Loading...
1
2/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3 * FireStream 50 (MB86695) device driver
4 */
5
6/* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
9 */
10
11/*
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25
26 The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27 system and in the file COPYING in the Linux kernel source.
28*/
29
30
31#include <linux/module.h>
32#include <linux/sched.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/pci.h>
36#include <linux/poison.h>
37#include <linux/errno.h>
38#include <linux/atm.h>
39#include <linux/atmdev.h>
40#include <linux/sonet.h>
41#include <linux/skbuff.h>
42#include <linux/netdevice.h>
43#include <linux/delay.h>
44#include <linux/ioport.h> /* for request_region */
45#include <linux/uio.h>
46#include <linux/init.h>
47#include <linux/interrupt.h>
48#include <linux/capability.h>
49#include <linux/bitops.h>
50#include <linux/slab.h>
51#include <asm/byteorder.h>
52#include <asm/string.h>
53#include <asm/io.h>
54#include <linux/atomic.h>
55#include <asm/uaccess.h>
56#include <linux/wait.h>
57
58#include "firestream.h"
59
60static int loopback = 0;
61static int num=0x5a;
62
63/* According to measurements (but they look suspicious to me!) done in
64 * '97, 37% of the packets are one cell in size. So it pays to have
65 * buffers allocated at that size. A large jump in percentage of
66 * packets occurs at packets around 536 bytes in length. So it also
67 * pays to have those pre-allocated. Unfortunately, we can't fully
68 * take advantage of this as the majority of the packets is likely to
69 * be TCP/IP (As where obviously the measurement comes from) There the
70 * link would be opened with say a 1500 byte MTU, and we can't handle
71 * smaller buffers more efficiently than the larger ones. -- REW
72 */
73
74/* Due to the way Linux memory management works, specifying "576" as
75 * an allocation size here isn't going to help. They are allocated
76 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77 * large), it doesn't pay to allocate the smallest size (64) -- REW */
78
79/* This is all guesswork. Hard numbers to back this up or disprove this,
80 * are appreciated. -- REW */
81
82/* The last entry should be about 64k. However, the "buffer size" is
83 * passed to the chip in a 16 bit field. I don't know how "65536"
84 * would be interpreted. -- REW */
85
86#define NP FS_NR_FREE_POOLS
87static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
88/* log2: 7 8 9 10 11 12 14 16 */
89
90#if 0
91static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
92#else
93/* debug */
94static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
95#endif
96/* log2: 10 10 9 8 7 6 5 5 */
97/* sumlog2: 17 18 18 18 18 18 19 21 */
98/* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
99/* tot mem: almost 4M */
100
101/* NP is shorter, so that it fits on a single line. */
102#undef NP
103
104
105/* Small hardware gotcha:
106
107 The FS50 CAM (VP/VC match registers) always take the lowest channel
108 number that matches. This is not a problem.
109
110 However, they also ignore whether the channel is enabled or
111 not. This means that if you allocate channel 0 to 1.2 and then
112 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113 match channel for channel 0 will "steal" the traffic from channel
114 1, even if you correctly disable channel 0.
115
116 Workaround:
117
118 - When disabling channels, write an invalid VP/VC value to the
119 match register. (We use 0xffffffff, which in the worst case
120 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121 anything as some "when not in use, program to 0" bits are now
122 programmed to 1...)
123
124 - Don't initialize the match registers to 0, as 0.0 is a valid
125 channel.
126*/
127
128
129/* Optimization hints and tips.
130
131 The FireStream chips are very capable of reducing the amount of
132 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133 action. You could try to minimize this a bit.
134
135 Besides that, the userspace->kernel copy and the PCI bus are the
136 performance limiting issues for this driver.
137
138 You could queue up a bunch of outgoing packets without telling the
139 FireStream. I'm not sure that's going to win you much though. The
140 Linux layer won't tell us in advance when it's not going to give us
141 any more packets in a while. So this is tricky to implement right without
142 introducing extra delays.
143
144 -- REW
145 */
146
147
148
149
150/* The strings that define what the RX queue entry is all about. */
151/* Fujitsu: Please tell me which ones can have a pointer to a
152 freepool descriptor! */
153static char *res_strings[] = {
154 "RX OK: streaming not EOP",
155 "RX OK: streaming EOP",
156 "RX OK: Single buffer packet",
157 "RX OK: packet mode",
158 "RX OK: F4 OAM (end to end)",
159 "RX OK: F4 OAM (Segment)",
160 "RX OK: F5 OAM (end to end)",
161 "RX OK: F5 OAM (Segment)",
162 "RX OK: RM cell",
163 "RX OK: TRANSP cell",
164 "RX OK: TRANSPC cell",
165 "Unmatched cell",
166 "reserved 12",
167 "reserved 13",
168 "reserved 14",
169 "Unrecognized cell",
170 "reserved 16",
171 "reassembly abort: AAL5 abort",
172 "packet purged",
173 "packet ageing timeout",
174 "channel ageing timeout",
175 "calculated length error",
176 "programmed length limit error",
177 "aal5 crc32 error",
178 "oam transp or transpc crc10 error",
179 "reserved 25",
180 "reserved 26",
181 "reserved 27",
182 "reserved 28",
183 "reserved 29",
184 "reserved 30",
185 "reassembly abort: no buffers",
186 "receive buffer overflow",
187 "change in GFC",
188 "receive buffer full",
189 "low priority discard - no receive descriptor",
190 "low priority discard - missing end of packet",
191 "reserved 41",
192 "reserved 42",
193 "reserved 43",
194 "reserved 44",
195 "reserved 45",
196 "reserved 46",
197 "reserved 47",
198 "reserved 48",
199 "reserved 49",
200 "reserved 50",
201 "reserved 51",
202 "reserved 52",
203 "reserved 53",
204 "reserved 54",
205 "reserved 55",
206 "reserved 56",
207 "reserved 57",
208 "reserved 58",
209 "reserved 59",
210 "reserved 60",
211 "reserved 61",
212 "reserved 62",
213 "reserved 63",
214};
215
216static char *irq_bitname[] = {
217 "LPCO",
218 "DPCO",
219 "RBRQ0_W",
220 "RBRQ1_W",
221 "RBRQ2_W",
222 "RBRQ3_W",
223 "RBRQ0_NF",
224 "RBRQ1_NF",
225 "RBRQ2_NF",
226 "RBRQ3_NF",
227 "BFP_SC",
228 "INIT",
229 "INIT_ERR",
230 "USCEO",
231 "UPEC0",
232 "VPFCO",
233 "CRCCO",
234 "HECO",
235 "TBRQ_W",
236 "TBRQ_NF",
237 "CTPQ_E",
238 "GFC_C0",
239 "PCI_FTL",
240 "CSQ_W",
241 "CSQ_NF",
242 "EXT_INT",
243 "RXDMA_S"
244};
245
246
247#define PHY_EOF -1
248#define PHY_CLEARALL -2
249
250struct reginit_item {
251 int reg, val;
252};
253
254
255static struct reginit_item PHY_NTC_INIT[] = {
256 { PHY_CLEARALL, 0x40 },
257 { 0x12, 0x0001 },
258 { 0x13, 0x7605 },
259 { 0x1A, 0x0001 },
260 { 0x1B, 0x0005 },
261 { 0x38, 0x0003 },
262 { 0x39, 0x0006 }, /* changed here to make loopback */
263 { 0x01, 0x5262 },
264 { 0x15, 0x0213 },
265 { 0x00, 0x0003 },
266 { PHY_EOF, 0}, /* -1 signals end of list */
267};
268
269
270/* Safetyfeature: If the card interrupts more than this number of times
271 in a jiffy (1/100th of a second) then we just disable the interrupt and
272 print a message. This prevents the system from hanging.
273
274 150000 packets per second is close to the limit a PC is going to have
275 anyway. We therefore have to disable this for production. -- REW */
276#undef IRQ_RATE_LIMIT // 100
277
278/* Interrupts work now. Unlike serial cards, ATM cards don't work all
279 that great without interrupts. -- REW */
280#undef FS_POLL_FREQ // 100
281
282/*
283 This driver can spew a whole lot of debugging output at you. If you
284 need maximum performance, you should disable the DEBUG define. To
285 aid in debugging in the field, I'm leaving the compile-time debug
286 features enabled, and disable them "runtime". That allows me to
287 instruct people with problems to enable debugging without requiring
288 them to recompile... -- REW
289*/
290#define DEBUG
291
292#ifdef DEBUG
293#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
294#else
295#define fs_dprintk(f, str...) /* nothing */
296#endif
297
298
299static int fs_keystream = 0;
300
301#ifdef DEBUG
302/* I didn't forget to set this to zero before shipping. Hit me with a stick
303 if you get this with the debug default not set to zero again. -- REW */
304static int fs_debug = 0;
305#else
306#define fs_debug 0
307#endif
308
309#ifdef MODULE
310#ifdef DEBUG
311module_param(fs_debug, int, 0644);
312#endif
313module_param(loopback, int, 0);
314module_param(num, int, 0);
315module_param(fs_keystream, int, 0);
316/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
317#endif
318
319
320#define FS_DEBUG_FLOW 0x00000001
321#define FS_DEBUG_OPEN 0x00000002
322#define FS_DEBUG_QUEUE 0x00000004
323#define FS_DEBUG_IRQ 0x00000008
324#define FS_DEBUG_INIT 0x00000010
325#define FS_DEBUG_SEND 0x00000020
326#define FS_DEBUG_PHY 0x00000040
327#define FS_DEBUG_CLEANUP 0x00000080
328#define FS_DEBUG_QOS 0x00000100
329#define FS_DEBUG_TXQ 0x00000200
330#define FS_DEBUG_ALLOC 0x00000400
331#define FS_DEBUG_TXMEM 0x00000800
332#define FS_DEBUG_QSIZE 0x00001000
333
334
335#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
336#define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
337
338
339static struct fs_dev *fs_boards = NULL;
340
341#ifdef DEBUG
342
343static void my_hd (void *addr, int len)
344{
345 int j, ch;
346 unsigned char *ptr = addr;
347
348 while (len > 0) {
349 printk ("%p ", ptr);
350 for (j=0;j < ((len < 16)?len:16);j++) {
351 printk ("%02x %s", ptr[j], (j==7)?" ":"");
352 }
353 for ( ;j < 16;j++) {
354 printk (" %s", (j==7)?" ":"");
355 }
356 for (j=0;j < ((len < 16)?len:16);j++) {
357 ch = ptr[j];
358 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
359 }
360 printk ("\n");
361 ptr += 16;
362 len -= 16;
363 }
364}
365#else /* DEBUG */
366static void my_hd (void *addr, int len){}
367#endif /* DEBUG */
368
369/********** free an skb (as per ATM device driver documentation) **********/
370
371/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
372 * I copied it over from the ambassador driver. -- REW */
373
374static inline void fs_kfree_skb (struct sk_buff * skb)
375{
376 if (ATM_SKB(skb)->vcc->pop)
377 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
378 else
379 dev_kfree_skb_any (skb);
380}
381
382
383
384
385/* It seems the ATM forum recommends this horribly complicated 16bit
386 * floating point format. Turns out the Ambassador uses the exact same
387 * encoding. I just copied it over. If Mitch agrees, I'll move it over
388 * to the atm_misc file or something like that. (and remove it from
389 * here and the ambassador driver) -- REW
390 */
391
392/* The good thing about this format is that it is monotonic. So,
393 a conversion routine need not be very complicated. To be able to
394 round "nearest" we need to take along a few extra bits. Lets
395 put these after 16 bits, so that we can just return the top 16
396 bits of the 32bit number as the result:
397
398 int mr (unsigned int rate, int r)
399 {
400 int e = 16+9;
401 static int round[4]={0, 0, 0xffff, 0x8000};
402 if (!rate) return 0;
403 while (rate & 0xfc000000) {
404 rate >>= 1;
405 e++;
406 }
407 while (! (rate & 0xfe000000)) {
408 rate <<= 1;
409 e--;
410 }
411
412// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
413 rate &= ~0x02000000;
414// Next add in the exponent
415 rate |= e << (16+9);
416// And perform the rounding:
417 return (rate + round[r]) >> 16;
418 }
419
420 14 lines-of-code. Compare that with the 120 that the Ambassador
421 guys needed. (would be 8 lines shorter if I'd try to really reduce
422 the number of lines:
423
424 int mr (unsigned int rate, int r)
425 {
426 int e = 16+9;
427 static int round[4]={0, 0, 0xffff, 0x8000};
428 if (!rate) return 0;
429 for (; rate & 0xfc000000 ;rate >>= 1, e++);
430 for (;!(rate & 0xfe000000);rate <<= 1, e--);
431 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
432 }
433
434 Exercise for the reader: Remove one more line-of-code, without
435 cheating. (Just joining two lines is cheating). (I know it's
436 possible, don't think you've beat me if you found it... If you
437 manage to lose two lines or more, keep me updated! ;-)
438
439 -- REW */
440
441
442#define ROUND_UP 1
443#define ROUND_DOWN 2
444#define ROUND_NEAREST 3
445/********** make rate (not quite as much fun as Horizon) **********/
446
447static int make_rate(unsigned int rate, int r,
448 u16 *bits, unsigned int *actual)
449{
450 unsigned char exp = -1; /* hush gcc */
451 unsigned int man = -1; /* hush gcc */
452
453 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
454
455 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
456 given 5-bit e and 9-bit m:
457 rate = EITHER (1+m/2^9)*2^e OR 0
458 bits = EITHER 1<<14 | e<<9 | m OR 0
459 (bit 15 is "reserved", bit 14 "non-zero")
460 smallest rate is 0 (special representation)
461 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
462 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
463 simple algorithm:
464 find position of top bit, this gives e
465 remove top bit and shift (rounding if feeling clever) by 9-e
466 */
467 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
468 representable. // This should move into the ambassador driver
469 when properly merged. -- REW */
470
471 if (rate > 0xffc00000U) {
472 /* larger than largest representable rate */
473
474 if (r == ROUND_UP) {
475 return -EINVAL;
476 } else {
477 exp = 31;
478 man = 511;
479 }
480
481 } else if (rate) {
482 /* representable rate */
483
484 exp = 31;
485 man = rate;
486
487 /* invariant: rate = man*2^(exp-31) */
488 while (!(man & (1<<31))) {
489 exp = exp - 1;
490 man = man<<1;
491 }
492
493 /* man has top bit set
494 rate = (2^31+(man-2^31))*2^(exp-31)
495 rate = (1+(man-2^31)/2^31)*2^exp
496 */
497 man = man<<1;
498 man &= 0xffffffffU; /* a nop on 32-bit systems */
499 /* rate = (1+man/2^32)*2^exp
500
501 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
502 time to lose significance... we want m in the range 0 to 2^9-1
503 rounding presents a minor problem... we first decide which way
504 we are rounding (based on given rounding direction and possibly
505 the bits of the mantissa that are to be discarded).
506 */
507
508 switch (r) {
509 case ROUND_DOWN: {
510 /* just truncate */
511 man = man>>(32-9);
512 break;
513 }
514 case ROUND_UP: {
515 /* check all bits that we are discarding */
516 if (man & (~0U>>9)) {
517 man = (man>>(32-9)) + 1;
518 if (man == (1<<9)) {
519 /* no need to check for round up outside of range */
520 man = 0;
521 exp += 1;
522 }
523 } else {
524 man = (man>>(32-9));
525 }
526 break;
527 }
528 case ROUND_NEAREST: {
529 /* check msb that we are discarding */
530 if (man & (1<<(32-9-1))) {
531 man = (man>>(32-9)) + 1;
532 if (man == (1<<9)) {
533 /* no need to check for round up outside of range */
534 man = 0;
535 exp += 1;
536 }
537 } else {
538 man = (man>>(32-9));
539 }
540 break;
541 }
542 }
543
544 } else {
545 /* zero rate - not representable */
546
547 if (r == ROUND_DOWN) {
548 return -EINVAL;
549 } else {
550 exp = 0;
551 man = 0;
552 }
553 }
554
555 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
556
557 if (bits)
558 *bits = /* (1<<14) | */ (exp<<9) | man;
559
560 if (actual)
561 *actual = (exp >= 9)
562 ? (1 << exp) + (man << (exp-9))
563 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
564
565 return 0;
566}
567
568
569
570
571/* FireStream access routines */
572/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
573 certain registers or to just log all accesses. */
574
575static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
576{
577 writel (val, dev->base + offset);
578}
579
580
581static inline u32 read_fs (struct fs_dev *dev, int offset)
582{
583 return readl (dev->base + offset);
584}
585
586
587
588static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
589{
590 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
591}
592
593
594static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
595{
596 u32 wp;
597 struct FS_QENTRY *cqe;
598
599 /* XXX Sanity check: the write pointer can be checked to be
600 still the same as the value passed as qe... -- REW */
601 /* udelay (5); */
602 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
603 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
604 q->offset);
605 schedule ();
606 }
607
608 wp &= ~0xf;
609 cqe = bus_to_virt (wp);
610 if (qe != cqe) {
611 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
612 }
613
614 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
615
616 {
617 static int c;
618 if (!(c++ % 100))
619 {
620 int rp, wp;
621 rp = read_fs (dev, Q_RP(q->offset));
622 wp = read_fs (dev, Q_WP(q->offset));
623 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
624 q->offset, rp, wp, wp-rp);
625 }
626 }
627}
628
629#ifdef DEBUG_EXTRA
630static struct FS_QENTRY pq[60];
631static int qp;
632
633static struct FS_BPENTRY dq[60];
634static int qd;
635static void *da[60];
636#endif
637
638static void submit_queue (struct fs_dev *dev, struct queue *q,
639 u32 cmd, u32 p1, u32 p2, u32 p3)
640{
641 struct FS_QENTRY *qe;
642
643 qe = get_qentry (dev, q);
644 qe->cmd = cmd;
645 qe->p0 = p1;
646 qe->p1 = p2;
647 qe->p2 = p3;
648 submit_qentry (dev, q, qe);
649
650#ifdef DEBUG_EXTRA
651 pq[qp].cmd = cmd;
652 pq[qp].p0 = p1;
653 pq[qp].p1 = p2;
654 pq[qp].p2 = p3;
655 qp++;
656 if (qp >= 60) qp = 0;
657#endif
658}
659
660/* Test the "other" way one day... -- REW */
661#if 1
662#define submit_command submit_queue
663#else
664
665static void submit_command (struct fs_dev *dev, struct queue *q,
666 u32 cmd, u32 p1, u32 p2, u32 p3)
667{
668 write_fs (dev, CMDR0, cmd);
669 write_fs (dev, CMDR1, p1);
670 write_fs (dev, CMDR2, p2);
671 write_fs (dev, CMDR3, p3);
672}
673#endif
674
675
676
677static void process_return_queue (struct fs_dev *dev, struct queue *q)
678{
679 long rq;
680 struct FS_QENTRY *qe;
681 void *tc;
682
683 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
684 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
685 qe = bus_to_virt (rq);
686
687 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
688 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
689
690 switch (STATUS_CODE (qe)) {
691 case 5:
692 tc = bus_to_virt (qe->p0);
693 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
694 kfree (tc);
695 break;
696 }
697
698 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
699 }
700}
701
702
703static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
704{
705 long rq;
706 long tmp;
707 struct FS_QENTRY *qe;
708 struct sk_buff *skb;
709 struct FS_BPENTRY *td;
710
711 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
712 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
713 qe = bus_to_virt (rq);
714
715 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
716 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
717
718 if (STATUS_CODE (qe) != 2)
719 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
720 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721
722
723 switch (STATUS_CODE (qe)) {
724 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
725 /* Fall through */
726 case 0x02:
727 /* Process a real txdone entry. */
728 tmp = qe->p0;
729 if (tmp & 0x0f)
730 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
731 tmp &= ~0x0f;
732 td = bus_to_virt (tmp);
733
734 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
735 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
736
737 skb = td->skb;
738 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
739 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
740 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
741 }
742 td->dev->ntxpckts--;
743
744 {
745 static int c=0;
746
747 if (!(c++ % 100)) {
748 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
749 }
750 }
751
752 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
753
754 fs_dprintk (FS_DEBUG_TXMEM, "i");
755 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
756 fs_kfree_skb (skb);
757
758 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
759 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
760 kfree (td);
761 break;
762 default:
763 /* Here we get the tx purge inhibit command ... */
764 /* Action, I believe, is "don't do anything". -- REW */
765 ;
766 }
767
768 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
769 }
770}
771
772
773static void process_incoming (struct fs_dev *dev, struct queue *q)
774{
775 long rq;
776 struct FS_QENTRY *qe;
777 struct FS_BPENTRY *pe;
778 struct sk_buff *skb;
779 unsigned int channo;
780 struct atm_vcc *atm_vcc;
781
782 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
783 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
784 qe = bus_to_virt (rq);
785
786 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
787 qe->cmd, qe->p0, qe->p1, qe->p2);
788
789 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
790 STATUS_CODE (qe),
791 res_strings[STATUS_CODE(qe)]);
792
793 pe = bus_to_virt (qe->p0);
794 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
795 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
796 pe->skb, pe->fp);
797
798 channo = qe->cmd & 0xffff;
799
800 if (channo < dev->nchannels)
801 atm_vcc = dev->atm_vccs[channo];
802 else
803 atm_vcc = NULL;
804
805 /* Single buffer packet */
806 switch (STATUS_CODE (qe)) {
807 case 0x1:
808 /* Fall through for streaming mode */
809 case 0x2:/* Packet received OK.... */
810 if (atm_vcc) {
811 skb = pe->skb;
812 pe->fp->n--;
813#if 0
814 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
815 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
816#endif
817 skb_put (skb, qe->p1 & 0xffff);
818 ATM_SKB(skb)->vcc = atm_vcc;
819 atomic_inc(&atm_vcc->stats->rx);
820 __net_timestamp(skb);
821 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
822 atm_vcc->push (atm_vcc, skb);
823 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
824 kfree (pe);
825 } else {
826 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
827 }
828 break;
829 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
830 has been consumed and needs to be processed. -- REW */
831 if (qe->p1 & 0xffff) {
832 pe = bus_to_virt (qe->p0);
833 pe->fp->n--;
834 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
835 dev_kfree_skb_any (pe->skb);
836 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
837 kfree (pe);
838 }
839 if (atm_vcc)
840 atomic_inc(&atm_vcc->stats->rx_drop);
841 break;
842 case 0x1f: /* Reassembly abort: no buffers. */
843 /* Silently increment error counter. */
844 if (atm_vcc)
845 atomic_inc(&atm_vcc->stats->rx_drop);
846 break;
847 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
848 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
849 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
850 }
851 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
852 }
853}
854
855
856
857#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
858
859static int fs_open(struct atm_vcc *atm_vcc)
860{
861 struct fs_dev *dev;
862 struct fs_vcc *vcc;
863 struct fs_transmit_config *tc;
864 struct atm_trafprm * txtp;
865 struct atm_trafprm * rxtp;
866 /* struct fs_receive_config *rc;*/
867 /* struct FS_QENTRY *qe; */
868 int error;
869 int bfp;
870 int to;
871 unsigned short tmc0;
872 short vpi = atm_vcc->vpi;
873 int vci = atm_vcc->vci;
874
875 func_enter ();
876
877 dev = FS_DEV(atm_vcc->dev);
878 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
879 dev, atm_vcc);
880
881 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
882 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
883
884 if ((atm_vcc->qos.aal != ATM_AAL5) &&
885 (atm_vcc->qos.aal != ATM_AAL2))
886 return -EINVAL; /* XXX AAL0 */
887
888 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
889 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
890
891 /* XXX handle qos parameters (rate limiting) ? */
892
893 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
894 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%Zd)\n", vcc, sizeof(struct fs_vcc));
895 if (!vcc) {
896 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
897 return -ENOMEM;
898 }
899
900 atm_vcc->dev_data = vcc;
901 vcc->last_skb = NULL;
902
903 init_waitqueue_head (&vcc->close_wait);
904
905 txtp = &atm_vcc->qos.txtp;
906 rxtp = &atm_vcc->qos.rxtp;
907
908 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
909 if (IS_FS50(dev)) {
910 /* Increment the channel numer: take a free one next time. */
911 for (to=33;to;to--, dev->channo++) {
912 /* We only have 32 channels */
913 if (dev->channo >= 32)
914 dev->channo = 0;
915 /* If we need to do RX, AND the RX is inuse, try the next */
916 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
917 continue;
918 /* If we need to do TX, AND the TX is inuse, try the next */
919 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
920 continue;
921 /* Ok, both are free! (or not needed) */
922 break;
923 }
924 if (!to) {
925 printk ("No more free channels for FS50..\n");
926 return -EBUSY;
927 }
928 vcc->channo = dev->channo;
929 dev->channo &= dev->channel_mask;
930
931 } else {
932 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
933 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
934 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
935 printk ("Channel is in use for FS155.\n");
936 return -EBUSY;
937 }
938 }
939 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
940 vcc->channo, vcc->channo);
941 }
942
943 if (DO_DIRECTION (txtp)) {
944 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
945 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%Zd)\n",
946 tc, sizeof (struct fs_transmit_config));
947 if (!tc) {
948 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
949 return -ENOMEM;
950 }
951
952 /* Allocate the "open" entry from the high priority txq. This makes
953 it most likely that the chip will notice it. It also prevents us
954 from having to wait for completion. On the other hand, we may
955 need to wait for completion anyway, to see if it completed
956 successfully. */
957
958 switch (atm_vcc->qos.aal) {
959 case ATM_AAL2:
960 case ATM_AAL0:
961 tc->flags = 0
962 | TC_FLAGS_TRANSPARENT_PAYLOAD
963 | TC_FLAGS_PACKET
964 | (1 << 28)
965 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
966 | TC_FLAGS_CAL0;
967 break;
968 case ATM_AAL5:
969 tc->flags = 0
970 | TC_FLAGS_AAL5
971 | TC_FLAGS_PACKET /* ??? */
972 | TC_FLAGS_TYPE_CBR
973 | TC_FLAGS_CAL0;
974 break;
975 default:
976 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
977 tc->flags = 0;
978 }
979 /* Docs are vague about this atm_hdr field. By the way, the FS
980 * chip makes odd errors if lower bits are set.... -- REW */
981 tc->atm_hdr = (vpi << 20) | (vci << 4);
982 tmc0 = 0;
983 {
984 int pcr = atm_pcr_goal (txtp);
985
986 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
987
988 /* XXX Hmm. officially we're only allowed to do this if rounding
989 is round_down -- REW */
990 if (IS_FS50(dev)) {
991 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
992 } else {
993 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
994 }
995 if (!pcr) {
996 /* no rate cap */
997 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
998 } else {
999 int r;
1000 if (pcr < 0) {
1001 r = ROUND_DOWN;
1002 pcr = -pcr;
1003 } else {
1004 r = ROUND_UP;
1005 }
1006 error = make_rate (pcr, r, &tmc0, NULL);
1007 if (error) {
1008 kfree(tc);
1009 return error;
1010 }
1011 }
1012 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1013 }
1014
1015 tc->TMC[0] = tmc0 | 0x4000;
1016 tc->TMC[1] = 0; /* Unused */
1017 tc->TMC[2] = 0; /* Unused */
1018 tc->TMC[3] = 0; /* Unused */
1019
1020 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1021 tc->rtag[0] = 0; /* What should I do with routing tags???
1022 -- Not used -- AS -- Thanks -- REW*/
1023 tc->rtag[1] = 0;
1024 tc->rtag[2] = 0;
1025
1026 if (fs_debug & FS_DEBUG_OPEN) {
1027 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1028 my_hd (tc, sizeof (*tc));
1029 }
1030
1031 /* We now use the "submit_command" function to submit commands to
1032 the firestream. There is a define up near the definition of
1033 that routine that switches this routine between immediate write
1034 to the immediate command registers and queuing the commands in
1035 the HPTXQ for execution. This last technique might be more
1036 efficient if we know we're going to submit a whole lot of
1037 commands in one go, but this driver is not setup to be able to
1038 use such a construct. So it probably doen't matter much right
1039 now. -- REW */
1040
1041 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1042 submit_command (dev, &dev->hp_txq,
1043 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1044 virt_to_bus (tc), 0, 0);
1045
1046 submit_command (dev, &dev->hp_txq,
1047 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1048 0, 0, 0);
1049 set_bit (vcc->channo, dev->tx_inuse);
1050 }
1051
1052 if (DO_DIRECTION (rxtp)) {
1053 dev->atm_vccs[vcc->channo] = atm_vcc;
1054
1055 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1056 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1057 if (bfp >= FS_NR_FREE_POOLS) {
1058 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1059 atm_vcc->qos.rxtp.max_sdu);
1060 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1061
1062 /* XXX clear tx inuse. Close TX part? */
1063 dev->atm_vccs[vcc->channo] = NULL;
1064 kfree (vcc);
1065 return -EINVAL;
1066 }
1067
1068 switch (atm_vcc->qos.aal) {
1069 case ATM_AAL0:
1070 case ATM_AAL2:
1071 submit_command (dev, &dev->hp_txq,
1072 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1073 RC_FLAGS_TRANSP |
1074 RC_FLAGS_BFPS_BFP * bfp |
1075 RC_FLAGS_RXBM_PSB, 0, 0);
1076 break;
1077 case ATM_AAL5:
1078 submit_command (dev, &dev->hp_txq,
1079 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1080 RC_FLAGS_AAL5 |
1081 RC_FLAGS_BFPS_BFP * bfp |
1082 RC_FLAGS_RXBM_PSB, 0, 0);
1083 break;
1084 };
1085 if (IS_FS50 (dev)) {
1086 submit_command (dev, &dev->hp_txq,
1087 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1088 0x80 + vcc->channo,
1089 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1090 }
1091 submit_command (dev, &dev->hp_txq,
1092 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1093 0, 0, 0);
1094 }
1095
1096 /* Indicate we're done! */
1097 set_bit(ATM_VF_READY, &atm_vcc->flags);
1098
1099 func_exit ();
1100 return 0;
1101}
1102
1103
1104static void fs_close(struct atm_vcc *atm_vcc)
1105{
1106 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1107 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1108 struct atm_trafprm * txtp;
1109 struct atm_trafprm * rxtp;
1110
1111 func_enter ();
1112
1113 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1114
1115 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1116 if (vcc->last_skb) {
1117 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1118 vcc->last_skb);
1119 /* We're going to wait for the last packet to get sent on this VC. It would
1120 be impolite not to send them don't you think?
1121 XXX
1122 We don't know which packets didn't get sent. So if we get interrupted in
1123 this sleep_on, we'll lose any reference to these packets. Memory leak!
1124 On the other hand, it's awfully convenient that we can abort a "close" that
1125 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1126 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1127 }
1128
1129 txtp = &atm_vcc->qos.txtp;
1130 rxtp = &atm_vcc->qos.rxtp;
1131
1132
1133 /* See App note XXX (Unpublished as of now) for the reason for the
1134 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1135
1136 if (DO_DIRECTION (txtp)) {
1137 submit_command (dev, &dev->hp_txq,
1138 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1139 clear_bit (vcc->channo, dev->tx_inuse);
1140 }
1141
1142 if (DO_DIRECTION (rxtp)) {
1143 submit_command (dev, &dev->hp_txq,
1144 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1145 dev->atm_vccs [vcc->channo] = NULL;
1146
1147 /* This means that this is configured as a receive channel */
1148 if (IS_FS50 (dev)) {
1149 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1150 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1151 (0xfff...) -- REW */
1152 submit_command (dev, &dev->hp_txq,
1153 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1154 0x80 + vcc->channo, -1, 0 );
1155 }
1156 }
1157
1158 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1159 kfree (vcc);
1160
1161 func_exit ();
1162}
1163
1164
1165static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1166{
1167 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1168 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1169 struct FS_BPENTRY *td;
1170
1171 func_enter ();
1172
1173 fs_dprintk (FS_DEBUG_TXMEM, "I");
1174 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1175 atm_vcc, skb, vcc, dev);
1176
1177 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1178
1179 ATM_SKB(skb)->vcc = atm_vcc;
1180
1181 vcc->last_skb = skb;
1182
1183 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1184 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%Zd)\n", td, sizeof (struct FS_BPENTRY));
1185 if (!td) {
1186 /* Oops out of mem */
1187 return -ENOMEM;
1188 }
1189
1190 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1191 *(int *) skb->data);
1192
1193 td->flags = TD_EPI | TD_DATA | skb->len;
1194 td->next = 0;
1195 td->bsa = virt_to_bus (skb->data);
1196 td->skb = skb;
1197 td->dev = dev;
1198 dev->ntxpckts++;
1199
1200#ifdef DEBUG_EXTRA
1201 da[qd] = td;
1202 dq[qd].flags = td->flags;
1203 dq[qd].next = td->next;
1204 dq[qd].bsa = td->bsa;
1205 dq[qd].skb = td->skb;
1206 dq[qd].dev = td->dev;
1207 qd++;
1208 if (qd >= 60) qd = 0;
1209#endif
1210
1211 submit_queue (dev, &dev->hp_txq,
1212 QE_TRANSMIT_DE | vcc->channo,
1213 virt_to_bus (td), 0,
1214 virt_to_bus (td));
1215
1216 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1217 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1218 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1219 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1220 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1221
1222 func_exit ();
1223 return 0;
1224}
1225
1226
1227/* Some function placeholders for functions we don't yet support. */
1228
1229#if 0
1230static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1231{
1232 func_enter ();
1233 func_exit ();
1234 return -ENOIOCTLCMD;
1235}
1236
1237
1238static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1239 void __user *optval,int optlen)
1240{
1241 func_enter ();
1242 func_exit ();
1243 return 0;
1244}
1245
1246
1247static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1248 void __user *optval,unsigned int optlen)
1249{
1250 func_enter ();
1251 func_exit ();
1252 return 0;
1253}
1254
1255
1256static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1257 unsigned long addr)
1258{
1259 func_enter ();
1260 func_exit ();
1261}
1262
1263
1264static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1265{
1266 func_enter ();
1267 func_exit ();
1268 return 0;
1269}
1270
1271
1272static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1273{
1274 func_enter ();
1275 func_exit ();
1276 return 0;
1277};
1278
1279#endif
1280
1281
1282static const struct atmdev_ops ops = {
1283 .open = fs_open,
1284 .close = fs_close,
1285 .send = fs_send,
1286 .owner = THIS_MODULE,
1287 /* ioctl: fs_ioctl, */
1288 /* getsockopt: fs_getsockopt, */
1289 /* setsockopt: fs_setsockopt, */
1290 /* change_qos: fs_change_qos, */
1291
1292 /* For now implement these internally here... */
1293 /* phy_put: fs_phy_put, */
1294 /* phy_get: fs_phy_get, */
1295};
1296
1297
1298static void undocumented_pci_fix(struct pci_dev *pdev)
1299{
1300 u32 tint;
1301
1302 /* The Windows driver says: */
1303 /* Switch off FireStream Retry Limit Threshold
1304 */
1305
1306 /* The register at 0x28 is documented as "reserved", no further
1307 comments. */
1308
1309 pci_read_config_dword (pdev, 0x28, &tint);
1310 if (tint != 0x80) {
1311 tint = 0x80;
1312 pci_write_config_dword (pdev, 0x28, tint);
1313 }
1314}
1315
1316
1317
1318/**************************************************************************
1319 * PHY routines *
1320 **************************************************************************/
1321
1322static void write_phy(struct fs_dev *dev, int regnum, int val)
1323{
1324 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1325 regnum, val, 0);
1326}
1327
1328static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1329{
1330 int i;
1331
1332 func_enter ();
1333 while (reginit->reg != PHY_EOF) {
1334 if (reginit->reg == PHY_CLEARALL) {
1335 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1336 for (i=0;i<reginit->val;i++) {
1337 write_phy (dev, i, 0);
1338 }
1339 } else {
1340 write_phy (dev, reginit->reg, reginit->val);
1341 }
1342 reginit++;
1343 }
1344 func_exit ();
1345 return 0;
1346}
1347
1348static void reset_chip (struct fs_dev *dev)
1349{
1350 int i;
1351
1352 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1353
1354 /* Undocumented delay */
1355 udelay (128);
1356
1357 /* The "internal registers are documented to all reset to zero, but
1358 comments & code in the Windows driver indicates that the pools are
1359 NOT reset. */
1360 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1361 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1362 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1363 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1364 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1365 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1366 }
1367
1368 /* The same goes for the match channel registers, although those are
1369 NOT documented that way in the Windows driver. -- REW */
1370 /* The Windows driver DOES write 0 to these registers somewhere in
1371 the init sequence. However, a small hardware-feature, will
1372 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1373 allocated happens to have no disabled channels that have a lower
1374 number. -- REW */
1375
1376 /* Clear the match channel registers. */
1377 if (IS_FS50 (dev)) {
1378 for (i=0;i<FS50_NR_CHANNELS;i++) {
1379 write_fs (dev, 0x200 + i * 4, -1);
1380 }
1381 }
1382}
1383
1384static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1385{
1386 void *t;
1387
1388 if (alignment <= 0x10) {
1389 t = kmalloc (size, flags);
1390 if ((unsigned long)t & (alignment-1)) {
1391 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1392 kfree (t);
1393 return aligned_kmalloc (size, flags, alignment * 4);
1394 }
1395 return t;
1396 }
1397 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1398 return NULL;
1399}
1400
1401static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1402 int nentries, int is_rq)
1403{
1404 int sz = nentries * sizeof (struct FS_QENTRY);
1405 struct FS_QENTRY *p;
1406
1407 func_enter ();
1408
1409 fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1410 queue, nentries);
1411
1412 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1413 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1414
1415 if (!p) return 0;
1416
1417 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1418 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1419 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1420 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1421 if (is_rq) {
1422 /* Configuration for the receive queue: 0: interrupt immediately,
1423 no pre-warning to empty queues: We do our best to keep the
1424 queue filled anyway. */
1425 write_fs (dev, Q_CNF(queue), 0 );
1426 }
1427
1428 txq->sa = p;
1429 txq->ea = p;
1430 txq->offset = queue;
1431
1432 func_exit ();
1433 return 1;
1434}
1435
1436
1437static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1438 int bufsize, int nr_buffers)
1439{
1440 func_enter ();
1441
1442 fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1443
1444 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1445 write_fs (dev, FP_SA(queue), 0);
1446 write_fs (dev, FP_EA(queue), 0);
1447 write_fs (dev, FP_CTU(queue), 0);
1448 write_fs (dev, FP_CNT(queue), 0);
1449
1450 fp->offset = queue;
1451 fp->bufsize = bufsize;
1452 fp->nr_buffers = nr_buffers;
1453
1454 func_exit ();
1455 return 1;
1456}
1457
1458
1459static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1460{
1461#if 0
1462 /* This seems to be unreliable.... */
1463 return read_fs (dev, FP_CNT (fp->offset));
1464#else
1465 return fp->n;
1466#endif
1467}
1468
1469
1470/* Check if this gets going again if a pool ever runs out. -- Yes, it
1471 does. I've seen "receive abort: no buffers" and things started
1472 working again after that... -- REW */
1473
1474static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1475 gfp_t gfp_flags)
1476{
1477 struct FS_BPENTRY *qe, *ne;
1478 struct sk_buff *skb;
1479 int n = 0;
1480 u32 qe_tmp;
1481
1482 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1483 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1484 fp->nr_buffers);
1485 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1486
1487 skb = alloc_skb (fp->bufsize, gfp_flags);
1488 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1489 if (!skb) break;
1490 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1491 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%Zd)\n", ne, sizeof (struct FS_BPENTRY));
1492 if (!ne) {
1493 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1494 dev_kfree_skb_any (skb);
1495 break;
1496 }
1497
1498 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1499 skb, ne, skb->data, skb->head);
1500 n++;
1501 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1502 ne->next = virt_to_bus (NULL);
1503 ne->bsa = virt_to_bus (skb->data);
1504 ne->aal_bufsize = fp->bufsize;
1505 ne->skb = skb;
1506 ne->fp = fp;
1507
1508 /*
1509 * FIXME: following code encodes and decodes
1510 * machine pointers (could be 64-bit) into a
1511 * 32-bit register.
1512 */
1513
1514 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1515 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1516 if (qe_tmp) {
1517 qe = bus_to_virt ((long) qe_tmp);
1518 qe->next = virt_to_bus(ne);
1519 qe->flags &= ~FP_FLAGS_EPI;
1520 } else
1521 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1522
1523 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1524 fp->n++; /* XXX Atomic_inc? */
1525 write_fs (dev, FP_CTU(fp->offset), 1);
1526 }
1527
1528 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1529}
1530
1531static void free_queue(struct fs_dev *dev, struct queue *txq)
1532{
1533 func_enter ();
1534
1535 write_fs (dev, Q_SA(txq->offset), 0);
1536 write_fs (dev, Q_EA(txq->offset), 0);
1537 write_fs (dev, Q_RP(txq->offset), 0);
1538 write_fs (dev, Q_WP(txq->offset), 0);
1539 /* Configuration ? */
1540
1541 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1542 kfree (txq->sa);
1543
1544 func_exit ();
1545}
1546
1547static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1548{
1549 func_enter ();
1550
1551 write_fs (dev, FP_CNF(fp->offset), 0);
1552 write_fs (dev, FP_SA (fp->offset), 0);
1553 write_fs (dev, FP_EA (fp->offset), 0);
1554 write_fs (dev, FP_CNT(fp->offset), 0);
1555 write_fs (dev, FP_CTU(fp->offset), 0);
1556
1557 func_exit ();
1558}
1559
1560
1561
1562static irqreturn_t fs_irq (int irq, void *dev_id)
1563{
1564 int i;
1565 u32 status;
1566 struct fs_dev *dev = dev_id;
1567
1568 status = read_fs (dev, ISR);
1569 if (!status)
1570 return IRQ_NONE;
1571
1572 func_enter ();
1573
1574#ifdef IRQ_RATE_LIMIT
1575 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1576 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1577 {
1578 static int lastjif;
1579 static int nintr=0;
1580
1581 if (lastjif == jiffies) {
1582 if (++nintr > IRQ_RATE_LIMIT) {
1583 free_irq (dev->irq, dev_id);
1584 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1585 dev->irq);
1586 }
1587 } else {
1588 lastjif = jiffies;
1589 nintr = 0;
1590 }
1591 }
1592#endif
1593 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1594 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1595 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1596 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1597 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1598
1599 /* print the bits in the ISR register. */
1600 if (fs_debug & FS_DEBUG_IRQ) {
1601 /* The FS_DEBUG things are unnecessary here. But this way it is
1602 clear for grep that these are debug prints. */
1603 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1604 for (i=0;i<27;i++)
1605 if (status & (1 << i))
1606 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1607 fs_dprintk (FS_DEBUG_IRQ, "\n");
1608 }
1609
1610 if (status & ISR_RBRQ0_W) {
1611 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1612 process_incoming (dev, &dev->rx_rq[0]);
1613 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1614 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1615 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1616 }
1617
1618 if (status & ISR_RBRQ1_W) {
1619 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1620 process_incoming (dev, &dev->rx_rq[1]);
1621 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1622 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1623 }
1624
1625 if (status & ISR_RBRQ2_W) {
1626 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1627 process_incoming (dev, &dev->rx_rq[2]);
1628 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1629 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1630 }
1631
1632 if (status & ISR_RBRQ3_W) {
1633 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1634 process_incoming (dev, &dev->rx_rq[3]);
1635 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1636 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1637 }
1638
1639 if (status & ISR_CSQ_W) {
1640 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1641 process_return_queue (dev, &dev->st_q);
1642 }
1643
1644 if (status & ISR_TBRQ_W) {
1645 fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1646 process_txdone_queue (dev, &dev->tx_relq);
1647 }
1648
1649 func_exit ();
1650 return IRQ_HANDLED;
1651}
1652
1653
1654#ifdef FS_POLL_FREQ
1655static void fs_poll (unsigned long data)
1656{
1657 struct fs_dev *dev = (struct fs_dev *) data;
1658
1659 fs_irq (0, dev);
1660 dev->timer.expires = jiffies + FS_POLL_FREQ;
1661 add_timer (&dev->timer);
1662}
1663#endif
1664
1665static int fs_init(struct fs_dev *dev)
1666{
1667 struct pci_dev *pci_dev;
1668 int isr, to;
1669 int i;
1670
1671 func_enter ();
1672 pci_dev = dev->pci_dev;
1673
1674 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1675 IS_FS50(dev)?50:155,
1676 (unsigned long long)pci_resource_start(pci_dev, 0),
1677 dev->pci_dev->irq);
1678
1679 if (fs_debug & FS_DEBUG_INIT)
1680 my_hd ((unsigned char *) dev, sizeof (*dev));
1681
1682 undocumented_pci_fix (pci_dev);
1683
1684 dev->hw_base = pci_resource_start(pci_dev, 0);
1685
1686 dev->base = ioremap(dev->hw_base, 0x1000);
1687
1688 reset_chip (dev);
1689
1690 write_fs (dev, SARMODE0, 0
1691 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1692 | (1 * SARMODE0_INTMODE_READCLEAR)
1693 | (1 * SARMODE0_CWRE)
1694 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1695 SARMODE0_PRPWT_FS155_3)
1696 | (1 * SARMODE0_CALSUP_1)
1697 | (IS_FS50(dev) ? (0
1698 | SARMODE0_RXVCS_32
1699 | SARMODE0_ABRVCS_32
1700 | SARMODE0_TXVCS_32):
1701 (0
1702 | SARMODE0_RXVCS_1k
1703 | SARMODE0_ABRVCS_1k
1704 | SARMODE0_TXVCS_1k)));
1705
1706 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1707 1ms. */
1708 to = 100;
1709 while (--to) {
1710 isr = read_fs (dev, ISR);
1711
1712 /* This bit is documented as "RESERVED" */
1713 if (isr & ISR_INIT_ERR) {
1714 printk (KERN_ERR "Error initializing the FS... \n");
1715 goto unmap;
1716 }
1717 if (isr & ISR_INIT) {
1718 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1719 break;
1720 }
1721
1722 /* Try again after 10ms. */
1723 msleep(10);
1724 }
1725
1726 if (!to) {
1727 printk (KERN_ERR "timeout initializing the FS... \n");
1728 goto unmap;
1729 }
1730
1731 /* XXX fix for fs155 */
1732 dev->channel_mask = 0x1f;
1733 dev->channo = 0;
1734
1735 /* AN3: 10 */
1736 write_fs (dev, SARMODE1, 0
1737 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1738 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1739 | (1 * SARMODE1_DCRM)
1740 | (1 * SARMODE1_DCOAM)
1741 | (0 * SARMODE1_OAMCRC)
1742 | (0 * SARMODE1_DUMPE)
1743 | (0 * SARMODE1_GPLEN)
1744 | (0 * SARMODE1_GNAM)
1745 | (0 * SARMODE1_GVAS)
1746 | (0 * SARMODE1_GPAS)
1747 | (1 * SARMODE1_GPRI)
1748 | (0 * SARMODE1_PMS)
1749 | (0 * SARMODE1_GFCR)
1750 | (1 * SARMODE1_HECM2)
1751 | (1 * SARMODE1_HECM1)
1752 | (1 * SARMODE1_HECM0)
1753 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1754 | (0 * 0xff) /* XXX FS155 */);
1755
1756
1757 /* Cal prescale etc */
1758
1759 /* AN3: 11 */
1760 write_fs (dev, TMCONF, 0x0000000f);
1761 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1762 write_fs (dev, 0x80, 0x000F00E4);
1763
1764 /* AN3: 12 */
1765 write_fs (dev, CELLOSCONF, 0
1766 | ( 0 * CELLOSCONF_CEN)
1767 | ( CELLOSCONF_SC1)
1768 | (0x80 * CELLOSCONF_COBS)
1769 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1770 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1771 * performance jumped 50->70... */
1772
1773 /* Magic value by Hang */
1774 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1775
1776 if (IS_FS50 (dev)) {
1777 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1778 dev->atm_dev->ci_range.vpi_bits = 12;
1779 dev->atm_dev->ci_range.vci_bits = 16;
1780 dev->nchannels = FS50_NR_CHANNELS;
1781 } else {
1782 write_fs (dev, RAS0, RAS0_DCD_XHLT
1783 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1784 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1785 /* We can chose the split arbitrarily. We might be able to
1786 support more. Whatever. This should do for now. */
1787 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1788 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1789
1790 /* Address bits we can't use should be compared to 0. */
1791 write_fs (dev, RAC, 0);
1792
1793 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1794 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1795 * other bits, then compare with 0, which is exactly what we
1796 * want. */
1797 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1798 dev->nchannels = FS155_NR_CHANNELS;
1799 }
1800 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1801 GFP_KERNEL);
1802 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%Zd)\n",
1803 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1804
1805 if (!dev->atm_vccs) {
1806 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1807 /* XXX Clean up..... */
1808 goto unmap;
1809 }
1810
1811 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1812 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1813 dev->atm_vccs, dev->nchannels / 8);
1814
1815 if (!dev->tx_inuse) {
1816 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1817 /* XXX Clean up..... */
1818 goto unmap;
1819 }
1820 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1821 /* -- RAS2 : FS50 only: Default is OK. */
1822
1823 /* DMAMODE, default should be OK. -- REW */
1824 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1825
1826 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1827 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1828 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1829 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1830
1831 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1832 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1833 rx_buf_sizes[i], rx_pool_sizes[i]);
1834 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1835 }
1836
1837
1838 for (i=0;i < FS_NR_RX_QUEUES;i++)
1839 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1840
1841 dev->irq = pci_dev->irq;
1842 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1843 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1844 /* XXX undo all previous stuff... */
1845 goto unmap;
1846 }
1847 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1848
1849 /* We want to be notified of most things. Just the statistics count
1850 overflows are not interesting */
1851 write_fs (dev, IMR, 0
1852 | ISR_RBRQ0_W
1853 | ISR_RBRQ1_W
1854 | ISR_RBRQ2_W
1855 | ISR_RBRQ3_W
1856 | ISR_TBRQ_W
1857 | ISR_CSQ_W);
1858
1859 write_fs (dev, SARMODE0, 0
1860 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1861 | (1 * SARMODE0_GINT)
1862 | (1 * SARMODE0_INTMODE_READCLEAR)
1863 | (0 * SARMODE0_CWRE)
1864 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1865 SARMODE0_PRPWT_FS155_3)
1866 | (1 * SARMODE0_CALSUP_1)
1867 | (IS_FS50 (dev)?(0
1868 | SARMODE0_RXVCS_32
1869 | SARMODE0_ABRVCS_32
1870 | SARMODE0_TXVCS_32):
1871 (0
1872 | SARMODE0_RXVCS_1k
1873 | SARMODE0_ABRVCS_1k
1874 | SARMODE0_TXVCS_1k))
1875 | (1 * SARMODE0_RUN));
1876
1877 init_phy (dev, PHY_NTC_INIT);
1878
1879 if (loopback == 2) {
1880 write_phy (dev, 0x39, 0x000e);
1881 }
1882
1883#ifdef FS_POLL_FREQ
1884 init_timer (&dev->timer);
1885 dev->timer.data = (unsigned long) dev;
1886 dev->timer.function = fs_poll;
1887 dev->timer.expires = jiffies + FS_POLL_FREQ;
1888 add_timer (&dev->timer);
1889#endif
1890
1891 dev->atm_dev->dev_data = dev;
1892
1893 func_exit ();
1894 return 0;
1895unmap:
1896 iounmap(dev->base);
1897 return 1;
1898}
1899
1900static int firestream_init_one(struct pci_dev *pci_dev,
1901 const struct pci_device_id *ent)
1902{
1903 struct atm_dev *atm_dev;
1904 struct fs_dev *fs_dev;
1905
1906 if (pci_enable_device(pci_dev))
1907 goto err_out;
1908
1909 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1910 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%Zd)\n",
1911 fs_dev, sizeof (struct fs_dev));
1912 if (!fs_dev)
1913 goto err_out;
1914 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1915 if (!atm_dev)
1916 goto err_out_free_fs_dev;
1917
1918 fs_dev->pci_dev = pci_dev;
1919 fs_dev->atm_dev = atm_dev;
1920 fs_dev->flags = ent->driver_data;
1921
1922 if (fs_init(fs_dev))
1923 goto err_out_free_atm_dev;
1924
1925 fs_dev->next = fs_boards;
1926 fs_boards = fs_dev;
1927 return 0;
1928
1929 err_out_free_atm_dev:
1930 atm_dev_deregister(atm_dev);
1931 err_out_free_fs_dev:
1932 kfree(fs_dev);
1933 err_out:
1934 return -ENODEV;
1935}
1936
1937static void firestream_remove_one(struct pci_dev *pdev)
1938{
1939 int i;
1940 struct fs_dev *dev, *nxtdev;
1941 struct fs_vcc *vcc;
1942 struct FS_BPENTRY *fp, *nxt;
1943
1944 func_enter ();
1945
1946#if 0
1947 printk ("hptxq:\n");
1948 for (i=0;i<60;i++) {
1949 printk ("%d: %08x %08x %08x %08x \n",
1950 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1951 qp++;
1952 if (qp >= 60) qp = 0;
1953 }
1954
1955 printk ("descriptors:\n");
1956 for (i=0;i<60;i++) {
1957 printk ("%d: %p: %08x %08x %p %p\n",
1958 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1959 qd++;
1960 if (qd >= 60) qd = 0;
1961 }
1962#endif
1963
1964 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1965 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1966
1967 /* XXX Hit all the tx channels too! */
1968
1969 for (i=0;i < dev->nchannels;i++) {
1970 if (dev->atm_vccs[i]) {
1971 vcc = FS_VCC (dev->atm_vccs[i]);
1972 submit_command (dev, &dev->hp_txq,
1973 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1974 submit_command (dev, &dev->hp_txq,
1975 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1976
1977 }
1978 }
1979
1980 /* XXX Wait a while for the chip to release all buffers. */
1981
1982 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1983 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1984 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1985 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1986 dev_kfree_skb_any (fp->skb);
1987 nxt = bus_to_virt (fp->next);
1988 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1989 kfree (fp);
1990 }
1991 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1992 dev_kfree_skb_any (fp->skb);
1993 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1994 kfree (fp);
1995 }
1996
1997 /* Hang the chip in "reset", prevent it clobbering memory that is
1998 no longer ours. */
1999 reset_chip (dev);
2000
2001 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2002 free_irq (dev->irq, dev);
2003 del_timer_sync (&dev->timer);
2004
2005 atm_dev_deregister(dev->atm_dev);
2006 free_queue (dev, &dev->hp_txq);
2007 free_queue (dev, &dev->lp_txq);
2008 free_queue (dev, &dev->tx_relq);
2009 free_queue (dev, &dev->st_q);
2010
2011 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2012 kfree (dev->atm_vccs);
2013
2014 for (i=0;i< FS_NR_FREE_POOLS;i++)
2015 free_freepool (dev, &dev->rx_fp[i]);
2016
2017 for (i=0;i < FS_NR_RX_QUEUES;i++)
2018 free_queue (dev, &dev->rx_rq[i]);
2019
2020 iounmap(dev->base);
2021 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2022 nxtdev = dev->next;
2023 kfree (dev);
2024 }
2025
2026 func_exit ();
2027}
2028
2029static struct pci_device_id firestream_pci_tbl[] = {
2030 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2031 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2032 { 0, }
2033};
2034
2035MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2036
2037static struct pci_driver firestream_driver = {
2038 .name = "firestream",
2039 .id_table = firestream_pci_tbl,
2040 .probe = firestream_init_one,
2041 .remove = firestream_remove_one,
2042};
2043
2044static int __init firestream_init_module (void)
2045{
2046 int error;
2047
2048 func_enter ();
2049 error = pci_register_driver(&firestream_driver);
2050 func_exit ();
2051 return error;
2052}
2053
2054static void __exit firestream_cleanup_module(void)
2055{
2056 pci_unregister_driver(&firestream_driver);
2057}
2058
2059module_init(firestream_init_module);
2060module_exit(firestream_cleanup_module);
2061
2062MODULE_LICENSE("GPL");
2063
2064
2065
1// SPDX-License-Identifier: GPL-2.0-or-later
2
3/* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4 * FireStream 50 (MB86695) device driver
5 */
6
7/* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
10 */
11
12/*
13*/
14
15
16#include <linux/module.h>
17#include <linux/sched.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/pci.h>
21#include <linux/poison.h>
22#include <linux/errno.h>
23#include <linux/atm.h>
24#include <linux/atmdev.h>
25#include <linux/sonet.h>
26#include <linux/skbuff.h>
27#include <linux/netdevice.h>
28#include <linux/delay.h>
29#include <linux/ioport.h> /* for request_region */
30#include <linux/uio.h>
31#include <linux/init.h>
32#include <linux/interrupt.h>
33#include <linux/capability.h>
34#include <linux/bitops.h>
35#include <linux/slab.h>
36#include <asm/byteorder.h>
37#include <asm/string.h>
38#include <asm/io.h>
39#include <linux/atomic.h>
40#include <linux/uaccess.h>
41#include <linux/wait.h>
42
43#include "firestream.h"
44
45static int loopback = 0;
46static int num=0x5a;
47
48/* According to measurements (but they look suspicious to me!) done in
49 * '97, 37% of the packets are one cell in size. So it pays to have
50 * buffers allocated at that size. A large jump in percentage of
51 * packets occurs at packets around 536 bytes in length. So it also
52 * pays to have those pre-allocated. Unfortunately, we can't fully
53 * take advantage of this as the majority of the packets is likely to
54 * be TCP/IP (As where obviously the measurement comes from) There the
55 * link would be opened with say a 1500 byte MTU, and we can't handle
56 * smaller buffers more efficiently than the larger ones. -- REW
57 */
58
59/* Due to the way Linux memory management works, specifying "576" as
60 * an allocation size here isn't going to help. They are allocated
61 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62 * large), it doesn't pay to allocate the smallest size (64) -- REW */
63
64/* This is all guesswork. Hard numbers to back this up or disprove this,
65 * are appreciated. -- REW */
66
67/* The last entry should be about 64k. However, the "buffer size" is
68 * passed to the chip in a 16 bit field. I don't know how "65536"
69 * would be interpreted. -- REW */
70
71#define NP FS_NR_FREE_POOLS
72static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
73/* log2: 7 8 9 10 11 12 14 16 */
74
75#if 0
76static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
77#else
78/* debug */
79static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
80#endif
81/* log2: 10 10 9 8 7 6 5 5 */
82/* sumlog2: 17 18 18 18 18 18 19 21 */
83/* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
84/* tot mem: almost 4M */
85
86/* NP is shorter, so that it fits on a single line. */
87#undef NP
88
89
90/* Small hardware gotcha:
91
92 The FS50 CAM (VP/VC match registers) always take the lowest channel
93 number that matches. This is not a problem.
94
95 However, they also ignore whether the channel is enabled or
96 not. This means that if you allocate channel 0 to 1.2 and then
97 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98 match channel for channel 0 will "steal" the traffic from channel
99 1, even if you correctly disable channel 0.
100
101 Workaround:
102
103 - When disabling channels, write an invalid VP/VC value to the
104 match register. (We use 0xffffffff, which in the worst case
105 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106 anything as some "when not in use, program to 0" bits are now
107 programmed to 1...)
108
109 - Don't initialize the match registers to 0, as 0.0 is a valid
110 channel.
111*/
112
113
114/* Optimization hints and tips.
115
116 The FireStream chips are very capable of reducing the amount of
117 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118 action. You could try to minimize this a bit.
119
120 Besides that, the userspace->kernel copy and the PCI bus are the
121 performance limiting issues for this driver.
122
123 You could queue up a bunch of outgoing packets without telling the
124 FireStream. I'm not sure that's going to win you much though. The
125 Linux layer won't tell us in advance when it's not going to give us
126 any more packets in a while. So this is tricky to implement right without
127 introducing extra delays.
128
129 -- REW
130 */
131
132
133
134
135/* The strings that define what the RX queue entry is all about. */
136/* Fujitsu: Please tell me which ones can have a pointer to a
137 freepool descriptor! */
138static char *res_strings[] = {
139 "RX OK: streaming not EOP",
140 "RX OK: streaming EOP",
141 "RX OK: Single buffer packet",
142 "RX OK: packet mode",
143 "RX OK: F4 OAM (end to end)",
144 "RX OK: F4 OAM (Segment)",
145 "RX OK: F5 OAM (end to end)",
146 "RX OK: F5 OAM (Segment)",
147 "RX OK: RM cell",
148 "RX OK: TRANSP cell",
149 "RX OK: TRANSPC cell",
150 "Unmatched cell",
151 "reserved 12",
152 "reserved 13",
153 "reserved 14",
154 "Unrecognized cell",
155 "reserved 16",
156 "reassembly abort: AAL5 abort",
157 "packet purged",
158 "packet ageing timeout",
159 "channel ageing timeout",
160 "calculated length error",
161 "programmed length limit error",
162 "aal5 crc32 error",
163 "oam transp or transpc crc10 error",
164 "reserved 25",
165 "reserved 26",
166 "reserved 27",
167 "reserved 28",
168 "reserved 29",
169 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 "reassembly abort: no buffers",
171 "receive buffer overflow",
172 "change in GFC",
173 "receive buffer full",
174 "low priority discard - no receive descriptor",
175 "low priority discard - missing end of packet",
176 "reserved 37",
177 "reserved 38",
178 "reserved 39",
179 "reserved 40",
180 "reserved 41",
181 "reserved 42",
182 "reserved 43",
183 "reserved 44",
184 "reserved 45",
185 "reserved 46",
186 "reserved 47",
187 "reserved 48",
188 "reserved 49",
189 "reserved 50",
190 "reserved 51",
191 "reserved 52",
192 "reserved 53",
193 "reserved 54",
194 "reserved 55",
195 "reserved 56",
196 "reserved 57",
197 "reserved 58",
198 "reserved 59",
199 "reserved 60",
200 "reserved 61",
201 "reserved 62",
202 "reserved 63",
203};
204
205static char *irq_bitname[] = {
206 "LPCO",
207 "DPCO",
208 "RBRQ0_W",
209 "RBRQ1_W",
210 "RBRQ2_W",
211 "RBRQ3_W",
212 "RBRQ0_NF",
213 "RBRQ1_NF",
214 "RBRQ2_NF",
215 "RBRQ3_NF",
216 "BFP_SC",
217 "INIT",
218 "INIT_ERR",
219 "USCEO",
220 "UPEC0",
221 "VPFCO",
222 "CRCCO",
223 "HECO",
224 "TBRQ_W",
225 "TBRQ_NF",
226 "CTPQ_E",
227 "GFC_C0",
228 "PCI_FTL",
229 "CSQ_W",
230 "CSQ_NF",
231 "EXT_INT",
232 "RXDMA_S"
233};
234
235
236#define PHY_EOF -1
237#define PHY_CLEARALL -2
238
239struct reginit_item {
240 int reg, val;
241};
242
243
244static struct reginit_item PHY_NTC_INIT[] = {
245 { PHY_CLEARALL, 0x40 },
246 { 0x12, 0x0001 },
247 { 0x13, 0x7605 },
248 { 0x1A, 0x0001 },
249 { 0x1B, 0x0005 },
250 { 0x38, 0x0003 },
251 { 0x39, 0x0006 }, /* changed here to make loopback */
252 { 0x01, 0x5262 },
253 { 0x15, 0x0213 },
254 { 0x00, 0x0003 },
255 { PHY_EOF, 0}, /* -1 signals end of list */
256};
257
258
259/* Safetyfeature: If the card interrupts more than this number of times
260 in a jiffy (1/100th of a second) then we just disable the interrupt and
261 print a message. This prevents the system from hanging.
262
263 150000 packets per second is close to the limit a PC is going to have
264 anyway. We therefore have to disable this for production. -- REW */
265#undef IRQ_RATE_LIMIT // 100
266
267/* Interrupts work now. Unlike serial cards, ATM cards don't work all
268 that great without interrupts. -- REW */
269#undef FS_POLL_FREQ // 100
270
271/*
272 This driver can spew a whole lot of debugging output at you. If you
273 need maximum performance, you should disable the DEBUG define. To
274 aid in debugging in the field, I'm leaving the compile-time debug
275 features enabled, and disable them "runtime". That allows me to
276 instruct people with problems to enable debugging without requiring
277 them to recompile... -- REW
278*/
279#define DEBUG
280
281#ifdef DEBUG
282#define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
283#else
284#define fs_dprintk(f, str...) /* nothing */
285#endif
286
287
288static int fs_keystream = 0;
289
290#ifdef DEBUG
291/* I didn't forget to set this to zero before shipping. Hit me with a stick
292 if you get this with the debug default not set to zero again. -- REW */
293static int fs_debug = 0;
294#else
295#define fs_debug 0
296#endif
297
298#ifdef MODULE
299#ifdef DEBUG
300module_param(fs_debug, int, 0644);
301#endif
302module_param(loopback, int, 0);
303module_param(num, int, 0);
304module_param(fs_keystream, int, 0);
305/* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
306#endif
307
308
309#define FS_DEBUG_FLOW 0x00000001
310#define FS_DEBUG_OPEN 0x00000002
311#define FS_DEBUG_QUEUE 0x00000004
312#define FS_DEBUG_IRQ 0x00000008
313#define FS_DEBUG_INIT 0x00000010
314#define FS_DEBUG_SEND 0x00000020
315#define FS_DEBUG_PHY 0x00000040
316#define FS_DEBUG_CLEANUP 0x00000080
317#define FS_DEBUG_QOS 0x00000100
318#define FS_DEBUG_TXQ 0x00000200
319#define FS_DEBUG_ALLOC 0x00000400
320#define FS_DEBUG_TXMEM 0x00000800
321#define FS_DEBUG_QSIZE 0x00001000
322
323
324#define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325#define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
326
327
328static struct fs_dev *fs_boards = NULL;
329
330#ifdef DEBUG
331
332static void my_hd (void *addr, int len)
333{
334 int j, ch;
335 unsigned char *ptr = addr;
336
337 while (len > 0) {
338 printk ("%p ", ptr);
339 for (j=0;j < ((len < 16)?len:16);j++) {
340 printk ("%02x %s", ptr[j], (j==7)?" ":"");
341 }
342 for ( ;j < 16;j++) {
343 printk (" %s", (j==7)?" ":"");
344 }
345 for (j=0;j < ((len < 16)?len:16);j++) {
346 ch = ptr[j];
347 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
348 }
349 printk ("\n");
350 ptr += 16;
351 len -= 16;
352 }
353}
354#else /* DEBUG */
355static void my_hd (void *addr, int len){}
356#endif /* DEBUG */
357
358/********** free an skb (as per ATM device driver documentation) **********/
359
360/* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361 * I copied it over from the ambassador driver. -- REW */
362
363static inline void fs_kfree_skb (struct sk_buff * skb)
364{
365 if (ATM_SKB(skb)->vcc->pop)
366 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
367 else
368 dev_kfree_skb_any (skb);
369}
370
371
372
373
374/* It seems the ATM forum recommends this horribly complicated 16bit
375 * floating point format. Turns out the Ambassador uses the exact same
376 * encoding. I just copied it over. If Mitch agrees, I'll move it over
377 * to the atm_misc file or something like that. (and remove it from
378 * here and the ambassador driver) -- REW
379 */
380
381/* The good thing about this format is that it is monotonic. So,
382 a conversion routine need not be very complicated. To be able to
383 round "nearest" we need to take along a few extra bits. Lets
384 put these after 16 bits, so that we can just return the top 16
385 bits of the 32bit number as the result:
386
387 int mr (unsigned int rate, int r)
388 {
389 int e = 16+9;
390 static int round[4]={0, 0, 0xffff, 0x8000};
391 if (!rate) return 0;
392 while (rate & 0xfc000000) {
393 rate >>= 1;
394 e++;
395 }
396 while (! (rate & 0xfe000000)) {
397 rate <<= 1;
398 e--;
399 }
400
401// Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
402 rate &= ~0x02000000;
403// Next add in the exponent
404 rate |= e << (16+9);
405// And perform the rounding:
406 return (rate + round[r]) >> 16;
407 }
408
409 14 lines-of-code. Compare that with the 120 that the Ambassador
410 guys needed. (would be 8 lines shorter if I'd try to really reduce
411 the number of lines:
412
413 int mr (unsigned int rate, int r)
414 {
415 int e = 16+9;
416 static int round[4]={0, 0, 0xffff, 0x8000};
417 if (!rate) return 0;
418 for (; rate & 0xfc000000 ;rate >>= 1, e++);
419 for (;!(rate & 0xfe000000);rate <<= 1, e--);
420 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
421 }
422
423 Exercise for the reader: Remove one more line-of-code, without
424 cheating. (Just joining two lines is cheating). (I know it's
425 possible, don't think you've beat me if you found it... If you
426 manage to lose two lines or more, keep me updated! ;-)
427
428 -- REW */
429
430
431#define ROUND_UP 1
432#define ROUND_DOWN 2
433#define ROUND_NEAREST 3
434/********** make rate (not quite as much fun as Horizon) **********/
435
436static int make_rate(unsigned int rate, int r,
437 u16 *bits, unsigned int *actual)
438{
439 unsigned char exp = -1; /* hush gcc */
440 unsigned int man = -1; /* hush gcc */
441
442 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
443
444 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 given 5-bit e and 9-bit m:
446 rate = EITHER (1+m/2^9)*2^e OR 0
447 bits = EITHER 1<<14 | e<<9 | m OR 0
448 (bit 15 is "reserved", bit 14 "non-zero")
449 smallest rate is 0 (special representation)
450 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
452 simple algorithm:
453 find position of top bit, this gives e
454 remove top bit and shift (rounding if feeling clever) by 9-e
455 */
456 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 representable. // This should move into the ambassador driver
458 when properly merged. -- REW */
459
460 if (rate > 0xffc00000U) {
461 /* larger than largest representable rate */
462
463 if (r == ROUND_UP) {
464 return -EINVAL;
465 } else {
466 exp = 31;
467 man = 511;
468 }
469
470 } else if (rate) {
471 /* representable rate */
472
473 exp = 31;
474 man = rate;
475
476 /* invariant: rate = man*2^(exp-31) */
477 while (!(man & (1<<31))) {
478 exp = exp - 1;
479 man = man<<1;
480 }
481
482 /* man has top bit set
483 rate = (2^31+(man-2^31))*2^(exp-31)
484 rate = (1+(man-2^31)/2^31)*2^exp
485 */
486 man = man<<1;
487 man &= 0xffffffffU; /* a nop on 32-bit systems */
488 /* rate = (1+man/2^32)*2^exp
489
490 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 time to lose significance... we want m in the range 0 to 2^9-1
492 rounding presents a minor problem... we first decide which way
493 we are rounding (based on given rounding direction and possibly
494 the bits of the mantissa that are to be discarded).
495 */
496
497 switch (r) {
498 case ROUND_DOWN: {
499 /* just truncate */
500 man = man>>(32-9);
501 break;
502 }
503 case ROUND_UP: {
504 /* check all bits that we are discarding */
505 if (man & (~0U>>9)) {
506 man = (man>>(32-9)) + 1;
507 if (man == (1<<9)) {
508 /* no need to check for round up outside of range */
509 man = 0;
510 exp += 1;
511 }
512 } else {
513 man = (man>>(32-9));
514 }
515 break;
516 }
517 case ROUND_NEAREST: {
518 /* check msb that we are discarding */
519 if (man & (1<<(32-9-1))) {
520 man = (man>>(32-9)) + 1;
521 if (man == (1<<9)) {
522 /* no need to check for round up outside of range */
523 man = 0;
524 exp += 1;
525 }
526 } else {
527 man = (man>>(32-9));
528 }
529 break;
530 }
531 }
532
533 } else {
534 /* zero rate - not representable */
535
536 if (r == ROUND_DOWN) {
537 return -EINVAL;
538 } else {
539 exp = 0;
540 man = 0;
541 }
542 }
543
544 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
545
546 if (bits)
547 *bits = /* (1<<14) | */ (exp<<9) | man;
548
549 if (actual)
550 *actual = (exp >= 9)
551 ? (1 << exp) + (man << (exp-9))
552 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
553
554 return 0;
555}
556
557
558
559
560/* FireStream access routines */
561/* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562 certain registers or to just log all accesses. */
563
564static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
565{
566 writel (val, dev->base + offset);
567}
568
569
570static inline u32 read_fs (struct fs_dev *dev, int offset)
571{
572 return readl (dev->base + offset);
573}
574
575
576
577static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
578{
579 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
580}
581
582
583static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
584{
585 u32 wp;
586 struct FS_QENTRY *cqe;
587
588 /* XXX Sanity check: the write pointer can be checked to be
589 still the same as the value passed as qe... -- REW */
590 /* udelay (5); */
591 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
593 q->offset);
594 schedule ();
595 }
596
597 wp &= ~0xf;
598 cqe = bus_to_virt (wp);
599 if (qe != cqe) {
600 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
601 }
602
603 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
604
605 {
606 static int c;
607 if (!(c++ % 100))
608 {
609 int rp, wp;
610 rp = read_fs (dev, Q_RP(q->offset));
611 wp = read_fs (dev, Q_WP(q->offset));
612 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 q->offset, rp, wp, wp-rp);
614 }
615 }
616}
617
618#ifdef DEBUG_EXTRA
619static struct FS_QENTRY pq[60];
620static int qp;
621
622static struct FS_BPENTRY dq[60];
623static int qd;
624static void *da[60];
625#endif
626
627static void submit_queue (struct fs_dev *dev, struct queue *q,
628 u32 cmd, u32 p1, u32 p2, u32 p3)
629{
630 struct FS_QENTRY *qe;
631
632 qe = get_qentry (dev, q);
633 qe->cmd = cmd;
634 qe->p0 = p1;
635 qe->p1 = p2;
636 qe->p2 = p3;
637 submit_qentry (dev, q, qe);
638
639#ifdef DEBUG_EXTRA
640 pq[qp].cmd = cmd;
641 pq[qp].p0 = p1;
642 pq[qp].p1 = p2;
643 pq[qp].p2 = p3;
644 qp++;
645 if (qp >= 60) qp = 0;
646#endif
647}
648
649/* Test the "other" way one day... -- REW */
650#if 1
651#define submit_command submit_queue
652#else
653
654static void submit_command (struct fs_dev *dev, struct queue *q,
655 u32 cmd, u32 p1, u32 p2, u32 p3)
656{
657 write_fs (dev, CMDR0, cmd);
658 write_fs (dev, CMDR1, p1);
659 write_fs (dev, CMDR2, p2);
660 write_fs (dev, CMDR3, p3);
661}
662#endif
663
664
665
666static void process_return_queue (struct fs_dev *dev, struct queue *q)
667{
668 long rq;
669 struct FS_QENTRY *qe;
670 void *tc;
671
672 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 qe = bus_to_virt (rq);
675
676 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
678
679 switch (STATUS_CODE (qe)) {
680 case 5:
681 tc = bus_to_virt (qe->p0);
682 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
683 kfree (tc);
684 break;
685 }
686
687 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
688 }
689}
690
691
692static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
693{
694 long rq;
695 long tmp;
696 struct FS_QENTRY *qe;
697 struct sk_buff *skb;
698 struct FS_BPENTRY *td;
699
700 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 qe = bus_to_virt (rq);
703
704 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
706
707 if (STATUS_CODE (qe) != 2)
708 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
710
711
712 switch (STATUS_CODE (qe)) {
713 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
714 /* Fall through */
715 case 0x02:
716 /* Process a real txdone entry. */
717 tmp = qe->p0;
718 if (tmp & 0x0f)
719 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
720 tmp &= ~0x0f;
721 td = bus_to_virt (tmp);
722
723 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
725
726 skb = td->skb;
727 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
730 }
731 td->dev->ntxpckts--;
732
733 {
734 static int c=0;
735
736 if (!(c++ % 100)) {
737 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
738 }
739 }
740
741 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
742
743 fs_dprintk (FS_DEBUG_TXMEM, "i");
744 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
745 fs_kfree_skb (skb);
746
747 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
749 kfree (td);
750 break;
751 default:
752 /* Here we get the tx purge inhibit command ... */
753 /* Action, I believe, is "don't do anything". -- REW */
754 ;
755 }
756
757 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
758 }
759}
760
761
762static void process_incoming (struct fs_dev *dev, struct queue *q)
763{
764 long rq;
765 struct FS_QENTRY *qe;
766 struct FS_BPENTRY *pe;
767 struct sk_buff *skb;
768 unsigned int channo;
769 struct atm_vcc *atm_vcc;
770
771 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 qe = bus_to_virt (rq);
774
775 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
776 qe->cmd, qe->p0, qe->p1, qe->p2);
777
778 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
779 STATUS_CODE (qe),
780 res_strings[STATUS_CODE(qe)]);
781
782 pe = bus_to_virt (qe->p0);
783 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
785 pe->skb, pe->fp);
786
787 channo = qe->cmd & 0xffff;
788
789 if (channo < dev->nchannels)
790 atm_vcc = dev->atm_vccs[channo];
791 else
792 atm_vcc = NULL;
793
794 /* Single buffer packet */
795 switch (STATUS_CODE (qe)) {
796 case 0x1:
797 /* Fall through for streaming mode */
798 case 0x2:/* Packet received OK.... */
799 if (atm_vcc) {
800 skb = pe->skb;
801 pe->fp->n--;
802#if 0
803 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
804 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
805#endif
806 skb_put (skb, qe->p1 & 0xffff);
807 ATM_SKB(skb)->vcc = atm_vcc;
808 atomic_inc(&atm_vcc->stats->rx);
809 __net_timestamp(skb);
810 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
811 atm_vcc->push (atm_vcc, skb);
812 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
813 kfree (pe);
814 } else {
815 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
816 }
817 break;
818 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
819 has been consumed and needs to be processed. -- REW */
820 if (qe->p1 & 0xffff) {
821 pe = bus_to_virt (qe->p0);
822 pe->fp->n--;
823 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
824 dev_kfree_skb_any (pe->skb);
825 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
826 kfree (pe);
827 }
828 if (atm_vcc)
829 atomic_inc(&atm_vcc->stats->rx_drop);
830 break;
831 case 0x1f: /* Reassembly abort: no buffers. */
832 /* Silently increment error counter. */
833 if (atm_vcc)
834 atomic_inc(&atm_vcc->stats->rx_drop);
835 break;
836 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
837 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
838 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
839 }
840 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
841 }
842}
843
844
845
846#define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
847
848static int fs_open(struct atm_vcc *atm_vcc)
849{
850 struct fs_dev *dev;
851 struct fs_vcc *vcc;
852 struct fs_transmit_config *tc;
853 struct atm_trafprm * txtp;
854 struct atm_trafprm * rxtp;
855 /* struct fs_receive_config *rc;*/
856 /* struct FS_QENTRY *qe; */
857 int error;
858 int bfp;
859 int to;
860 unsigned short tmc0;
861 short vpi = atm_vcc->vpi;
862 int vci = atm_vcc->vci;
863
864 func_enter ();
865
866 dev = FS_DEV(atm_vcc->dev);
867 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
868 dev, atm_vcc);
869
870 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
871 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
872
873 if ((atm_vcc->qos.aal != ATM_AAL5) &&
874 (atm_vcc->qos.aal != ATM_AAL2))
875 return -EINVAL; /* XXX AAL0 */
876
877 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
878 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
879
880 /* XXX handle qos parameters (rate limiting) ? */
881
882 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
883 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
884 if (!vcc) {
885 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
886 return -ENOMEM;
887 }
888
889 atm_vcc->dev_data = vcc;
890 vcc->last_skb = NULL;
891
892 init_waitqueue_head (&vcc->close_wait);
893
894 txtp = &atm_vcc->qos.txtp;
895 rxtp = &atm_vcc->qos.rxtp;
896
897 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
898 if (IS_FS50(dev)) {
899 /* Increment the channel numer: take a free one next time. */
900 for (to=33;to;to--, dev->channo++) {
901 /* We only have 32 channels */
902 if (dev->channo >= 32)
903 dev->channo = 0;
904 /* If we need to do RX, AND the RX is inuse, try the next */
905 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
906 continue;
907 /* If we need to do TX, AND the TX is inuse, try the next */
908 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
909 continue;
910 /* Ok, both are free! (or not needed) */
911 break;
912 }
913 if (!to) {
914 printk ("No more free channels for FS50..\n");
915 return -EBUSY;
916 }
917 vcc->channo = dev->channo;
918 dev->channo &= dev->channel_mask;
919
920 } else {
921 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
922 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
923 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
924 printk ("Channel is in use for FS155.\n");
925 return -EBUSY;
926 }
927 }
928 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
929 vcc->channo, vcc->channo);
930 }
931
932 if (DO_DIRECTION (txtp)) {
933 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
934 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
935 tc, sizeof (struct fs_transmit_config));
936 if (!tc) {
937 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
938 return -ENOMEM;
939 }
940
941 /* Allocate the "open" entry from the high priority txq. This makes
942 it most likely that the chip will notice it. It also prevents us
943 from having to wait for completion. On the other hand, we may
944 need to wait for completion anyway, to see if it completed
945 successfully. */
946
947 switch (atm_vcc->qos.aal) {
948 case ATM_AAL2:
949 case ATM_AAL0:
950 tc->flags = 0
951 | TC_FLAGS_TRANSPARENT_PAYLOAD
952 | TC_FLAGS_PACKET
953 | (1 << 28)
954 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
955 | TC_FLAGS_CAL0;
956 break;
957 case ATM_AAL5:
958 tc->flags = 0
959 | TC_FLAGS_AAL5
960 | TC_FLAGS_PACKET /* ??? */
961 | TC_FLAGS_TYPE_CBR
962 | TC_FLAGS_CAL0;
963 break;
964 default:
965 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
966 tc->flags = 0;
967 }
968 /* Docs are vague about this atm_hdr field. By the way, the FS
969 * chip makes odd errors if lower bits are set.... -- REW */
970 tc->atm_hdr = (vpi << 20) | (vci << 4);
971 tmc0 = 0;
972 {
973 int pcr = atm_pcr_goal (txtp);
974
975 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
976
977 /* XXX Hmm. officially we're only allowed to do this if rounding
978 is round_down -- REW */
979 if (IS_FS50(dev)) {
980 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
981 } else {
982 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
983 }
984 if (!pcr) {
985 /* no rate cap */
986 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
987 } else {
988 int r;
989 if (pcr < 0) {
990 r = ROUND_DOWN;
991 pcr = -pcr;
992 } else {
993 r = ROUND_UP;
994 }
995 error = make_rate (pcr, r, &tmc0, NULL);
996 if (error) {
997 kfree(tc);
998 return error;
999 }
1000 }
1001 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1002 }
1003
1004 tc->TMC[0] = tmc0 | 0x4000;
1005 tc->TMC[1] = 0; /* Unused */
1006 tc->TMC[2] = 0; /* Unused */
1007 tc->TMC[3] = 0; /* Unused */
1008
1009 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1010 tc->rtag[0] = 0; /* What should I do with routing tags???
1011 -- Not used -- AS -- Thanks -- REW*/
1012 tc->rtag[1] = 0;
1013 tc->rtag[2] = 0;
1014
1015 if (fs_debug & FS_DEBUG_OPEN) {
1016 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1017 my_hd (tc, sizeof (*tc));
1018 }
1019
1020 /* We now use the "submit_command" function to submit commands to
1021 the firestream. There is a define up near the definition of
1022 that routine that switches this routine between immediate write
1023 to the immediate command registers and queuing the commands in
1024 the HPTXQ for execution. This last technique might be more
1025 efficient if we know we're going to submit a whole lot of
1026 commands in one go, but this driver is not setup to be able to
1027 use such a construct. So it probably doen't matter much right
1028 now. -- REW */
1029
1030 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1031 submit_command (dev, &dev->hp_txq,
1032 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1033 virt_to_bus (tc), 0, 0);
1034
1035 submit_command (dev, &dev->hp_txq,
1036 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1037 0, 0, 0);
1038 set_bit (vcc->channo, dev->tx_inuse);
1039 }
1040
1041 if (DO_DIRECTION (rxtp)) {
1042 dev->atm_vccs[vcc->channo] = atm_vcc;
1043
1044 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1045 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1046 if (bfp >= FS_NR_FREE_POOLS) {
1047 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1048 atm_vcc->qos.rxtp.max_sdu);
1049 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1050
1051 /* XXX clear tx inuse. Close TX part? */
1052 dev->atm_vccs[vcc->channo] = NULL;
1053 kfree (vcc);
1054 return -EINVAL;
1055 }
1056
1057 switch (atm_vcc->qos.aal) {
1058 case ATM_AAL0:
1059 case ATM_AAL2:
1060 submit_command (dev, &dev->hp_txq,
1061 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1062 RC_FLAGS_TRANSP |
1063 RC_FLAGS_BFPS_BFP * bfp |
1064 RC_FLAGS_RXBM_PSB, 0, 0);
1065 break;
1066 case ATM_AAL5:
1067 submit_command (dev, &dev->hp_txq,
1068 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1069 RC_FLAGS_AAL5 |
1070 RC_FLAGS_BFPS_BFP * bfp |
1071 RC_FLAGS_RXBM_PSB, 0, 0);
1072 break;
1073 };
1074 if (IS_FS50 (dev)) {
1075 submit_command (dev, &dev->hp_txq,
1076 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1077 0x80 + vcc->channo,
1078 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1079 }
1080 submit_command (dev, &dev->hp_txq,
1081 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1082 0, 0, 0);
1083 }
1084
1085 /* Indicate we're done! */
1086 set_bit(ATM_VF_READY, &atm_vcc->flags);
1087
1088 func_exit ();
1089 return 0;
1090}
1091
1092
1093static void fs_close(struct atm_vcc *atm_vcc)
1094{
1095 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1096 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1097 struct atm_trafprm * txtp;
1098 struct atm_trafprm * rxtp;
1099
1100 func_enter ();
1101
1102 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1103
1104 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1105 if (vcc->last_skb) {
1106 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1107 vcc->last_skb);
1108 /* We're going to wait for the last packet to get sent on this VC. It would
1109 be impolite not to send them don't you think?
1110 XXX
1111 We don't know which packets didn't get sent. So if we get interrupted in
1112 this sleep_on, we'll lose any reference to these packets. Memory leak!
1113 On the other hand, it's awfully convenient that we can abort a "close" that
1114 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1115 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1116 }
1117
1118 txtp = &atm_vcc->qos.txtp;
1119 rxtp = &atm_vcc->qos.rxtp;
1120
1121
1122 /* See App note XXX (Unpublished as of now) for the reason for the
1123 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1124
1125 if (DO_DIRECTION (txtp)) {
1126 submit_command (dev, &dev->hp_txq,
1127 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1128 clear_bit (vcc->channo, dev->tx_inuse);
1129 }
1130
1131 if (DO_DIRECTION (rxtp)) {
1132 submit_command (dev, &dev->hp_txq,
1133 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1134 dev->atm_vccs [vcc->channo] = NULL;
1135
1136 /* This means that this is configured as a receive channel */
1137 if (IS_FS50 (dev)) {
1138 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1139 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1140 (0xfff...) -- REW */
1141 submit_command (dev, &dev->hp_txq,
1142 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1143 0x80 + vcc->channo, -1, 0 );
1144 }
1145 }
1146
1147 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1148 kfree (vcc);
1149
1150 func_exit ();
1151}
1152
1153
1154static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1155{
1156 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1157 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1158 struct FS_BPENTRY *td;
1159
1160 func_enter ();
1161
1162 fs_dprintk (FS_DEBUG_TXMEM, "I");
1163 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1164 atm_vcc, skb, vcc, dev);
1165
1166 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1167
1168 ATM_SKB(skb)->vcc = atm_vcc;
1169
1170 vcc->last_skb = skb;
1171
1172 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1173 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1174 if (!td) {
1175 /* Oops out of mem */
1176 return -ENOMEM;
1177 }
1178
1179 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1180 *(int *) skb->data);
1181
1182 td->flags = TD_EPI | TD_DATA | skb->len;
1183 td->next = 0;
1184 td->bsa = virt_to_bus (skb->data);
1185 td->skb = skb;
1186 td->dev = dev;
1187 dev->ntxpckts++;
1188
1189#ifdef DEBUG_EXTRA
1190 da[qd] = td;
1191 dq[qd].flags = td->flags;
1192 dq[qd].next = td->next;
1193 dq[qd].bsa = td->bsa;
1194 dq[qd].skb = td->skb;
1195 dq[qd].dev = td->dev;
1196 qd++;
1197 if (qd >= 60) qd = 0;
1198#endif
1199
1200 submit_queue (dev, &dev->hp_txq,
1201 QE_TRANSMIT_DE | vcc->channo,
1202 virt_to_bus (td), 0,
1203 virt_to_bus (td));
1204
1205 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1206 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1207 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1208 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1209 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1210
1211 func_exit ();
1212 return 0;
1213}
1214
1215
1216/* Some function placeholders for functions we don't yet support. */
1217
1218#if 0
1219static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1220{
1221 func_enter ();
1222 func_exit ();
1223 return -ENOIOCTLCMD;
1224}
1225
1226
1227static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1228 void __user *optval,int optlen)
1229{
1230 func_enter ();
1231 func_exit ();
1232 return 0;
1233}
1234
1235
1236static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1237 void __user *optval,unsigned int optlen)
1238{
1239 func_enter ();
1240 func_exit ();
1241 return 0;
1242}
1243
1244
1245static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1246 unsigned long addr)
1247{
1248 func_enter ();
1249 func_exit ();
1250}
1251
1252
1253static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1254{
1255 func_enter ();
1256 func_exit ();
1257 return 0;
1258}
1259
1260
1261static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1262{
1263 func_enter ();
1264 func_exit ();
1265 return 0;
1266};
1267
1268#endif
1269
1270
1271static const struct atmdev_ops ops = {
1272 .open = fs_open,
1273 .close = fs_close,
1274 .send = fs_send,
1275 .owner = THIS_MODULE,
1276 /* ioctl: fs_ioctl, */
1277 /* getsockopt: fs_getsockopt, */
1278 /* setsockopt: fs_setsockopt, */
1279 /* change_qos: fs_change_qos, */
1280
1281 /* For now implement these internally here... */
1282 /* phy_put: fs_phy_put, */
1283 /* phy_get: fs_phy_get, */
1284};
1285
1286
1287static void undocumented_pci_fix(struct pci_dev *pdev)
1288{
1289 u32 tint;
1290
1291 /* The Windows driver says: */
1292 /* Switch off FireStream Retry Limit Threshold
1293 */
1294
1295 /* The register at 0x28 is documented as "reserved", no further
1296 comments. */
1297
1298 pci_read_config_dword (pdev, 0x28, &tint);
1299 if (tint != 0x80) {
1300 tint = 0x80;
1301 pci_write_config_dword (pdev, 0x28, tint);
1302 }
1303}
1304
1305
1306
1307/**************************************************************************
1308 * PHY routines *
1309 **************************************************************************/
1310
1311static void write_phy(struct fs_dev *dev, int regnum, int val)
1312{
1313 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1314 regnum, val, 0);
1315}
1316
1317static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1318{
1319 int i;
1320
1321 func_enter ();
1322 while (reginit->reg != PHY_EOF) {
1323 if (reginit->reg == PHY_CLEARALL) {
1324 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1325 for (i=0;i<reginit->val;i++) {
1326 write_phy (dev, i, 0);
1327 }
1328 } else {
1329 write_phy (dev, reginit->reg, reginit->val);
1330 }
1331 reginit++;
1332 }
1333 func_exit ();
1334 return 0;
1335}
1336
1337static void reset_chip (struct fs_dev *dev)
1338{
1339 int i;
1340
1341 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1342
1343 /* Undocumented delay */
1344 udelay (128);
1345
1346 /* The "internal registers are documented to all reset to zero, but
1347 comments & code in the Windows driver indicates that the pools are
1348 NOT reset. */
1349 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1350 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1351 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1352 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1353 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1354 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1355 }
1356
1357 /* The same goes for the match channel registers, although those are
1358 NOT documented that way in the Windows driver. -- REW */
1359 /* The Windows driver DOES write 0 to these registers somewhere in
1360 the init sequence. However, a small hardware-feature, will
1361 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1362 allocated happens to have no disabled channels that have a lower
1363 number. -- REW */
1364
1365 /* Clear the match channel registers. */
1366 if (IS_FS50 (dev)) {
1367 for (i=0;i<FS50_NR_CHANNELS;i++) {
1368 write_fs (dev, 0x200 + i * 4, -1);
1369 }
1370 }
1371}
1372
1373static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1374{
1375 void *t;
1376
1377 if (alignment <= 0x10) {
1378 t = kmalloc (size, flags);
1379 if ((unsigned long)t & (alignment-1)) {
1380 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1381 kfree (t);
1382 return aligned_kmalloc (size, flags, alignment * 4);
1383 }
1384 return t;
1385 }
1386 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1387 return NULL;
1388}
1389
1390static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1391 int nentries, int is_rq)
1392{
1393 int sz = nentries * sizeof (struct FS_QENTRY);
1394 struct FS_QENTRY *p;
1395
1396 func_enter ();
1397
1398 fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1399 queue, nentries);
1400
1401 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1402 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1403
1404 if (!p) return 0;
1405
1406 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1407 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1408 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1409 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1410 if (is_rq) {
1411 /* Configuration for the receive queue: 0: interrupt immediately,
1412 no pre-warning to empty queues: We do our best to keep the
1413 queue filled anyway. */
1414 write_fs (dev, Q_CNF(queue), 0 );
1415 }
1416
1417 txq->sa = p;
1418 txq->ea = p;
1419 txq->offset = queue;
1420
1421 func_exit ();
1422 return 1;
1423}
1424
1425
1426static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1427 int bufsize, int nr_buffers)
1428{
1429 func_enter ();
1430
1431 fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1432
1433 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1434 write_fs (dev, FP_SA(queue), 0);
1435 write_fs (dev, FP_EA(queue), 0);
1436 write_fs (dev, FP_CTU(queue), 0);
1437 write_fs (dev, FP_CNT(queue), 0);
1438
1439 fp->offset = queue;
1440 fp->bufsize = bufsize;
1441 fp->nr_buffers = nr_buffers;
1442
1443 func_exit ();
1444 return 1;
1445}
1446
1447
1448static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1449{
1450#if 0
1451 /* This seems to be unreliable.... */
1452 return read_fs (dev, FP_CNT (fp->offset));
1453#else
1454 return fp->n;
1455#endif
1456}
1457
1458
1459/* Check if this gets going again if a pool ever runs out. -- Yes, it
1460 does. I've seen "receive abort: no buffers" and things started
1461 working again after that... -- REW */
1462
1463static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1464 gfp_t gfp_flags)
1465{
1466 struct FS_BPENTRY *qe, *ne;
1467 struct sk_buff *skb;
1468 int n = 0;
1469 u32 qe_tmp;
1470
1471 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1472 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1473 fp->nr_buffers);
1474 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1475
1476 skb = alloc_skb (fp->bufsize, gfp_flags);
1477 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1478 if (!skb) break;
1479 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1480 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1481 if (!ne) {
1482 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1483 dev_kfree_skb_any (skb);
1484 break;
1485 }
1486
1487 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1488 skb, ne, skb->data, skb->head);
1489 n++;
1490 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1491 ne->next = virt_to_bus (NULL);
1492 ne->bsa = virt_to_bus (skb->data);
1493 ne->aal_bufsize = fp->bufsize;
1494 ne->skb = skb;
1495 ne->fp = fp;
1496
1497 /*
1498 * FIXME: following code encodes and decodes
1499 * machine pointers (could be 64-bit) into a
1500 * 32-bit register.
1501 */
1502
1503 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1504 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1505 if (qe_tmp) {
1506 qe = bus_to_virt ((long) qe_tmp);
1507 qe->next = virt_to_bus(ne);
1508 qe->flags &= ~FP_FLAGS_EPI;
1509 } else
1510 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1511
1512 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1513 fp->n++; /* XXX Atomic_inc? */
1514 write_fs (dev, FP_CTU(fp->offset), 1);
1515 }
1516
1517 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1518}
1519
1520static void free_queue(struct fs_dev *dev, struct queue *txq)
1521{
1522 func_enter ();
1523
1524 write_fs (dev, Q_SA(txq->offset), 0);
1525 write_fs (dev, Q_EA(txq->offset), 0);
1526 write_fs (dev, Q_RP(txq->offset), 0);
1527 write_fs (dev, Q_WP(txq->offset), 0);
1528 /* Configuration ? */
1529
1530 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1531 kfree (txq->sa);
1532
1533 func_exit ();
1534}
1535
1536static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1537{
1538 func_enter ();
1539
1540 write_fs (dev, FP_CNF(fp->offset), 0);
1541 write_fs (dev, FP_SA (fp->offset), 0);
1542 write_fs (dev, FP_EA (fp->offset), 0);
1543 write_fs (dev, FP_CNT(fp->offset), 0);
1544 write_fs (dev, FP_CTU(fp->offset), 0);
1545
1546 func_exit ();
1547}
1548
1549
1550
1551static irqreturn_t fs_irq (int irq, void *dev_id)
1552{
1553 int i;
1554 u32 status;
1555 struct fs_dev *dev = dev_id;
1556
1557 status = read_fs (dev, ISR);
1558 if (!status)
1559 return IRQ_NONE;
1560
1561 func_enter ();
1562
1563#ifdef IRQ_RATE_LIMIT
1564 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1565 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1566 {
1567 static int lastjif;
1568 static int nintr=0;
1569
1570 if (lastjif == jiffies) {
1571 if (++nintr > IRQ_RATE_LIMIT) {
1572 free_irq (dev->irq, dev_id);
1573 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1574 dev->irq);
1575 }
1576 } else {
1577 lastjif = jiffies;
1578 nintr = 0;
1579 }
1580 }
1581#endif
1582 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1583 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1584 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1585 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1586 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1587
1588 /* print the bits in the ISR register. */
1589 if (fs_debug & FS_DEBUG_IRQ) {
1590 /* The FS_DEBUG things are unnecessary here. But this way it is
1591 clear for grep that these are debug prints. */
1592 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1593 for (i=0;i<27;i++)
1594 if (status & (1 << i))
1595 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1596 fs_dprintk (FS_DEBUG_IRQ, "\n");
1597 }
1598
1599 if (status & ISR_RBRQ0_W) {
1600 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1601 process_incoming (dev, &dev->rx_rq[0]);
1602 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1603 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1604 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1605 }
1606
1607 if (status & ISR_RBRQ1_W) {
1608 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1609 process_incoming (dev, &dev->rx_rq[1]);
1610 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1611 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1612 }
1613
1614 if (status & ISR_RBRQ2_W) {
1615 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1616 process_incoming (dev, &dev->rx_rq[2]);
1617 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1618 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1619 }
1620
1621 if (status & ISR_RBRQ3_W) {
1622 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1623 process_incoming (dev, &dev->rx_rq[3]);
1624 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1625 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1626 }
1627
1628 if (status & ISR_CSQ_W) {
1629 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1630 process_return_queue (dev, &dev->st_q);
1631 }
1632
1633 if (status & ISR_TBRQ_W) {
1634 fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1635 process_txdone_queue (dev, &dev->tx_relq);
1636 }
1637
1638 func_exit ();
1639 return IRQ_HANDLED;
1640}
1641
1642
1643#ifdef FS_POLL_FREQ
1644static void fs_poll (struct timer_list *t)
1645{
1646 struct fs_dev *dev = from_timer(dev, t, timer);
1647
1648 fs_irq (0, dev);
1649 dev->timer.expires = jiffies + FS_POLL_FREQ;
1650 add_timer (&dev->timer);
1651}
1652#endif
1653
1654static int fs_init(struct fs_dev *dev)
1655{
1656 struct pci_dev *pci_dev;
1657 int isr, to;
1658 int i;
1659
1660 func_enter ();
1661 pci_dev = dev->pci_dev;
1662
1663 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1664 IS_FS50(dev)?50:155,
1665 (unsigned long long)pci_resource_start(pci_dev, 0),
1666 dev->pci_dev->irq);
1667
1668 if (fs_debug & FS_DEBUG_INIT)
1669 my_hd ((unsigned char *) dev, sizeof (*dev));
1670
1671 undocumented_pci_fix (pci_dev);
1672
1673 dev->hw_base = pci_resource_start(pci_dev, 0);
1674
1675 dev->base = ioremap(dev->hw_base, 0x1000);
1676
1677 reset_chip (dev);
1678
1679 write_fs (dev, SARMODE0, 0
1680 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1681 | (1 * SARMODE0_INTMODE_READCLEAR)
1682 | (1 * SARMODE0_CWRE)
1683 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1684 SARMODE0_PRPWT_FS155_3)
1685 | (1 * SARMODE0_CALSUP_1)
1686 | (IS_FS50(dev) ? (0
1687 | SARMODE0_RXVCS_32
1688 | SARMODE0_ABRVCS_32
1689 | SARMODE0_TXVCS_32):
1690 (0
1691 | SARMODE0_RXVCS_1k
1692 | SARMODE0_ABRVCS_1k
1693 | SARMODE0_TXVCS_1k)));
1694
1695 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1696 1ms. */
1697 to = 100;
1698 while (--to) {
1699 isr = read_fs (dev, ISR);
1700
1701 /* This bit is documented as "RESERVED" */
1702 if (isr & ISR_INIT_ERR) {
1703 printk (KERN_ERR "Error initializing the FS... \n");
1704 goto unmap;
1705 }
1706 if (isr & ISR_INIT) {
1707 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1708 break;
1709 }
1710
1711 /* Try again after 10ms. */
1712 msleep(10);
1713 }
1714
1715 if (!to) {
1716 printk (KERN_ERR "timeout initializing the FS... \n");
1717 goto unmap;
1718 }
1719
1720 /* XXX fix for fs155 */
1721 dev->channel_mask = 0x1f;
1722 dev->channo = 0;
1723
1724 /* AN3: 10 */
1725 write_fs (dev, SARMODE1, 0
1726 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1727 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1728 | (1 * SARMODE1_DCRM)
1729 | (1 * SARMODE1_DCOAM)
1730 | (0 * SARMODE1_OAMCRC)
1731 | (0 * SARMODE1_DUMPE)
1732 | (0 * SARMODE1_GPLEN)
1733 | (0 * SARMODE1_GNAM)
1734 | (0 * SARMODE1_GVAS)
1735 | (0 * SARMODE1_GPAS)
1736 | (1 * SARMODE1_GPRI)
1737 | (0 * SARMODE1_PMS)
1738 | (0 * SARMODE1_GFCR)
1739 | (1 * SARMODE1_HECM2)
1740 | (1 * SARMODE1_HECM1)
1741 | (1 * SARMODE1_HECM0)
1742 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1743 | (0 * 0xff) /* XXX FS155 */);
1744
1745
1746 /* Cal prescale etc */
1747
1748 /* AN3: 11 */
1749 write_fs (dev, TMCONF, 0x0000000f);
1750 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1751 write_fs (dev, 0x80, 0x000F00E4);
1752
1753 /* AN3: 12 */
1754 write_fs (dev, CELLOSCONF, 0
1755 | ( 0 * CELLOSCONF_CEN)
1756 | ( CELLOSCONF_SC1)
1757 | (0x80 * CELLOSCONF_COBS)
1758 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1759 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1760 * performance jumped 50->70... */
1761
1762 /* Magic value by Hang */
1763 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1764
1765 if (IS_FS50 (dev)) {
1766 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1767 dev->atm_dev->ci_range.vpi_bits = 12;
1768 dev->atm_dev->ci_range.vci_bits = 16;
1769 dev->nchannels = FS50_NR_CHANNELS;
1770 } else {
1771 write_fs (dev, RAS0, RAS0_DCD_XHLT
1772 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1773 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1774 /* We can chose the split arbitrarily. We might be able to
1775 support more. Whatever. This should do for now. */
1776 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1777 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1778
1779 /* Address bits we can't use should be compared to 0. */
1780 write_fs (dev, RAC, 0);
1781
1782 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1783 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1784 * other bits, then compare with 0, which is exactly what we
1785 * want. */
1786 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1787 dev->nchannels = FS155_NR_CHANNELS;
1788 }
1789 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1790 GFP_KERNEL);
1791 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1792 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1793
1794 if (!dev->atm_vccs) {
1795 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1796 /* XXX Clean up..... */
1797 goto unmap;
1798 }
1799
1800 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1801 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1802 dev->atm_vccs, dev->nchannels / 8);
1803
1804 if (!dev->tx_inuse) {
1805 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1806 /* XXX Clean up..... */
1807 goto unmap;
1808 }
1809 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1810 /* -- RAS2 : FS50 only: Default is OK. */
1811
1812 /* DMAMODE, default should be OK. -- REW */
1813 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1814
1815 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1816 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1817 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1818 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1819
1820 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1821 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1822 rx_buf_sizes[i], rx_pool_sizes[i]);
1823 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1824 }
1825
1826
1827 for (i=0;i < FS_NR_RX_QUEUES;i++)
1828 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1829
1830 dev->irq = pci_dev->irq;
1831 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1832 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1833 /* XXX undo all previous stuff... */
1834 goto unmap;
1835 }
1836 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1837
1838 /* We want to be notified of most things. Just the statistics count
1839 overflows are not interesting */
1840 write_fs (dev, IMR, 0
1841 | ISR_RBRQ0_W
1842 | ISR_RBRQ1_W
1843 | ISR_RBRQ2_W
1844 | ISR_RBRQ3_W
1845 | ISR_TBRQ_W
1846 | ISR_CSQ_W);
1847
1848 write_fs (dev, SARMODE0, 0
1849 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1850 | (1 * SARMODE0_GINT)
1851 | (1 * SARMODE0_INTMODE_READCLEAR)
1852 | (0 * SARMODE0_CWRE)
1853 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1854 SARMODE0_PRPWT_FS155_3)
1855 | (1 * SARMODE0_CALSUP_1)
1856 | (IS_FS50 (dev)?(0
1857 | SARMODE0_RXVCS_32
1858 | SARMODE0_ABRVCS_32
1859 | SARMODE0_TXVCS_32):
1860 (0
1861 | SARMODE0_RXVCS_1k
1862 | SARMODE0_ABRVCS_1k
1863 | SARMODE0_TXVCS_1k))
1864 | (1 * SARMODE0_RUN));
1865
1866 init_phy (dev, PHY_NTC_INIT);
1867
1868 if (loopback == 2) {
1869 write_phy (dev, 0x39, 0x000e);
1870 }
1871
1872#ifdef FS_POLL_FREQ
1873 timer_setup(&dev->timer, fs_poll, 0);
1874 dev->timer.expires = jiffies + FS_POLL_FREQ;
1875 add_timer (&dev->timer);
1876#endif
1877
1878 dev->atm_dev->dev_data = dev;
1879
1880 func_exit ();
1881 return 0;
1882unmap:
1883 iounmap(dev->base);
1884 return 1;
1885}
1886
1887static int firestream_init_one(struct pci_dev *pci_dev,
1888 const struct pci_device_id *ent)
1889{
1890 struct atm_dev *atm_dev;
1891 struct fs_dev *fs_dev;
1892
1893 if (pci_enable_device(pci_dev))
1894 goto err_out;
1895
1896 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1897 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1898 fs_dev, sizeof (struct fs_dev));
1899 if (!fs_dev)
1900 goto err_out;
1901 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1902 if (!atm_dev)
1903 goto err_out_free_fs_dev;
1904
1905 fs_dev->pci_dev = pci_dev;
1906 fs_dev->atm_dev = atm_dev;
1907 fs_dev->flags = ent->driver_data;
1908
1909 if (fs_init(fs_dev))
1910 goto err_out_free_atm_dev;
1911
1912 fs_dev->next = fs_boards;
1913 fs_boards = fs_dev;
1914 return 0;
1915
1916 err_out_free_atm_dev:
1917 atm_dev_deregister(atm_dev);
1918 err_out_free_fs_dev:
1919 kfree(fs_dev);
1920 err_out:
1921 return -ENODEV;
1922}
1923
1924static void firestream_remove_one(struct pci_dev *pdev)
1925{
1926 int i;
1927 struct fs_dev *dev, *nxtdev;
1928 struct fs_vcc *vcc;
1929 struct FS_BPENTRY *fp, *nxt;
1930
1931 func_enter ();
1932
1933#if 0
1934 printk ("hptxq:\n");
1935 for (i=0;i<60;i++) {
1936 printk ("%d: %08x %08x %08x %08x \n",
1937 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1938 qp++;
1939 if (qp >= 60) qp = 0;
1940 }
1941
1942 printk ("descriptors:\n");
1943 for (i=0;i<60;i++) {
1944 printk ("%d: %p: %08x %08x %p %p\n",
1945 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1946 qd++;
1947 if (qd >= 60) qd = 0;
1948 }
1949#endif
1950
1951 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1952 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1953
1954 /* XXX Hit all the tx channels too! */
1955
1956 for (i=0;i < dev->nchannels;i++) {
1957 if (dev->atm_vccs[i]) {
1958 vcc = FS_VCC (dev->atm_vccs[i]);
1959 submit_command (dev, &dev->hp_txq,
1960 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1961 submit_command (dev, &dev->hp_txq,
1962 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1963
1964 }
1965 }
1966
1967 /* XXX Wait a while for the chip to release all buffers. */
1968
1969 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1970 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1971 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1972 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1973 dev_kfree_skb_any (fp->skb);
1974 nxt = bus_to_virt (fp->next);
1975 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1976 kfree (fp);
1977 }
1978 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1979 dev_kfree_skb_any (fp->skb);
1980 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1981 kfree (fp);
1982 }
1983
1984 /* Hang the chip in "reset", prevent it clobbering memory that is
1985 no longer ours. */
1986 reset_chip (dev);
1987
1988 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1989 free_irq (dev->irq, dev);
1990 del_timer_sync (&dev->timer);
1991
1992 atm_dev_deregister(dev->atm_dev);
1993 free_queue (dev, &dev->hp_txq);
1994 free_queue (dev, &dev->lp_txq);
1995 free_queue (dev, &dev->tx_relq);
1996 free_queue (dev, &dev->st_q);
1997
1998 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
1999 kfree (dev->atm_vccs);
2000
2001 for (i=0;i< FS_NR_FREE_POOLS;i++)
2002 free_freepool (dev, &dev->rx_fp[i]);
2003
2004 for (i=0;i < FS_NR_RX_QUEUES;i++)
2005 free_queue (dev, &dev->rx_rq[i]);
2006
2007 iounmap(dev->base);
2008 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2009 nxtdev = dev->next;
2010 kfree (dev);
2011 }
2012
2013 func_exit ();
2014}
2015
2016static const struct pci_device_id firestream_pci_tbl[] = {
2017 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2018 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2019 { 0, }
2020};
2021
2022MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2023
2024static struct pci_driver firestream_driver = {
2025 .name = "firestream",
2026 .id_table = firestream_pci_tbl,
2027 .probe = firestream_init_one,
2028 .remove = firestream_remove_one,
2029};
2030
2031static int __init firestream_init_module (void)
2032{
2033 int error;
2034
2035 func_enter ();
2036 error = pci_register_driver(&firestream_driver);
2037 func_exit ();
2038 return error;
2039}
2040
2041static void __exit firestream_cleanup_module(void)
2042{
2043 pci_unregister_driver(&firestream_driver);
2044}
2045
2046module_init(firestream_init_module);
2047module_exit(firestream_cleanup_module);
2048
2049MODULE_LICENSE("GPL");
2050
2051
2052