Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.6
 
   1/*
   2 * AMD Cryptographic Coprocessor (CCP) driver
   3 *
   4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
   5 *
   6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/pci.h>
  16#include <linux/interrupt.h>
  17#include <crypto/scatterwalk.h>
 
  18#include <linux/ccp.h>
  19
  20#include "ccp-dev.h"
  21
  22/* SHA initial context values */
  23static const __be32 ccp_sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
  24	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  25	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  26	cpu_to_be32(SHA1_H4), 0, 0, 0,
  27};
  28
  29static const __be32 ccp_sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
  30	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  31	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  32	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  33	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  34};
  35
  36static const __be32 ccp_sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
  37	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  38	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  39	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  40	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  41};
  42
  43static u32 ccp_alloc_ksb(struct ccp_device *ccp, unsigned int count)
  44{
  45	int start;
  46
  47	for (;;) {
  48		mutex_lock(&ccp->ksb_mutex);
  49
  50		start = (u32)bitmap_find_next_zero_area(ccp->ksb,
  51							ccp->ksb_count,
  52							ccp->ksb_start,
  53							count, 0);
  54		if (start <= ccp->ksb_count) {
  55			bitmap_set(ccp->ksb, start, count);
  56
  57			mutex_unlock(&ccp->ksb_mutex);
  58			break;
  59		}
  60
  61		ccp->ksb_avail = 0;
  62
  63		mutex_unlock(&ccp->ksb_mutex);
  64
  65		/* Wait for KSB entries to become available */
  66		if (wait_event_interruptible(ccp->ksb_queue, ccp->ksb_avail))
  67			return 0;
  68	}
  69
  70	return KSB_START + start;
  71}
  72
  73static void ccp_free_ksb(struct ccp_device *ccp, unsigned int start,
  74			 unsigned int count)
  75{
  76	if (!start)
  77		return;
  78
  79	mutex_lock(&ccp->ksb_mutex);
  80
  81	bitmap_clear(ccp->ksb, start - KSB_START, count);
  82
  83	ccp->ksb_avail = 1;
  84
  85	mutex_unlock(&ccp->ksb_mutex);
 
 
 
 
 
  86
  87	wake_up_interruptible_all(&ccp->ksb_queue);
  88}
  89
  90static u32 ccp_gen_jobid(struct ccp_device *ccp)
  91{
  92	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  93}
  94
  95static void ccp_sg_free(struct ccp_sg_workarea *wa)
  96{
  97	if (wa->dma_count)
  98		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
  99
 100	wa->dma_count = 0;
 101}
 102
 103static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
 104				struct scatterlist *sg, u64 len,
 105				enum dma_data_direction dma_dir)
 106{
 107	memset(wa, 0, sizeof(*wa));
 108
 109	wa->sg = sg;
 110	if (!sg)
 111		return 0;
 112
 113	wa->nents = sg_nents_for_len(sg, len);
 114	if (wa->nents < 0)
 115		return wa->nents;
 116
 117	wa->bytes_left = len;
 118	wa->sg_used = 0;
 119
 120	if (len == 0)
 121		return 0;
 122
 123	if (dma_dir == DMA_NONE)
 124		return 0;
 125
 126	wa->dma_sg = sg;
 127	wa->dma_dev = dev;
 128	wa->dma_dir = dma_dir;
 129	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
 130	if (!wa->dma_count)
 131		return -ENOMEM;
 132
 133	return 0;
 134}
 135
 136static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 137{
 138	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 139
 140	if (!wa->sg)
 141		return;
 142
 143	wa->sg_used += nbytes;
 144	wa->bytes_left -= nbytes;
 145	if (wa->sg_used == wa->sg->length) {
 146		wa->sg = sg_next(wa->sg);
 147		wa->sg_used = 0;
 148	}
 149}
 150
 151static void ccp_dm_free(struct ccp_dm_workarea *wa)
 152{
 153	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 154		if (wa->address)
 155			dma_pool_free(wa->dma_pool, wa->address,
 156				      wa->dma.address);
 157	} else {
 158		if (wa->dma.address)
 159			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 160					 wa->dma.dir);
 161		kfree(wa->address);
 162	}
 163
 164	wa->address = NULL;
 165	wa->dma.address = 0;
 166}
 167
 168static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 169				struct ccp_cmd_queue *cmd_q,
 170				unsigned int len,
 171				enum dma_data_direction dir)
 172{
 173	memset(wa, 0, sizeof(*wa));
 174
 175	if (!len)
 176		return 0;
 177
 178	wa->dev = cmd_q->ccp->dev;
 179	wa->length = len;
 180
 181	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 182		wa->dma_pool = cmd_q->dma_pool;
 183
 184		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
 185					     &wa->dma.address);
 186		if (!wa->address)
 187			return -ENOMEM;
 188
 189		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 190
 191		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
 192	} else {
 193		wa->address = kzalloc(len, GFP_KERNEL);
 194		if (!wa->address)
 195			return -ENOMEM;
 196
 197		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 198						 dir);
 199		if (!wa->dma.address)
 200			return -ENOMEM;
 201
 202		wa->dma.length = len;
 203	}
 204	wa->dma.dir = dir;
 205
 206	return 0;
 207}
 208
 209static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 210			    struct scatterlist *sg, unsigned int sg_offset,
 211			    unsigned int len)
 212{
 213	WARN_ON(!wa->address);
 214
 
 
 
 215	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 216				 0);
 
 217}
 218
 219static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 220			    struct scatterlist *sg, unsigned int sg_offset,
 221			    unsigned int len)
 222{
 223	WARN_ON(!wa->address);
 224
 225	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 226				 1);
 227}
 228
 229static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 
 230				   struct scatterlist *sg,
 231				   unsigned int len, unsigned int se_len,
 232				   bool sign_extend)
 233{
 234	unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
 235	u8 buffer[CCP_REVERSE_BUF_SIZE];
 236
 237	if (WARN_ON(se_len > sizeof(buffer)))
 238		return -EINVAL;
 239
 240	sg_offset = len;
 241	dm_offset = 0;
 242	nbytes = len;
 243	while (nbytes) {
 244		ksb_len = min_t(unsigned int, nbytes, se_len);
 245		sg_offset -= ksb_len;
 246
 247		scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 0);
 248		for (i = 0; i < ksb_len; i++)
 249			wa->address[dm_offset + i] = buffer[ksb_len - i - 1];
 250
 251		dm_offset += ksb_len;
 252		nbytes -= ksb_len;
 253
 254		if ((ksb_len != se_len) && sign_extend) {
 255			/* Must sign-extend to nearest sign-extend length */
 256			if (wa->address[dm_offset - 1] & 0x80)
 257				memset(wa->address + dm_offset, 0xff,
 258				       se_len - ksb_len);
 259		}
 260	}
 261
 262	return 0;
 263}
 264
 265static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 
 266				    struct scatterlist *sg,
 
 267				    unsigned int len)
 268{
 269	unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
 270	u8 buffer[CCP_REVERSE_BUF_SIZE];
 271
 272	sg_offset = 0;
 273	dm_offset = len;
 274	nbytes = len;
 275	while (nbytes) {
 276		ksb_len = min_t(unsigned int, nbytes, sizeof(buffer));
 277		dm_offset -= ksb_len;
 278
 279		for (i = 0; i < ksb_len; i++)
 280			buffer[ksb_len - i - 1] = wa->address[dm_offset + i];
 281		scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 1);
 282
 283		sg_offset += ksb_len;
 284		nbytes -= ksb_len;
 
 
 
 
 
 
 285	}
 
 
 286}
 287
 288static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 289{
 290	ccp_dm_free(&data->dm_wa);
 291	ccp_sg_free(&data->sg_wa);
 292}
 293
 294static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 295			 struct scatterlist *sg, u64 sg_len,
 296			 unsigned int dm_len,
 297			 enum dma_data_direction dir)
 298{
 299	int ret;
 300
 301	memset(data, 0, sizeof(*data));
 302
 303	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 304				   dir);
 305	if (ret)
 306		goto e_err;
 307
 308	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 309	if (ret)
 310		goto e_err;
 311
 312	return 0;
 313
 314e_err:
 315	ccp_free_data(data, cmd_q);
 316
 317	return ret;
 318}
 319
 320static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 321{
 322	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 323	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 324	unsigned int buf_count, nbytes;
 325
 326	/* Clear the buffer if setting it */
 327	if (!from)
 328		memset(dm_wa->address, 0, dm_wa->length);
 329
 330	if (!sg_wa->sg)
 331		return 0;
 332
 333	/* Perform the copy operation
 334	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 335	 *   an unsigned int
 336	 */
 337	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 338	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 339				 nbytes, from);
 340
 341	/* Update the structures and generate the count */
 342	buf_count = 0;
 343	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 344		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
 345			     dm_wa->length - buf_count);
 346		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 347
 348		buf_count += nbytes;
 349		ccp_update_sg_workarea(sg_wa, nbytes);
 350	}
 351
 352	return buf_count;
 353}
 354
 355static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 356{
 357	return ccp_queue_buf(data, 0);
 358}
 359
 360static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 361{
 362	return ccp_queue_buf(data, 1);
 363}
 364
 365static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 366			     struct ccp_op *op, unsigned int block_size,
 367			     bool blocksize_op)
 368{
 369	unsigned int sg_src_len, sg_dst_len, op_len;
 370
 371	/* The CCP can only DMA from/to one address each per operation. This
 372	 * requires that we find the smallest DMA area between the source
 373	 * and destination. The resulting len values will always be <= UINT_MAX
 374	 * because the dma length is an unsigned int.
 375	 */
 376	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
 377	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 378
 379	if (dst) {
 380		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
 381		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 382		op_len = min(sg_src_len, sg_dst_len);
 383	} else {
 384		op_len = sg_src_len;
 385	}
 386
 387	/* The data operation length will be at least block_size in length
 388	 * or the smaller of available sg room remaining for the source or
 389	 * the destination
 390	 */
 391	op_len = max(op_len, block_size);
 392
 393	/* Unless we have to buffer data, there's no reason to wait */
 394	op->soc = 0;
 395
 396	if (sg_src_len < block_size) {
 397		/* Not enough data in the sg element, so it
 398		 * needs to be buffered into a blocksize chunk
 399		 */
 400		int cp_len = ccp_fill_queue_buf(src);
 401
 402		op->soc = 1;
 403		op->src.u.dma.address = src->dm_wa.dma.address;
 404		op->src.u.dma.offset = 0;
 405		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 406	} else {
 407		/* Enough data in the sg element, but we need to
 408		 * adjust for any previously copied data
 409		 */
 410		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
 411		op->src.u.dma.offset = src->sg_wa.sg_used;
 412		op->src.u.dma.length = op_len & ~(block_size - 1);
 413
 414		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 415	}
 416
 417	if (dst) {
 418		if (sg_dst_len < block_size) {
 419			/* Not enough room in the sg element or we're on the
 420			 * last piece of data (when using padding), so the
 421			 * output needs to be buffered into a blocksize chunk
 422			 */
 423			op->soc = 1;
 424			op->dst.u.dma.address = dst->dm_wa.dma.address;
 425			op->dst.u.dma.offset = 0;
 426			op->dst.u.dma.length = op->src.u.dma.length;
 427		} else {
 428			/* Enough room in the sg element, but we need to
 429			 * adjust for any previously used area
 430			 */
 431			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
 432			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 433			op->dst.u.dma.length = op->src.u.dma.length;
 434		}
 435	}
 436}
 437
 438static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 439			     struct ccp_op *op)
 440{
 441	op->init = 0;
 442
 443	if (dst) {
 444		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 445			ccp_empty_queue_buf(dst);
 446		else
 447			ccp_update_sg_workarea(&dst->sg_wa,
 448					       op->dst.u.dma.length);
 449	}
 450}
 451
 452static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q,
 453				struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
 454				u32 byte_swap, bool from)
 455{
 456	struct ccp_op op;
 457
 458	memset(&op, 0, sizeof(op));
 459
 460	op.cmd_q = cmd_q;
 461	op.jobid = jobid;
 462	op.eom = 1;
 463
 464	if (from) {
 465		op.soc = 1;
 466		op.src.type = CCP_MEMTYPE_KSB;
 467		op.src.u.ksb = ksb;
 468		op.dst.type = CCP_MEMTYPE_SYSTEM;
 469		op.dst.u.dma.address = wa->dma.address;
 470		op.dst.u.dma.length = wa->length;
 471	} else {
 472		op.src.type = CCP_MEMTYPE_SYSTEM;
 473		op.src.u.dma.address = wa->dma.address;
 474		op.src.u.dma.length = wa->length;
 475		op.dst.type = CCP_MEMTYPE_KSB;
 476		op.dst.u.ksb = ksb;
 477	}
 478
 479	op.u.passthru.byte_swap = byte_swap;
 480
 481	return cmd_q->ccp->vdata->perform->perform_passthru(&op);
 482}
 483
 484static int ccp_copy_to_ksb(struct ccp_cmd_queue *cmd_q,
 485			   struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
 486			   u32 byte_swap)
 487{
 488	return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, false);
 489}
 490
 491static int ccp_copy_from_ksb(struct ccp_cmd_queue *cmd_q,
 492			     struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
 493			     u32 byte_swap)
 494{
 495	return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, true);
 496}
 497
 498static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
 499				struct ccp_cmd *cmd)
 500{
 501	struct ccp_aes_engine *aes = &cmd->u.aes;
 502	struct ccp_dm_workarea key, ctx;
 503	struct ccp_data src;
 504	struct ccp_op op;
 505	unsigned int dm_offset;
 506	int ret;
 507
 508	if (!((aes->key_len == AES_KEYSIZE_128) ||
 509	      (aes->key_len == AES_KEYSIZE_192) ||
 510	      (aes->key_len == AES_KEYSIZE_256)))
 511		return -EINVAL;
 512
 513	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 514		return -EINVAL;
 515
 516	if (aes->iv_len != AES_BLOCK_SIZE)
 517		return -EINVAL;
 518
 519	if (!aes->key || !aes->iv || !aes->src)
 520		return -EINVAL;
 521
 522	if (aes->cmac_final) {
 523		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 524			return -EINVAL;
 525
 526		if (!aes->cmac_key)
 527			return -EINVAL;
 528	}
 529
 530	BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
 531	BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
 532
 533	ret = -EIO;
 534	memset(&op, 0, sizeof(op));
 535	op.cmd_q = cmd_q;
 536	op.jobid = ccp_gen_jobid(cmd_q->ccp);
 537	op.ksb_key = cmd_q->ksb_key;
 538	op.ksb_ctx = cmd_q->ksb_ctx;
 539	op.init = 1;
 540	op.u.aes.type = aes->type;
 541	op.u.aes.mode = aes->mode;
 542	op.u.aes.action = aes->action;
 543
 544	/* All supported key sizes fit in a single (32-byte) KSB entry
 545	 * and must be in little endian format. Use the 256-bit byte
 546	 * swap passthru option to convert from big endian to little
 547	 * endian.
 548	 */
 549	ret = ccp_init_dm_workarea(&key, cmd_q,
 550				   CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
 551				   DMA_TO_DEVICE);
 552	if (ret)
 553		return ret;
 554
 555	dm_offset = CCP_KSB_BYTES - aes->key_len;
 556	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 557	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
 558			      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 559	if (ret) {
 560		cmd->engine_error = cmd_q->cmd_error;
 561		goto e_key;
 562	}
 563
 564	/* The AES context fits in a single (32-byte) KSB entry and
 565	 * must be in little endian format. Use the 256-bit byte swap
 566	 * passthru option to convert from big endian to little endian.
 567	 */
 568	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 569				   CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
 570				   DMA_BIDIRECTIONAL);
 571	if (ret)
 572		goto e_key;
 573
 574	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 575	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 576	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 577			      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 578	if (ret) {
 579		cmd->engine_error = cmd_q->cmd_error;
 580		goto e_ctx;
 581	}
 582
 583	/* Send data to the CCP AES engine */
 584	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 585			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 586	if (ret)
 587		goto e_ctx;
 588
 589	while (src.sg_wa.bytes_left) {
 590		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 591		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 592			op.eom = 1;
 593
 594			/* Push the K1/K2 key to the CCP now */
 595			ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid,
 596						op.ksb_ctx,
 597						CCP_PASSTHRU_BYTESWAP_256BIT);
 598			if (ret) {
 599				cmd->engine_error = cmd_q->cmd_error;
 600				goto e_src;
 601			}
 602
 603			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 604					aes->cmac_key_len);
 605			ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 606					      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 607			if (ret) {
 608				cmd->engine_error = cmd_q->cmd_error;
 609				goto e_src;
 610			}
 611		}
 612
 613		ret = cmd_q->ccp->vdata->perform->perform_aes(&op);
 614		if (ret) {
 615			cmd->engine_error = cmd_q->cmd_error;
 616			goto e_src;
 617		}
 618
 619		ccp_process_data(&src, NULL, &op);
 620	}
 621
 622	/* Retrieve the AES context - convert from LE to BE using
 623	 * 32-byte (256-bit) byteswapping
 624	 */
 625	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 626				CCP_PASSTHRU_BYTESWAP_256BIT);
 627	if (ret) {
 628		cmd->engine_error = cmd_q->cmd_error;
 629		goto e_src;
 630	}
 631
 632	/* ...but we only need AES_BLOCK_SIZE bytes */
 633	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 634	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 635
 636e_src:
 637	ccp_free_data(&src, cmd_q);
 638
 639e_ctx:
 640	ccp_dm_free(&ctx);
 641
 642e_key:
 643	ccp_dm_free(&key);
 644
 645	return ret;
 646}
 647
 648static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649{
 650	struct ccp_aes_engine *aes = &cmd->u.aes;
 651	struct ccp_dm_workarea key, ctx;
 652	struct ccp_data src, dst;
 653	struct ccp_op op;
 654	unsigned int dm_offset;
 655	bool in_place = false;
 656	int ret;
 657
 658	if (aes->mode == CCP_AES_MODE_CMAC)
 659		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
 660
 661	if (!((aes->key_len == AES_KEYSIZE_128) ||
 662	      (aes->key_len == AES_KEYSIZE_192) ||
 663	      (aes->key_len == AES_KEYSIZE_256)))
 664		return -EINVAL;
 665
 666	if (((aes->mode == CCP_AES_MODE_ECB) ||
 667	     (aes->mode == CCP_AES_MODE_CBC) ||
 668	     (aes->mode == CCP_AES_MODE_CFB)) &&
 669	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 670		return -EINVAL;
 671
 672	if (!aes->key || !aes->src || !aes->dst)
 673		return -EINVAL;
 674
 675	if (aes->mode != CCP_AES_MODE_ECB) {
 676		if (aes->iv_len != AES_BLOCK_SIZE)
 677			return -EINVAL;
 678
 679		if (!aes->iv)
 680			return -EINVAL;
 681	}
 682
 683	BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
 684	BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
 685
 686	ret = -EIO;
 687	memset(&op, 0, sizeof(op));
 688	op.cmd_q = cmd_q;
 689	op.jobid = ccp_gen_jobid(cmd_q->ccp);
 690	op.ksb_key = cmd_q->ksb_key;
 691	op.ksb_ctx = cmd_q->ksb_ctx;
 692	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 693	op.u.aes.type = aes->type;
 694	op.u.aes.mode = aes->mode;
 695	op.u.aes.action = aes->action;
 696
 697	/* All supported key sizes fit in a single (32-byte) KSB entry
 698	 * and must be in little endian format. Use the 256-bit byte
 699	 * swap passthru option to convert from big endian to little
 700	 * endian.
 701	 */
 702	ret = ccp_init_dm_workarea(&key, cmd_q,
 703				   CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
 704				   DMA_TO_DEVICE);
 705	if (ret)
 706		return ret;
 707
 708	dm_offset = CCP_KSB_BYTES - aes->key_len;
 709	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 710	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
 711			      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 712	if (ret) {
 713		cmd->engine_error = cmd_q->cmd_error;
 714		goto e_key;
 715	}
 716
 717	/* The AES context fits in a single (32-byte) KSB entry and
 718	 * must be in little endian format. Use the 256-bit byte swap
 719	 * passthru option to convert from big endian to little endian.
 720	 */
 721	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 722				   CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
 723				   DMA_BIDIRECTIONAL);
 724	if (ret)
 725		goto e_key;
 726
 727	if (aes->mode != CCP_AES_MODE_ECB) {
 728		/* Load the AES context - conver to LE */
 729		dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 730		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 731		ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 732				      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 733		if (ret) {
 734			cmd->engine_error = cmd_q->cmd_error;
 735			goto e_ctx;
 736		}
 737	}
 
 
 
 
 
 
 
 
 738
 739	/* Prepare the input and output data workareas. For in-place
 740	 * operations we need to set the dma direction to BIDIRECTIONAL
 741	 * and copy the src workarea to the dst workarea.
 742	 */
 743	if (sg_virt(aes->src) == sg_virt(aes->dst))
 744		in_place = true;
 745
 746	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 747			    AES_BLOCK_SIZE,
 748			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 749	if (ret)
 750		goto e_ctx;
 751
 752	if (in_place) {
 753		dst = src;
 754	} else {
 755		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
 756				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 757		if (ret)
 758			goto e_src;
 759	}
 760
 761	/* Send data to the CCP AES engine */
 762	while (src.sg_wa.bytes_left) {
 763		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 764		if (!src.sg_wa.bytes_left) {
 765			op.eom = 1;
 766
 767			/* Since we don't retrieve the AES context in ECB
 768			 * mode we have to wait for the operation to complete
 769			 * on the last piece of data
 770			 */
 771			if (aes->mode == CCP_AES_MODE_ECB)
 772				op.soc = 1;
 773		}
 774
 775		ret = cmd_q->ccp->vdata->perform->perform_aes(&op);
 776		if (ret) {
 777			cmd->engine_error = cmd_q->cmd_error;
 778			goto e_dst;
 779		}
 780
 781		ccp_process_data(&src, &dst, &op);
 782	}
 783
 784	if (aes->mode != CCP_AES_MODE_ECB) {
 785		/* Retrieve the AES context - convert from LE to BE using
 786		 * 32-byte (256-bit) byteswapping
 787		 */
 788		ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 789					CCP_PASSTHRU_BYTESWAP_256BIT);
 790		if (ret) {
 791			cmd->engine_error = cmd_q->cmd_error;
 792			goto e_dst;
 793		}
 794
 795		/* ...but we only need AES_BLOCK_SIZE bytes */
 796		dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 797		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 798	}
 799
 800e_dst:
 801	if (!in_place)
 802		ccp_free_data(&dst, cmd_q);
 803
 804e_src:
 805	ccp_free_data(&src, cmd_q);
 806
 807e_ctx:
 808	ccp_dm_free(&ctx);
 809
 810e_key:
 811	ccp_dm_free(&key);
 812
 813	return ret;
 814}
 815
 816static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
 817			       struct ccp_cmd *cmd)
 818{
 819	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
 820	struct ccp_dm_workarea key, ctx;
 821	struct ccp_data src, dst;
 822	struct ccp_op op;
 823	unsigned int unit_size, dm_offset;
 824	bool in_place = false;
 
 
 825	int ret;
 826
 827	switch (xts->unit_size) {
 828	case CCP_XTS_AES_UNIT_SIZE_16:
 829		unit_size = 16;
 830		break;
 831	case CCP_XTS_AES_UNIT_SIZE_512:
 832		unit_size = 512;
 833		break;
 834	case CCP_XTS_AES_UNIT_SIZE_1024:
 835		unit_size = 1024;
 836		break;
 837	case CCP_XTS_AES_UNIT_SIZE_2048:
 838		unit_size = 2048;
 839		break;
 840	case CCP_XTS_AES_UNIT_SIZE_4096:
 841		unit_size = 4096;
 842		break;
 843
 844	default:
 845		return -EINVAL;
 846	}
 847
 848	if (xts->key_len != AES_KEYSIZE_128)
 
 
 
 
 849		return -EINVAL;
 850
 851	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
 852		return -EINVAL;
 853
 854	if (xts->iv_len != AES_BLOCK_SIZE)
 855		return -EINVAL;
 856
 857	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
 858		return -EINVAL;
 859
 860	BUILD_BUG_ON(CCP_XTS_AES_KEY_KSB_COUNT != 1);
 861	BUILD_BUG_ON(CCP_XTS_AES_CTX_KSB_COUNT != 1);
 862
 863	ret = -EIO;
 864	memset(&op, 0, sizeof(op));
 865	op.cmd_q = cmd_q;
 866	op.jobid = ccp_gen_jobid(cmd_q->ccp);
 867	op.ksb_key = cmd_q->ksb_key;
 868	op.ksb_ctx = cmd_q->ksb_ctx;
 869	op.init = 1;
 
 870	op.u.xts.action = xts->action;
 871	op.u.xts.unit_size = xts->unit_size;
 872
 873	/* All supported key sizes fit in a single (32-byte) KSB entry
 874	 * and must be in little endian format. Use the 256-bit byte
 875	 * swap passthru option to convert from big endian to little
 876	 * endian.
 877	 */
 
 
 
 878	ret = ccp_init_dm_workarea(&key, cmd_q,
 879				   CCP_XTS_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
 880				   DMA_TO_DEVICE);
 881	if (ret)
 882		return ret;
 883
 884	dm_offset = CCP_KSB_BYTES - AES_KEYSIZE_128;
 885	ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
 886	ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
 887	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
 888			      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889	if (ret) {
 890		cmd->engine_error = cmd_q->cmd_error;
 891		goto e_key;
 892	}
 893
 894	/* The AES context fits in a single (32-byte) KSB entry and
 895	 * for XTS is already in little endian format so no byte swapping
 896	 * is needed.
 897	 */
 898	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 899				   CCP_XTS_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
 900				   DMA_BIDIRECTIONAL);
 901	if (ret)
 902		goto e_key;
 903
 904	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
 905	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 906			      CCP_PASSTHRU_BYTESWAP_NOOP);
 
 
 907	if (ret) {
 908		cmd->engine_error = cmd_q->cmd_error;
 909		goto e_ctx;
 910	}
 911
 912	/* Prepare the input and output data workareas. For in-place
 913	 * operations we need to set the dma direction to BIDIRECTIONAL
 914	 * and copy the src workarea to the dst workarea.
 915	 */
 916	if (sg_virt(xts->src) == sg_virt(xts->dst))
 917		in_place = true;
 918
 919	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
 920			    unit_size,
 921			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 922	if (ret)
 923		goto e_ctx;
 924
 925	if (in_place) {
 926		dst = src;
 927	} else {
 928		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
 929				    unit_size, DMA_FROM_DEVICE);
 930		if (ret)
 931			goto e_src;
 932	}
 933
 934	/* Send data to the CCP AES engine */
 935	while (src.sg_wa.bytes_left) {
 936		ccp_prepare_data(&src, &dst, &op, unit_size, true);
 937		if (!src.sg_wa.bytes_left)
 938			op.eom = 1;
 939
 940		ret = cmd_q->ccp->vdata->perform->perform_xts_aes(&op);
 941		if (ret) {
 942			cmd->engine_error = cmd_q->cmd_error;
 943			goto e_dst;
 944		}
 945
 946		ccp_process_data(&src, &dst, &op);
 947	}
 948
 949	/* Retrieve the AES context - convert from LE to BE using
 950	 * 32-byte (256-bit) byteswapping
 951	 */
 952	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 953				CCP_PASSTHRU_BYTESWAP_256BIT);
 954	if (ret) {
 955		cmd->engine_error = cmd_q->cmd_error;
 956		goto e_dst;
 957	}
 958
 959	/* ...but we only need AES_BLOCK_SIZE bytes */
 960	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 961	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
 962
 963e_dst:
 964	if (!in_place)
 965		ccp_free_data(&dst, cmd_q);
 966
 967e_src:
 968	ccp_free_data(&src, cmd_q);
 969
 970e_ctx:
 971	ccp_dm_free(&ctx);
 972
 973e_key:
 974	ccp_dm_free(&key);
 975
 976	return ret;
 977}
 978
 979static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
 980{
 981	struct ccp_sha_engine *sha = &cmd->u.sha;
 982	struct ccp_dm_workarea ctx;
 983	struct ccp_data src;
 
 984	struct ccp_op op;
 
 
 
 985	int ret;
 986
 987	if (sha->ctx_len != CCP_SHA_CTXSIZE)
 
 988		return -EINVAL;
 989
 990	if (!sha->ctx)
 991		return -EINVAL;
 992
 993	if (!sha->final && (sha->src_len & (CCP_SHA_BLOCKSIZE - 1)))
 994		return -EINVAL;
 995
 996	if (!sha->src_len) {
 997		const u8 *sha_zero;
 
 
 998
 999		/* Not final, just return */
1000		if (!sha->final)
1001			return 0;
1002
1003		/* CCP can't do a zero length sha operation so the caller
1004		 * must buffer the data.
1005		 */
1006		if (sha->msg_bits)
1007			return -EINVAL;
1008
1009		/* The CCP cannot perform zero-length sha operations so the
1010		 * caller is required to buffer data for the final operation.
1011		 * However, a sha operation for a message with a total length
1012		 * of zero is valid so known values are required to supply
1013		 * the result.
1014		 */
1015		switch (sha->type) {
1016		case CCP_SHA_TYPE_1:
1017			sha_zero = sha1_zero_message_hash;
1018			break;
1019		case CCP_SHA_TYPE_224:
1020			sha_zero = sha224_zero_message_hash;
1021			break;
1022		case CCP_SHA_TYPE_256:
1023			sha_zero = sha256_zero_message_hash;
1024			break;
1025		default:
1026			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027		}
 
1028
1029		scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1030					 sha->ctx_len, 1);
 
 
 
 
 
1031
1032		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	}
1034
1035	if (!sha->src)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036		return -EINVAL;
1037
1038	BUILD_BUG_ON(CCP_SHA_KSB_COUNT != 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039
1040	memset(&op, 0, sizeof(op));
1041	op.cmd_q = cmd_q;
1042	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1043	op.ksb_ctx = cmd_q->ksb_ctx;
1044	op.u.sha.type = sha->type;
1045	op.u.sha.msg_bits = sha->msg_bits;
1046
1047	/* The SHA context fits in a single (32-byte) KSB entry and
1048	 * must be in little endian format. Use the 256-bit byte swap
1049	 * passthru option to convert from big endian to little endian.
 
1050	 */
1051	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1052				   CCP_SHA_KSB_COUNT * CCP_KSB_BYTES,
1053				   DMA_BIDIRECTIONAL);
1054	if (ret)
1055		return ret;
1056
1057	if (sha->first) {
1058		const __be32 *init;
1059
1060		switch (sha->type) {
1061		case CCP_SHA_TYPE_1:
1062			init = ccp_sha1_init;
1063			break;
1064		case CCP_SHA_TYPE_224:
1065			init = ccp_sha224_init;
1066			break;
1067		case CCP_SHA_TYPE_256:
1068			init = ccp_sha256_init;
 
 
 
 
 
 
 
1069			break;
1070		default:
1071			ret = -EINVAL;
1072			goto e_ctx;
1073		}
1074		memcpy(ctx.address, init, CCP_SHA_CTXSIZE);
1075	} else {
1076		ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
 
 
 
 
1077	}
1078
1079	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
1080			      CCP_PASSTHRU_BYTESWAP_256BIT);
1081	if (ret) {
1082		cmd->engine_error = cmd_q->cmd_error;
1083		goto e_ctx;
1084	}
1085
1086	/* Send data to the CCP SHA engine */
1087	ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1088			    CCP_SHA_BLOCKSIZE, DMA_TO_DEVICE);
1089	if (ret)
1090		goto e_ctx;
 
1091
1092	while (src.sg_wa.bytes_left) {
1093		ccp_prepare_data(&src, NULL, &op, CCP_SHA_BLOCKSIZE, false);
1094		if (sha->final && !src.sg_wa.bytes_left)
1095			op.eom = 1;
1096
1097		ret = cmd_q->ccp->vdata->perform->perform_sha(&op);
 
 
 
 
 
 
 
 
 
 
1098		if (ret) {
1099			cmd->engine_error = cmd_q->cmd_error;
1100			goto e_data;
1101		}
1102
1103		ccp_process_data(&src, NULL, &op);
1104	}
1105
1106	/* Retrieve the SHA context - convert from LE to BE using
1107	 * 32-byte (256-bit) byteswapping to BE
1108	 */
1109	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
1110				CCP_PASSTHRU_BYTESWAP_256BIT);
1111	if (ret) {
1112		cmd->engine_error = cmd_q->cmd_error;
1113		goto e_data;
1114	}
1115
1116	ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
1117
1118	if (sha->final && sha->opad) {
1119		/* HMAC operation, recursively perform final SHA */
1120		struct ccp_cmd hmac_cmd;
1121		struct scatterlist sg;
1122		u64 block_size, digest_size;
1123		u8 *hmac_buf;
1124
1125		switch (sha->type) {
1126		case CCP_SHA_TYPE_1:
1127			block_size = SHA1_BLOCK_SIZE;
1128			digest_size = SHA1_DIGEST_SIZE;
1129			break;
1130		case CCP_SHA_TYPE_224:
1131			block_size = SHA224_BLOCK_SIZE;
1132			digest_size = SHA224_DIGEST_SIZE;
1133			break;
1134		case CCP_SHA_TYPE_256:
1135			block_size = SHA256_BLOCK_SIZE;
1136			digest_size = SHA256_DIGEST_SIZE;
 
 
 
 
 
 
 
 
 
 
1137			break;
1138		default:
1139			ret = -EINVAL;
1140			goto e_data;
1141		}
 
 
 
 
 
 
 
 
 
 
 
1142
1143		if (sha->opad_len != block_size) {
1144			ret = -EINVAL;
1145			goto e_data;
1146		}
1147
1148		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1149		if (!hmac_buf) {
1150			ret = -ENOMEM;
1151			goto e_data;
1152		}
1153		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1154
1155		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1156		memcpy(hmac_buf + block_size, ctx.address, digest_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
1158		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1159		hmac_cmd.engine = CCP_ENGINE_SHA;
1160		hmac_cmd.u.sha.type = sha->type;
1161		hmac_cmd.u.sha.ctx = sha->ctx;
1162		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1163		hmac_cmd.u.sha.src = &sg;
1164		hmac_cmd.u.sha.src_len = block_size + digest_size;
1165		hmac_cmd.u.sha.opad = NULL;
1166		hmac_cmd.u.sha.opad_len = 0;
1167		hmac_cmd.u.sha.first = 1;
1168		hmac_cmd.u.sha.final = 1;
1169		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1170
1171		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1172		if (ret)
1173			cmd->engine_error = hmac_cmd.engine_error;
1174
1175		kfree(hmac_buf);
1176	}
1177
1178e_data:
1179	ccp_free_data(&src, cmd_q);
 
1180
1181e_ctx:
1182	ccp_dm_free(&ctx);
1183
1184	return ret;
1185}
1186
1187static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
1188{
1189	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1190	struct ccp_dm_workarea exp, src;
1191	struct ccp_data dst;
1192	struct ccp_op op;
1193	unsigned int ksb_count, i_len, o_len;
1194	int ret;
1195
1196	if (rsa->key_size > CCP_RSA_MAX_WIDTH)
 
1197		return -EINVAL;
1198
1199	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1200		return -EINVAL;
1201
 
 
 
 
1202	/* The RSA modulus must precede the message being acted upon, so
1203	 * it must be copied to a DMA area where the message and the
1204	 * modulus can be concatenated.  Therefore the input buffer
1205	 * length required is twice the output buffer length (which
1206	 * must be a multiple of 256-bits).
 
 
1207	 */
1208	o_len = ((rsa->key_size + 255) / 256) * 32;
1209	i_len = o_len * 2;
1210
1211	ksb_count = o_len / CCP_KSB_BYTES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212
1213	memset(&op, 0, sizeof(op));
1214	op.cmd_q = cmd_q;
1215	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1216	op.ksb_key = ccp_alloc_ksb(cmd_q->ccp, ksb_count);
1217	if (!op.ksb_key)
1218		return -EIO;
1219
1220	/* The RSA exponent may span multiple (32-byte) KSB entries and must
1221	 * be in little endian format. Reverse copy each 32-byte chunk
1222	 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
1223	 * and each byte within that chunk and do not perform any byte swap
1224	 * operations on the passthru operation.
1225	 */
1226	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1227	if (ret)
1228		goto e_ksb;
1229
1230	ret = ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len,
1231				      CCP_KSB_BYTES, false);
1232	if (ret)
1233		goto e_exp;
1234	ret = ccp_copy_to_ksb(cmd_q, &exp, op.jobid, op.ksb_key,
1235			      CCP_PASSTHRU_BYTESWAP_NOOP);
1236	if (ret) {
1237		cmd->engine_error = cmd_q->cmd_error;
1238		goto e_exp;
 
 
 
 
 
 
 
 
 
 
 
1239	}
1240
1241	/* Concatenate the modulus and the message. Both the modulus and
1242	 * the operands must be in little endian format.  Since the input
1243	 * is in big endian format it must be converted.
1244	 */
1245	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1246	if (ret)
1247		goto e_exp;
1248
1249	ret = ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len,
1250				      CCP_KSB_BYTES, false);
1251	if (ret)
1252		goto e_src;
1253	src.address += o_len;	/* Adjust the address for the copy operation */
1254	ret = ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len,
1255				      CCP_KSB_BYTES, false);
1256	if (ret)
1257		goto e_src;
1258	src.address -= o_len;	/* Reset the address to original value */
1259
1260	/* Prepare the output area for the operation */
1261	ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
1262			    o_len, DMA_FROM_DEVICE);
1263	if (ret)
1264		goto e_src;
1265
1266	op.soc = 1;
1267	op.src.u.dma.address = src.dma.address;
1268	op.src.u.dma.offset = 0;
1269	op.src.u.dma.length = i_len;
1270	op.dst.u.dma.address = dst.dm_wa.dma.address;
1271	op.dst.u.dma.offset = 0;
1272	op.dst.u.dma.length = o_len;
1273
1274	op.u.rsa.mod_size = rsa->key_size;
1275	op.u.rsa.input_len = i_len;
1276
1277	ret = cmd_q->ccp->vdata->perform->perform_rsa(&op);
1278	if (ret) {
1279		cmd->engine_error = cmd_q->cmd_error;
1280		goto e_dst;
1281	}
1282
1283	ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);
1284
1285e_dst:
1286	ccp_free_data(&dst, cmd_q);
1287
1288e_src:
1289	ccp_dm_free(&src);
1290
1291e_exp:
1292	ccp_dm_free(&exp);
1293
1294e_ksb:
1295	ccp_free_ksb(cmd_q->ccp, op.ksb_key, ksb_count);
 
1296
1297	return ret;
1298}
1299
1300static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1301				struct ccp_cmd *cmd)
1302{
1303	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1304	struct ccp_dm_workarea mask;
1305	struct ccp_data src, dst;
1306	struct ccp_op op;
1307	bool in_place = false;
1308	unsigned int i;
1309	int ret;
1310
1311	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1312		return -EINVAL;
1313
1314	if (!pt->src || !pt->dst)
1315		return -EINVAL;
1316
1317	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1318		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1319			return -EINVAL;
1320		if (!pt->mask)
1321			return -EINVAL;
1322	}
1323
1324	BUILD_BUG_ON(CCP_PASSTHRU_KSB_COUNT != 1);
1325
1326	memset(&op, 0, sizeof(op));
1327	op.cmd_q = cmd_q;
1328	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1329
1330	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1331		/* Load the mask */
1332		op.ksb_key = cmd_q->ksb_key;
1333
1334		ret = ccp_init_dm_workarea(&mask, cmd_q,
1335					   CCP_PASSTHRU_KSB_COUNT *
1336					   CCP_KSB_BYTES,
1337					   DMA_TO_DEVICE);
1338		if (ret)
1339			return ret;
1340
1341		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1342		ret = ccp_copy_to_ksb(cmd_q, &mask, op.jobid, op.ksb_key,
1343				      CCP_PASSTHRU_BYTESWAP_NOOP);
 
 
1344		if (ret) {
1345			cmd->engine_error = cmd_q->cmd_error;
1346			goto e_mask;
1347		}
1348	}
1349
1350	/* Prepare the input and output data workareas. For in-place
1351	 * operations we need to set the dma direction to BIDIRECTIONAL
1352	 * and copy the src workarea to the dst workarea.
1353	 */
1354	if (sg_virt(pt->src) == sg_virt(pt->dst))
1355		in_place = true;
1356
1357	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1358			    CCP_PASSTHRU_MASKSIZE,
1359			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1360	if (ret)
1361		goto e_mask;
1362
1363	if (in_place) {
1364		dst = src;
1365	} else {
1366		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1367				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1368		if (ret)
1369			goto e_src;
1370	}
1371
1372	/* Send data to the CCP Passthru engine
1373	 *   Because the CCP engine works on a single source and destination
1374	 *   dma address at a time, each entry in the source scatterlist
1375	 *   (after the dma_map_sg call) must be less than or equal to the
1376	 *   (remaining) length in the destination scatterlist entry and the
1377	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1378	 */
1379	dst.sg_wa.sg_used = 0;
1380	for (i = 1; i <= src.sg_wa.dma_count; i++) {
1381		if (!dst.sg_wa.sg ||
1382		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
1383			ret = -EINVAL;
1384			goto e_dst;
1385		}
1386
1387		if (i == src.sg_wa.dma_count) {
1388			op.eom = 1;
1389			op.soc = 1;
1390		}
1391
1392		op.src.type = CCP_MEMTYPE_SYSTEM;
1393		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
1394		op.src.u.dma.offset = 0;
1395		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
1396
1397		op.dst.type = CCP_MEMTYPE_SYSTEM;
1398		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1399		op.dst.u.dma.offset = dst.sg_wa.sg_used;
1400		op.dst.u.dma.length = op.src.u.dma.length;
1401
1402		ret = cmd_q->ccp->vdata->perform->perform_passthru(&op);
1403		if (ret) {
1404			cmd->engine_error = cmd_q->cmd_error;
1405			goto e_dst;
1406		}
1407
1408		dst.sg_wa.sg_used += src.sg_wa.sg->length;
1409		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
1410			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
1411			dst.sg_wa.sg_used = 0;
1412		}
1413		src.sg_wa.sg = sg_next(src.sg_wa.sg);
1414	}
1415
1416e_dst:
1417	if (!in_place)
1418		ccp_free_data(&dst, cmd_q);
1419
1420e_src:
1421	ccp_free_data(&src, cmd_q);
1422
1423e_mask:
1424	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
1425		ccp_dm_free(&mask);
1426
1427	return ret;
1428}
1429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1431{
1432	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1433	struct ccp_dm_workarea src, dst;
1434	struct ccp_op op;
1435	int ret;
1436	u8 *save;
1437
1438	if (!ecc->u.mm.operand_1 ||
1439	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
1440		return -EINVAL;
1441
1442	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
1443		if (!ecc->u.mm.operand_2 ||
1444		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
1445			return -EINVAL;
1446
1447	if (!ecc->u.mm.result ||
1448	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
1449		return -EINVAL;
1450
1451	memset(&op, 0, sizeof(op));
1452	op.cmd_q = cmd_q;
1453	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1454
1455	/* Concatenate the modulus and the operands. Both the modulus and
1456	 * the operands must be in little endian format.  Since the input
1457	 * is in big endian format it must be converted and placed in a
1458	 * fixed length buffer.
1459	 */
1460	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1461				   DMA_TO_DEVICE);
1462	if (ret)
1463		return ret;
1464
1465	/* Save the workarea address since it is updated in order to perform
1466	 * the concatenation
1467	 */
1468	save = src.address;
1469
1470	/* Copy the ECC modulus */
1471	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1472				      CCP_ECC_OPERAND_SIZE, false);
1473	if (ret)
1474		goto e_src;
1475	src.address += CCP_ECC_OPERAND_SIZE;
1476
1477	/* Copy the first operand */
1478	ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
1479				      ecc->u.mm.operand_1_len,
1480				      CCP_ECC_OPERAND_SIZE, false);
1481	if (ret)
1482		goto e_src;
1483	src.address += CCP_ECC_OPERAND_SIZE;
1484
1485	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
1486		/* Copy the second operand */
1487		ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
1488					      ecc->u.mm.operand_2_len,
1489					      CCP_ECC_OPERAND_SIZE, false);
1490		if (ret)
1491			goto e_src;
1492		src.address += CCP_ECC_OPERAND_SIZE;
1493	}
1494
1495	/* Restore the workarea address */
1496	src.address = save;
1497
1498	/* Prepare the output area for the operation */
1499	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1500				   DMA_FROM_DEVICE);
1501	if (ret)
1502		goto e_src;
1503
1504	op.soc = 1;
1505	op.src.u.dma.address = src.dma.address;
1506	op.src.u.dma.offset = 0;
1507	op.src.u.dma.length = src.length;
1508	op.dst.u.dma.address = dst.dma.address;
1509	op.dst.u.dma.offset = 0;
1510	op.dst.u.dma.length = dst.length;
1511
1512	op.u.ecc.function = cmd->u.ecc.function;
1513
1514	ret = cmd_q->ccp->vdata->perform->perform_ecc(&op);
1515	if (ret) {
1516		cmd->engine_error = cmd_q->cmd_error;
1517		goto e_dst;
1518	}
1519
1520	ecc->ecc_result = le16_to_cpup(
1521		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1522	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1523		ret = -EIO;
1524		goto e_dst;
1525	}
1526
1527	/* Save the ECC result */
1528	ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);
 
1529
1530e_dst:
1531	ccp_dm_free(&dst);
1532
1533e_src:
1534	ccp_dm_free(&src);
1535
1536	return ret;
1537}
1538
1539static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1540{
1541	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1542	struct ccp_dm_workarea src, dst;
1543	struct ccp_op op;
1544	int ret;
1545	u8 *save;
1546
1547	if (!ecc->u.pm.point_1.x ||
1548	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
1549	    !ecc->u.pm.point_1.y ||
1550	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
1551		return -EINVAL;
1552
1553	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1554		if (!ecc->u.pm.point_2.x ||
1555		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
1556		    !ecc->u.pm.point_2.y ||
1557		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
1558			return -EINVAL;
1559	} else {
1560		if (!ecc->u.pm.domain_a ||
1561		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
1562			return -EINVAL;
1563
1564		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
1565			if (!ecc->u.pm.scalar ||
1566			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
1567				return -EINVAL;
1568	}
1569
1570	if (!ecc->u.pm.result.x ||
1571	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
1572	    !ecc->u.pm.result.y ||
1573	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
1574		return -EINVAL;
1575
1576	memset(&op, 0, sizeof(op));
1577	op.cmd_q = cmd_q;
1578	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1579
1580	/* Concatenate the modulus and the operands. Both the modulus and
1581	 * the operands must be in little endian format.  Since the input
1582	 * is in big endian format it must be converted and placed in a
1583	 * fixed length buffer.
1584	 */
1585	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1586				   DMA_TO_DEVICE);
1587	if (ret)
1588		return ret;
1589
1590	/* Save the workarea address since it is updated in order to perform
1591	 * the concatenation
1592	 */
1593	save = src.address;
1594
1595	/* Copy the ECC modulus */
1596	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1597				      CCP_ECC_OPERAND_SIZE, false);
1598	if (ret)
1599		goto e_src;
1600	src.address += CCP_ECC_OPERAND_SIZE;
1601
1602	/* Copy the first point X and Y coordinate */
1603	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
1604				      ecc->u.pm.point_1.x_len,
1605				      CCP_ECC_OPERAND_SIZE, false);
1606	if (ret)
1607		goto e_src;
1608	src.address += CCP_ECC_OPERAND_SIZE;
1609	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
1610				      ecc->u.pm.point_1.y_len,
1611				      CCP_ECC_OPERAND_SIZE, false);
1612	if (ret)
1613		goto e_src;
1614	src.address += CCP_ECC_OPERAND_SIZE;
1615
1616	/* Set the first point Z coordianate to 1 */
1617	*src.address = 0x01;
1618	src.address += CCP_ECC_OPERAND_SIZE;
1619
1620	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1621		/* Copy the second point X and Y coordinate */
1622		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
1623					      ecc->u.pm.point_2.x_len,
1624					      CCP_ECC_OPERAND_SIZE, false);
1625		if (ret)
1626			goto e_src;
1627		src.address += CCP_ECC_OPERAND_SIZE;
1628		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
1629					      ecc->u.pm.point_2.y_len,
1630					      CCP_ECC_OPERAND_SIZE, false);
1631		if (ret)
1632			goto e_src;
1633		src.address += CCP_ECC_OPERAND_SIZE;
1634
1635		/* Set the second point Z coordianate to 1 */
1636		*src.address = 0x01;
1637		src.address += CCP_ECC_OPERAND_SIZE;
1638	} else {
1639		/* Copy the Domain "a" parameter */
1640		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
1641					      ecc->u.pm.domain_a_len,
1642					      CCP_ECC_OPERAND_SIZE, false);
1643		if (ret)
1644			goto e_src;
1645		src.address += CCP_ECC_OPERAND_SIZE;
1646
1647		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
1648			/* Copy the scalar value */
1649			ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
1650						      ecc->u.pm.scalar_len,
1651						      CCP_ECC_OPERAND_SIZE,
1652						      false);
1653			if (ret)
1654				goto e_src;
1655			src.address += CCP_ECC_OPERAND_SIZE;
1656		}
1657	}
1658
1659	/* Restore the workarea address */
1660	src.address = save;
1661
1662	/* Prepare the output area for the operation */
1663	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1664				   DMA_FROM_DEVICE);
1665	if (ret)
1666		goto e_src;
1667
1668	op.soc = 1;
1669	op.src.u.dma.address = src.dma.address;
1670	op.src.u.dma.offset = 0;
1671	op.src.u.dma.length = src.length;
1672	op.dst.u.dma.address = dst.dma.address;
1673	op.dst.u.dma.offset = 0;
1674	op.dst.u.dma.length = dst.length;
1675
1676	op.u.ecc.function = cmd->u.ecc.function;
1677
1678	ret = cmd_q->ccp->vdata->perform->perform_ecc(&op);
1679	if (ret) {
1680		cmd->engine_error = cmd_q->cmd_error;
1681		goto e_dst;
1682	}
1683
1684	ecc->ecc_result = le16_to_cpup(
1685		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1686	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1687		ret = -EIO;
1688		goto e_dst;
1689	}
1690
1691	/* Save the workarea address since it is updated as we walk through
1692	 * to copy the point math result
1693	 */
1694	save = dst.address;
1695
1696	/* Save the ECC result X and Y coordinates */
1697	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
1698				CCP_ECC_MODULUS_BYTES);
1699	dst.address += CCP_ECC_OUTPUT_SIZE;
1700	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
1701				CCP_ECC_MODULUS_BYTES);
1702	dst.address += CCP_ECC_OUTPUT_SIZE;
1703
1704	/* Restore the workarea address */
1705	dst.address = save;
1706
1707e_dst:
1708	ccp_dm_free(&dst);
1709
1710e_src:
1711	ccp_dm_free(&src);
1712
1713	return ret;
1714}
1715
1716static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
1717{
1718	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1719
1720	ecc->ecc_result = 0;
1721
1722	if (!ecc->mod ||
1723	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
1724		return -EINVAL;
1725
1726	switch (ecc->function) {
1727	case CCP_ECC_FUNCTION_MMUL_384BIT:
1728	case CCP_ECC_FUNCTION_MADD_384BIT:
1729	case CCP_ECC_FUNCTION_MINV_384BIT:
1730		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
1731
1732	case CCP_ECC_FUNCTION_PADD_384BIT:
1733	case CCP_ECC_FUNCTION_PMUL_384BIT:
1734	case CCP_ECC_FUNCTION_PDBL_384BIT:
1735		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
1736
1737	default:
1738		return -EINVAL;
1739	}
1740}
1741
1742int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1743{
1744	int ret;
1745
1746	cmd->engine_error = 0;
1747	cmd_q->cmd_error = 0;
1748	cmd_q->int_rcvd = 0;
1749	cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
1750
1751	switch (cmd->engine) {
1752	case CCP_ENGINE_AES:
1753		ret = ccp_run_aes_cmd(cmd_q, cmd);
 
 
 
 
 
 
 
 
 
 
1754		break;
1755	case CCP_ENGINE_XTS_AES_128:
1756		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
1757		break;
 
 
 
1758	case CCP_ENGINE_SHA:
1759		ret = ccp_run_sha_cmd(cmd_q, cmd);
1760		break;
1761	case CCP_ENGINE_RSA:
1762		ret = ccp_run_rsa_cmd(cmd_q, cmd);
1763		break;
1764	case CCP_ENGINE_PASSTHRU:
1765		ret = ccp_run_passthru_cmd(cmd_q, cmd);
 
 
 
1766		break;
1767	case CCP_ENGINE_ECC:
1768		ret = ccp_run_ecc_cmd(cmd_q, cmd);
1769		break;
1770	default:
1771		ret = -EINVAL;
1772	}
1773
1774	return ret;
1775}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * AMD Cryptographic Coprocessor (CCP) driver
   4 *
   5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
   6 *
   7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8 * Author: Gary R Hook <gary.hook@amd.com>
 
 
 
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
 
  13#include <linux/interrupt.h>
  14#include <crypto/scatterwalk.h>
  15#include <crypto/des.h>
  16#include <linux/ccp.h>
  17
  18#include "ccp-dev.h"
  19
  20/* SHA initial context values */
  21static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
  22	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  23	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  24	cpu_to_be32(SHA1_H4),
  25};
  26
  27static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  28	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  29	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  30	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  31	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  32};
  33
  34static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  35	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  36	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  37	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  38	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  39};
  40
  41static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  42	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
  43	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
  44	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
  45	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
  46};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  49	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
  50	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
  51	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
  52	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
  53};
  54
  55#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
  56					ccp_gen_jobid(ccp) : 0)
  57
  58static u32 ccp_gen_jobid(struct ccp_device *ccp)
  59{
  60	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  61}
  62
  63static void ccp_sg_free(struct ccp_sg_workarea *wa)
  64{
  65	if (wa->dma_count)
  66		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
  67
  68	wa->dma_count = 0;
  69}
  70
  71static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
  72				struct scatterlist *sg, u64 len,
  73				enum dma_data_direction dma_dir)
  74{
  75	memset(wa, 0, sizeof(*wa));
  76
  77	wa->sg = sg;
  78	if (!sg)
  79		return 0;
  80
  81	wa->nents = sg_nents_for_len(sg, len);
  82	if (wa->nents < 0)
  83		return wa->nents;
  84
  85	wa->bytes_left = len;
  86	wa->sg_used = 0;
  87
  88	if (len == 0)
  89		return 0;
  90
  91	if (dma_dir == DMA_NONE)
  92		return 0;
  93
  94	wa->dma_sg = sg;
  95	wa->dma_dev = dev;
  96	wa->dma_dir = dma_dir;
  97	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
  98	if (!wa->dma_count)
  99		return -ENOMEM;
 100
 101	return 0;
 102}
 103
 104static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 105{
 106	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 107
 108	if (!wa->sg)
 109		return;
 110
 111	wa->sg_used += nbytes;
 112	wa->bytes_left -= nbytes;
 113	if (wa->sg_used == wa->sg->length) {
 114		wa->sg = sg_next(wa->sg);
 115		wa->sg_used = 0;
 116	}
 117}
 118
 119static void ccp_dm_free(struct ccp_dm_workarea *wa)
 120{
 121	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 122		if (wa->address)
 123			dma_pool_free(wa->dma_pool, wa->address,
 124				      wa->dma.address);
 125	} else {
 126		if (wa->dma.address)
 127			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 128					 wa->dma.dir);
 129		kfree(wa->address);
 130	}
 131
 132	wa->address = NULL;
 133	wa->dma.address = 0;
 134}
 135
 136static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 137				struct ccp_cmd_queue *cmd_q,
 138				unsigned int len,
 139				enum dma_data_direction dir)
 140{
 141	memset(wa, 0, sizeof(*wa));
 142
 143	if (!len)
 144		return 0;
 145
 146	wa->dev = cmd_q->ccp->dev;
 147	wa->length = len;
 148
 149	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 150		wa->dma_pool = cmd_q->dma_pool;
 151
 152		wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
 153					     &wa->dma.address);
 154		if (!wa->address)
 155			return -ENOMEM;
 156
 157		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 158
 
 159	} else {
 160		wa->address = kzalloc(len, GFP_KERNEL);
 161		if (!wa->address)
 162			return -ENOMEM;
 163
 164		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 165						 dir);
 166		if (dma_mapping_error(wa->dev, wa->dma.address))
 167			return -ENOMEM;
 168
 169		wa->dma.length = len;
 170	}
 171	wa->dma.dir = dir;
 172
 173	return 0;
 174}
 175
 176static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 177			   struct scatterlist *sg, unsigned int sg_offset,
 178			   unsigned int len)
 179{
 180	WARN_ON(!wa->address);
 181
 182	if (len > (wa->length - wa_offset))
 183		return -EINVAL;
 184
 185	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 186				 0);
 187	return 0;
 188}
 189
 190static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 191			    struct scatterlist *sg, unsigned int sg_offset,
 192			    unsigned int len)
 193{
 194	WARN_ON(!wa->address);
 195
 196	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 197				 1);
 198}
 199
 200static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 201				   unsigned int wa_offset,
 202				   struct scatterlist *sg,
 203				   unsigned int sg_offset,
 204				   unsigned int len)
 205{
 206	u8 *p, *q;
 207	int	rc;
 208
 209	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
 210	if (rc)
 211		return rc;
 212
 213	p = wa->address + wa_offset;
 214	q = p + len - 1;
 215	while (p < q) {
 216		*p = *p ^ *q;
 217		*q = *p ^ *q;
 218		*p = *p ^ *q;
 219		p++;
 220		q--;
 
 
 
 
 
 
 
 
 
 
 
 221	}
 
 222	return 0;
 223}
 224
 225static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 226				    unsigned int wa_offset,
 227				    struct scatterlist *sg,
 228				    unsigned int sg_offset,
 229				    unsigned int len)
 230{
 231	u8 *p, *q;
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233	p = wa->address + wa_offset;
 234	q = p + len - 1;
 235	while (p < q) {
 236		*p = *p ^ *q;
 237		*q = *p ^ *q;
 238		*p = *p ^ *q;
 239		p++;
 240		q--;
 241	}
 242
 243	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
 244}
 245
 246static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 247{
 248	ccp_dm_free(&data->dm_wa);
 249	ccp_sg_free(&data->sg_wa);
 250}
 251
 252static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 253			 struct scatterlist *sg, u64 sg_len,
 254			 unsigned int dm_len,
 255			 enum dma_data_direction dir)
 256{
 257	int ret;
 258
 259	memset(data, 0, sizeof(*data));
 260
 261	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 262				   dir);
 263	if (ret)
 264		goto e_err;
 265
 266	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 267	if (ret)
 268		goto e_err;
 269
 270	return 0;
 271
 272e_err:
 273	ccp_free_data(data, cmd_q);
 274
 275	return ret;
 276}
 277
 278static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 279{
 280	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 281	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 282	unsigned int buf_count, nbytes;
 283
 284	/* Clear the buffer if setting it */
 285	if (!from)
 286		memset(dm_wa->address, 0, dm_wa->length);
 287
 288	if (!sg_wa->sg)
 289		return 0;
 290
 291	/* Perform the copy operation
 292	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 293	 *   an unsigned int
 294	 */
 295	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 296	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 297				 nbytes, from);
 298
 299	/* Update the structures and generate the count */
 300	buf_count = 0;
 301	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 302		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
 303			     dm_wa->length - buf_count);
 304		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 305
 306		buf_count += nbytes;
 307		ccp_update_sg_workarea(sg_wa, nbytes);
 308	}
 309
 310	return buf_count;
 311}
 312
 313static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 314{
 315	return ccp_queue_buf(data, 0);
 316}
 317
 318static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 319{
 320	return ccp_queue_buf(data, 1);
 321}
 322
 323static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 324			     struct ccp_op *op, unsigned int block_size,
 325			     bool blocksize_op)
 326{
 327	unsigned int sg_src_len, sg_dst_len, op_len;
 328
 329	/* The CCP can only DMA from/to one address each per operation. This
 330	 * requires that we find the smallest DMA area between the source
 331	 * and destination. The resulting len values will always be <= UINT_MAX
 332	 * because the dma length is an unsigned int.
 333	 */
 334	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
 335	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 336
 337	if (dst) {
 338		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
 339		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 340		op_len = min(sg_src_len, sg_dst_len);
 341	} else {
 342		op_len = sg_src_len;
 343	}
 344
 345	/* The data operation length will be at least block_size in length
 346	 * or the smaller of available sg room remaining for the source or
 347	 * the destination
 348	 */
 349	op_len = max(op_len, block_size);
 350
 351	/* Unless we have to buffer data, there's no reason to wait */
 352	op->soc = 0;
 353
 354	if (sg_src_len < block_size) {
 355		/* Not enough data in the sg element, so it
 356		 * needs to be buffered into a blocksize chunk
 357		 */
 358		int cp_len = ccp_fill_queue_buf(src);
 359
 360		op->soc = 1;
 361		op->src.u.dma.address = src->dm_wa.dma.address;
 362		op->src.u.dma.offset = 0;
 363		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 364	} else {
 365		/* Enough data in the sg element, but we need to
 366		 * adjust for any previously copied data
 367		 */
 368		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
 369		op->src.u.dma.offset = src->sg_wa.sg_used;
 370		op->src.u.dma.length = op_len & ~(block_size - 1);
 371
 372		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 373	}
 374
 375	if (dst) {
 376		if (sg_dst_len < block_size) {
 377			/* Not enough room in the sg element or we're on the
 378			 * last piece of data (when using padding), so the
 379			 * output needs to be buffered into a blocksize chunk
 380			 */
 381			op->soc = 1;
 382			op->dst.u.dma.address = dst->dm_wa.dma.address;
 383			op->dst.u.dma.offset = 0;
 384			op->dst.u.dma.length = op->src.u.dma.length;
 385		} else {
 386			/* Enough room in the sg element, but we need to
 387			 * adjust for any previously used area
 388			 */
 389			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
 390			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 391			op->dst.u.dma.length = op->src.u.dma.length;
 392		}
 393	}
 394}
 395
 396static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 397			     struct ccp_op *op)
 398{
 399	op->init = 0;
 400
 401	if (dst) {
 402		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 403			ccp_empty_queue_buf(dst);
 404		else
 405			ccp_update_sg_workarea(&dst->sg_wa,
 406					       op->dst.u.dma.length);
 407	}
 408}
 409
 410static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
 411			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 412			       u32 byte_swap, bool from)
 413{
 414	struct ccp_op op;
 415
 416	memset(&op, 0, sizeof(op));
 417
 418	op.cmd_q = cmd_q;
 419	op.jobid = jobid;
 420	op.eom = 1;
 421
 422	if (from) {
 423		op.soc = 1;
 424		op.src.type = CCP_MEMTYPE_SB;
 425		op.src.u.sb = sb;
 426		op.dst.type = CCP_MEMTYPE_SYSTEM;
 427		op.dst.u.dma.address = wa->dma.address;
 428		op.dst.u.dma.length = wa->length;
 429	} else {
 430		op.src.type = CCP_MEMTYPE_SYSTEM;
 431		op.src.u.dma.address = wa->dma.address;
 432		op.src.u.dma.length = wa->length;
 433		op.dst.type = CCP_MEMTYPE_SB;
 434		op.dst.u.sb = sb;
 435	}
 436
 437	op.u.passthru.byte_swap = byte_swap;
 438
 439	return cmd_q->ccp->vdata->perform->passthru(&op);
 440}
 441
 442static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
 443			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 444			  u32 byte_swap)
 445{
 446	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
 447}
 448
 449static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
 450			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 451			    u32 byte_swap)
 452{
 453	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
 454}
 455
 456static noinline_for_stack int
 457ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 458{
 459	struct ccp_aes_engine *aes = &cmd->u.aes;
 460	struct ccp_dm_workarea key, ctx;
 461	struct ccp_data src;
 462	struct ccp_op op;
 463	unsigned int dm_offset;
 464	int ret;
 465
 466	if (!((aes->key_len == AES_KEYSIZE_128) ||
 467	      (aes->key_len == AES_KEYSIZE_192) ||
 468	      (aes->key_len == AES_KEYSIZE_256)))
 469		return -EINVAL;
 470
 471	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 472		return -EINVAL;
 473
 474	if (aes->iv_len != AES_BLOCK_SIZE)
 475		return -EINVAL;
 476
 477	if (!aes->key || !aes->iv || !aes->src)
 478		return -EINVAL;
 479
 480	if (aes->cmac_final) {
 481		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 482			return -EINVAL;
 483
 484		if (!aes->cmac_key)
 485			return -EINVAL;
 486	}
 487
 488	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 489	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 490
 491	ret = -EIO;
 492	memset(&op, 0, sizeof(op));
 493	op.cmd_q = cmd_q;
 494	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 495	op.sb_key = cmd_q->sb_key;
 496	op.sb_ctx = cmd_q->sb_ctx;
 497	op.init = 1;
 498	op.u.aes.type = aes->type;
 499	op.u.aes.mode = aes->mode;
 500	op.u.aes.action = aes->action;
 501
 502	/* All supported key sizes fit in a single (32-byte) SB entry
 503	 * and must be in little endian format. Use the 256-bit byte
 504	 * swap passthru option to convert from big endian to little
 505	 * endian.
 506	 */
 507	ret = ccp_init_dm_workarea(&key, cmd_q,
 508				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 509				   DMA_TO_DEVICE);
 510	if (ret)
 511		return ret;
 512
 513	dm_offset = CCP_SB_BYTES - aes->key_len;
 514	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 515	if (ret)
 516		goto e_key;
 517	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 518			     CCP_PASSTHRU_BYTESWAP_256BIT);
 519	if (ret) {
 520		cmd->engine_error = cmd_q->cmd_error;
 521		goto e_key;
 522	}
 523
 524	/* The AES context fits in a single (32-byte) SB entry and
 525	 * must be in little endian format. Use the 256-bit byte swap
 526	 * passthru option to convert from big endian to little endian.
 527	 */
 528	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 529				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 530				   DMA_BIDIRECTIONAL);
 531	if (ret)
 532		goto e_key;
 533
 534	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 535	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 536	if (ret)
 537		goto e_ctx;
 538	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 539			     CCP_PASSTHRU_BYTESWAP_256BIT);
 540	if (ret) {
 541		cmd->engine_error = cmd_q->cmd_error;
 542		goto e_ctx;
 543	}
 544
 545	/* Send data to the CCP AES engine */
 546	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 547			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 548	if (ret)
 549		goto e_ctx;
 550
 551	while (src.sg_wa.bytes_left) {
 552		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 553		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 554			op.eom = 1;
 555
 556			/* Push the K1/K2 key to the CCP now */
 557			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
 558					       op.sb_ctx,
 559					       CCP_PASSTHRU_BYTESWAP_256BIT);
 560			if (ret) {
 561				cmd->engine_error = cmd_q->cmd_error;
 562				goto e_src;
 563			}
 564
 565			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 566					      aes->cmac_key_len);
 567			if (ret)
 568				goto e_src;
 569			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 570					     CCP_PASSTHRU_BYTESWAP_256BIT);
 571			if (ret) {
 572				cmd->engine_error = cmd_q->cmd_error;
 573				goto e_src;
 574			}
 575		}
 576
 577		ret = cmd_q->ccp->vdata->perform->aes(&op);
 578		if (ret) {
 579			cmd->engine_error = cmd_q->cmd_error;
 580			goto e_src;
 581		}
 582
 583		ccp_process_data(&src, NULL, &op);
 584	}
 585
 586	/* Retrieve the AES context - convert from LE to BE using
 587	 * 32-byte (256-bit) byteswapping
 588	 */
 589	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 590			       CCP_PASSTHRU_BYTESWAP_256BIT);
 591	if (ret) {
 592		cmd->engine_error = cmd_q->cmd_error;
 593		goto e_src;
 594	}
 595
 596	/* ...but we only need AES_BLOCK_SIZE bytes */
 597	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 598	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 599
 600e_src:
 601	ccp_free_data(&src, cmd_q);
 602
 603e_ctx:
 604	ccp_dm_free(&ctx);
 605
 606e_key:
 607	ccp_dm_free(&key);
 608
 609	return ret;
 610}
 611
 612static noinline_for_stack int
 613ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 614{
 615	struct ccp_aes_engine *aes = &cmd->u.aes;
 616	struct ccp_dm_workarea key, ctx, final_wa, tag;
 617	struct ccp_data src, dst;
 618	struct ccp_data aad;
 619	struct ccp_op op;
 620
 621	unsigned long long *final;
 622	unsigned int dm_offset;
 623	unsigned int authsize;
 624	unsigned int jobid;
 625	unsigned int ilen;
 626	bool in_place = true; /* Default value */
 627	int ret;
 628
 629	struct scatterlist *p_inp, sg_inp[2];
 630	struct scatterlist *p_tag, sg_tag[2];
 631	struct scatterlist *p_outp, sg_outp[2];
 632	struct scatterlist *p_aad;
 633
 634	if (!aes->iv)
 635		return -EINVAL;
 636
 637	if (!((aes->key_len == AES_KEYSIZE_128) ||
 638		(aes->key_len == AES_KEYSIZE_192) ||
 639		(aes->key_len == AES_KEYSIZE_256)))
 640		return -EINVAL;
 641
 642	if (!aes->key) /* Gotta have a key SGL */
 643		return -EINVAL;
 644
 645	/* Zero defaults to 16 bytes, the maximum size */
 646	authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
 647	switch (authsize) {
 648	case 16:
 649	case 15:
 650	case 14:
 651	case 13:
 652	case 12:
 653	case 8:
 654	case 4:
 655		break;
 656	default:
 657		return -EINVAL;
 658	}
 659
 660	/* First, decompose the source buffer into AAD & PT,
 661	 * and the destination buffer into AAD, CT & tag, or
 662	 * the input into CT & tag.
 663	 * It is expected that the input and output SGs will
 664	 * be valid, even if the AAD and input lengths are 0.
 665	 */
 666	p_aad = aes->src;
 667	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
 668	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
 669	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 670		ilen = aes->src_len;
 671		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
 672	} else {
 673		/* Input length for decryption includes tag */
 674		ilen = aes->src_len - authsize;
 675		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
 676	}
 677
 678	jobid = CCP_NEW_JOBID(cmd_q->ccp);
 679
 680	memset(&op, 0, sizeof(op));
 681	op.cmd_q = cmd_q;
 682	op.jobid = jobid;
 683	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 684	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 685	op.init = 1;
 686	op.u.aes.type = aes->type;
 687
 688	/* Copy the key to the LSB */
 689	ret = ccp_init_dm_workarea(&key, cmd_q,
 690				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 691				   DMA_TO_DEVICE);
 692	if (ret)
 693		return ret;
 694
 695	dm_offset = CCP_SB_BYTES - aes->key_len;
 696	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 697	if (ret)
 698		goto e_key;
 699	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 700			     CCP_PASSTHRU_BYTESWAP_256BIT);
 701	if (ret) {
 702		cmd->engine_error = cmd_q->cmd_error;
 703		goto e_key;
 704	}
 705
 706	/* Copy the context (IV) to the LSB.
 707	 * There is an assumption here that the IV is 96 bits in length, plus
 708	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
 709	 */
 710	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 711				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 712				   DMA_BIDIRECTIONAL);
 713	if (ret)
 714		goto e_key;
 715
 716	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
 717	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 718	if (ret)
 719		goto e_ctx;
 720
 721	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 722			     CCP_PASSTHRU_BYTESWAP_256BIT);
 723	if (ret) {
 724		cmd->engine_error = cmd_q->cmd_error;
 725		goto e_ctx;
 726	}
 727
 728	op.init = 1;
 729	if (aes->aad_len > 0) {
 730		/* Step 1: Run a GHASH over the Additional Authenticated Data */
 731		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
 732				    AES_BLOCK_SIZE,
 733				    DMA_TO_DEVICE);
 734		if (ret)
 735			goto e_ctx;
 736
 737		op.u.aes.mode = CCP_AES_MODE_GHASH;
 738		op.u.aes.action = CCP_AES_GHASHAAD;
 739
 740		while (aad.sg_wa.bytes_left) {
 741			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
 742
 743			ret = cmd_q->ccp->vdata->perform->aes(&op);
 744			if (ret) {
 745				cmd->engine_error = cmd_q->cmd_error;
 746				goto e_aad;
 747			}
 748
 749			ccp_process_data(&aad, NULL, &op);
 750			op.init = 0;
 751		}
 752	}
 753
 754	op.u.aes.mode = CCP_AES_MODE_GCTR;
 755	op.u.aes.action = aes->action;
 756
 757	if (ilen > 0) {
 758		/* Step 2: Run a GCTR over the plaintext */
 759		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
 760
 761		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
 762				    AES_BLOCK_SIZE,
 763				    in_place ? DMA_BIDIRECTIONAL
 764					     : DMA_TO_DEVICE);
 765		if (ret)
 766			goto e_ctx;
 767
 768		if (in_place) {
 769			dst = src;
 770		} else {
 771			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
 772					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 773			if (ret)
 774				goto e_src;
 775		}
 776
 777		op.soc = 0;
 778		op.eom = 0;
 779		op.init = 1;
 780		while (src.sg_wa.bytes_left) {
 781			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 782			if (!src.sg_wa.bytes_left) {
 783				unsigned int nbytes = ilen % AES_BLOCK_SIZE;
 784
 785				if (nbytes) {
 786					op.eom = 1;
 787					op.u.aes.size = (nbytes * 8) - 1;
 788				}
 789			}
 790
 791			ret = cmd_q->ccp->vdata->perform->aes(&op);
 792			if (ret) {
 793				cmd->engine_error = cmd_q->cmd_error;
 794				goto e_dst;
 795			}
 796
 797			ccp_process_data(&src, &dst, &op);
 798			op.init = 0;
 799		}
 800	}
 801
 802	/* Step 3: Update the IV portion of the context with the original IV */
 803	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 804			       CCP_PASSTHRU_BYTESWAP_256BIT);
 805	if (ret) {
 806		cmd->engine_error = cmd_q->cmd_error;
 807		goto e_dst;
 808	}
 809
 810	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 811	if (ret)
 812		goto e_dst;
 813
 814	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 815			     CCP_PASSTHRU_BYTESWAP_256BIT);
 816	if (ret) {
 817		cmd->engine_error = cmd_q->cmd_error;
 818		goto e_dst;
 819	}
 820
 821	/* Step 4: Concatenate the lengths of the AAD and source, and
 822	 * hash that 16 byte buffer.
 823	 */
 824	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
 825				   DMA_BIDIRECTIONAL);
 826	if (ret)
 827		goto e_dst;
 828	final = (unsigned long long *) final_wa.address;
 829	final[0] = cpu_to_be64(aes->aad_len * 8);
 830	final[1] = cpu_to_be64(ilen * 8);
 831
 832	memset(&op, 0, sizeof(op));
 833	op.cmd_q = cmd_q;
 834	op.jobid = jobid;
 835	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 836	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 837	op.init = 1;
 838	op.u.aes.type = aes->type;
 839	op.u.aes.mode = CCP_AES_MODE_GHASH;
 840	op.u.aes.action = CCP_AES_GHASHFINAL;
 841	op.src.type = CCP_MEMTYPE_SYSTEM;
 842	op.src.u.dma.address = final_wa.dma.address;
 843	op.src.u.dma.length = AES_BLOCK_SIZE;
 844	op.dst.type = CCP_MEMTYPE_SYSTEM;
 845	op.dst.u.dma.address = final_wa.dma.address;
 846	op.dst.u.dma.length = AES_BLOCK_SIZE;
 847	op.eom = 1;
 848	op.u.aes.size = 0;
 849	ret = cmd_q->ccp->vdata->perform->aes(&op);
 850	if (ret)
 851		goto e_dst;
 852
 853	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 854		/* Put the ciphered tag after the ciphertext. */
 855		ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
 856	} else {
 857		/* Does this ciphered tag match the input? */
 858		ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
 859					   DMA_BIDIRECTIONAL);
 860		if (ret)
 861			goto e_tag;
 862		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
 863		if (ret)
 864			goto e_tag;
 865
 866		ret = crypto_memneq(tag.address, final_wa.address,
 867				    authsize) ? -EBADMSG : 0;
 868		ccp_dm_free(&tag);
 869	}
 870
 871e_tag:
 872	ccp_dm_free(&final_wa);
 873
 874e_dst:
 875	if (ilen > 0 && !in_place)
 876		ccp_free_data(&dst, cmd_q);
 877
 878e_src:
 879	if (ilen > 0)
 880		ccp_free_data(&src, cmd_q);
 881
 882e_aad:
 883	if (aes->aad_len)
 884		ccp_free_data(&aad, cmd_q);
 885
 886e_ctx:
 887	ccp_dm_free(&ctx);
 888
 889e_key:
 890	ccp_dm_free(&key);
 891
 892	return ret;
 893}
 894
 895static noinline_for_stack int
 896ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 897{
 898	struct ccp_aes_engine *aes = &cmd->u.aes;
 899	struct ccp_dm_workarea key, ctx;
 900	struct ccp_data src, dst;
 901	struct ccp_op op;
 902	unsigned int dm_offset;
 903	bool in_place = false;
 904	int ret;
 905
 
 
 
 906	if (!((aes->key_len == AES_KEYSIZE_128) ||
 907	      (aes->key_len == AES_KEYSIZE_192) ||
 908	      (aes->key_len == AES_KEYSIZE_256)))
 909		return -EINVAL;
 910
 911	if (((aes->mode == CCP_AES_MODE_ECB) ||
 912	     (aes->mode == CCP_AES_MODE_CBC)) &&
 
 913	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 914		return -EINVAL;
 915
 916	if (!aes->key || !aes->src || !aes->dst)
 917		return -EINVAL;
 918
 919	if (aes->mode != CCP_AES_MODE_ECB) {
 920		if (aes->iv_len != AES_BLOCK_SIZE)
 921			return -EINVAL;
 922
 923		if (!aes->iv)
 924			return -EINVAL;
 925	}
 926
 927	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 928	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 929
 930	ret = -EIO;
 931	memset(&op, 0, sizeof(op));
 932	op.cmd_q = cmd_q;
 933	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 934	op.sb_key = cmd_q->sb_key;
 935	op.sb_ctx = cmd_q->sb_ctx;
 936	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 937	op.u.aes.type = aes->type;
 938	op.u.aes.mode = aes->mode;
 939	op.u.aes.action = aes->action;
 940
 941	/* All supported key sizes fit in a single (32-byte) SB entry
 942	 * and must be in little endian format. Use the 256-bit byte
 943	 * swap passthru option to convert from big endian to little
 944	 * endian.
 945	 */
 946	ret = ccp_init_dm_workarea(&key, cmd_q,
 947				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 948				   DMA_TO_DEVICE);
 949	if (ret)
 950		return ret;
 951
 952	dm_offset = CCP_SB_BYTES - aes->key_len;
 953	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 954	if (ret)
 955		goto e_key;
 956	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 957			     CCP_PASSTHRU_BYTESWAP_256BIT);
 958	if (ret) {
 959		cmd->engine_error = cmd_q->cmd_error;
 960		goto e_key;
 961	}
 962
 963	/* The AES context fits in a single (32-byte) SB entry and
 964	 * must be in little endian format. Use the 256-bit byte swap
 965	 * passthru option to convert from big endian to little endian.
 966	 */
 967	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 968				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 969				   DMA_BIDIRECTIONAL);
 970	if (ret)
 971		goto e_key;
 972
 973	if (aes->mode != CCP_AES_MODE_ECB) {
 974		/* Load the AES context - convert to LE */
 975		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 976		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 977		if (ret)
 978			goto e_ctx;
 979		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 980				     CCP_PASSTHRU_BYTESWAP_256BIT);
 981		if (ret) {
 982			cmd->engine_error = cmd_q->cmd_error;
 983			goto e_ctx;
 984		}
 985	}
 986	switch (aes->mode) {
 987	case CCP_AES_MODE_CFB: /* CFB128 only */
 988	case CCP_AES_MODE_CTR:
 989		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
 990		break;
 991	default:
 992		op.u.aes.size = 0;
 993	}
 994
 995	/* Prepare the input and output data workareas. For in-place
 996	 * operations we need to set the dma direction to BIDIRECTIONAL
 997	 * and copy the src workarea to the dst workarea.
 998	 */
 999	if (sg_virt(aes->src) == sg_virt(aes->dst))
1000		in_place = true;
1001
1002	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1003			    AES_BLOCK_SIZE,
1004			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1005	if (ret)
1006		goto e_ctx;
1007
1008	if (in_place) {
1009		dst = src;
1010	} else {
1011		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1012				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1013		if (ret)
1014			goto e_src;
1015	}
1016
1017	/* Send data to the CCP AES engine */
1018	while (src.sg_wa.bytes_left) {
1019		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1020		if (!src.sg_wa.bytes_left) {
1021			op.eom = 1;
1022
1023			/* Since we don't retrieve the AES context in ECB
1024			 * mode we have to wait for the operation to complete
1025			 * on the last piece of data
1026			 */
1027			if (aes->mode == CCP_AES_MODE_ECB)
1028				op.soc = 1;
1029		}
1030
1031		ret = cmd_q->ccp->vdata->perform->aes(&op);
1032		if (ret) {
1033			cmd->engine_error = cmd_q->cmd_error;
1034			goto e_dst;
1035		}
1036
1037		ccp_process_data(&src, &dst, &op);
1038	}
1039
1040	if (aes->mode != CCP_AES_MODE_ECB) {
1041		/* Retrieve the AES context - convert from LE to BE using
1042		 * 32-byte (256-bit) byteswapping
1043		 */
1044		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1045				       CCP_PASSTHRU_BYTESWAP_256BIT);
1046		if (ret) {
1047			cmd->engine_error = cmd_q->cmd_error;
1048			goto e_dst;
1049		}
1050
1051		/* ...but we only need AES_BLOCK_SIZE bytes */
1052		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1053		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1054	}
1055
1056e_dst:
1057	if (!in_place)
1058		ccp_free_data(&dst, cmd_q);
1059
1060e_src:
1061	ccp_free_data(&src, cmd_q);
1062
1063e_ctx:
1064	ccp_dm_free(&ctx);
1065
1066e_key:
1067	ccp_dm_free(&key);
1068
1069	return ret;
1070}
1071
1072static noinline_for_stack int
1073ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1074{
1075	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1076	struct ccp_dm_workarea key, ctx;
1077	struct ccp_data src, dst;
1078	struct ccp_op op;
1079	unsigned int unit_size, dm_offset;
1080	bool in_place = false;
1081	unsigned int sb_count;
1082	enum ccp_aes_type aestype;
1083	int ret;
1084
1085	switch (xts->unit_size) {
1086	case CCP_XTS_AES_UNIT_SIZE_16:
1087		unit_size = 16;
1088		break;
1089	case CCP_XTS_AES_UNIT_SIZE_512:
1090		unit_size = 512;
1091		break;
1092	case CCP_XTS_AES_UNIT_SIZE_1024:
1093		unit_size = 1024;
1094		break;
1095	case CCP_XTS_AES_UNIT_SIZE_2048:
1096		unit_size = 2048;
1097		break;
1098	case CCP_XTS_AES_UNIT_SIZE_4096:
1099		unit_size = 4096;
1100		break;
1101
1102	default:
1103		return -EINVAL;
1104	}
1105
1106	if (xts->key_len == AES_KEYSIZE_128)
1107		aestype = CCP_AES_TYPE_128;
1108	else if (xts->key_len == AES_KEYSIZE_256)
1109		aestype = CCP_AES_TYPE_256;
1110	else
1111		return -EINVAL;
1112
1113	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1114		return -EINVAL;
1115
1116	if (xts->iv_len != AES_BLOCK_SIZE)
1117		return -EINVAL;
1118
1119	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1120		return -EINVAL;
1121
1122	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1123	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1124
1125	ret = -EIO;
1126	memset(&op, 0, sizeof(op));
1127	op.cmd_q = cmd_q;
1128	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1129	op.sb_key = cmd_q->sb_key;
1130	op.sb_ctx = cmd_q->sb_ctx;
1131	op.init = 1;
1132	op.u.xts.type = aestype;
1133	op.u.xts.action = xts->action;
1134	op.u.xts.unit_size = xts->unit_size;
1135
1136	/* A version 3 device only supports 128-bit keys, which fits into a
1137	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1138	 * SB entries.
1139	 */
1140	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1141		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1142	else
1143		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1144	ret = ccp_init_dm_workarea(&key, cmd_q,
1145				   sb_count * CCP_SB_BYTES,
1146				   DMA_TO_DEVICE);
1147	if (ret)
1148		return ret;
1149
1150	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1151		/* All supported key sizes must be in little endian format.
1152		 * Use the 256-bit byte swap passthru option to convert from
1153		 * big endian to little endian.
1154		 */
1155		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1156		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1157		if (ret)
1158			goto e_key;
1159		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1160		if (ret)
1161			goto e_key;
1162	} else {
1163		/* Version 5 CCPs use a 512-bit space for the key: each portion
1164		 * occupies 256 bits, or one entire slot, and is zero-padded.
1165		 */
1166		unsigned int pad;
1167
1168		dm_offset = CCP_SB_BYTES;
1169		pad = dm_offset - xts->key_len;
1170		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1171		if (ret)
1172			goto e_key;
1173		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1174				      xts->key_len, xts->key_len);
1175		if (ret)
1176			goto e_key;
1177	}
1178	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1179			     CCP_PASSTHRU_BYTESWAP_256BIT);
1180	if (ret) {
1181		cmd->engine_error = cmd_q->cmd_error;
1182		goto e_key;
1183	}
1184
1185	/* The AES context fits in a single (32-byte) SB entry and
1186	 * for XTS is already in little endian format so no byte swapping
1187	 * is needed.
1188	 */
1189	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1190				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1191				   DMA_BIDIRECTIONAL);
1192	if (ret)
1193		goto e_key;
1194
1195	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1196	if (ret)
1197		goto e_ctx;
1198	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1199			     CCP_PASSTHRU_BYTESWAP_NOOP);
1200	if (ret) {
1201		cmd->engine_error = cmd_q->cmd_error;
1202		goto e_ctx;
1203	}
1204
1205	/* Prepare the input and output data workareas. For in-place
1206	 * operations we need to set the dma direction to BIDIRECTIONAL
1207	 * and copy the src workarea to the dst workarea.
1208	 */
1209	if (sg_virt(xts->src) == sg_virt(xts->dst))
1210		in_place = true;
1211
1212	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1213			    unit_size,
1214			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1215	if (ret)
1216		goto e_ctx;
1217
1218	if (in_place) {
1219		dst = src;
1220	} else {
1221		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1222				    unit_size, DMA_FROM_DEVICE);
1223		if (ret)
1224			goto e_src;
1225	}
1226
1227	/* Send data to the CCP AES engine */
1228	while (src.sg_wa.bytes_left) {
1229		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1230		if (!src.sg_wa.bytes_left)
1231			op.eom = 1;
1232
1233		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1234		if (ret) {
1235			cmd->engine_error = cmd_q->cmd_error;
1236			goto e_dst;
1237		}
1238
1239		ccp_process_data(&src, &dst, &op);
1240	}
1241
1242	/* Retrieve the AES context - convert from LE to BE using
1243	 * 32-byte (256-bit) byteswapping
1244	 */
1245	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1246			       CCP_PASSTHRU_BYTESWAP_256BIT);
1247	if (ret) {
1248		cmd->engine_error = cmd_q->cmd_error;
1249		goto e_dst;
1250	}
1251
1252	/* ...but we only need AES_BLOCK_SIZE bytes */
1253	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1254	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1255
1256e_dst:
1257	if (!in_place)
1258		ccp_free_data(&dst, cmd_q);
1259
1260e_src:
1261	ccp_free_data(&src, cmd_q);
1262
1263e_ctx:
1264	ccp_dm_free(&ctx);
1265
1266e_key:
1267	ccp_dm_free(&key);
1268
1269	return ret;
1270}
1271
1272static noinline_for_stack int
1273ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1274{
1275	struct ccp_des3_engine *des3 = &cmd->u.des3;
1276
1277	struct ccp_dm_workarea key, ctx;
1278	struct ccp_data src, dst;
1279	struct ccp_op op;
1280	unsigned int dm_offset;
1281	unsigned int len_singlekey;
1282	bool in_place = false;
1283	int ret;
1284
1285	/* Error checks */
1286	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1287		return -EINVAL;
1288
1289	if (!cmd_q->ccp->vdata->perform->des3)
1290		return -EINVAL;
1291
1292	if (des3->key_len != DES3_EDE_KEY_SIZE)
1293		return -EINVAL;
1294
1295	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1296		(des3->mode == CCP_DES3_MODE_CBC)) &&
1297		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1298		return -EINVAL;
1299
1300	if (!des3->key || !des3->src || !des3->dst)
1301		return -EINVAL;
 
1302
1303	if (des3->mode != CCP_DES3_MODE_ECB) {
1304		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
 
 
1305			return -EINVAL;
1306
1307		if (!des3->iv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308			return -EINVAL;
1309	}
1310
1311	ret = -EIO;
1312	/* Zero out all the fields of the command desc */
1313	memset(&op, 0, sizeof(op));
1314
1315	/* Set up the Function field */
1316	op.cmd_q = cmd_q;
1317	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1318	op.sb_key = cmd_q->sb_key;
1319
1320	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1321	op.u.des3.type = des3->type;
1322	op.u.des3.mode = des3->mode;
1323	op.u.des3.action = des3->action;
1324
1325	/*
1326	 * All supported key sizes fit in a single (32-byte) KSB entry and
1327	 * (like AES) must be in little endian format. Use the 256-bit byte
1328	 * swap passthru option to convert from big endian to little endian.
1329	 */
1330	ret = ccp_init_dm_workarea(&key, cmd_q,
1331				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1332				   DMA_TO_DEVICE);
1333	if (ret)
1334		return ret;
1335
1336	/*
1337	 * The contents of the key triplet are in the reverse order of what
1338	 * is required by the engine. Copy the 3 pieces individually to put
1339	 * them where they belong.
1340	 */
1341	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1342
1343	len_singlekey = des3->key_len / 3;
1344	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1345			      des3->key, 0, len_singlekey);
1346	if (ret)
1347		goto e_key;
1348	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1349			      des3->key, len_singlekey, len_singlekey);
1350	if (ret)
1351		goto e_key;
1352	ret = ccp_set_dm_area(&key, dm_offset,
1353			      des3->key, 2 * len_singlekey, len_singlekey);
1354	if (ret)
1355		goto e_key;
1356
1357	/* Copy the key to the SB */
1358	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1359			     CCP_PASSTHRU_BYTESWAP_256BIT);
1360	if (ret) {
1361		cmd->engine_error = cmd_q->cmd_error;
1362		goto e_key;
1363	}
1364
1365	/*
1366	 * The DES3 context fits in a single (32-byte) KSB entry and
1367	 * must be in little endian format. Use the 256-bit byte swap
1368	 * passthru option to convert from big endian to little endian.
1369	 */
1370	if (des3->mode != CCP_DES3_MODE_ECB) {
1371		op.sb_ctx = cmd_q->sb_ctx;
1372
1373		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1374					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1375					   DMA_BIDIRECTIONAL);
1376		if (ret)
1377			goto e_key;
1378
1379		/* Load the context into the LSB */
1380		dm_offset = CCP_SB_BYTES - des3->iv_len;
1381		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1382				      des3->iv_len);
1383		if (ret)
1384			goto e_ctx;
1385
1386		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1387				     CCP_PASSTHRU_BYTESWAP_256BIT);
1388		if (ret) {
1389			cmd->engine_error = cmd_q->cmd_error;
1390			goto e_ctx;
1391		}
1392	}
1393
1394	/*
1395	 * Prepare the input and output data workareas. For in-place
1396	 * operations we need to set the dma direction to BIDIRECTIONAL
1397	 * and copy the src workarea to the dst workarea.
1398	 */
1399	if (sg_virt(des3->src) == sg_virt(des3->dst))
1400		in_place = true;
1401
1402	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1403			DES3_EDE_BLOCK_SIZE,
1404			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1405	if (ret)
1406		goto e_ctx;
1407
1408	if (in_place)
1409		dst = src;
1410	else {
1411		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1412				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1413		if (ret)
1414			goto e_src;
1415	}
1416
1417	/* Send data to the CCP DES3 engine */
1418	while (src.sg_wa.bytes_left) {
1419		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1420		if (!src.sg_wa.bytes_left) {
1421			op.eom = 1;
1422
1423			/* Since we don't retrieve the context in ECB mode
1424			 * we have to wait for the operation to complete
1425			 * on the last piece of data
1426			 */
1427			op.soc = 0;
1428		}
1429
1430		ret = cmd_q->ccp->vdata->perform->des3(&op);
1431		if (ret) {
1432			cmd->engine_error = cmd_q->cmd_error;
1433			goto e_dst;
1434		}
1435
1436		ccp_process_data(&src, &dst, &op);
1437	}
1438
1439	if (des3->mode != CCP_DES3_MODE_ECB) {
1440		/* Retrieve the context and make BE */
1441		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1442				       CCP_PASSTHRU_BYTESWAP_256BIT);
1443		if (ret) {
1444			cmd->engine_error = cmd_q->cmd_error;
1445			goto e_dst;
1446		}
1447
1448		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1449		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1450				DES3_EDE_BLOCK_SIZE);
1451	}
1452e_dst:
1453	if (!in_place)
1454		ccp_free_data(&dst, cmd_q);
1455
1456e_src:
1457	ccp_free_data(&src, cmd_q);
1458
1459e_ctx:
1460	if (des3->mode != CCP_DES3_MODE_ECB)
1461		ccp_dm_free(&ctx);
1462
1463e_key:
1464	ccp_dm_free(&key);
1465
1466	return ret;
1467}
1468
1469static noinline_for_stack int
1470ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1471{
1472	struct ccp_sha_engine *sha = &cmd->u.sha;
1473	struct ccp_dm_workarea ctx;
1474	struct ccp_data src;
1475	struct ccp_op op;
1476	unsigned int ioffset, ooffset;
1477	unsigned int digest_size;
1478	int sb_count;
1479	const void *init;
1480	u64 block_size;
1481	int ctx_size;
1482	int ret;
1483
1484	switch (sha->type) {
1485	case CCP_SHA_TYPE_1:
1486		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1487			return -EINVAL;
1488		block_size = SHA1_BLOCK_SIZE;
1489		break;
1490	case CCP_SHA_TYPE_224:
1491		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1492			return -EINVAL;
1493		block_size = SHA224_BLOCK_SIZE;
1494		break;
1495	case CCP_SHA_TYPE_256:
1496		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1497			return -EINVAL;
1498		block_size = SHA256_BLOCK_SIZE;
1499		break;
1500	case CCP_SHA_TYPE_384:
1501		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1502		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1503			return -EINVAL;
1504		block_size = SHA384_BLOCK_SIZE;
1505		break;
1506	case CCP_SHA_TYPE_512:
1507		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1508		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1509			return -EINVAL;
1510		block_size = SHA512_BLOCK_SIZE;
1511		break;
1512	default:
1513		return -EINVAL;
1514	}
1515
1516	if (!sha->ctx)
1517		return -EINVAL;
1518
1519	if (!sha->final && (sha->src_len & (block_size - 1)))
1520		return -EINVAL;
1521
1522	/* The version 3 device can't handle zero-length input */
1523	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1524
1525		if (!sha->src_len) {
1526			unsigned int digest_len;
1527			const u8 *sha_zero;
1528
1529			/* Not final, just return */
1530			if (!sha->final)
1531				return 0;
1532
1533			/* CCP can't do a zero length sha operation so the
1534			 * caller must buffer the data.
1535			 */
1536			if (sha->msg_bits)
1537				return -EINVAL;
1538
1539			/* The CCP cannot perform zero-length sha operations
1540			 * so the caller is required to buffer data for the
1541			 * final operation. However, a sha operation for a
1542			 * message with a total length of zero is valid so
1543			 * known values are required to supply the result.
1544			 */
1545			switch (sha->type) {
1546			case CCP_SHA_TYPE_1:
1547				sha_zero = sha1_zero_message_hash;
1548				digest_len = SHA1_DIGEST_SIZE;
1549				break;
1550			case CCP_SHA_TYPE_224:
1551				sha_zero = sha224_zero_message_hash;
1552				digest_len = SHA224_DIGEST_SIZE;
1553				break;
1554			case CCP_SHA_TYPE_256:
1555				sha_zero = sha256_zero_message_hash;
1556				digest_len = SHA256_DIGEST_SIZE;
1557				break;
1558			default:
1559				return -EINVAL;
1560			}
1561
1562			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1563						 digest_len, 1);
1564
1565			return 0;
1566		}
1567	}
1568
1569	/* Set variables used throughout */
1570	switch (sha->type) {
1571	case CCP_SHA_TYPE_1:
1572		digest_size = SHA1_DIGEST_SIZE;
1573		init = (void *) ccp_sha1_init;
1574		ctx_size = SHA1_DIGEST_SIZE;
1575		sb_count = 1;
1576		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1577			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1578		else
1579			ooffset = ioffset = 0;
1580		break;
1581	case CCP_SHA_TYPE_224:
1582		digest_size = SHA224_DIGEST_SIZE;
1583		init = (void *) ccp_sha224_init;
1584		ctx_size = SHA256_DIGEST_SIZE;
1585		sb_count = 1;
1586		ioffset = 0;
1587		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1588			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1589		else
1590			ooffset = 0;
1591		break;
1592	case CCP_SHA_TYPE_256:
1593		digest_size = SHA256_DIGEST_SIZE;
1594		init = (void *) ccp_sha256_init;
1595		ctx_size = SHA256_DIGEST_SIZE;
1596		sb_count = 1;
1597		ooffset = ioffset = 0;
1598		break;
1599	case CCP_SHA_TYPE_384:
1600		digest_size = SHA384_DIGEST_SIZE;
1601		init = (void *) ccp_sha384_init;
1602		ctx_size = SHA512_DIGEST_SIZE;
1603		sb_count = 2;
1604		ioffset = 0;
1605		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1606		break;
1607	case CCP_SHA_TYPE_512:
1608		digest_size = SHA512_DIGEST_SIZE;
1609		init = (void *) ccp_sha512_init;
1610		ctx_size = SHA512_DIGEST_SIZE;
1611		sb_count = 2;
1612		ooffset = ioffset = 0;
1613		break;
1614	default:
1615		ret = -EINVAL;
1616		goto e_data;
1617	}
1618
1619	/* For zero-length plaintext the src pointer is ignored;
1620	 * otherwise both parts must be valid
1621	 */
1622	if (sha->src_len && !sha->src)
1623		return -EINVAL;
1624
1625	memset(&op, 0, sizeof(op));
1626	op.cmd_q = cmd_q;
1627	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1628	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1629	op.u.sha.type = sha->type;
1630	op.u.sha.msg_bits = sha->msg_bits;
1631
1632	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1633	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1634	 * first slot, and the left half in the second. Each portion must then
1635	 * be in little endian format: use the 256-bit byte swap option.
1636	 */
1637	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
 
1638				   DMA_BIDIRECTIONAL);
1639	if (ret)
1640		return ret;
 
1641	if (sha->first) {
 
 
1642		switch (sha->type) {
1643		case CCP_SHA_TYPE_1:
 
 
1644		case CCP_SHA_TYPE_224:
 
 
1645		case CCP_SHA_TYPE_256:
1646			memcpy(ctx.address + ioffset, init, ctx_size);
1647			break;
1648		case CCP_SHA_TYPE_384:
1649		case CCP_SHA_TYPE_512:
1650			memcpy(ctx.address + ctx_size / 2, init,
1651			       ctx_size / 2);
1652			memcpy(ctx.address, init + ctx_size / 2,
1653			       ctx_size / 2);
1654			break;
1655		default:
1656			ret = -EINVAL;
1657			goto e_ctx;
1658		}
 
1659	} else {
1660		/* Restore the context */
1661		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1662				      sb_count * CCP_SB_BYTES);
1663		if (ret)
1664			goto e_ctx;
1665	}
1666
1667	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1668			     CCP_PASSTHRU_BYTESWAP_256BIT);
1669	if (ret) {
1670		cmd->engine_error = cmd_q->cmd_error;
1671		goto e_ctx;
1672	}
1673
1674	if (sha->src) {
1675		/* Send data to the CCP SHA engine; block_size is set above */
1676		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1677				    block_size, DMA_TO_DEVICE);
1678		if (ret)
1679			goto e_ctx;
1680
1681		while (src.sg_wa.bytes_left) {
1682			ccp_prepare_data(&src, NULL, &op, block_size, false);
1683			if (sha->final && !src.sg_wa.bytes_left)
1684				op.eom = 1;
1685
1686			ret = cmd_q->ccp->vdata->perform->sha(&op);
1687			if (ret) {
1688				cmd->engine_error = cmd_q->cmd_error;
1689				goto e_data;
1690			}
1691
1692			ccp_process_data(&src, NULL, &op);
1693		}
1694	} else {
1695		op.eom = 1;
1696		ret = cmd_q->ccp->vdata->perform->sha(&op);
1697		if (ret) {
1698			cmd->engine_error = cmd_q->cmd_error;
1699			goto e_data;
1700		}
 
 
1701	}
1702
1703	/* Retrieve the SHA context - convert from LE to BE using
1704	 * 32-byte (256-bit) byteswapping to BE
1705	 */
1706	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1707			       CCP_PASSTHRU_BYTESWAP_256BIT);
1708	if (ret) {
1709		cmd->engine_error = cmd_q->cmd_error;
1710		goto e_data;
1711	}
1712
1713	if (sha->final) {
1714		/* Finishing up, so get the digest */
 
 
 
 
 
 
 
1715		switch (sha->type) {
1716		case CCP_SHA_TYPE_1:
 
 
 
1717		case CCP_SHA_TYPE_224:
 
 
 
1718		case CCP_SHA_TYPE_256:
1719			ccp_get_dm_area(&ctx, ooffset,
1720					sha->ctx, 0,
1721					digest_size);
1722			break;
1723		case CCP_SHA_TYPE_384:
1724		case CCP_SHA_TYPE_512:
1725			ccp_get_dm_area(&ctx, 0,
1726					sha->ctx, LSB_ITEM_SIZE - ooffset,
1727					LSB_ITEM_SIZE);
1728			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1729					sha->ctx, 0,
1730					LSB_ITEM_SIZE - ooffset);
1731			break;
1732		default:
1733			ret = -EINVAL;
1734			goto e_ctx;
1735		}
1736	} else {
1737		/* Stash the context */
1738		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1739				sb_count * CCP_SB_BYTES);
1740	}
1741
1742	if (sha->final && sha->opad) {
1743		/* HMAC operation, recursively perform final SHA */
1744		struct ccp_cmd hmac_cmd;
1745		struct scatterlist sg;
1746		u8 *hmac_buf;
1747
1748		if (sha->opad_len != block_size) {
1749			ret = -EINVAL;
1750			goto e_data;
1751		}
1752
1753		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1754		if (!hmac_buf) {
1755			ret = -ENOMEM;
1756			goto e_data;
1757		}
1758		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1759
1760		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1761		switch (sha->type) {
1762		case CCP_SHA_TYPE_1:
1763		case CCP_SHA_TYPE_224:
1764		case CCP_SHA_TYPE_256:
1765			memcpy(hmac_buf + block_size,
1766			       ctx.address + ooffset,
1767			       digest_size);
1768			break;
1769		case CCP_SHA_TYPE_384:
1770		case CCP_SHA_TYPE_512:
1771			memcpy(hmac_buf + block_size,
1772			       ctx.address + LSB_ITEM_SIZE + ooffset,
1773			       LSB_ITEM_SIZE);
1774			memcpy(hmac_buf + block_size +
1775			       (LSB_ITEM_SIZE - ooffset),
1776			       ctx.address,
1777			       LSB_ITEM_SIZE);
1778			break;
1779		default:
1780			ret = -EINVAL;
1781			goto e_ctx;
1782		}
1783
1784		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1785		hmac_cmd.engine = CCP_ENGINE_SHA;
1786		hmac_cmd.u.sha.type = sha->type;
1787		hmac_cmd.u.sha.ctx = sha->ctx;
1788		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1789		hmac_cmd.u.sha.src = &sg;
1790		hmac_cmd.u.sha.src_len = block_size + digest_size;
1791		hmac_cmd.u.sha.opad = NULL;
1792		hmac_cmd.u.sha.opad_len = 0;
1793		hmac_cmd.u.sha.first = 1;
1794		hmac_cmd.u.sha.final = 1;
1795		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1796
1797		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1798		if (ret)
1799			cmd->engine_error = hmac_cmd.engine_error;
1800
1801		kfree(hmac_buf);
1802	}
1803
1804e_data:
1805	if (sha->src)
1806		ccp_free_data(&src, cmd_q);
1807
1808e_ctx:
1809	ccp_dm_free(&ctx);
1810
1811	return ret;
1812}
1813
1814static noinline_for_stack int
1815ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1816{
1817	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1818	struct ccp_dm_workarea exp, src, dst;
 
1819	struct ccp_op op;
1820	unsigned int sb_count, i_len, o_len;
1821	int ret;
1822
1823	/* Check against the maximum allowable size, in bits */
1824	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1825		return -EINVAL;
1826
1827	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1828		return -EINVAL;
1829
1830	memset(&op, 0, sizeof(op));
1831	op.cmd_q = cmd_q;
1832	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1833
1834	/* The RSA modulus must precede the message being acted upon, so
1835	 * it must be copied to a DMA area where the message and the
1836	 * modulus can be concatenated.  Therefore the input buffer
1837	 * length required is twice the output buffer length (which
1838	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1839	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1840	 * required.
1841	 */
1842	o_len = 32 * ((rsa->key_size + 255) / 256);
1843	i_len = o_len * 2;
1844
1845	sb_count = 0;
1846	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1847		/* sb_count is the number of storage block slots required
1848		 * for the modulus.
1849		 */
1850		sb_count = o_len / CCP_SB_BYTES;
1851		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1852								sb_count);
1853		if (!op.sb_key)
1854			return -EIO;
1855	} else {
1856		/* A version 5 device allows a modulus size that will not fit
1857		 * in the LSB, so the command will transfer it from memory.
1858		 * Set the sb key to the default, even though it's not used.
1859		 */
1860		op.sb_key = cmd_q->sb_key;
1861	}
1862
1863	/* The RSA exponent must be in little endian format. Reverse its
1864	 * byte order.
 
 
 
 
 
 
 
 
 
 
1865	 */
1866	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1867	if (ret)
1868		goto e_sb;
1869
1870	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
 
1871	if (ret)
1872		goto e_exp;
1873
1874	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1875		/* Copy the exponent to the local storage block, using
1876		 * as many 32-byte blocks as were allocated above. It's
1877		 * already little endian, so no further change is required.
1878		 */
1879		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1880				     CCP_PASSTHRU_BYTESWAP_NOOP);
1881		if (ret) {
1882			cmd->engine_error = cmd_q->cmd_error;
1883			goto e_exp;
1884		}
1885	} else {
1886		/* The exponent can be retrieved from memory via DMA. */
1887		op.exp.u.dma.address = exp.dma.address;
1888		op.exp.u.dma.offset = 0;
1889	}
1890
1891	/* Concatenate the modulus and the message. Both the modulus and
1892	 * the operands must be in little endian format.  Since the input
1893	 * is in big endian format it must be converted.
1894	 */
1895	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1896	if (ret)
1897		goto e_exp;
1898
1899	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
 
1900	if (ret)
1901		goto e_src;
1902	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
 
 
1903	if (ret)
1904		goto e_src;
 
1905
1906	/* Prepare the output area for the operation */
1907	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
 
1908	if (ret)
1909		goto e_src;
1910
1911	op.soc = 1;
1912	op.src.u.dma.address = src.dma.address;
1913	op.src.u.dma.offset = 0;
1914	op.src.u.dma.length = i_len;
1915	op.dst.u.dma.address = dst.dma.address;
1916	op.dst.u.dma.offset = 0;
1917	op.dst.u.dma.length = o_len;
1918
1919	op.u.rsa.mod_size = rsa->key_size;
1920	op.u.rsa.input_len = i_len;
1921
1922	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1923	if (ret) {
1924		cmd->engine_error = cmd_q->cmd_error;
1925		goto e_dst;
1926	}
1927
1928	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1929
1930e_dst:
1931	ccp_dm_free(&dst);
1932
1933e_src:
1934	ccp_dm_free(&src);
1935
1936e_exp:
1937	ccp_dm_free(&exp);
1938
1939e_sb:
1940	if (sb_count)
1941		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1942
1943	return ret;
1944}
1945
1946static noinline_for_stack int
1947ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1948{
1949	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1950	struct ccp_dm_workarea mask;
1951	struct ccp_data src, dst;
1952	struct ccp_op op;
1953	bool in_place = false;
1954	unsigned int i;
1955	int ret = 0;
1956
1957	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1958		return -EINVAL;
1959
1960	if (!pt->src || !pt->dst)
1961		return -EINVAL;
1962
1963	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1964		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1965			return -EINVAL;
1966		if (!pt->mask)
1967			return -EINVAL;
1968	}
1969
1970	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1971
1972	memset(&op, 0, sizeof(op));
1973	op.cmd_q = cmd_q;
1974	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1975
1976	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1977		/* Load the mask */
1978		op.sb_key = cmd_q->sb_key;
1979
1980		ret = ccp_init_dm_workarea(&mask, cmd_q,
1981					   CCP_PASSTHRU_SB_COUNT *
1982					   CCP_SB_BYTES,
1983					   DMA_TO_DEVICE);
1984		if (ret)
1985			return ret;
1986
1987		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1988		if (ret)
1989			goto e_mask;
1990		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1991				     CCP_PASSTHRU_BYTESWAP_NOOP);
1992		if (ret) {
1993			cmd->engine_error = cmd_q->cmd_error;
1994			goto e_mask;
1995		}
1996	}
1997
1998	/* Prepare the input and output data workareas. For in-place
1999	 * operations we need to set the dma direction to BIDIRECTIONAL
2000	 * and copy the src workarea to the dst workarea.
2001	 */
2002	if (sg_virt(pt->src) == sg_virt(pt->dst))
2003		in_place = true;
2004
2005	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2006			    CCP_PASSTHRU_MASKSIZE,
2007			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2008	if (ret)
2009		goto e_mask;
2010
2011	if (in_place) {
2012		dst = src;
2013	} else {
2014		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2015				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2016		if (ret)
2017			goto e_src;
2018	}
2019
2020	/* Send data to the CCP Passthru engine
2021	 *   Because the CCP engine works on a single source and destination
2022	 *   dma address at a time, each entry in the source scatterlist
2023	 *   (after the dma_map_sg call) must be less than or equal to the
2024	 *   (remaining) length in the destination scatterlist entry and the
2025	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2026	 */
2027	dst.sg_wa.sg_used = 0;
2028	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2029		if (!dst.sg_wa.sg ||
2030		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2031			ret = -EINVAL;
2032			goto e_dst;
2033		}
2034
2035		if (i == src.sg_wa.dma_count) {
2036			op.eom = 1;
2037			op.soc = 1;
2038		}
2039
2040		op.src.type = CCP_MEMTYPE_SYSTEM;
2041		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2042		op.src.u.dma.offset = 0;
2043		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2044
2045		op.dst.type = CCP_MEMTYPE_SYSTEM;
2046		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2047		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2048		op.dst.u.dma.length = op.src.u.dma.length;
2049
2050		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2051		if (ret) {
2052			cmd->engine_error = cmd_q->cmd_error;
2053			goto e_dst;
2054		}
2055
2056		dst.sg_wa.sg_used += src.sg_wa.sg->length;
2057		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2058			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2059			dst.sg_wa.sg_used = 0;
2060		}
2061		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2062	}
2063
2064e_dst:
2065	if (!in_place)
2066		ccp_free_data(&dst, cmd_q);
2067
2068e_src:
2069	ccp_free_data(&src, cmd_q);
2070
2071e_mask:
2072	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2073		ccp_dm_free(&mask);
2074
2075	return ret;
2076}
2077
2078static noinline_for_stack int
2079ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2080				      struct ccp_cmd *cmd)
2081{
2082	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2083	struct ccp_dm_workarea mask;
2084	struct ccp_op op;
2085	int ret;
2086
2087	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2088		return -EINVAL;
2089
2090	if (!pt->src_dma || !pt->dst_dma)
2091		return -EINVAL;
2092
2093	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2094		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2095			return -EINVAL;
2096		if (!pt->mask)
2097			return -EINVAL;
2098	}
2099
2100	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2101
2102	memset(&op, 0, sizeof(op));
2103	op.cmd_q = cmd_q;
2104	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2105
2106	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2107		/* Load the mask */
2108		op.sb_key = cmd_q->sb_key;
2109
2110		mask.length = pt->mask_len;
2111		mask.dma.address = pt->mask;
2112		mask.dma.length = pt->mask_len;
2113
2114		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2115				     CCP_PASSTHRU_BYTESWAP_NOOP);
2116		if (ret) {
2117			cmd->engine_error = cmd_q->cmd_error;
2118			return ret;
2119		}
2120	}
2121
2122	/* Send data to the CCP Passthru engine */
2123	op.eom = 1;
2124	op.soc = 1;
2125
2126	op.src.type = CCP_MEMTYPE_SYSTEM;
2127	op.src.u.dma.address = pt->src_dma;
2128	op.src.u.dma.offset = 0;
2129	op.src.u.dma.length = pt->src_len;
2130
2131	op.dst.type = CCP_MEMTYPE_SYSTEM;
2132	op.dst.u.dma.address = pt->dst_dma;
2133	op.dst.u.dma.offset = 0;
2134	op.dst.u.dma.length = pt->src_len;
2135
2136	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2137	if (ret)
2138		cmd->engine_error = cmd_q->cmd_error;
2139
2140	return ret;
2141}
2142
2143static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2144{
2145	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2146	struct ccp_dm_workarea src, dst;
2147	struct ccp_op op;
2148	int ret;
2149	u8 *save;
2150
2151	if (!ecc->u.mm.operand_1 ||
2152	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2153		return -EINVAL;
2154
2155	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2156		if (!ecc->u.mm.operand_2 ||
2157		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2158			return -EINVAL;
2159
2160	if (!ecc->u.mm.result ||
2161	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2162		return -EINVAL;
2163
2164	memset(&op, 0, sizeof(op));
2165	op.cmd_q = cmd_q;
2166	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2167
2168	/* Concatenate the modulus and the operands. Both the modulus and
2169	 * the operands must be in little endian format.  Since the input
2170	 * is in big endian format it must be converted and placed in a
2171	 * fixed length buffer.
2172	 */
2173	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2174				   DMA_TO_DEVICE);
2175	if (ret)
2176		return ret;
2177
2178	/* Save the workarea address since it is updated in order to perform
2179	 * the concatenation
2180	 */
2181	save = src.address;
2182
2183	/* Copy the ECC modulus */
2184	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
 
2185	if (ret)
2186		goto e_src;
2187	src.address += CCP_ECC_OPERAND_SIZE;
2188
2189	/* Copy the first operand */
2190	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2191				      ecc->u.mm.operand_1_len);
 
2192	if (ret)
2193		goto e_src;
2194	src.address += CCP_ECC_OPERAND_SIZE;
2195
2196	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2197		/* Copy the second operand */
2198		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2199					      ecc->u.mm.operand_2_len);
 
2200		if (ret)
2201			goto e_src;
2202		src.address += CCP_ECC_OPERAND_SIZE;
2203	}
2204
2205	/* Restore the workarea address */
2206	src.address = save;
2207
2208	/* Prepare the output area for the operation */
2209	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2210				   DMA_FROM_DEVICE);
2211	if (ret)
2212		goto e_src;
2213
2214	op.soc = 1;
2215	op.src.u.dma.address = src.dma.address;
2216	op.src.u.dma.offset = 0;
2217	op.src.u.dma.length = src.length;
2218	op.dst.u.dma.address = dst.dma.address;
2219	op.dst.u.dma.offset = 0;
2220	op.dst.u.dma.length = dst.length;
2221
2222	op.u.ecc.function = cmd->u.ecc.function;
2223
2224	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2225	if (ret) {
2226		cmd->engine_error = cmd_q->cmd_error;
2227		goto e_dst;
2228	}
2229
2230	ecc->ecc_result = le16_to_cpup(
2231		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2232	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2233		ret = -EIO;
2234		goto e_dst;
2235	}
2236
2237	/* Save the ECC result */
2238	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2239				CCP_ECC_MODULUS_BYTES);
2240
2241e_dst:
2242	ccp_dm_free(&dst);
2243
2244e_src:
2245	ccp_dm_free(&src);
2246
2247	return ret;
2248}
2249
2250static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2251{
2252	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2253	struct ccp_dm_workarea src, dst;
2254	struct ccp_op op;
2255	int ret;
2256	u8 *save;
2257
2258	if (!ecc->u.pm.point_1.x ||
2259	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2260	    !ecc->u.pm.point_1.y ||
2261	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2262		return -EINVAL;
2263
2264	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2265		if (!ecc->u.pm.point_2.x ||
2266		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2267		    !ecc->u.pm.point_2.y ||
2268		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2269			return -EINVAL;
2270	} else {
2271		if (!ecc->u.pm.domain_a ||
2272		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2273			return -EINVAL;
2274
2275		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2276			if (!ecc->u.pm.scalar ||
2277			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2278				return -EINVAL;
2279	}
2280
2281	if (!ecc->u.pm.result.x ||
2282	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2283	    !ecc->u.pm.result.y ||
2284	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2285		return -EINVAL;
2286
2287	memset(&op, 0, sizeof(op));
2288	op.cmd_q = cmd_q;
2289	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2290
2291	/* Concatenate the modulus and the operands. Both the modulus and
2292	 * the operands must be in little endian format.  Since the input
2293	 * is in big endian format it must be converted and placed in a
2294	 * fixed length buffer.
2295	 */
2296	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2297				   DMA_TO_DEVICE);
2298	if (ret)
2299		return ret;
2300
2301	/* Save the workarea address since it is updated in order to perform
2302	 * the concatenation
2303	 */
2304	save = src.address;
2305
2306	/* Copy the ECC modulus */
2307	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
 
2308	if (ret)
2309		goto e_src;
2310	src.address += CCP_ECC_OPERAND_SIZE;
2311
2312	/* Copy the first point X and Y coordinate */
2313	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2314				      ecc->u.pm.point_1.x_len);
 
2315	if (ret)
2316		goto e_src;
2317	src.address += CCP_ECC_OPERAND_SIZE;
2318	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2319				      ecc->u.pm.point_1.y_len);
 
2320	if (ret)
2321		goto e_src;
2322	src.address += CCP_ECC_OPERAND_SIZE;
2323
2324	/* Set the first point Z coordinate to 1 */
2325	*src.address = 0x01;
2326	src.address += CCP_ECC_OPERAND_SIZE;
2327
2328	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2329		/* Copy the second point X and Y coordinate */
2330		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2331					      ecc->u.pm.point_2.x_len);
 
2332		if (ret)
2333			goto e_src;
2334		src.address += CCP_ECC_OPERAND_SIZE;
2335		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2336					      ecc->u.pm.point_2.y_len);
 
2337		if (ret)
2338			goto e_src;
2339		src.address += CCP_ECC_OPERAND_SIZE;
2340
2341		/* Set the second point Z coordinate to 1 */
2342		*src.address = 0x01;
2343		src.address += CCP_ECC_OPERAND_SIZE;
2344	} else {
2345		/* Copy the Domain "a" parameter */
2346		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2347					      ecc->u.pm.domain_a_len);
 
2348		if (ret)
2349			goto e_src;
2350		src.address += CCP_ECC_OPERAND_SIZE;
2351
2352		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2353			/* Copy the scalar value */
2354			ret = ccp_reverse_set_dm_area(&src, 0,
2355						      ecc->u.pm.scalar, 0,
2356						      ecc->u.pm.scalar_len);
 
2357			if (ret)
2358				goto e_src;
2359			src.address += CCP_ECC_OPERAND_SIZE;
2360		}
2361	}
2362
2363	/* Restore the workarea address */
2364	src.address = save;
2365
2366	/* Prepare the output area for the operation */
2367	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2368				   DMA_FROM_DEVICE);
2369	if (ret)
2370		goto e_src;
2371
2372	op.soc = 1;
2373	op.src.u.dma.address = src.dma.address;
2374	op.src.u.dma.offset = 0;
2375	op.src.u.dma.length = src.length;
2376	op.dst.u.dma.address = dst.dma.address;
2377	op.dst.u.dma.offset = 0;
2378	op.dst.u.dma.length = dst.length;
2379
2380	op.u.ecc.function = cmd->u.ecc.function;
2381
2382	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2383	if (ret) {
2384		cmd->engine_error = cmd_q->cmd_error;
2385		goto e_dst;
2386	}
2387
2388	ecc->ecc_result = le16_to_cpup(
2389		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2390	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2391		ret = -EIO;
2392		goto e_dst;
2393	}
2394
2395	/* Save the workarea address since it is updated as we walk through
2396	 * to copy the point math result
2397	 */
2398	save = dst.address;
2399
2400	/* Save the ECC result X and Y coordinates */
2401	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2402				CCP_ECC_MODULUS_BYTES);
2403	dst.address += CCP_ECC_OUTPUT_SIZE;
2404	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2405				CCP_ECC_MODULUS_BYTES);
2406	dst.address += CCP_ECC_OUTPUT_SIZE;
2407
2408	/* Restore the workarea address */
2409	dst.address = save;
2410
2411e_dst:
2412	ccp_dm_free(&dst);
2413
2414e_src:
2415	ccp_dm_free(&src);
2416
2417	return ret;
2418}
2419
2420static noinline_for_stack int
2421ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2422{
2423	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2424
2425	ecc->ecc_result = 0;
2426
2427	if (!ecc->mod ||
2428	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2429		return -EINVAL;
2430
2431	switch (ecc->function) {
2432	case CCP_ECC_FUNCTION_MMUL_384BIT:
2433	case CCP_ECC_FUNCTION_MADD_384BIT:
2434	case CCP_ECC_FUNCTION_MINV_384BIT:
2435		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2436
2437	case CCP_ECC_FUNCTION_PADD_384BIT:
2438	case CCP_ECC_FUNCTION_PMUL_384BIT:
2439	case CCP_ECC_FUNCTION_PDBL_384BIT:
2440		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2441
2442	default:
2443		return -EINVAL;
2444	}
2445}
2446
2447int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2448{
2449	int ret;
2450
2451	cmd->engine_error = 0;
2452	cmd_q->cmd_error = 0;
2453	cmd_q->int_rcvd = 0;
2454	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2455
2456	switch (cmd->engine) {
2457	case CCP_ENGINE_AES:
2458		switch (cmd->u.aes.mode) {
2459		case CCP_AES_MODE_CMAC:
2460			ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2461			break;
2462		case CCP_AES_MODE_GCM:
2463			ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2464			break;
2465		default:
2466			ret = ccp_run_aes_cmd(cmd_q, cmd);
2467			break;
2468		}
2469		break;
2470	case CCP_ENGINE_XTS_AES_128:
2471		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2472		break;
2473	case CCP_ENGINE_DES3:
2474		ret = ccp_run_des3_cmd(cmd_q, cmd);
2475		break;
2476	case CCP_ENGINE_SHA:
2477		ret = ccp_run_sha_cmd(cmd_q, cmd);
2478		break;
2479	case CCP_ENGINE_RSA:
2480		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2481		break;
2482	case CCP_ENGINE_PASSTHRU:
2483		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2484			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2485		else
2486			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2487		break;
2488	case CCP_ENGINE_ECC:
2489		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2490		break;
2491	default:
2492		ret = -EINVAL;
2493	}
2494
2495	return ret;
2496}