_SG))
1120			edesc->pset[i].param.opt |= TCINTEN;
1121
1122		/* If this is the last set, enable completion interrupt flag */
1123		if (i == sg_len - 1)
1124			edesc->pset[i].param.opt |= TCINTEN;
1125	}
1126	edesc->residue_stat = edesc->residue;
1127
1128	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1129}
1130
1131static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1132	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1133	size_t len, unsigned long tx_flags)
1134{
1135	int ret, nslots;
1136	struct edma_desc *edesc;
1137	struct device *dev = chan->device->dev;
1138	struct edma_chan *echan = to_edma_chan(chan);
1139	unsigned int width, pset_len;
1140
1141	if (unlikely(!echan || !len))
1142		return NULL;
1143
1144	if (len < SZ_64K) {
1145		/*
1146		 * Transfer size less than 64K can be handled with one paRAM
1147		 * slot and with one burst.
1148		 * ACNT = length
1149		 */
1150		width = len;
1151		pset_len = len;
1152		nslots = 1;
1153	} else {
1154		/*
1155		 * Transfer size bigger than 64K will be handled with maximum of
1156		 * two paRAM slots.
1157		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1158		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1159		 * slot2: the remaining amount of data after slot1.
1160		 *	  ACNT = full_length - length1, length2 = ACNT
1161		 *
1162		 * When the full_length is multibple of 32767 one slot can be
1163		 * used to complete the transfer.
1164		 */
1165		width = SZ_32K - 1;
1166		pset_len = rounddown(len, width);
1167		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1168		if (unlikely(pset_len == len))
1169			nslots = 1;
1170		else
1171			nslots = 2;
1172	}
1173
1174	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1175			GFP_ATOMIC);
1176	if (!edesc) {
1177		dev_dbg(dev, "Failed to allocate a descriptor\n");
1178		return NULL;
1179	}
1180
1181	edesc->pset_nr = nslots;
1182	edesc->residue = edesc->residue_stat = len;
1183	edesc->direction = DMA_MEM_TO_MEM;
1184	edesc->echan = echan;
1185
1186	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1187			       width, pset_len, DMA_MEM_TO_MEM);
1188	if (ret < 0) {
1189		kfree(edesc);
1190		return NULL;
1191	}
1192
1193	edesc->absync = ret;
1194
1195	edesc->pset[0].param.opt |= ITCCHEN;
1196	if (nslots == 1) {
1197		/* Enable transfer complete interrupt */
1198		edesc->pset[0].param.opt |= TCINTEN;
1199	} else {
1200		/* Enable transfer complete chaining for the first slot */
1201		edesc->pset[0].param.opt |= TCCHEN;
1202
1203		if (echan->slot[1] < 0) {
1204			echan->slot[1] = edma_alloc_slot(echan->ecc,
1205							 EDMA_SLOT_ANY);
1206			if (echan->slot[1] < 0) {
1207				kfree(edesc);
1208				dev_err(dev, "%s: Failed to allocate slot\n",
1209					__func__);
1210				return NULL;
1211			}
1212		}
1213		dest += pset_len;
1214		src += pset_len;
1215		pset_len = width = len % (SZ_32K - 1);
1216
1217		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1218				       width, pset_len, DMA_MEM_TO_MEM);
1219		if (ret < 0) {
1220			kfree(edesc);
1221			return NULL;
1222		}
1223
1224		edesc->pset[1].param.opt |= ITCCHEN;
1225		edesc->pset[1].param.opt |= TCINTEN;
1226	}
1227
1228	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1229}
1230
1231static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1232	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1233	size_t period_len, enum dma_transfer_direction direction,
1234	unsigned long tx_flags)
1235{
1236	struct edma_chan *echan = to_edma_chan(chan);
1237	struct device *dev = chan->device->dev;
1238	struct edma_desc *edesc;
1239	dma_addr_t src_addr, dst_addr;
1240	enum dma_slave_buswidth dev_width;
1241	bool use_intermediate = false;
1242	u32 burst;
1243	int i, ret, nslots;
1244
1245	if (unlikely(!echan || !buf_len || !period_len))
1246		return NULL;
1247
1248	if (direction == DMA_DEV_TO_MEM) {
1249		src_addr = echan->cfg.src_addr;
1250		dst_addr = buf_addr;
1251		dev_width = echan->cfg.src_addr_width;
1252		burst = echan->cfg.src_maxburst;
1253	} else if (direction == DMA_MEM_TO_DEV) {
1254		src_addr = buf_addr;
1255		dst_addr = echan->cfg.dst_addr;
1256		dev_width = echan->cfg.dst_addr_width;
1257		burst = echan->cfg.dst_maxburst;
1258	} else {
1259		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1260		return NULL;
1261	}
1262
1263	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1264		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1265		return NULL;
1266	}
1267
1268	if (unlikely(buf_len % period_len)) {
1269		dev_err(dev, "Period should be multiple of Buffer length\n");
1270		return NULL;
1271	}
1272
1273	nslots = (buf_len / period_len) + 1;
1274
1275	/*
1276	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1277	 * by cases where the number of periods is more than the maximum
1278	 * number of SGs the EDMA driver can handle at a time. For DMA types
1279	 * such as Slave SGs, such delays are tolerable and synchronized,
1280	 * but the synchronization is difficult to achieve with Cyclic and
1281	 * cannot be guaranteed, so we error out early.
1282	 */
1283	if (nslots > MAX_NR_SG) {
1284		/*
1285		 * If the burst and period sizes are the same, we can put
1286		 * the full buffer into a single period and activate
1287		 * intermediate interrupts. This will produce interrupts
1288		 * after each burst, which is also after each desired period.
1289		 */
1290		if (burst == period_len) {
1291			period_len = buf_len;
1292			nslots = 2;
1293			use_intermediate = true;
1294		} else {
1295			return NULL;
1296		}
1297	}
1298
1299	edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1300			GFP_ATOMIC);
1301	if (!edesc) {
1302		dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__);
1303		return NULL;
1304	}
1305
1306	edesc->cyclic = 1;
1307	edesc->pset_nr = nslots;
1308	edesc->residue = edesc->residue_stat = buf_len;
1309	edesc->direction = direction;
1310	edesc->echan = echan;
1311
1312	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1313		__func__, echan->ch_num, nslots, period_len, buf_len);
1314
1315	for (i = 0; i < nslots; i++) {
1316		/* Allocate a PaRAM slot, if needed */
1317		if (echan->slot[i] < 0) {
1318			echan->slot[i] =
1319				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1320			if (echan->slot[i] < 0) {
1321				kfree(edesc);
1322				dev_err(dev, "%s: Failed to allocate slot\n",
1323					__func__);
1324				return NULL;
1325			}
1326		}
1327
1328		if (i == nslots - 1) {
1329			memcpy(&edesc->pset[i], &edesc->pset[0],
1330			       sizeof(edesc->pset[0]));
1331			break;
1332		}
1333
1334		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1335				       dst_addr, burst, dev_width, period_len,
1336				       direction);
1337		if (ret < 0) {
1338			kfree(edesc);
1339			return NULL;
1340		}
1341
1342		if (direction == DMA_DEV_TO_MEM)
1343			dst_addr += period_len;
1344		else
1345			src_addr += period_len;
1346
1347		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1348		dev_vdbg(dev,
1349			"\n pset[%d]:\n"
1350			"  chnum\t%d\n"
1351			"  slot\t%d\n"
1352			"  opt\t%08x\n"
1353			"  src\t%08x\n"
1354			"  dst\t%08x\n"
1355			"  abcnt\t%08x\n"
1356			"  ccnt\t%08x\n"
1357			"  bidx\t%08x\n"
1358			"  cidx\t%08x\n"
1359			"  lkrld\t%08x\n",
1360			i, echan->ch_num, echan->slot[i],
1361			edesc->pset[i].param.opt,
1362			edesc->pset[i].param.src,
1363			edesc->pset[i].param.dst,
1364			edesc->pset[i].param.a_b_cnt,
1365			edesc->pset[i].param.ccnt,
1366			edesc->pset[i].param.src_dst_bidx,
1367			edesc->pset[i].param.src_dst_cidx,
1368			edesc->pset[i].param.link_bcntrld);
1369
1370		edesc->absync = ret;
1371
1372		/*
1373		 * Enable period interrupt only if it is requested
1374		 */
1375		if (tx_flags & DMA_PREP_INTERRUPT) {
1376			edesc->pset[i].param.opt |= TCINTEN;
1377
1378			/* Also enable intermediate interrupts if necessary */
1379			if (use_intermediate)
1380				edesc->pset[i].param.opt |= ITCINTEN;
1381		}
1382	}
1383
1384	/* Place the cyclic channel to highest priority queue */
1385	if (!echan->tc)
1386		edma_assign_channel_eventq(echan, EVENTQ_0);
1387
1388	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1389}
1390
1391static void edma_completion_handler(struct edma_chan *echan)
1392{
1393	struct device *dev = echan->vchan.chan.device->dev;
1394	struct edma_desc *edesc;
1395
1396	spin_lock(&echan->vchan.lock);
1397	edesc = echan->edesc;
1398	if (edesc) {
1399		if (edesc->cyclic) {
1400			vchan_cyclic_callback(&edesc->vdesc);
1401			spin_unlock(&echan->vchan.lock);
1402			return;
1403		} else if (edesc->processed == edesc->pset_nr) {
1404			edesc->residue = 0;
1405			edma_stop(echan);
1406			vchan_cookie_complete(&edesc->vdesc);
1407			echan->edesc = NULL;
1408
1409			dev_dbg(dev, "Transfer completed on channel %d\n",
1410				echan->ch_num);
1411		} else {
1412			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1413				echan->ch_num);
1414
1415			edma_pause(echan);
1416
1417			/* Update statistics for tx_status */
1418			edesc->residue -= edesc->sg_len;
1419			edesc->residue_stat = edesc->residue;
1420			edesc->processed_stat = edesc->processed;
1421		}
1422		edma_execute(echan);
1423	}
1424
1425	spin_unlock(&echan->vchan.lock);
1426}
1427
1428/* eDMA interrupt handler */
1429static irqreturn_t dma_irq_handler(int irq, void *data)
1430{
1431	struct edma_cc *ecc = data;
1432	int ctlr;
1433	u32 sh_ier;
1434	u32 sh_ipr;
1435	u32 bank;
1436
1437	ctlr = ecc->id;
1438	if (ctlr < 0)
1439		return IRQ_NONE;
1440
1441	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1442
1443	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1444	if (!sh_ipr) {
1445		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1446		if (!sh_ipr)
1447			return IRQ_NONE;
1448		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1449		bank = 1;
1450	} else {
1451		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1452		bank = 0;
1453	}
1454
1455	do {
1456		u32 slot;
1457		u32 channel;
1458
1459		slot = __ffs(sh_ipr);
1460		sh_ipr &= ~(BIT(slot));
1461
1462		if (sh_ier & BIT(slot)) {
1463			channel = (bank << 5) | slot;
1464			/* Clear the corresponding IPR bits */
1465			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1466			edma_completion_handler(&ecc->slave_chans[channel]);
1467		}
1468	} while (sh_ipr);
1469
1470	edma_shadow0_write(ecc, SH_IEVAL, 1);
1471	return IRQ_HANDLED;
1472}
1473
1474static void edma_error_handler(struct edma_chan *echan)
1475{
1476	struct edma_cc *ecc = echan->ecc;
1477	struct device *dev = echan->vchan.chan.device->dev;
1478	struct edmacc_param p;
1479
1480	if (!echan->edesc)
1481		return;
1482
1483	spin_lock(&echan->vchan.lock);
1484
1485	edma_read_slot(ecc, echan->slot[0], &p);
1486	/*
1487	 * Issue later based on missed flag which will be sure
1488	 * to happen as:
1489	 * (1) we finished transmitting an intermediate slot and
1490	 *     edma_execute is coming up.
1491	 * (2) or we finished current transfer and issue will
1492	 *     call edma_execute.
1493	 *
1494	 * Important note: issuing can be dangerous here and
1495	 * lead to some nasty recursion when we are in a NULL
1496	 * slot. So we avoid doing so and set the missed flag.
1497	 */
1498	if (p.a_b_cnt == 0 && p.ccnt == 0) {
1499		dev_dbg(dev, "Error on null slot, setting miss\n");
1500		echan->missed = 1;
1501	} else {
1502		/*
1503		 * The slot is already programmed but the event got
1504		 * missed, so its safe to issue it here.
1505		 */
1506		dev_dbg(dev, "Missed event, TRIGGERING\n");
1507		edma_clean_channel(echan);
1508		edma_stop(echan);
1509		edma_start(echan);
1510		edma_trigger_channel(echan);
1511	}
1512	spin_unlock(&echan->vchan.lock);
1513}
1514
1515static inline bool edma_error_pending(struct edma_cc *ecc)
1516{
1517	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1518	    edma_read_array(ecc, EDMA_EMR, 1) ||
1519	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1520		return true;
1521
1522	return false;
1523}
1524
1525/* eDMA error interrupt handler */
1526static irqreturn_t dma_ccerr_handler(int irq, void *data)
1527{
1528	struct edma_cc *ecc = data;
1529	int i, j;
1530	int ctlr;
1531	unsigned int cnt = 0;
1532	unsigned int val;
1533
1534	ctlr = ecc->id;
1535	if (ctlr < 0)
1536		return IRQ_NONE;
1537
1538	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1539
1540	if (!edma_error_pending(ecc))
1541		return IRQ_NONE;
1542
1543	while (1) {
1544		/* Event missed register(s) */
1545		for (j = 0; j < 2; j++) {
1546			unsigned long emr;
1547
1548			val = edma_read_array(ecc, EDMA_EMR, j);
1549			if (!val)
1550				continue;
1551
1552			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1553			emr = val;
1554			for (i = find_next_bit(&emr, 32, 0); i < 32;
1555			     i = find_next_bit(&emr, 32, i + 1)) {
1556				int k = (j << 5) + i;
1557
1558				/* Clear the corresponding EMR bits */
1559				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1560				/* Clear any SER */
1561				edma_shadow0_write_array(ecc, SH_SECR, j,
1562							 BIT(i));
1563				edma_error_handler(&ecc->slave_chans[k]);
1564			}
1565		}
1566
1567		val = edma_read(ecc, EDMA_QEMR);
1568		if (val) {
1569			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1570			/* Not reported, just clear the interrupt reason. */
1571			edma_write(ecc, EDMA_QEMCR, val);
1572			edma_shadow0_write(ecc, SH_QSECR, val);
1573		}
1574
1575		val = edma_read(ecc, EDMA_CCERR);
1576		if (val) {
1577			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1578			/* Not reported, just clear the interrupt reason. */
1579			edma_write(ecc, EDMA_CCERRCLR, val);
1580		}
1581
1582		if (!edma_error_pending(ecc))
1583			break;
1584		cnt++;
1585		if (cnt > 10)
1586			break;
1587	}
1588	edma_write(ecc, EDMA_EEVAL, 1);
1589	return IRQ_HANDLED;
1590}
1591
1592/* Alloc channel resources */
1593static int edma_alloc_chan_resources(struct dma_chan *chan)
1594{
1595	struct edma_chan *echan = to_edma_chan(chan);
1596	struct edma_cc *ecc = echan->ecc;
1597	struct device *dev = ecc->dev;
1598	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1599	int ret;
1600
1601	if (echan->tc) {
1602		eventq_no = echan->tc->id;
1603	} else if (ecc->tc_list) {
1604		/* memcpy channel */
1605		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1606		eventq_no = echan->tc->id;
1607	}
1608
1609	ret = edma_alloc_channel(echan, eventq_no);
1610	if (ret)
1611		return ret;
1612
1613	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1614	if (echan->slot[0] < 0) {
1615		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1616			EDMA_CHAN_SLOT(echan->ch_num));
1617		goto err_slot;
1618	}
1619
1620	/* Set up channel -> slot mapping for the entry slot */
1621	edma_set_chmap(echan, echan->slot[0]);
1622	echan->alloced = true;
1623
1624	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1625		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1626		echan->hw_triggered ? "HW" : "SW");
1627
1628	return 0;
1629
1630err_slot:
1631	edma_free_channel(echan);
1632	return ret;
1633}
1634
1635/* Free channel resources */
1636static void edma_free_chan_resources(struct dma_chan *chan)
1637{
1638	struct edma_chan *echan = to_edma_chan(chan);
1639	struct device *dev = echan->ecc->dev;
1640	int i;
1641
1642	/* Terminate transfers */
1643	edma_stop(echan);
1644
1645	vchan_free_chan_resources(&echan->vchan);
1646
1647	/* Free EDMA PaRAM slots */
1648	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1649		if (echan->slot[i] >= 0) {
1650			edma_free_slot(echan->ecc, echan->slot[i]);
1651			echan->slot[i] = -1;
1652		}
1653	}
1654
1655	/* Set entry slot to the dummy slot */
1656	edma_set_chmap(echan, echan->ecc->dummy_slot);
1657
1658	/* Free EDMA channel */
1659	if (echan->alloced) {
1660		edma_free_channel(echan);
1661		echan->alloced = false;
1662	}
1663
1664	echan->tc = NULL;
1665	echan->hw_triggered = false;
1666
1667	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1668		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1669}
1670
1671/* Send pending descriptor to hardware */
1672static void edma_issue_pending(struct dma_chan *chan)
1673{
1674	struct edma_chan *echan = to_edma_chan(chan);
1675	unsigned long flags;
1676
1677	spin_lock_irqsave(&echan->vchan.lock, flags);
1678	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1679		edma_execute(echan);
1680	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1681}
1682
1683/*
1684 * This limit exists to avoid a possible infinite loop when waiting for proof
1685 * that a particular transfer is completed. This limit can be hit if there
1686 * are large bursts to/from slow devices or the CPU is never able to catch
1687 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1688 * RX-FIFO, as many as 55 loops have been seen.
1689 */
1690#define EDMA_MAX_TR_WAIT_LOOPS 1000
1691
1692static u32 edma_residue(struct edma_desc *edesc)
1693{
1694	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1695	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1696	struct edma_chan *echan = edesc->echan;
1697	struct edma_pset *pset = edesc->pset;
1698	dma_addr_t done, pos;
1699	int i;
1700
1701	/*
1702	 * We always read the dst/src position from the first RamPar
1703	 * pset. That's the one which is active now.
1704	 */
1705	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1706
1707	/*
1708	 * "pos" may represent a transfer request that is still being
1709	 * processed by the EDMACC or EDMATC. We will busy wait until
1710	 * any one of the situations occurs:
1711	 *   1. the DMA hardware is idle
1712	 *   2. a new transfer request is setup
1713	 *   3. we hit the loop limit
1714	 */
1715	while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1716		/* check if a new transfer request is setup */
1717		if (edma_get_position(echan->ecc,
1718				      echan->slot[0], dst) != pos) {
1719			break;
1720		}
1721
1722		if (!--loop_count) {
1723			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1724				"%s: timeout waiting for PaRAM update\n",
1725				__func__);
1726			break;
1727		}
1728
1729		cpu_relax();
1730	}
1731
1732	/*
1733	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1734	 *
1735	 * We never update edesc->residue in the cyclic case, so we
1736	 * can tell the remaining room to the end of the circular
1737	 * buffer.
1738	 */
1739	if (edesc->cyclic) {
1740		done = pos - pset->addr;
1741		edesc->residue_stat = edesc->residue - done;
1742		return edesc->residue_stat;
1743	}
1744
1745	/*
1746	 * For SG operation we catch up with the last processed
1747	 * status.
1748	 */
1749	pset += edesc->processed_stat;
1750
1751	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1752		/*
1753		 * If we are inside this pset address range, we know
1754		 * this is the active one. Get the current delta and
1755		 * stop walking the psets.
1756		 */
1757		if (pos >= pset->addr && pos < pset->addr + pset->len)
1758			return edesc->residue_stat - (pos - pset->addr);
1759
1760		/* Otherwise mark it done and update residue_stat. */
1761		edesc->processed_stat++;
1762		edesc->residue_stat -= pset->len;
1763	}
1764	return edesc->residue_stat;
1765}
1766
1767/* Check request completion status */
1768static enum dma_status edma_tx_status(struct dma_chan *chan,
1769				      dma_cookie_t cookie,
1770				      struct dma_tx_state *txstate)
1771{
1772	struct edma_chan *echan = to_edma_chan(chan);
1773	struct virt_dma_desc *vdesc;
1774	enum dma_status ret;
1775	unsigned long flags;
1776
1777	ret = dma_cookie_status(chan, cookie, txstate);
1778	if (ret == DMA_COMPLETE || !txstate)
1779		return ret;
1780
1781	spin_lock_irqsave(&echan->vchan.lock, flags);
1782	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1783		txstate->residue = edma_residue(echan->edesc);
1784	else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1785		txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1786	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1787
1788	return ret;
1789}
1790
1791static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1792{
1793	if (!memcpy_channels)
1794		return false;
1795	while (*memcpy_channels != -1) {
1796		if (*memcpy_channels == ch_num)
1797			return true;
1798		memcpy_channels++;
1799	}
1800	return false;
1801}
1802
1803#define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1804				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1805				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1806				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1807
1808static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1809{
1810	struct dma_device *s_ddev = &ecc->dma_slave;
1811	struct dma_device *m_ddev = NULL;
1812	s32 *memcpy_channels = ecc->info->memcpy_channels;
1813	int i, j;
1814
1815	dma_cap_zero(s_ddev->cap_mask);
1816	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1817	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1818	if (ecc->legacy_mode && !memcpy_channels) {
1819		dev_warn(ecc->dev,
1820			 "Legacy memcpy is enabled, things might not work\n");
1821
1822		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1823		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1824		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1825	}
1826
1827	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1828	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1829	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1830	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1831	s_ddev->device_issue_pending = edma_issue_pending;
1832	s_ddev->device_tx_status = edma_tx_status;
1833	s_ddev->device_config = edma_slave_config;
1834	s_ddev->device_pause = edma_dma_pause;
1835	s_ddev->device_resume = edma_dma_resume;
1836	s_ddev->device_terminate_all = edma_terminate_all;
1837	s_ddev->device_synchronize = edma_synchronize;
1838
1839	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1840	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1841	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1842	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1843
1844	s_ddev->dev = ecc->dev;
1845	INIT_LIST_HEAD(&s_ddev->channels);
1846
1847	if (memcpy_channels) {
1848		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1849		ecc->dma_memcpy = m_ddev;
1850
1851		dma_cap_zero(m_ddev->cap_mask);
1852		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1853
1854		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1855		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1856		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1857		m_ddev->device_issue_pending = edma_issue_pending;
1858		m_ddev->device_tx_status = edma_tx_status;
1859		m_ddev->device_config = edma_slave_config;
1860		m_ddev->device_pause = edma_dma_pause;
1861		m_ddev->device_resume = edma_dma_resume;
1862		m_ddev->device_terminate_all = edma_terminate_all;
1863		m_ddev->device_synchronize = edma_synchronize;
1864
1865		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1866		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1867		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1868		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1869
1870		m_ddev->dev = ecc->dev;
1871		INIT_LIST_HEAD(&m_ddev->channels);
1872	} else if (!ecc->legacy_mode) {
1873		dev_info(ecc->dev, "memcpy is disabled\n");
1874	}
1875
1876	for (i = 0; i < ecc->num_channels; i++) {
1877		struct edma_chan *echan = &ecc->slave_chans[i];
1878		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1879		echan->ecc = ecc;
1880		echan->vchan.desc_free = edma_desc_free;
1881
1882		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1883			vchan_init(&echan->vchan, m_ddev);
1884		else
1885			vchan_init(&echan->vchan, s_ddev);
1886
1887		INIT_LIST_HEAD(&echan->node);
1888		for (j = 0; j < EDMA_MAX_SLOTS; j++)
1889			echan->slot[j] = -1;
1890	}
1891}
1892
1893static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1894			      struct edma_cc *ecc)
1895{
1896	int i;
1897	u32 value, cccfg;
1898	s8 (*queue_priority_map)[2];
1899
1900	/* Decode the eDMA3 configuration from CCCFG register */
1901	cccfg = edma_read(ecc, EDMA_CCCFG);
1902
1903	value = GET_NUM_REGN(cccfg);
1904	ecc->num_region = BIT(value);
1905
1906	value = GET_NUM_DMACH(cccfg);
1907	ecc->num_channels = BIT(value + 1);
1908
1909	value = GET_NUM_QDMACH(cccfg);
1910	ecc->num_qchannels = value * 2;
1911
1912	value = GET_NUM_PAENTRY(cccfg);
1913	ecc->num_slots = BIT(value + 4);
1914
1915	value = GET_NUM_EVQUE(cccfg);
1916	ecc->num_tc = value + 1;
1917
1918	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1919
1920	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1921	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1922	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1923	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1924	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1925	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1926	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1927
1928	/* Nothing need to be done if queue priority is provided */
1929	if (pdata->queue_priority_mapping)
1930		return 0;
1931
1932	/*
1933	 * Configure TC/queue priority as follows:
1934	 * Q0 - priority 0
1935	 * Q1 - priority 1
1936	 * Q2 - priority 2
1937	 * ...
1938	 * The meaning of priority numbers: 0 highest priority, 7 lowest
1939	 * priority. So Q0 is the highest priority queue and the last queue has
1940	 * the lowest priority.
1941	 */
1942	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1943					  GFP_KERNEL);
1944	if (!queue_priority_map)
1945		return -ENOMEM;
1946
1947	for (i = 0; i < ecc->num_tc; i++) {
1948		queue_priority_map[i][0] = i;
1949		queue_priority_map[i][1] = i;
1950	}
1951	queue_priority_map[i][0] = -1;
1952	queue_priority_map[i][1] = -1;
1953
1954	pdata->queue_priority_mapping = queue_priority_map;
1955	/* Default queue has the lowest priority */
1956	pdata->default_queue = i - 1;
1957
1958	return 0;
1959}
1960
1961#if IS_ENABLED(CONFIG_OF)
1962static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1963			       size_t sz)
1964{
1965	const char pname[] = "ti,edma-xbar-event-map";
1966	struct resource res;
1967	void __iomem *xbar;
1968	s16 (*xbar_chans)[2];
1969	size_t nelm = sz / sizeof(s16);
1970	u32 shift, offset, mux;
1971	int ret, i;
1972
1973	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1974	if (!xbar_chans)
1975		return -ENOMEM;
1976
1977	ret = of_address_to_resource(dev->of_node, 1, &res);
1978	if (ret)
1979		return -ENOMEM;
1980
1981	xbar = devm_ioremap(dev, res.start, resource_size(&res));
1982	if (!xbar)
1983		return -ENOMEM;
1984
1985	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1986					 nelm);
1987	if (ret)
1988		return -EIO;
1989
1990	/* Invalidate last entry for the other user of this mess */
1991	nelm >>= 1;
1992	xbar_chans[nelm][0] = -1;
1993	xbar_chans[nelm][1] = -1;
1994
1995	for (i = 0; i < nelm; i++) {
1996		shift = (xbar_chans[i][1] & 0x03) << 3;
1997		offset = xbar_chans[i][1] & 0xfffffffc;
1998		mux = readl(xbar + offset);
1999		mux &= ~(0xff << shift);
2000		mux |= xbar_chans[i][0] << shift;
2001		writel(mux, (xbar + offset));
2002	}
2003
2004	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2005	return 0;
2006}
2007
2008static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2009						     bool legacy_mode)
2010{
2011	struct edma_soc_info *info;
2012	struct property *prop;
2013	size_t sz;
2014	int ret;
2015
2016	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2017	if (!info)
2018		return ERR_PTR(-ENOMEM);
2019
2020	if (legacy_mode) {
2021		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2022					&sz);
2023		if (prop) {
2024			ret = edma_xbar_event_map(dev, info, sz);
2025			if (ret)
2026				return ERR_PTR(ret);
2027		}
2028		return info;
2029	}
2030
2031	/* Get the list of channels allocated to be used for memcpy */
2032	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2033	if (prop) {
2034		const char pname[] = "ti,edma-memcpy-channels";
2035		size_t nelm = sz / sizeof(s32);
2036		s32 *memcpy_ch;
2037
2038		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2039					 GFP_KERNEL);
2040		if (!memcpy_ch)
2041			return ERR_PTR(-ENOMEM);
2042
2043		ret = of_property_read_u32_array(dev->of_node, pname,
2044						 (u32 *)memcpy_ch, nelm);
2045		if (ret)
2046			return ERR_PTR(ret);
2047
2048		memcpy_ch[nelm] = -1;
2049		info->memcpy_channels = memcpy_ch;
2050	}
2051
2052	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2053				&sz);
2054	if (prop) {
2055		const char pname[] = "ti,edma-reserved-slot-ranges";
2056		u32 (*tmp)[2];
2057		s16 (*rsv_slots)[2];
2058		size_t nelm = sz / sizeof(*tmp);
2059		struct edma_rsv_info *rsv_info;
2060		int i;
2061
2062		if (!nelm)
2063			return info;
2064
2065		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2066		if (!tmp)
2067			return ERR_PTR(-ENOMEM);
2068
2069		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2070		if (!rsv_info) {
2071			kfree(tmp);
2072			return ERR_PTR(-ENOMEM);
2073		}
2074
2075		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2076					 GFP_KERNEL);
2077		if (!rsv_slots) {
2078			kfree(tmp);
2079			return ERR_PTR(-ENOMEM);
2080		}
2081
2082		ret = of_property_read_u32_array(dev->of_node, pname,
2083						 (u32 *)tmp, nelm * 2);
2084		if (ret) {
2085			kfree(tmp);
2086			return ERR_PTR(ret);
2087		}
2088
2089		for (i = 0; i < nelm; i++) {
2090			rsv_slots[i][0] = tmp[i][0];
2091			rsv_slots[i][1] = tmp[i][1];
2092		}
2093		rsv_slots[nelm][0] = -1;
2094		rsv_slots[nelm][1] = -1;
2095
2096		info->rsv = rsv_info;
2097		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2098
2099		kfree(tmp);
2100	}
2101
2102	return info;
2103}
2104
2105static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2106				      struct of_dma *ofdma)
2107{
2108	struct edma_cc *ecc = ofdma->of_dma_data;
2109	struct dma_chan *chan = NULL;
2110	struct edma_chan *echan;
2111	int i;
2112
2113	if (!ecc || dma_spec->args_count < 1)
2114		return NULL;
2115
2116	for (i = 0; i < ecc->num_channels; i++) {
2117		echan = &ecc->slave_chans[i];
2118		if (echan->ch_num == dma_spec->args[0]) {
2119			chan = &echan->vchan.chan;
2120			break;
2121		}
2122	}
2123
2124	if (!chan)
2125		return NULL;
2126
2127	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2128		goto out;
2129
2130	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2131	    dma_spec->args[1] < echan->ecc->num_tc) {
2132		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2133		goto out;
2134	}
2135
2136	return NULL;
2137out:
2138	/* The channel is going to be used as HW synchronized */
2139	echan->hw_triggered = true;
2140	return dma_get_slave_channel(chan);
2141}
2142#else
2143static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2144						     bool legacy_mode)
2145{
2146	return ERR_PTR(-EINVAL);
2147}
2148
2149static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2150				      struct of_dma *ofdma)
2151{
2152	return NULL;
2153}
2154#endif
2155
2156static int edma_probe(struct platform_device *pdev)
2157{
2158	struct edma_soc_info	*info = pdev->dev.platform_data;
2159	s8			(*queue_priority_mapping)[2];
2160	int			i, off, ln;
2161	const s16		(*rsv_slots)[2];
2162	const s16		(*xbar_chans)[2];
2163	int			irq;
2164	char			*irq_name;
2165	struct resource		*mem;
2166	struct device_node	*node = pdev->dev.of_node;
2167	struct device		*dev = &pdev->dev;
2168	struct edma_cc		*ecc;
2169	bool			legacy_mode = true;
2170	int ret;
2171
2172	if (node) {
2173		const struct of_device_id *match;
2174
2175		match = of_match_node(edma_of_ids, node);
2176		if (match && (u32)match->data == EDMA_BINDING_TPCC)
2177			legacy_mode = false;
2178
2179		info = edma_setup_info_from_dt(dev, legacy_mode);
2180		if (IS_ERR(info)) {
2181			dev_err(dev, "failed to get DT data\n");
2182			return PTR_ERR(info);
2183		}
2184	}
2185
2186	if (!info)
2187		return -ENODEV;
2188
2189	pm_runtime_enable(dev);
2190	ret = pm_runtime_get_sync(dev);
2191	if (ret < 0) {
2192		dev_err(dev, "pm_runtime_get_sync() failed\n");
2193		return ret;
2194	}
2195
2196	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2197	if (ret)
2198		return ret;
2199
2200	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2201	if (!ecc) {
2202		dev_err(dev, "Can't allocate controller\n");
2203		return -ENOMEM;
2204	}
2205
2206	ecc->dev = dev;
2207	ecc->id = pdev->id;
2208	ecc->legacy_mode = legacy_mode;
2209	/* When booting with DT the pdev->id is -1 */
2210	if (ecc->id < 0)
2211		ecc->id = 0;
2212
2213	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2214	if (!mem) {
2215		dev_dbg(dev, "mem resource not found, using index 0\n");
2216		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2217		if (!mem) {
2218			dev_err(dev, "no mem resource?\n");
2219			return -ENODEV;
2220		}
2221	}
2222	ecc->base = devm_ioremap_resource(dev, mem);
2223	if (IS_ERR(ecc->base))
2224		return PTR_ERR(ecc->base);
2225
2226	platform_set_drvdata(pdev, ecc);
2227
2228	/* Get eDMA3 configuration from IP */
2229	ret = edma_setup_from_hw(dev, info, ecc);
2230	if (ret)
2231		return ret;
2232
2233	/* Allocate memory based on the information we got from the IP */
2234	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2235					sizeof(*ecc->slave_chans), GFP_KERNEL);
2236	if (!ecc->slave_chans)
2237		return -ENOMEM;
2238
2239	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2240				       sizeof(unsigned long), GFP_KERNEL);
2241	if (!ecc->slot_inuse)
2242		return -ENOMEM;
2243
2244	ecc->default_queue = info->default_queue;
2245
2246	for (i = 0; i < ecc->num_slots; i++)
2247		edma_write_slot(ecc, i, &dummy_paramset);
2248
2249	if (info->rsv) {
2250		/* Set the reserved slots in inuse list */
2251		rsv_slots = info->rsv->rsv_slots;
2252		if (rsv_slots) {
2253			for (i = 0; rsv_slots[i][0] != -1; i++) {
2254				off = rsv_slots[i][0];
2255				ln = rsv_slots[i][1];
2256				set_bits(off, ln, ecc->slot_inuse);
2257			}
2258		}
2259	}
2260
2261	/* Clear the xbar mapped channels in unused list */
2262	xbar_chans = info->xbar_chans;
2263	if (xbar_chans) {
2264		for (i = 0; xbar_chans[i][1] != -1; i++) {
2265			off = xbar_chans[i][1];
2266		}
2267	}
2268
2269	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2270	if (irq < 0 && node)
2271		irq = irq_of_parse_and_map(node, 0);
2272
2273	if (irq >= 0) {
2274		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2275					  dev_name(dev));
2276		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2277				       ecc);
2278		if (ret) {
2279			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2280			return ret;
2281		}
2282	}
2283
2284	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2285	if (irq < 0 && node)
2286		irq = irq_of_parse_and_map(node, 2);
2287
2288	if (irq >= 0) {
2289		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2290					  dev_name(dev));
2291		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2292				       ecc);
2293		if (ret) {
2294			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2295			return ret;
2296		}
2297	}
2298
2299	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2300	if (ecc->dummy_slot < 0) {
2301		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2302		return ecc->dummy_slot;
2303	}
2304
2305	queue_priority_mapping = info->queue_priority_mapping;
2306
2307	if (!ecc->legacy_mode) {
2308		int lowest_priority = 0;
2309		struct of_phandle_args tc_args;
2310
2311		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2312					    sizeof(*ecc->tc_list), GFP_KERNEL);
2313		if (!ecc->tc_list)
2314			return -ENOMEM;
2315
2316		for (i = 0;; i++) {
2317			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2318							       1, i, &tc_args);
2319			if (ret || i == ecc->num_tc)
2320				break;
2321
2322			ecc->tc_list[i].node = tc_args.np;
2323			ecc->tc_list[i].id = i;
2324			queue_priority_mapping[i][1] = tc_args.args[0];
2325			if (queue_priority_mapping[i][1] > lowest_priority) {
2326				lowest_priority = queue_priority_mapping[i][1];
2327				info->default_queue = i;
2328			}
2329		}
2330	}
2331
2332	/* Event queue priority mapping */
2333	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2334		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2335					      queue_priority_mapping[i][1]);
2336
2337	for (i = 0; i < ecc->num_region; i++) {
2338		edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2339		edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2340		edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2341	}
2342	ecc->info = info;
2343
2344	/* Init the dma device and channels */
2345	edma_dma_init(ecc, legacy_mode);
2346
2347	for (i = 0; i < ecc->num_channels; i++) {
2348		/* Assign all channels to the default queue */
2349		edma_assign_channel_eventq(&ecc->slave_chans[i],
2350					   info->default_queue);
2351		/* Set entry slot to the dummy slot */
2352		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2353	}
2354
2355	ecc->dma_slave.filter.map = info->slave_map;
2356	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2357	ecc->dma_slave.filter.fn = edma_filter_fn;
2358
2359	ret = dma_async_device_register(&ecc->dma_slave);
2360	if (ret) {
2361		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2362		goto err_reg1;
2363	}
2364
2365	if (ecc->dma_memcpy) {
2366		ret = dma_async_device_register(ecc->dma_memcpy);
2367		if (ret) {
2368			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2369				ret);
2370			dma_async_device_unregister(&ecc->dma_slave);
2371			goto err_reg1;
2372		}
2373	}
2374
2375	if (node)
2376		of_dma_controller_register(node, of_edma_xlate, ecc);
2377
2378	dev_info(dev, "TI EDMA DMA engine driver\n");
2379
2380	return 0;
2381
2382err_reg1:
2383	edma_free_slot(ecc, ecc->dummy_slot);
2384	return ret;
2385}
2386
2387static int edma_remove(struct platform_device *pdev)
2388{
2389	struct device *dev = &pdev->dev;
2390	struct edma_cc *ecc = dev_get_drvdata(dev);
2391
2392	if (dev->of_node)
2393		of_dma_controller_free(dev->of_node);
2394	dma_async_device_unregister(&ecc->dma_slave);
2395	if (ecc->dma_memcpy)
2396		dma_async_device_unregister(ecc->dma_memcpy);
2397	edma_free_slot(ecc, ecc->dummy_slot);
2398
2399	return 0;
2400}
2401
2402#ifdef CONFIG_PM_SLEEP
2403static int edma_pm_suspend(struct device *dev)
2404{
2405	struct edma_cc *ecc = dev_get_drvdata(dev);
2406	struct edma_chan *echan = ecc->slave_chans;
2407	int i;
2408
2409	for (i = 0; i < ecc->num_channels; i++) {
2410		if (echan[i].alloced)
2411			edma_setup_interrupt(&echan[i], false);
2412	}
2413
2414	return 0;
2415}
2416
2417static int edma_pm_resume(struct device *dev)
2418{
2419	struct edma_cc *ecc = dev_get_drvdata(dev);
2420	struct edma_chan *echan = ecc->slave_chans;
2421	int i;
2422	s8 (*queue_priority_mapping)[2];
2423
2424	queue_priority_mapping = ecc->info->queue_priority_mapping;
2425
2426	/* Event queue priority mapping */
2427	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2428		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2429					      queue_priority_mapping[i][1]);
2430
2431	for (i = 0; i < ecc->num_channels; i++) {
2432		if (echan[i].alloced) {
2433			/* ensure access through shadow region 0 */
2434			edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2435				       BIT(i & 0x1f));
2436
2437			edma_setup_interrupt(&echan[i], true);
2438
2439			/* Set up channel -> slot mapping for the entry slot */
2440			edma_set_chmap(&echan[i], echan[i].slot[0]);
2441		}
2442	}
2443
2444	return 0;
2445}
2446#endif
2447
2448static const struct dev_pm_ops edma_pm_ops = {
2449	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2450};
2451
2452static struct platform_driver edma_driver = {
2453	.probe		= edma_probe,
2454	.remove		= edma_remove,
2455	.driver = {
2456		.name	= "edma",
2457		.pm	= &edma_pm_ops,
2458		.of_match_table = edma_of_ids,
2459	},
2460};
2461
2462static int edma_tptc_probe(struct platform_device *pdev)
2463{
2464	pm_runtime_enable(&pdev->dev);
2465	return pm_runtime_get_sync(&pdev->dev);
2466}
2467
2468static struct platform_driver edma_tptc_driver = {
2469	.probe		= edma_tptc_probe,
2470	.driver = {
2471		.name	= "edma3-tptc",
2472		.of_match_table = edma_tptc_of_ids,
2473	},
2474};
2475
2476bool edma_filter_fn(struct dma_chan *chan, void *param)
2477{
2478	bool match = false;
2479
2480	if (chan->device->dev->driver == &edma_driver.driver) {
2481		struct edma_chan *echan = to_edma_chan(chan);
2482		unsigned ch_req = *(unsigned *)param;
2483		if (ch_req == echan->ch_num) {
2484			/* The channel is going to be used as HW synchronized */
2485			echan->hw_triggered = true;
2486			match = true;
2487		}
2488	}
2489	return match;
2490}
2491EXPORT_SYMBOL(edma_filter_fn);
2492
2493static int edma_init(void)
2494{
2495	int ret;
2496
2497	ret = platform_driver_register(&edma_tptc_driver);
2498	if (ret)
2499		return ret;
2500
2501	return platform_driver_register(&edma_driver);
2502}
2503subsys_initcall(edma_init);
2504
2505static void __exit edma_exit(void)
2506{
2507	platform_driver_unregister(&edma_driver);
2508	platform_driver_unregister(&edma_tptc_driver);
2509}
2510module_exit(edma_exit);
2511
2512MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2513MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2514MODULE_LICENSE("GPL v2");