Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.6
 
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23 *
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/highmem.h>
 
  31#include <linux/pci.h>
  32#include <linux/interrupt.h>
  33#include <linux/kmod.h>
  34#include <linux/delay.h>
  35#include <linux/workqueue.h>
  36#include <linux/nmi.h>
  37#include <linux/acpi.h>
  38#include <linux/efi.h>
  39#include <linux/ioport.h>
  40#include <linux/list.h>
  41#include <linux/jiffies.h>
  42#include <linux/semaphore.h>
 
  43
  44#include <asm/io.h>
  45#include <asm/uaccess.h>
  46#include <linux/io-64-nonatomic-lo-hi.h>
  47
 
 
  48#include "internal.h"
  49
  50#define _COMPONENT		ACPI_OS_SERVICES
  51ACPI_MODULE_NAME("osl");
  52
  53struct acpi_os_dpc {
  54	acpi_osd_exec_callback function;
  55	void *context;
  56	struct work_struct work;
  57};
  58
  59#ifdef CONFIG_ACPI_CUSTOM_DSDT
  60#include CONFIG_ACPI_CUSTOM_DSDT_FILE
  61#endif
  62
  63#ifdef ENABLE_DEBUGGER
  64#include <linux/kdb.h>
  65
  66/* stuff for debugger support */
  67int acpi_in_debugger;
  68EXPORT_SYMBOL(acpi_in_debugger);
  69#endif				/*ENABLE_DEBUGGER */
  70
  71static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  72				      u32 pm1b_ctrl);
  73static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  74				      u32 val_b);
  75
  76static acpi_osd_handler acpi_irq_handler;
  77static void *acpi_irq_context;
  78static struct workqueue_struct *kacpid_wq;
  79static struct workqueue_struct *kacpi_notify_wq;
  80static struct workqueue_struct *kacpi_hotplug_wq;
  81static bool acpi_os_initialized;
  82unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
 
  83
  84/*
  85 * This list of permanent mappings is for memory that may be accessed from
  86 * interrupt context, where we can't do the ioremap().
  87 */
  88struct acpi_ioremap {
  89	struct list_head list;
  90	void __iomem *virt;
  91	acpi_physical_address phys;
  92	acpi_size size;
  93	unsigned long refcount;
  94};
  95
  96static LIST_HEAD(acpi_ioremaps);
  97static DEFINE_MUTEX(acpi_ioremap_lock);
  98
  99static void __init acpi_osi_setup_late(void);
 100
 101/*
 102 * The story of _OSI(Linux)
 103 *
 104 * From pre-history through Linux-2.6.22,
 105 * Linux responded TRUE upon a BIOS OSI(Linux) query.
 106 *
 107 * Unfortunately, reference BIOS writers got wind of this
 108 * and put OSI(Linux) in their example code, quickly exposing
 109 * this string as ill-conceived and opening the door to
 110 * an un-bounded number of BIOS incompatibilities.
 111 *
 112 * For example, OSI(Linux) was used on resume to re-POST a
 113 * video card on one system, because Linux at that time
 114 * could not do a speedy restore in its native driver.
 115 * But then upon gaining quick native restore capability,
 116 * Linux has no way to tell the BIOS to skip the time-consuming
 117 * POST -- putting Linux at a permanent performance disadvantage.
 118 * On another system, the BIOS writer used OSI(Linux)
 119 * to infer native OS support for IPMI!  On other systems,
 120 * OSI(Linux) simply got in the way of Linux claiming to
 121 * be compatible with other operating systems, exposing
 122 * BIOS issues such as skipped device initialization.
 123 *
 124 * So "Linux" turned out to be a really poor chose of
 125 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
 126 *
 127 * BIOS writers should NOT query _OSI(Linux) on future systems.
 128 * Linux will complain on the console when it sees it, and return FALSE.
 129 * To get Linux to return TRUE for your system  will require
 130 * a kernel source update to add a DMI entry,
 131 * or boot with "acpi_osi=Linux"
 132 */
 133
 134static struct osi_linux {
 135	unsigned int	enable:1;
 136	unsigned int	dmi:1;
 137	unsigned int	cmdline:1;
 138	unsigned int	default_disabling:1;
 139} osi_linux = {0, 0, 0, 0};
 140
 141static u32 acpi_osi_handler(acpi_string interface, u32 supported)
 142{
 143	if (!strcmp("Linux", interface)) {
 144
 145		printk_once(KERN_NOTICE FW_BUG PREFIX
 146			"BIOS _OSI(Linux) query %s%s\n",
 147			osi_linux.enable ? "honored" : "ignored",
 148			osi_linux.cmdline ? " via cmdline" :
 149			osi_linux.dmi ? " via DMI" : "");
 150	}
 151
 152	if (!strcmp("Darwin", interface)) {
 153		/*
 154		 * Apple firmware will behave poorly if it receives positive
 155		 * answers to "Darwin" and any other OS. Respond positively
 156		 * to Darwin and then disable all other vendor strings.
 157		 */
 158		acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
 159		supported = ACPI_UINT32_MAX;
 160	}
 161
 162	return supported;
 163}
 164
 165static void __init acpi_request_region (struct acpi_generic_address *gas,
 166	unsigned int length, char *desc)
 167{
 168	u64 addr;
 169
 170	/* Handle possible alignment issues */
 171	memcpy(&addr, &gas->address, sizeof(addr));
 172	if (!addr || !length)
 173		return;
 174
 175	/* Resources are never freed */
 176	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 177		request_region(addr, length, desc);
 178	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 179		request_mem_region(addr, length, desc);
 180}
 181
 182static int __init acpi_reserve_resources(void)
 183{
 184	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 185		"ACPI PM1a_EVT_BLK");
 186
 187	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 188		"ACPI PM1b_EVT_BLK");
 189
 190	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 191		"ACPI PM1a_CNT_BLK");
 192
 193	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 194		"ACPI PM1b_CNT_BLK");
 195
 196	if (acpi_gbl_FADT.pm_timer_length == 4)
 197		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 198
 199	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 200		"ACPI PM2_CNT_BLK");
 201
 202	/* Length of GPE blocks must be a non-negative multiple of 2 */
 203
 204	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 205		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 206			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 207
 208	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 209		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 210			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 211
 212	return 0;
 213}
 214fs_initcall_sync(acpi_reserve_resources);
 215
 216void acpi_os_printf(const char *fmt, ...)
 217{
 218	va_list args;
 219	va_start(args, fmt);
 220	acpi_os_vprintf(fmt, args);
 221	va_end(args);
 222}
 223EXPORT_SYMBOL(acpi_os_printf);
 224
 225void acpi_os_vprintf(const char *fmt, va_list args)
 226{
 227	static char buffer[512];
 228
 229	vsprintf(buffer, fmt, args);
 230
 231#ifdef ENABLE_DEBUGGER
 232	if (acpi_in_debugger) {
 233		kdb_printf("%s", buffer);
 234	} else {
 235		printk(KERN_CONT "%s", buffer);
 
 
 
 236	}
 237#else
 238	if (acpi_debugger_write_log(buffer) < 0)
 239		printk(KERN_CONT "%s", buffer);
 
 
 
 
 240#endif
 241}
 242
 243#ifdef CONFIG_KEXEC
 244static unsigned long acpi_rsdp;
 245static int __init setup_acpi_rsdp(char *arg)
 246{
 247	if (kstrtoul(arg, 16, &acpi_rsdp))
 248		return -EINVAL;
 249	return 0;
 250}
 251early_param("acpi_rsdp", setup_acpi_rsdp);
 252#endif
 253
 254acpi_physical_address __init acpi_os_get_root_pointer(void)
 255{
 
 
 256#ifdef CONFIG_KEXEC
 257	if (acpi_rsdp)
 
 
 
 
 
 
 
 
 
 
 258		return acpi_rsdp;
 
 259#endif
 
 
 
 260
 261	if (efi_enabled(EFI_CONFIG_TABLES)) {
 262		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 263			return efi.acpi20;
 264		else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 265			return efi.acpi;
 266		else {
 267			printk(KERN_ERR PREFIX
 268			       "System description tables not found\n");
 269			return 0;
 270		}
 271	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 272		acpi_physical_address pa = 0;
 273
 274		acpi_find_root_pointer(&pa);
 275		return pa;
 276	}
 277
 278	return 0;
 279}
 280
 281/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 282static struct acpi_ioremap *
 283acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 284{
 285	struct acpi_ioremap *map;
 286
 287	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 288		if (map->phys <= phys &&
 289		    phys + size <= map->phys + map->size)
 290			return map;
 291
 292	return NULL;
 293}
 294
 295/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 296static void __iomem *
 297acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 298{
 299	struct acpi_ioremap *map;
 300
 301	map = acpi_map_lookup(phys, size);
 302	if (map)
 303		return map->virt + (phys - map->phys);
 304
 305	return NULL;
 306}
 307
 308void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 309{
 310	struct acpi_ioremap *map;
 311	void __iomem *virt = NULL;
 312
 313	mutex_lock(&acpi_ioremap_lock);
 314	map = acpi_map_lookup(phys, size);
 315	if (map) {
 316		virt = map->virt + (phys - map->phys);
 317		map->refcount++;
 318	}
 319	mutex_unlock(&acpi_ioremap_lock);
 320	return virt;
 321}
 322EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 323
 324/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 325static struct acpi_ioremap *
 326acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 327{
 328	struct acpi_ioremap *map;
 329
 330	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 331		if (map->virt <= virt &&
 332		    virt + size <= map->virt + map->size)
 333			return map;
 334
 335	return NULL;
 336}
 337
 338#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 339/* ioremap will take care of cache attributes */
 340#define should_use_kmap(pfn)   0
 341#else
 342#define should_use_kmap(pfn)   page_is_ram(pfn)
 343#endif
 344
 345static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 346{
 347	unsigned long pfn;
 348
 349	pfn = pg_off >> PAGE_SHIFT;
 350	if (should_use_kmap(pfn)) {
 351		if (pg_sz > PAGE_SIZE)
 352			return NULL;
 353		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 354	} else
 355		return acpi_os_ioremap(pg_off, pg_sz);
 356}
 357
 358static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 359{
 360	unsigned long pfn;
 361
 362	pfn = pg_off >> PAGE_SHIFT;
 363	if (should_use_kmap(pfn))
 364		kunmap(pfn_to_page(pfn));
 365	else
 366		iounmap(vaddr);
 367}
 368
 369/**
 370 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 371 * @phys: Start of the physical address range to map.
 372 * @size: Size of the physical address range to map.
 373 *
 374 * Look up the given physical address range in the list of existing ACPI memory
 375 * mappings.  If found, get a reference to it and return a pointer to it (its
 376 * virtual address).  If not found, map it, add it to that list and return a
 377 * pointer to it.
 378 *
 379 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
 380 * routine simply calls __acpi_map_table() to get the job done.
 381 */
 382void __iomem *__init_refok
 383acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 384{
 385	struct acpi_ioremap *map;
 386	void __iomem *virt;
 387	acpi_physical_address pg_off;
 388	acpi_size pg_sz;
 389
 390	if (phys > ULONG_MAX) {
 391		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 392		return NULL;
 393	}
 394
 395	if (!acpi_gbl_permanent_mmap)
 396		return __acpi_map_table((unsigned long)phys, size);
 397
 398	mutex_lock(&acpi_ioremap_lock);
 399	/* Check if there's a suitable mapping already. */
 400	map = acpi_map_lookup(phys, size);
 401	if (map) {
 402		map->refcount++;
 403		goto out;
 404	}
 405
 406	map = kzalloc(sizeof(*map), GFP_KERNEL);
 407	if (!map) {
 408		mutex_unlock(&acpi_ioremap_lock);
 409		return NULL;
 410	}
 411
 412	pg_off = round_down(phys, PAGE_SIZE);
 413	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 414	virt = acpi_map(pg_off, pg_sz);
 415	if (!virt) {
 416		mutex_unlock(&acpi_ioremap_lock);
 417		kfree(map);
 418		return NULL;
 419	}
 420
 421	INIT_LIST_HEAD(&map->list);
 422	map->virt = virt;
 423	map->phys = pg_off;
 424	map->size = pg_sz;
 425	map->refcount = 1;
 426
 427	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 428
 429out:
 430	mutex_unlock(&acpi_ioremap_lock);
 431	return map->virt + (phys - map->phys);
 432}
 433EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 434
 435void *__init_refok
 436acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 437{
 438	return (void *)acpi_os_map_iomem(phys, size);
 439}
 440EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 441
 442static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 443{
 444	if (!--map->refcount)
 445		list_del_rcu(&map->list);
 446}
 447
 448static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 449{
 450	if (!map->refcount) {
 451		synchronize_rcu_expedited();
 452		acpi_unmap(map->phys, map->virt);
 453		kfree(map);
 454	}
 455}
 456
 457/**
 458 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 459 * @virt: Start of the address range to drop a reference to.
 460 * @size: Size of the address range to drop a reference to.
 461 *
 462 * Look up the given virtual address range in the list of existing ACPI memory
 463 * mappings, drop a reference to it and unmap it if there are no more active
 464 * references to it.
 465 *
 466 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
 467 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 468 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 469 * here.
 470 */
 471void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 472{
 473	struct acpi_ioremap *map;
 474
 475	if (!acpi_gbl_permanent_mmap) {
 476		__acpi_unmap_table(virt, size);
 477		return;
 478	}
 479
 480	mutex_lock(&acpi_ioremap_lock);
 481	map = acpi_map_lookup_virt(virt, size);
 482	if (!map) {
 483		mutex_unlock(&acpi_ioremap_lock);
 484		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 485		return;
 486	}
 487	acpi_os_drop_map_ref(map);
 488	mutex_unlock(&acpi_ioremap_lock);
 489
 490	acpi_os_map_cleanup(map);
 491}
 492EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 493
 494void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 495{
 496	return acpi_os_unmap_iomem((void __iomem *)virt, size);
 497}
 498EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 499
 500void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
 501{
 502	if (!acpi_gbl_permanent_mmap)
 503		__acpi_unmap_table(virt, size);
 504}
 505
 506int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 507{
 508	u64 addr;
 509	void __iomem *virt;
 510
 511	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 512		return 0;
 513
 514	/* Handle possible alignment issues */
 515	memcpy(&addr, &gas->address, sizeof(addr));
 516	if (!addr || !gas->bit_width)
 517		return -EINVAL;
 518
 519	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 520	if (!virt)
 521		return -EIO;
 522
 523	return 0;
 524}
 525EXPORT_SYMBOL(acpi_os_map_generic_address);
 526
 527void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 528{
 529	u64 addr;
 530	struct acpi_ioremap *map;
 531
 532	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 533		return;
 534
 535	/* Handle possible alignment issues */
 536	memcpy(&addr, &gas->address, sizeof(addr));
 537	if (!addr || !gas->bit_width)
 538		return;
 539
 540	mutex_lock(&acpi_ioremap_lock);
 541	map = acpi_map_lookup(addr, gas->bit_width / 8);
 542	if (!map) {
 543		mutex_unlock(&acpi_ioremap_lock);
 544		return;
 545	}
 546	acpi_os_drop_map_ref(map);
 547	mutex_unlock(&acpi_ioremap_lock);
 548
 549	acpi_os_map_cleanup(map);
 550}
 551EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 552
 553#ifdef ACPI_FUTURE_USAGE
 554acpi_status
 555acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 556{
 557	if (!phys || !virt)
 558		return AE_BAD_PARAMETER;
 559
 560	*phys = virt_to_phys(virt);
 561
 562	return AE_OK;
 563}
 564#endif
 565
 566#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 567static bool acpi_rev_override;
 568
 569int __init acpi_rev_override_setup(char *str)
 570{
 571	acpi_rev_override = true;
 572	return 1;
 573}
 574__setup("acpi_rev_override", acpi_rev_override_setup);
 575#else
 576#define acpi_rev_override	false
 577#endif
 578
 579#define ACPI_MAX_OVERRIDE_LEN 100
 580
 581static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 582
 583acpi_status
 584acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 585			    char **new_val)
 586{
 587	if (!init_val || !new_val)
 588		return AE_BAD_PARAMETER;
 589
 590	*new_val = NULL;
 591	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 592		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 593		       acpi_os_name);
 594		*new_val = acpi_os_name;
 595	}
 596
 597	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 598		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 599		*new_val = (char *)5;
 600	}
 601
 602	return AE_OK;
 603}
 604
 605static void acpi_table_taint(struct acpi_table_header *table)
 606{
 607	pr_warn(PREFIX
 608		"Override [%4.4s-%8.8s], this is unsafe: tainting kernel\n",
 609		table->signature, table->oem_table_id);
 610	add_taint(TAINT_OVERRIDDEN_ACPI_TABLE, LOCKDEP_NOW_UNRELIABLE);
 611}
 612
 613#ifdef CONFIG_ACPI_INITRD_TABLE_OVERRIDE
 614#include <linux/earlycpio.h>
 615#include <linux/memblock.h>
 616
 617static u64 acpi_tables_addr;
 618static int all_tables_size;
 619
 620/* Copied from acpica/tbutils.c:acpi_tb_checksum() */
 621static u8 __init acpi_table_checksum(u8 *buffer, u32 length)
 622{
 623	u8 sum = 0;
 624	u8 *end = buffer + length;
 625
 626	while (buffer < end)
 627		sum = (u8) (sum + *(buffer++));
 628	return sum;
 629}
 630
 631/* All but ACPI_SIG_RSDP and ACPI_SIG_FACS: */
 632static const char * const table_sigs[] = {
 633	ACPI_SIG_BERT, ACPI_SIG_CPEP, ACPI_SIG_ECDT, ACPI_SIG_EINJ,
 634	ACPI_SIG_ERST, ACPI_SIG_HEST, ACPI_SIG_MADT, ACPI_SIG_MSCT,
 635	ACPI_SIG_SBST, ACPI_SIG_SLIT, ACPI_SIG_SRAT, ACPI_SIG_ASF,
 636	ACPI_SIG_BOOT, ACPI_SIG_DBGP, ACPI_SIG_DMAR, ACPI_SIG_HPET,
 637	ACPI_SIG_IBFT, ACPI_SIG_IVRS, ACPI_SIG_MCFG, ACPI_SIG_MCHI,
 638	ACPI_SIG_SLIC, ACPI_SIG_SPCR, ACPI_SIG_SPMI, ACPI_SIG_TCPA,
 639	ACPI_SIG_UEFI, ACPI_SIG_WAET, ACPI_SIG_WDAT, ACPI_SIG_WDDT,
 640	ACPI_SIG_WDRT, ACPI_SIG_DSDT, ACPI_SIG_FADT, ACPI_SIG_PSDT,
 641	ACPI_SIG_RSDT, ACPI_SIG_XSDT, ACPI_SIG_SSDT, NULL };
 642
 643#define ACPI_HEADER_SIZE sizeof(struct acpi_table_header)
 644
 645#define ACPI_OVERRIDE_TABLES 64
 646static struct cpio_data __initdata acpi_initrd_files[ACPI_OVERRIDE_TABLES];
 647static DECLARE_BITMAP(acpi_initrd_installed, ACPI_OVERRIDE_TABLES);
 648
 649#define MAP_CHUNK_SIZE   (NR_FIX_BTMAPS << PAGE_SHIFT)
 650
 651void __init acpi_initrd_override(void *data, size_t size)
 652{
 653	int sig, no, table_nr = 0, total_offset = 0;
 654	long offset = 0;
 655	struct acpi_table_header *table;
 656	char cpio_path[32] = "kernel/firmware/acpi/";
 657	struct cpio_data file;
 658
 659	if (data == NULL || size == 0)
 660		return;
 661
 662	for (no = 0; no < ACPI_OVERRIDE_TABLES; no++) {
 663		file = find_cpio_data(cpio_path, data, size, &offset);
 664		if (!file.data)
 665			break;
 666
 667		data += offset;
 668		size -= offset;
 669
 670		if (file.size < sizeof(struct acpi_table_header)) {
 671			pr_err("ACPI OVERRIDE: Table smaller than ACPI header [%s%s]\n",
 672				cpio_path, file.name);
 673			continue;
 674		}
 675
 676		table = file.data;
 677
 678		for (sig = 0; table_sigs[sig]; sig++)
 679			if (!memcmp(table->signature, table_sigs[sig], 4))
 680				break;
 681
 682		if (!table_sigs[sig]) {
 683			pr_err("ACPI OVERRIDE: Unknown signature [%s%s]\n",
 684				cpio_path, file.name);
 685			continue;
 686		}
 687		if (file.size != table->length) {
 688			pr_err("ACPI OVERRIDE: File length does not match table length [%s%s]\n",
 689				cpio_path, file.name);
 690			continue;
 691		}
 692		if (acpi_table_checksum(file.data, table->length)) {
 693			pr_err("ACPI OVERRIDE: Bad table checksum [%s%s]\n",
 694				cpio_path, file.name);
 695			continue;
 696		}
 697
 698		pr_info("%4.4s ACPI table found in initrd [%s%s][0x%x]\n",
 699			table->signature, cpio_path, file.name, table->length);
 700
 701		all_tables_size += table->length;
 702		acpi_initrd_files[table_nr].data = file.data;
 703		acpi_initrd_files[table_nr].size = file.size;
 704		table_nr++;
 705	}
 706	if (table_nr == 0)
 707		return;
 708
 709	acpi_tables_addr =
 710		memblock_find_in_range(0, max_low_pfn_mapped << PAGE_SHIFT,
 711				       all_tables_size, PAGE_SIZE);
 712	if (!acpi_tables_addr) {
 713		WARN_ON(1);
 714		return;
 715	}
 716	/*
 717	 * Only calling e820_add_reserve does not work and the
 718	 * tables are invalid (memory got used) later.
 719	 * memblock_reserve works as expected and the tables won't get modified.
 720	 * But it's not enough on X86 because ioremap will
 721	 * complain later (used by acpi_os_map_memory) that the pages
 722	 * that should get mapped are not marked "reserved".
 723	 * Both memblock_reserve and e820_add_region (via arch_reserve_mem_area)
 724	 * works fine.
 725	 */
 726	memblock_reserve(acpi_tables_addr, all_tables_size);
 727	arch_reserve_mem_area(acpi_tables_addr, all_tables_size);
 728
 729	/*
 730	 * early_ioremap only can remap 256k one time. If we map all
 731	 * tables one time, we will hit the limit. Need to map chunks
 732	 * one by one during copying the same as that in relocate_initrd().
 733	 */
 734	for (no = 0; no < table_nr; no++) {
 735		unsigned char *src_p = acpi_initrd_files[no].data;
 736		phys_addr_t size = acpi_initrd_files[no].size;
 737		phys_addr_t dest_addr = acpi_tables_addr + total_offset;
 738		phys_addr_t slop, clen;
 739		char *dest_p;
 740
 741		total_offset += size;
 742
 743		while (size) {
 744			slop = dest_addr & ~PAGE_MASK;
 745			clen = size;
 746			if (clen > MAP_CHUNK_SIZE - slop)
 747				clen = MAP_CHUNK_SIZE - slop;
 748			dest_p = early_ioremap(dest_addr & PAGE_MASK,
 749						 clen + slop);
 750			memcpy(dest_p + slop, src_p, clen);
 751			early_iounmap(dest_p, clen + slop);
 752			src_p += clen;
 753			dest_addr += clen;
 754			size -= clen;
 755		}
 756	}
 757}
 758
 759acpi_status
 760acpi_os_physical_table_override(struct acpi_table_header *existing_table,
 761				acpi_physical_address *address, u32 *length)
 762{
 763	int table_offset = 0;
 764	int table_index = 0;
 765	struct acpi_table_header *table;
 766	u32 table_length;
 767
 768	*length = 0;
 769	*address = 0;
 770	if (!acpi_tables_addr)
 771		return AE_OK;
 772
 773	while (table_offset + ACPI_HEADER_SIZE <= all_tables_size) {
 774		table = acpi_os_map_memory(acpi_tables_addr + table_offset,
 775					   ACPI_HEADER_SIZE);
 776		if (table_offset + table->length > all_tables_size) {
 777			acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
 778			WARN_ON(1);
 779			return AE_OK;
 780		}
 781
 782		table_length = table->length;
 783
 784		/* Only override tables matched */
 785		if (test_bit(table_index, acpi_initrd_installed) ||
 786		    memcmp(existing_table->signature, table->signature, 4) ||
 787		    memcmp(table->oem_table_id, existing_table->oem_table_id,
 788			   ACPI_OEM_TABLE_ID_SIZE)) {
 789			acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
 790			goto next_table;
 791		}
 792
 793		*length = table_length;
 794		*address = acpi_tables_addr + table_offset;
 795		acpi_table_taint(existing_table);
 796		acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
 797		set_bit(table_index, acpi_initrd_installed);
 798		break;
 799
 800next_table:
 801		table_offset += table_length;
 802		table_index++;
 803	}
 804	return AE_OK;
 805}
 806
 807void __init acpi_initrd_initialize_tables(void)
 808{
 809	int table_offset = 0;
 810	int table_index = 0;
 811	u32 table_length;
 812	struct acpi_table_header *table;
 813
 814	if (!acpi_tables_addr)
 815		return;
 816
 817	while (table_offset + ACPI_HEADER_SIZE <= all_tables_size) {
 818		table = acpi_os_map_memory(acpi_tables_addr + table_offset,
 819					   ACPI_HEADER_SIZE);
 820		if (table_offset + table->length > all_tables_size) {
 821			acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
 822			WARN_ON(1);
 823			return;
 824		}
 825
 826		table_length = table->length;
 827
 828		/* Skip RSDT/XSDT which should only be used for override */
 829		if (test_bit(table_index, acpi_initrd_installed) ||
 830		    ACPI_COMPARE_NAME(table->signature, ACPI_SIG_RSDT) ||
 831		    ACPI_COMPARE_NAME(table->signature, ACPI_SIG_XSDT)) {
 832			acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
 833			goto next_table;
 834		}
 835
 836		acpi_table_taint(table);
 837		acpi_os_unmap_memory(table, ACPI_HEADER_SIZE);
 838		acpi_install_table(acpi_tables_addr + table_offset, TRUE);
 839		set_bit(table_index, acpi_initrd_installed);
 840next_table:
 841		table_offset += table_length;
 842		table_index++;
 843	}
 844}
 845#else
 846acpi_status
 847acpi_os_physical_table_override(struct acpi_table_header *existing_table,
 848				acpi_physical_address *address,
 849				u32 *table_length)
 850{
 851	*table_length = 0;
 852	*address = 0;
 853	return AE_OK;
 854}
 855
 856void __init acpi_initrd_initialize_tables(void)
 857{
 858}
 859#endif /* CONFIG_ACPI_INITRD_TABLE_OVERRIDE */
 860
 861acpi_status
 862acpi_os_table_override(struct acpi_table_header *existing_table,
 863		       struct acpi_table_header **new_table)
 864{
 865	if (!existing_table || !new_table)
 866		return AE_BAD_PARAMETER;
 867
 868	*new_table = NULL;
 869
 870#ifdef CONFIG_ACPI_CUSTOM_DSDT
 871	if (strncmp(existing_table->signature, "DSDT", 4) == 0)
 872		*new_table = (struct acpi_table_header *)AmlCode;
 873#endif
 874	if (*new_table != NULL)
 875		acpi_table_taint(existing_table);
 876	return AE_OK;
 877}
 878
 879static irqreturn_t acpi_irq(int irq, void *dev_id)
 880{
 881	u32 handled;
 882
 883	handled = (*acpi_irq_handler) (acpi_irq_context);
 884
 885	if (handled) {
 886		acpi_irq_handled++;
 887		return IRQ_HANDLED;
 888	} else {
 889		acpi_irq_not_handled++;
 890		return IRQ_NONE;
 891	}
 892}
 893
 894acpi_status
 895acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 896				  void *context)
 897{
 898	unsigned int irq;
 899
 900	acpi_irq_stats_init();
 901
 902	/*
 903	 * ACPI interrupts different from the SCI in our copy of the FADT are
 904	 * not supported.
 905	 */
 906	if (gsi != acpi_gbl_FADT.sci_interrupt)
 907		return AE_BAD_PARAMETER;
 908
 909	if (acpi_irq_handler)
 910		return AE_ALREADY_ACQUIRED;
 911
 912	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 913		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 914		       gsi);
 915		return AE_OK;
 916	}
 917
 918	acpi_irq_handler = handler;
 919	acpi_irq_context = context;
 920	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 921		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 922		acpi_irq_handler = NULL;
 923		return AE_NOT_ACQUIRED;
 924	}
 925	acpi_sci_irq = irq;
 926
 927	return AE_OK;
 928}
 929
 930acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 931{
 932	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 933		return AE_BAD_PARAMETER;
 934
 935	free_irq(acpi_sci_irq, acpi_irq);
 936	acpi_irq_handler = NULL;
 937	acpi_sci_irq = INVALID_ACPI_IRQ;
 938
 939	return AE_OK;
 940}
 941
 942/*
 943 * Running in interpreter thread context, safe to sleep
 944 */
 945
 946void acpi_os_sleep(u64 ms)
 947{
 948	msleep(ms);
 949}
 950
 951void acpi_os_stall(u32 us)
 952{
 953	while (us) {
 954		u32 delay = 1000;
 955
 956		if (delay > us)
 957			delay = us;
 958		udelay(delay);
 959		touch_nmi_watchdog();
 960		us -= delay;
 961	}
 962}
 963
 964/*
 965 * Support ACPI 3.0 AML Timer operand
 966 * Returns 64-bit free-running, monotonically increasing timer
 967 * with 100ns granularity
 
 
 
 
 968 */
 969u64 acpi_os_get_timer(void)
 970{
 971	u64 time_ns = ktime_to_ns(ktime_get());
 972	do_div(time_ns, 100);
 973	return time_ns;
 974}
 975
 976acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 977{
 978	u32 dummy;
 979
 980	if (!value)
 981		value = &dummy;
 982
 983	*value = 0;
 984	if (width <= 8) {
 985		*(u8 *) value = inb(port);
 986	} else if (width <= 16) {
 987		*(u16 *) value = inw(port);
 988	} else if (width <= 32) {
 989		*(u32 *) value = inl(port);
 990	} else {
 991		BUG();
 992	}
 993
 994	return AE_OK;
 995}
 996
 997EXPORT_SYMBOL(acpi_os_read_port);
 998
 999acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
1000{
1001	if (width <= 8) {
1002		outb(value, port);
1003	} else if (width <= 16) {
1004		outw(value, port);
1005	} else if (width <= 32) {
1006		outl(value, port);
1007	} else {
1008		BUG();
1009	}
1010
1011	return AE_OK;
1012}
1013
1014EXPORT_SYMBOL(acpi_os_write_port);
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016acpi_status
1017acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
1018{
1019	void __iomem *virt_addr;
1020	unsigned int size = width / 8;
1021	bool unmap = false;
1022	u64 dummy;
 
1023
1024	rcu_read_lock();
1025	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
1026	if (!virt_addr) {
1027		rcu_read_unlock();
1028		virt_addr = acpi_os_ioremap(phys_addr, size);
1029		if (!virt_addr)
1030			return AE_BAD_ADDRESS;
1031		unmap = true;
1032	}
1033
1034	if (!value)
1035		value = &dummy;
1036
1037	switch (width) {
1038	case 8:
1039		*(u8 *) value = readb(virt_addr);
1040		break;
1041	case 16:
1042		*(u16 *) value = readw(virt_addr);
1043		break;
1044	case 32:
1045		*(u32 *) value = readl(virt_addr);
1046		break;
1047	case 64:
1048		*(u64 *) value = readq(virt_addr);
1049		break;
1050	default:
1051		BUG();
1052	}
1053
1054	if (unmap)
1055		iounmap(virt_addr);
1056	else
1057		rcu_read_unlock();
1058
1059	return AE_OK;
1060}
1061
1062acpi_status
1063acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
1064{
1065	void __iomem *virt_addr;
1066	unsigned int size = width / 8;
1067	bool unmap = false;
1068
1069	rcu_read_lock();
1070	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
1071	if (!virt_addr) {
1072		rcu_read_unlock();
1073		virt_addr = acpi_os_ioremap(phys_addr, size);
1074		if (!virt_addr)
1075			return AE_BAD_ADDRESS;
1076		unmap = true;
1077	}
1078
1079	switch (width) {
1080	case 8:
1081		writeb(value, virt_addr);
1082		break;
1083	case 16:
1084		writew(value, virt_addr);
1085		break;
1086	case 32:
1087		writel(value, virt_addr);
1088		break;
1089	case 64:
1090		writeq(value, virt_addr);
1091		break;
1092	default:
1093		BUG();
1094	}
1095
1096	if (unmap)
1097		iounmap(virt_addr);
1098	else
1099		rcu_read_unlock();
1100
1101	return AE_OK;
1102}
1103
 
1104acpi_status
1105acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
1106			       u64 *value, u32 width)
1107{
1108	int result, size;
1109	u32 value32;
1110
1111	if (!value)
1112		return AE_BAD_PARAMETER;
1113
1114	switch (width) {
1115	case 8:
1116		size = 1;
1117		break;
1118	case 16:
1119		size = 2;
1120		break;
1121	case 32:
1122		size = 4;
1123		break;
1124	default:
1125		return AE_ERROR;
1126	}
1127
1128	result = raw_pci_read(pci_id->segment, pci_id->bus,
1129				PCI_DEVFN(pci_id->device, pci_id->function),
1130				reg, size, &value32);
1131	*value = value32;
1132
1133	return (result ? AE_ERROR : AE_OK);
1134}
1135
1136acpi_status
1137acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
1138				u64 value, u32 width)
1139{
1140	int result, size;
1141
1142	switch (width) {
1143	case 8:
1144		size = 1;
1145		break;
1146	case 16:
1147		size = 2;
1148		break;
1149	case 32:
1150		size = 4;
1151		break;
1152	default:
1153		return AE_ERROR;
1154	}
1155
1156	result = raw_pci_write(pci_id->segment, pci_id->bus,
1157				PCI_DEVFN(pci_id->device, pci_id->function),
1158				reg, size, value);
1159
1160	return (result ? AE_ERROR : AE_OK);
1161}
 
1162
1163static void acpi_os_execute_deferred(struct work_struct *work)
1164{
1165	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
1166
1167	dpc->function(dpc->context);
1168	kfree(dpc);
1169}
1170
1171#ifdef CONFIG_ACPI_DEBUGGER
1172static struct acpi_debugger acpi_debugger;
1173static bool acpi_debugger_initialized;
1174
1175int acpi_register_debugger(struct module *owner,
1176			   const struct acpi_debugger_ops *ops)
1177{
1178	int ret = 0;
1179
1180	mutex_lock(&acpi_debugger.lock);
1181	if (acpi_debugger.ops) {
1182		ret = -EBUSY;
1183		goto err_lock;
1184	}
1185
1186	acpi_debugger.owner = owner;
1187	acpi_debugger.ops = ops;
1188
1189err_lock:
1190	mutex_unlock(&acpi_debugger.lock);
1191	return ret;
1192}
1193EXPORT_SYMBOL(acpi_register_debugger);
1194
1195void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
1196{
1197	mutex_lock(&acpi_debugger.lock);
1198	if (ops == acpi_debugger.ops) {
1199		acpi_debugger.ops = NULL;
1200		acpi_debugger.owner = NULL;
1201	}
1202	mutex_unlock(&acpi_debugger.lock);
1203}
1204EXPORT_SYMBOL(acpi_unregister_debugger);
1205
1206int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
1207{
1208	int ret;
1209	int (*func)(acpi_osd_exec_callback, void *);
1210	struct module *owner;
1211
1212	if (!acpi_debugger_initialized)
1213		return -ENODEV;
1214	mutex_lock(&acpi_debugger.lock);
1215	if (!acpi_debugger.ops) {
1216		ret = -ENODEV;
1217		goto err_lock;
1218	}
1219	if (!try_module_get(acpi_debugger.owner)) {
1220		ret = -ENODEV;
1221		goto err_lock;
1222	}
1223	func = acpi_debugger.ops->create_thread;
1224	owner = acpi_debugger.owner;
1225	mutex_unlock(&acpi_debugger.lock);
1226
1227	ret = func(function, context);
1228
1229	mutex_lock(&acpi_debugger.lock);
1230	module_put(owner);
1231err_lock:
1232	mutex_unlock(&acpi_debugger.lock);
1233	return ret;
1234}
1235
1236ssize_t acpi_debugger_write_log(const char *msg)
1237{
1238	ssize_t ret;
1239	ssize_t (*func)(const char *);
1240	struct module *owner;
1241
1242	if (!acpi_debugger_initialized)
1243		return -ENODEV;
1244	mutex_lock(&acpi_debugger.lock);
1245	if (!acpi_debugger.ops) {
1246		ret = -ENODEV;
1247		goto err_lock;
1248	}
1249	if (!try_module_get(acpi_debugger.owner)) {
1250		ret = -ENODEV;
1251		goto err_lock;
1252	}
1253	func = acpi_debugger.ops->write_log;
1254	owner = acpi_debugger.owner;
1255	mutex_unlock(&acpi_debugger.lock);
1256
1257	ret = func(msg);
1258
1259	mutex_lock(&acpi_debugger.lock);
1260	module_put(owner);
1261err_lock:
1262	mutex_unlock(&acpi_debugger.lock);
1263	return ret;
1264}
1265
1266ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
1267{
1268	ssize_t ret;
1269	ssize_t (*func)(char *, size_t);
1270	struct module *owner;
1271
1272	if (!acpi_debugger_initialized)
1273		return -ENODEV;
1274	mutex_lock(&acpi_debugger.lock);
1275	if (!acpi_debugger.ops) {
1276		ret = -ENODEV;
1277		goto err_lock;
1278	}
1279	if (!try_module_get(acpi_debugger.owner)) {
1280		ret = -ENODEV;
1281		goto err_lock;
1282	}
1283	func = acpi_debugger.ops->read_cmd;
1284	owner = acpi_debugger.owner;
1285	mutex_unlock(&acpi_debugger.lock);
1286
1287	ret = func(buffer, buffer_length);
1288
1289	mutex_lock(&acpi_debugger.lock);
1290	module_put(owner);
1291err_lock:
1292	mutex_unlock(&acpi_debugger.lock);
1293	return ret;
1294}
1295
1296int acpi_debugger_wait_command_ready(void)
1297{
1298	int ret;
1299	int (*func)(bool, char *, size_t);
1300	struct module *owner;
1301
1302	if (!acpi_debugger_initialized)
1303		return -ENODEV;
1304	mutex_lock(&acpi_debugger.lock);
1305	if (!acpi_debugger.ops) {
1306		ret = -ENODEV;
1307		goto err_lock;
1308	}
1309	if (!try_module_get(acpi_debugger.owner)) {
1310		ret = -ENODEV;
1311		goto err_lock;
1312	}
1313	func = acpi_debugger.ops->wait_command_ready;
1314	owner = acpi_debugger.owner;
1315	mutex_unlock(&acpi_debugger.lock);
1316
1317	ret = func(acpi_gbl_method_executing,
1318		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1319
1320	mutex_lock(&acpi_debugger.lock);
1321	module_put(owner);
1322err_lock:
1323	mutex_unlock(&acpi_debugger.lock);
1324	return ret;
1325}
1326
1327int acpi_debugger_notify_command_complete(void)
1328{
1329	int ret;
1330	int (*func)(void);
1331	struct module *owner;
1332
1333	if (!acpi_debugger_initialized)
1334		return -ENODEV;
1335	mutex_lock(&acpi_debugger.lock);
1336	if (!acpi_debugger.ops) {
1337		ret = -ENODEV;
1338		goto err_lock;
1339	}
1340	if (!try_module_get(acpi_debugger.owner)) {
1341		ret = -ENODEV;
1342		goto err_lock;
1343	}
1344	func = acpi_debugger.ops->notify_command_complete;
1345	owner = acpi_debugger.owner;
1346	mutex_unlock(&acpi_debugger.lock);
1347
1348	ret = func();
1349
1350	mutex_lock(&acpi_debugger.lock);
1351	module_put(owner);
1352err_lock:
1353	mutex_unlock(&acpi_debugger.lock);
1354	return ret;
1355}
1356
1357int __init acpi_debugger_init(void)
1358{
1359	mutex_init(&acpi_debugger.lock);
1360	acpi_debugger_initialized = true;
1361	return 0;
1362}
1363#endif
1364
1365/*******************************************************************************
1366 *
1367 * FUNCTION:    acpi_os_execute
1368 *
1369 * PARAMETERS:  Type               - Type of the callback
1370 *              Function           - Function to be executed
1371 *              Context            - Function parameters
1372 *
1373 * RETURN:      Status
1374 *
1375 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1376 *              immediately executes function on a separate thread.
1377 *
1378 ******************************************************************************/
1379
1380acpi_status acpi_os_execute(acpi_execute_type type,
1381			    acpi_osd_exec_callback function, void *context)
1382{
1383	acpi_status status = AE_OK;
1384	struct acpi_os_dpc *dpc;
1385	struct workqueue_struct *queue;
1386	int ret;
1387	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1388			  "Scheduling function [%p(%p)] for deferred execution.\n",
1389			  function, context));
1390
1391	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1392		ret = acpi_debugger_create_thread(function, context);
1393		if (ret) {
1394			pr_err("Call to kthread_create() failed.\n");
1395			status = AE_ERROR;
1396		}
1397		goto out_thread;
1398	}
1399
1400	/*
1401	 * Allocate/initialize DPC structure.  Note that this memory will be
1402	 * freed by the callee.  The kernel handles the work_struct list  in a
1403	 * way that allows us to also free its memory inside the callee.
1404	 * Because we may want to schedule several tasks with different
1405	 * parameters we can't use the approach some kernel code uses of
1406	 * having a static work_struct.
1407	 */
1408
1409	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1410	if (!dpc)
1411		return AE_NO_MEMORY;
1412
1413	dpc->function = function;
1414	dpc->context = context;
1415
1416	/*
1417	 * To prevent lockdep from complaining unnecessarily, make sure that
1418	 * there is a different static lockdep key for each workqueue by using
1419	 * INIT_WORK() for each of them separately.
1420	 */
1421	if (type == OSL_NOTIFY_HANDLER) {
1422		queue = kacpi_notify_wq;
1423		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1424	} else if (type == OSL_GPE_HANDLER) {
1425		queue = kacpid_wq;
1426		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1427	} else {
1428		pr_err("Unsupported os_execute type %d.\n", type);
1429		status = AE_ERROR;
1430	}
1431
1432	if (ACPI_FAILURE(status))
1433		goto err_workqueue;
1434
1435	/*
1436	 * On some machines, a software-initiated SMI causes corruption unless
1437	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1438	 * typically it's done in GPE-related methods that are run via
1439	 * workqueues, so we can avoid the known corruption cases by always
1440	 * queueing on CPU 0.
1441	 */
1442	ret = queue_work_on(0, queue, &dpc->work);
1443	if (!ret) {
1444		printk(KERN_ERR PREFIX
1445			  "Call to queue_work() failed.\n");
1446		status = AE_ERROR;
1447	}
1448err_workqueue:
1449	if (ACPI_FAILURE(status))
1450		kfree(dpc);
1451out_thread:
1452	return status;
1453}
1454EXPORT_SYMBOL(acpi_os_execute);
1455
1456void acpi_os_wait_events_complete(void)
1457{
1458	/*
1459	 * Make sure the GPE handler or the fixed event handler is not used
1460	 * on another CPU after removal.
1461	 */
1462	if (acpi_sci_irq_valid())
1463		synchronize_hardirq(acpi_sci_irq);
1464	flush_workqueue(kacpid_wq);
1465	flush_workqueue(kacpi_notify_wq);
1466}
 
1467
1468struct acpi_hp_work {
1469	struct work_struct work;
1470	struct acpi_device *adev;
1471	u32 src;
1472};
1473
1474static void acpi_hotplug_work_fn(struct work_struct *work)
1475{
1476	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1477
1478	acpi_os_wait_events_complete();
1479	acpi_device_hotplug(hpw->adev, hpw->src);
1480	kfree(hpw);
1481}
1482
1483acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1484{
1485	struct acpi_hp_work *hpw;
1486
1487	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1488		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1489		  adev, src));
1490
1491	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1492	if (!hpw)
1493		return AE_NO_MEMORY;
1494
1495	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1496	hpw->adev = adev;
1497	hpw->src = src;
1498	/*
1499	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1500	 * the hotplug code may call driver .remove() functions, which may
1501	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1502	 * these workqueues.
1503	 */
1504	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1505		kfree(hpw);
1506		return AE_ERROR;
1507	}
1508	return AE_OK;
1509}
1510
1511bool acpi_queue_hotplug_work(struct work_struct *work)
1512{
1513	return queue_work(kacpi_hotplug_wq, work);
1514}
1515
1516acpi_status
1517acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1518{
1519	struct semaphore *sem = NULL;
1520
1521	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1522	if (!sem)
1523		return AE_NO_MEMORY;
1524
1525	sema_init(sem, initial_units);
1526
1527	*handle = (acpi_handle *) sem;
1528
1529	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1530			  *handle, initial_units));
1531
1532	return AE_OK;
1533}
1534
1535/*
1536 * TODO: A better way to delete semaphores?  Linux doesn't have a
1537 * 'delete_semaphore()' function -- may result in an invalid
1538 * pointer dereference for non-synchronized consumers.	Should
1539 * we at least check for blocked threads and signal/cancel them?
1540 */
1541
1542acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1543{
1544	struct semaphore *sem = (struct semaphore *)handle;
1545
1546	if (!sem)
1547		return AE_BAD_PARAMETER;
1548
1549	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1550
1551	BUG_ON(!list_empty(&sem->wait_list));
1552	kfree(sem);
1553	sem = NULL;
1554
1555	return AE_OK;
1556}
1557
1558/*
1559 * TODO: Support for units > 1?
1560 */
1561acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1562{
1563	acpi_status status = AE_OK;
1564	struct semaphore *sem = (struct semaphore *)handle;
1565	long jiffies;
1566	int ret = 0;
1567
1568	if (!acpi_os_initialized)
1569		return AE_OK;
1570
1571	if (!sem || (units < 1))
1572		return AE_BAD_PARAMETER;
1573
1574	if (units > 1)
1575		return AE_SUPPORT;
1576
1577	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1578			  handle, units, timeout));
1579
1580	if (timeout == ACPI_WAIT_FOREVER)
1581		jiffies = MAX_SCHEDULE_TIMEOUT;
1582	else
1583		jiffies = msecs_to_jiffies(timeout);
1584
1585	ret = down_timeout(sem, jiffies);
1586	if (ret)
1587		status = AE_TIME;
1588
1589	if (ACPI_FAILURE(status)) {
1590		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1591				  "Failed to acquire semaphore[%p|%d|%d], %s",
1592				  handle, units, timeout,
1593				  acpi_format_exception(status)));
1594	} else {
1595		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1596				  "Acquired semaphore[%p|%d|%d]", handle,
1597				  units, timeout));
1598	}
1599
1600	return status;
1601}
1602
1603/*
1604 * TODO: Support for units > 1?
1605 */
1606acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1607{
1608	struct semaphore *sem = (struct semaphore *)handle;
1609
1610	if (!acpi_os_initialized)
1611		return AE_OK;
1612
1613	if (!sem || (units < 1))
1614		return AE_BAD_PARAMETER;
1615
1616	if (units > 1)
1617		return AE_SUPPORT;
1618
1619	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1620			  units));
1621
1622	up(sem);
1623
1624	return AE_OK;
1625}
1626
1627acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1628{
1629#ifdef ENABLE_DEBUGGER
1630	if (acpi_in_debugger) {
1631		u32 chars;
1632
1633		kdb_read(buffer, buffer_length);
1634
1635		/* remove the CR kdb includes */
1636		chars = strlen(buffer) - 1;
1637		buffer[chars] = '\0';
1638	}
1639#else
1640	int ret;
1641
1642	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1643	if (ret < 0)
1644		return AE_ERROR;
1645	if (bytes_read)
1646		*bytes_read = ret;
1647#endif
1648
1649	return AE_OK;
1650}
1651EXPORT_SYMBOL(acpi_os_get_line);
1652
1653acpi_status acpi_os_wait_command_ready(void)
1654{
1655	int ret;
1656
1657	ret = acpi_debugger_wait_command_ready();
1658	if (ret < 0)
1659		return AE_ERROR;
1660	return AE_OK;
1661}
1662
1663acpi_status acpi_os_notify_command_complete(void)
1664{
1665	int ret;
1666
1667	ret = acpi_debugger_notify_command_complete();
1668	if (ret < 0)
1669		return AE_ERROR;
1670	return AE_OK;
1671}
1672
1673acpi_status acpi_os_signal(u32 function, void *info)
1674{
1675	switch (function) {
1676	case ACPI_SIGNAL_FATAL:
1677		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1678		break;
1679	case ACPI_SIGNAL_BREAKPOINT:
1680		/*
1681		 * AML Breakpoint
1682		 * ACPI spec. says to treat it as a NOP unless
1683		 * you are debugging.  So if/when we integrate
1684		 * AML debugger into the kernel debugger its
1685		 * hook will go here.  But until then it is
1686		 * not useful to print anything on breakpoints.
1687		 */
1688		break;
1689	default:
1690		break;
1691	}
1692
1693	return AE_OK;
1694}
1695
1696static int __init acpi_os_name_setup(char *str)
1697{
1698	char *p = acpi_os_name;
1699	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1700
1701	if (!str || !*str)
1702		return 0;
1703
1704	for (; count-- && *str; str++) {
1705		if (isalnum(*str) || *str == ' ' || *str == ':')
1706			*p++ = *str;
1707		else if (*str == '\'' || *str == '"')
1708			continue;
1709		else
1710			break;
1711	}
1712	*p = 0;
1713
1714	return 1;
1715
1716}
1717
1718__setup("acpi_os_name=", acpi_os_name_setup);
1719
1720#define	OSI_STRING_LENGTH_MAX 64	/* arbitrary */
1721#define	OSI_STRING_ENTRIES_MAX 16	/* arbitrary */
1722
1723struct osi_setup_entry {
1724	char string[OSI_STRING_LENGTH_MAX];
1725	bool enable;
1726};
1727
1728static struct osi_setup_entry
1729		osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = {
1730	{"Module Device", true},
1731	{"Processor Device", true},
1732	{"3.0 _SCP Extensions", true},
1733	{"Processor Aggregator Device", true},
1734};
1735
1736void __init acpi_osi_setup(char *str)
1737{
1738	struct osi_setup_entry *osi;
1739	bool enable = true;
1740	int i;
1741
1742	if (!acpi_gbl_create_osi_method)
1743		return;
1744
1745	if (str == NULL || *str == '\0') {
1746		printk(KERN_INFO PREFIX "_OSI method disabled\n");
1747		acpi_gbl_create_osi_method = FALSE;
1748		return;
1749	}
1750
1751	if (*str == '!') {
1752		str++;
1753		if (*str == '\0') {
1754			osi_linux.default_disabling = 1;
1755			return;
1756		} else if (*str == '*') {
1757			acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS);
1758			for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1759				osi = &osi_setup_entries[i];
1760				osi->enable = false;
1761			}
1762			return;
1763		}
1764		enable = false;
1765	}
1766
1767	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1768		osi = &osi_setup_entries[i];
1769		if (!strcmp(osi->string, str)) {
1770			osi->enable = enable;
1771			break;
1772		} else if (osi->string[0] == '\0') {
1773			osi->enable = enable;
1774			strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1775			break;
1776		}
1777	}
1778}
1779
1780static void __init set_osi_linux(unsigned int enable)
1781{
1782	if (osi_linux.enable != enable)
1783		osi_linux.enable = enable;
1784
1785	if (osi_linux.enable)
1786		acpi_osi_setup("Linux");
1787	else
1788		acpi_osi_setup("!Linux");
1789
1790	return;
1791}
1792
1793static void __init acpi_cmdline_osi_linux(unsigned int enable)
1794{
1795	osi_linux.cmdline = 1;	/* cmdline set the default and override DMI */
1796	osi_linux.dmi = 0;
1797	set_osi_linux(enable);
1798
1799	return;
1800}
1801
1802void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1803{
1804	printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1805
1806	if (enable == -1)
1807		return;
1808
1809	osi_linux.dmi = 1;	/* DMI knows that this box asks OSI(Linux) */
1810	set_osi_linux(enable);
1811
1812	return;
1813}
1814
1815/*
1816 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1817 *
1818 * empty string disables _OSI
1819 * string starting with '!' disables that string
1820 * otherwise string is added to list, augmenting built-in strings
1821 */
1822static void __init acpi_osi_setup_late(void)
1823{
1824	struct osi_setup_entry *osi;
1825	char *str;
1826	int i;
1827	acpi_status status;
1828
1829	if (osi_linux.default_disabling) {
1830		status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS);
1831
1832		if (ACPI_SUCCESS(status))
1833			printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n");
1834	}
1835
1836	for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1837		osi = &osi_setup_entries[i];
1838		str = osi->string;
1839
1840		if (*str == '\0')
1841			break;
1842		if (osi->enable) {
1843			status = acpi_install_interface(str);
1844
1845			if (ACPI_SUCCESS(status))
1846				printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1847		} else {
1848			status = acpi_remove_interface(str);
1849
1850			if (ACPI_SUCCESS(status))
1851				printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1852		}
1853	}
1854}
1855
1856static int __init osi_setup(char *str)
1857{
1858	if (str && !strcmp("Linux", str))
1859		acpi_cmdline_osi_linux(1);
1860	else if (str && !strcmp("!Linux", str))
1861		acpi_cmdline_osi_linux(0);
1862	else
1863		acpi_osi_setup(str);
1864
1865	return 1;
1866}
1867
1868__setup("acpi_osi=", osi_setup);
1869
1870/*
1871 * Disable the auto-serialization of named objects creation methods.
1872 *
1873 * This feature is enabled by default.  It marks the AML control methods
1874 * that contain the opcodes to create named objects as "Serialized".
1875 */
1876static int __init acpi_no_auto_serialize_setup(char *str)
1877{
1878	acpi_gbl_auto_serialize_methods = FALSE;
1879	pr_info("ACPI: auto-serialization disabled\n");
1880
1881	return 1;
1882}
1883
1884__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1885
1886/* Check of resource interference between native drivers and ACPI
1887 * OperationRegions (SystemIO and System Memory only).
1888 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1889 * in arbitrary AML code and can interfere with legacy drivers.
1890 * acpi_enforce_resources= can be set to:
1891 *
1892 *   - strict (default) (2)
1893 *     -> further driver trying to access the resources will not load
1894 *   - lax              (1)
1895 *     -> further driver trying to access the resources will load, but you
1896 *     get a system message that something might go wrong...
1897 *
1898 *   - no               (0)
1899 *     -> ACPI Operation Region resources will not be registered
1900 *
1901 */
1902#define ENFORCE_RESOURCES_STRICT 2
1903#define ENFORCE_RESOURCES_LAX    1
1904#define ENFORCE_RESOURCES_NO     0
1905
1906static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1907
1908static int __init acpi_enforce_resources_setup(char *str)
1909{
1910	if (str == NULL || *str == '\0')
1911		return 0;
1912
1913	if (!strcmp("strict", str))
1914		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1915	else if (!strcmp("lax", str))
1916		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1917	else if (!strcmp("no", str))
1918		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1919
1920	return 1;
1921}
1922
1923__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1924
1925/* Check for resource conflicts between ACPI OperationRegions and native
1926 * drivers */
1927int acpi_check_resource_conflict(const struct resource *res)
1928{
1929	acpi_adr_space_type space_id;
1930	acpi_size length;
1931	u8 warn = 0;
1932	int clash = 0;
1933
1934	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1935		return 0;
1936	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1937		return 0;
1938
1939	if (res->flags & IORESOURCE_IO)
1940		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1941	else
1942		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1943
1944	length = resource_size(res);
1945	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1946		warn = 1;
1947	clash = acpi_check_address_range(space_id, res->start, length, warn);
1948
1949	if (clash) {
1950		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1951			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1952				printk(KERN_NOTICE "ACPI: This conflict may"
1953				       " cause random problems and system"
1954				       " instability\n");
1955			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1956			       " for this device, you should use it instead of"
1957			       " the native driver\n");
1958		}
1959		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1960			return -EBUSY;
1961	}
1962	return 0;
1963}
1964EXPORT_SYMBOL(acpi_check_resource_conflict);
1965
1966int acpi_check_region(resource_size_t start, resource_size_t n,
1967		      const char *name)
1968{
1969	struct resource res = {
1970		.start = start,
1971		.end   = start + n - 1,
1972		.name  = name,
1973		.flags = IORESOURCE_IO,
1974	};
1975
1976	return acpi_check_resource_conflict(&res);
1977}
1978EXPORT_SYMBOL(acpi_check_region);
1979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1980/*
1981 * Let drivers know whether the resource checks are effective
1982 */
1983int acpi_resources_are_enforced(void)
1984{
1985	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1986}
1987EXPORT_SYMBOL(acpi_resources_are_enforced);
1988
1989bool acpi_osi_is_win8(void)
1990{
1991	return acpi_gbl_osi_data >= ACPI_OSI_WIN_8;
1992}
1993EXPORT_SYMBOL(acpi_osi_is_win8);
1994
1995/*
1996 * Deallocate the memory for a spinlock.
1997 */
1998void acpi_os_delete_lock(acpi_spinlock handle)
1999{
2000	ACPI_FREE(handle);
2001}
2002
2003/*
2004 * Acquire a spinlock.
2005 *
2006 * handle is a pointer to the spinlock_t.
2007 */
2008
2009acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
2010{
2011	acpi_cpu_flags flags;
2012	spin_lock_irqsave(lockp, flags);
2013	return flags;
2014}
2015
2016/*
2017 * Release a spinlock. See above.
2018 */
2019
2020void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
2021{
2022	spin_unlock_irqrestore(lockp, flags);
2023}
2024
2025#ifndef ACPI_USE_LOCAL_CACHE
2026
2027/*******************************************************************************
2028 *
2029 * FUNCTION:    acpi_os_create_cache
2030 *
2031 * PARAMETERS:  name      - Ascii name for the cache
2032 *              size      - Size of each cached object
2033 *              depth     - Maximum depth of the cache (in objects) <ignored>
2034 *              cache     - Where the new cache object is returned
2035 *
2036 * RETURN:      status
2037 *
2038 * DESCRIPTION: Create a cache object
2039 *
2040 ******************************************************************************/
2041
2042acpi_status
2043acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
2044{
2045	*cache = kmem_cache_create(name, size, 0, 0, NULL);
2046	if (*cache == NULL)
2047		return AE_ERROR;
2048	else
2049		return AE_OK;
2050}
2051
2052/*******************************************************************************
2053 *
2054 * FUNCTION:    acpi_os_purge_cache
2055 *
2056 * PARAMETERS:  Cache           - Handle to cache object
2057 *
2058 * RETURN:      Status
2059 *
2060 * DESCRIPTION: Free all objects within the requested cache.
2061 *
2062 ******************************************************************************/
2063
2064acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
2065{
2066	kmem_cache_shrink(cache);
2067	return (AE_OK);
2068}
2069
2070/*******************************************************************************
2071 *
2072 * FUNCTION:    acpi_os_delete_cache
2073 *
2074 * PARAMETERS:  Cache           - Handle to cache object
2075 *
2076 * RETURN:      Status
2077 *
2078 * DESCRIPTION: Free all objects within the requested cache and delete the
2079 *              cache object.
2080 *
2081 ******************************************************************************/
2082
2083acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
2084{
2085	kmem_cache_destroy(cache);
2086	return (AE_OK);
2087}
2088
2089/*******************************************************************************
2090 *
2091 * FUNCTION:    acpi_os_release_object
2092 *
2093 * PARAMETERS:  Cache       - Handle to cache object
2094 *              Object      - The object to be released
2095 *
2096 * RETURN:      None
2097 *
2098 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
2099 *              the object is deleted.
2100 *
2101 ******************************************************************************/
2102
2103acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
2104{
2105	kmem_cache_free(cache, object);
2106	return (AE_OK);
2107}
2108#endif
2109
2110static int __init acpi_no_static_ssdt_setup(char *s)
2111{
2112	acpi_gbl_disable_ssdt_table_install = TRUE;
2113	pr_info("ACPI: static SSDT installation disabled\n");
2114
2115	return 0;
2116}
2117
2118early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
2119
2120static int __init acpi_disable_return_repair(char *s)
2121{
2122	printk(KERN_NOTICE PREFIX
2123	       "ACPI: Predefined validation mechanism disabled\n");
2124	acpi_gbl_disable_auto_repair = TRUE;
2125
2126	return 1;
2127}
2128
2129__setup("acpica_no_return_repair", acpi_disable_return_repair);
2130
2131acpi_status __init acpi_os_initialize(void)
2132{
2133	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
2134	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
2135	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
2136	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
2137	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
2138		/*
2139		 * Use acpi_os_map_generic_address to pre-map the reset
2140		 * register if it's in system memory.
2141		 */
2142		int rv;
2143
2144		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
2145		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
2146	}
2147	acpi_os_initialized = true;
2148
2149	return AE_OK;
2150}
2151
2152acpi_status __init acpi_os_initialize1(void)
2153{
2154	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
2155	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
2156	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
2157	BUG_ON(!kacpid_wq);
2158	BUG_ON(!kacpi_notify_wq);
2159	BUG_ON(!kacpi_hotplug_wq);
2160	acpi_install_interface_handler(acpi_osi_handler);
2161	acpi_osi_setup_late();
2162	return AE_OK;
2163}
2164
2165acpi_status acpi_os_terminate(void)
2166{
2167	if (acpi_irq_handler) {
2168		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
2169						 acpi_irq_handler);
2170	}
2171
2172	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
2173	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
2174	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
2175	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
2176	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
2177		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
2178
2179	destroy_workqueue(kacpid_wq);
2180	destroy_workqueue(kacpi_notify_wq);
2181	destroy_workqueue(kacpi_hotplug_wq);
2182
2183	return AE_OK;
2184}
2185
2186acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
2187				  u32 pm1b_control)
2188{
2189	int rc = 0;
2190	if (__acpi_os_prepare_sleep)
2191		rc = __acpi_os_prepare_sleep(sleep_state,
2192					     pm1a_control, pm1b_control);
2193	if (rc < 0)
2194		return AE_ERROR;
2195	else if (rc > 0)
2196		return AE_CTRL_SKIP;
2197
2198	return AE_OK;
2199}
2200
2201void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
2202			       u32 pm1a_ctrl, u32 pm1b_ctrl))
2203{
2204	__acpi_os_prepare_sleep = func;
2205}
2206
 
2207acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
2208				  u32 val_b)
2209{
2210	int rc = 0;
2211	if (__acpi_os_prepare_extended_sleep)
2212		rc = __acpi_os_prepare_extended_sleep(sleep_state,
2213					     val_a, val_b);
2214	if (rc < 0)
2215		return AE_ERROR;
2216	else if (rc > 0)
2217		return AE_CTRL_SKIP;
2218
2219	return AE_OK;
2220}
 
 
 
 
 
 
 
2221
2222void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
2223			       u32 val_a, u32 val_b))
2224{
2225	__acpi_os_prepare_extended_sleep = func;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2226}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/mm.h>
  16#include <linux/highmem.h>
  17#include <linux/lockdep.h>
  18#include <linux/pci.h>
  19#include <linux/interrupt.h>
  20#include <linux/kmod.h>
  21#include <linux/delay.h>
  22#include <linux/workqueue.h>
  23#include <linux/nmi.h>
  24#include <linux/acpi.h>
  25#include <linux/efi.h>
  26#include <linux/ioport.h>
  27#include <linux/list.h>
  28#include <linux/jiffies.h>
  29#include <linux/semaphore.h>
  30#include <linux/security.h>
  31
  32#include <asm/io.h>
  33#include <linux/uaccess.h>
  34#include <linux/io-64-nonatomic-lo-hi.h>
  35
  36#include "acpica/accommon.h"
  37#include "acpica/acnamesp.h"
  38#include "internal.h"
  39
  40#define _COMPONENT		ACPI_OS_SERVICES
  41ACPI_MODULE_NAME("osl");
  42
  43struct acpi_os_dpc {
  44	acpi_osd_exec_callback function;
  45	void *context;
  46	struct work_struct work;
  47};
  48
 
 
 
 
  49#ifdef ENABLE_DEBUGGER
  50#include <linux/kdb.h>
  51
  52/* stuff for debugger support */
  53int acpi_in_debugger;
  54EXPORT_SYMBOL(acpi_in_debugger);
  55#endif				/*ENABLE_DEBUGGER */
  56
  57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  58				      u32 pm1b_ctrl);
  59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  60				      u32 val_b);
  61
  62static acpi_osd_handler acpi_irq_handler;
  63static void *acpi_irq_context;
  64static struct workqueue_struct *kacpid_wq;
  65static struct workqueue_struct *kacpi_notify_wq;
  66static struct workqueue_struct *kacpi_hotplug_wq;
  67static bool acpi_os_initialized;
  68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  69bool acpi_permanent_mmap = false;
  70
  71/*
  72 * This list of permanent mappings is for memory that may be accessed from
  73 * interrupt context, where we can't do the ioremap().
  74 */
  75struct acpi_ioremap {
  76	struct list_head list;
  77	void __iomem *virt;
  78	acpi_physical_address phys;
  79	acpi_size size;
  80	unsigned long refcount;
  81};
  82
  83static LIST_HEAD(acpi_ioremaps);
  84static DEFINE_MUTEX(acpi_ioremap_lock);
  85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87static void __init acpi_request_region (struct acpi_generic_address *gas,
  88	unsigned int length, char *desc)
  89{
  90	u64 addr;
  91
  92	/* Handle possible alignment issues */
  93	memcpy(&addr, &gas->address, sizeof(addr));
  94	if (!addr || !length)
  95		return;
  96
  97	/* Resources are never freed */
  98	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
  99		request_region(addr, length, desc);
 100	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 101		request_mem_region(addr, length, desc);
 102}
 103
 104static int __init acpi_reserve_resources(void)
 105{
 106	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 107		"ACPI PM1a_EVT_BLK");
 108
 109	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 110		"ACPI PM1b_EVT_BLK");
 111
 112	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 113		"ACPI PM1a_CNT_BLK");
 114
 115	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 116		"ACPI PM1b_CNT_BLK");
 117
 118	if (acpi_gbl_FADT.pm_timer_length == 4)
 119		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 120
 121	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 122		"ACPI PM2_CNT_BLK");
 123
 124	/* Length of GPE blocks must be a non-negative multiple of 2 */
 125
 126	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 127		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 128			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 129
 130	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 131		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 132			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 133
 134	return 0;
 135}
 136fs_initcall_sync(acpi_reserve_resources);
 137
 138void acpi_os_printf(const char *fmt, ...)
 139{
 140	va_list args;
 141	va_start(args, fmt);
 142	acpi_os_vprintf(fmt, args);
 143	va_end(args);
 144}
 145EXPORT_SYMBOL(acpi_os_printf);
 146
 147void acpi_os_vprintf(const char *fmt, va_list args)
 148{
 149	static char buffer[512];
 150
 151	vsprintf(buffer, fmt, args);
 152
 153#ifdef ENABLE_DEBUGGER
 154	if (acpi_in_debugger) {
 155		kdb_printf("%s", buffer);
 156	} else {
 157		if (printk_get_level(buffer))
 158			printk("%s", buffer);
 159		else
 160			printk(KERN_CONT "%s", buffer);
 161	}
 162#else
 163	if (acpi_debugger_write_log(buffer) < 0) {
 164		if (printk_get_level(buffer))
 165			printk("%s", buffer);
 166		else
 167			printk(KERN_CONT "%s", buffer);
 168	}
 169#endif
 170}
 171
 172#ifdef CONFIG_KEXEC
 173static unsigned long acpi_rsdp;
 174static int __init setup_acpi_rsdp(char *arg)
 175{
 176	return kstrtoul(arg, 16, &acpi_rsdp);
 
 
 177}
 178early_param("acpi_rsdp", setup_acpi_rsdp);
 179#endif
 180
 181acpi_physical_address __init acpi_os_get_root_pointer(void)
 182{
 183	acpi_physical_address pa;
 184
 185#ifdef CONFIG_KEXEC
 186	/*
 187	 * We may have been provided with an RSDP on the command line,
 188	 * but if a malicious user has done so they may be pointing us
 189	 * at modified ACPI tables that could alter kernel behaviour -
 190	 * so, we check the lockdown status before making use of
 191	 * it. If we trust it then also stash it in an architecture
 192	 * specific location (if appropriate) so it can be carried
 193	 * over further kexec()s.
 194	 */
 195	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 196		acpi_arch_set_root_pointer(acpi_rsdp);
 197		return acpi_rsdp;
 198	}
 199#endif
 200	pa = acpi_arch_get_root_pointer();
 201	if (pa)
 202		return pa;
 203
 204	if (efi_enabled(EFI_CONFIG_TABLES)) {
 205		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 206			return efi.acpi20;
 207		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 208			return efi.acpi;
 209		pr_err(PREFIX "System description tables not found\n");
 
 
 
 
 210	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 
 
 211		acpi_find_root_pointer(&pa);
 
 212	}
 213
 214	return pa;
 215}
 216
 217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 218static struct acpi_ioremap *
 219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 220{
 221	struct acpi_ioremap *map;
 222
 223	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 224		if (map->phys <= phys &&
 225		    phys + size <= map->phys + map->size)
 226			return map;
 227
 228	return NULL;
 229}
 230
 231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 232static void __iomem *
 233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 234{
 235	struct acpi_ioremap *map;
 236
 237	map = acpi_map_lookup(phys, size);
 238	if (map)
 239		return map->virt + (phys - map->phys);
 240
 241	return NULL;
 242}
 243
 244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 245{
 246	struct acpi_ioremap *map;
 247	void __iomem *virt = NULL;
 248
 249	mutex_lock(&acpi_ioremap_lock);
 250	map = acpi_map_lookup(phys, size);
 251	if (map) {
 252		virt = map->virt + (phys - map->phys);
 253		map->refcount++;
 254	}
 255	mutex_unlock(&acpi_ioremap_lock);
 256	return virt;
 257}
 258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 259
 260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 261static struct acpi_ioremap *
 262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 263{
 264	struct acpi_ioremap *map;
 265
 266	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 267		if (map->virt <= virt &&
 268		    virt + size <= map->virt + map->size)
 269			return map;
 270
 271	return NULL;
 272}
 273
 274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 275/* ioremap will take care of cache attributes */
 276#define should_use_kmap(pfn)   0
 277#else
 278#define should_use_kmap(pfn)   page_is_ram(pfn)
 279#endif
 280
 281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 282{
 283	unsigned long pfn;
 284
 285	pfn = pg_off >> PAGE_SHIFT;
 286	if (should_use_kmap(pfn)) {
 287		if (pg_sz > PAGE_SIZE)
 288			return NULL;
 289		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 290	} else
 291		return acpi_os_ioremap(pg_off, pg_sz);
 292}
 293
 294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 295{
 296	unsigned long pfn;
 297
 298	pfn = pg_off >> PAGE_SHIFT;
 299	if (should_use_kmap(pfn))
 300		kunmap(pfn_to_page(pfn));
 301	else
 302		iounmap(vaddr);
 303}
 304
 305/**
 306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 307 * @phys: Start of the physical address range to map.
 308 * @size: Size of the physical address range to map.
 309 *
 310 * Look up the given physical address range in the list of existing ACPI memory
 311 * mappings.  If found, get a reference to it and return a pointer to it (its
 312 * virtual address).  If not found, map it, add it to that list and return a
 313 * pointer to it.
 314 *
 315 * During early init (when acpi_permanent_mmap has not been set yet) this
 316 * routine simply calls __acpi_map_table() to get the job done.
 317 */
 318void __iomem __ref
 319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 320{
 321	struct acpi_ioremap *map;
 322	void __iomem *virt;
 323	acpi_physical_address pg_off;
 324	acpi_size pg_sz;
 325
 326	if (phys > ULONG_MAX) {
 327		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 328		return NULL;
 329	}
 330
 331	if (!acpi_permanent_mmap)
 332		return __acpi_map_table((unsigned long)phys, size);
 333
 334	mutex_lock(&acpi_ioremap_lock);
 335	/* Check if there's a suitable mapping already. */
 336	map = acpi_map_lookup(phys, size);
 337	if (map) {
 338		map->refcount++;
 339		goto out;
 340	}
 341
 342	map = kzalloc(sizeof(*map), GFP_KERNEL);
 343	if (!map) {
 344		mutex_unlock(&acpi_ioremap_lock);
 345		return NULL;
 346	}
 347
 348	pg_off = round_down(phys, PAGE_SIZE);
 349	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 350	virt = acpi_map(pg_off, pg_sz);
 351	if (!virt) {
 352		mutex_unlock(&acpi_ioremap_lock);
 353		kfree(map);
 354		return NULL;
 355	}
 356
 357	INIT_LIST_HEAD(&map->list);
 358	map->virt = virt;
 359	map->phys = pg_off;
 360	map->size = pg_sz;
 361	map->refcount = 1;
 362
 363	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 364
 365out:
 366	mutex_unlock(&acpi_ioremap_lock);
 367	return map->virt + (phys - map->phys);
 368}
 369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 370
 371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 
 372{
 373	return (void *)acpi_os_map_iomem(phys, size);
 374}
 375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 376
 377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 378{
 379	if (!--map->refcount)
 380		list_del_rcu(&map->list);
 381}
 382
 383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 384{
 385	if (!map->refcount) {
 386		synchronize_rcu_expedited();
 387		acpi_unmap(map->phys, map->virt);
 388		kfree(map);
 389	}
 390}
 391
 392/**
 393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 394 * @virt: Start of the address range to drop a reference to.
 395 * @size: Size of the address range to drop a reference to.
 396 *
 397 * Look up the given virtual address range in the list of existing ACPI memory
 398 * mappings, drop a reference to it and unmap it if there are no more active
 399 * references to it.
 400 *
 401 * During early init (when acpi_permanent_mmap has not been set yet) this
 402 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 404 * here.
 405 */
 406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 407{
 408	struct acpi_ioremap *map;
 409
 410	if (!acpi_permanent_mmap) {
 411		__acpi_unmap_table(virt, size);
 412		return;
 413	}
 414
 415	mutex_lock(&acpi_ioremap_lock);
 416	map = acpi_map_lookup_virt(virt, size);
 417	if (!map) {
 418		mutex_unlock(&acpi_ioremap_lock);
 419		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 420		return;
 421	}
 422	acpi_os_drop_map_ref(map);
 423	mutex_unlock(&acpi_ioremap_lock);
 424
 425	acpi_os_map_cleanup(map);
 426}
 427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 428
 429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 430{
 431	return acpi_os_unmap_iomem((void __iomem *)virt, size);
 432}
 433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 434
 
 
 
 
 
 
 435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 436{
 437	u64 addr;
 438	void __iomem *virt;
 439
 440	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 441		return 0;
 442
 443	/* Handle possible alignment issues */
 444	memcpy(&addr, &gas->address, sizeof(addr));
 445	if (!addr || !gas->bit_width)
 446		return -EINVAL;
 447
 448	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 449	if (!virt)
 450		return -EIO;
 451
 452	return 0;
 453}
 454EXPORT_SYMBOL(acpi_os_map_generic_address);
 455
 456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 457{
 458	u64 addr;
 459	struct acpi_ioremap *map;
 460
 461	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 462		return;
 463
 464	/* Handle possible alignment issues */
 465	memcpy(&addr, &gas->address, sizeof(addr));
 466	if (!addr || !gas->bit_width)
 467		return;
 468
 469	mutex_lock(&acpi_ioremap_lock);
 470	map = acpi_map_lookup(addr, gas->bit_width / 8);
 471	if (!map) {
 472		mutex_unlock(&acpi_ioremap_lock);
 473		return;
 474	}
 475	acpi_os_drop_map_ref(map);
 476	mutex_unlock(&acpi_ioremap_lock);
 477
 478	acpi_os_map_cleanup(map);
 479}
 480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 481
 482#ifdef ACPI_FUTURE_USAGE
 483acpi_status
 484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 485{
 486	if (!phys || !virt)
 487		return AE_BAD_PARAMETER;
 488
 489	*phys = virt_to_phys(virt);
 490
 491	return AE_OK;
 492}
 493#endif
 494
 495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 496static bool acpi_rev_override;
 497
 498int __init acpi_rev_override_setup(char *str)
 499{
 500	acpi_rev_override = true;
 501	return 1;
 502}
 503__setup("acpi_rev_override", acpi_rev_override_setup);
 504#else
 505#define acpi_rev_override	false
 506#endif
 507
 508#define ACPI_MAX_OVERRIDE_LEN 100
 509
 510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 511
 512acpi_status
 513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 514			    acpi_string *new_val)
 515{
 516	if (!init_val || !new_val)
 517		return AE_BAD_PARAMETER;
 518
 519	*new_val = NULL;
 520	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 521		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 522		       acpi_os_name);
 523		*new_val = acpi_os_name;
 524	}
 525
 526	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 527		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 528		*new_val = (char *)5;
 529	}
 530
 531	return AE_OK;
 532}
 533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534static irqreturn_t acpi_irq(int irq, void *dev_id)
 535{
 536	u32 handled;
 537
 538	handled = (*acpi_irq_handler) (acpi_irq_context);
 539
 540	if (handled) {
 541		acpi_irq_handled++;
 542		return IRQ_HANDLED;
 543	} else {
 544		acpi_irq_not_handled++;
 545		return IRQ_NONE;
 546	}
 547}
 548
 549acpi_status
 550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 551				  void *context)
 552{
 553	unsigned int irq;
 554
 555	acpi_irq_stats_init();
 556
 557	/*
 558	 * ACPI interrupts different from the SCI in our copy of the FADT are
 559	 * not supported.
 560	 */
 561	if (gsi != acpi_gbl_FADT.sci_interrupt)
 562		return AE_BAD_PARAMETER;
 563
 564	if (acpi_irq_handler)
 565		return AE_ALREADY_ACQUIRED;
 566
 567	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 568		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 569		       gsi);
 570		return AE_OK;
 571	}
 572
 573	acpi_irq_handler = handler;
 574	acpi_irq_context = context;
 575	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 576		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 577		acpi_irq_handler = NULL;
 578		return AE_NOT_ACQUIRED;
 579	}
 580	acpi_sci_irq = irq;
 581
 582	return AE_OK;
 583}
 584
 585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 586{
 587	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 588		return AE_BAD_PARAMETER;
 589
 590	free_irq(acpi_sci_irq, acpi_irq);
 591	acpi_irq_handler = NULL;
 592	acpi_sci_irq = INVALID_ACPI_IRQ;
 593
 594	return AE_OK;
 595}
 596
 597/*
 598 * Running in interpreter thread context, safe to sleep
 599 */
 600
 601void acpi_os_sleep(u64 ms)
 602{
 603	msleep(ms);
 604}
 605
 606void acpi_os_stall(u32 us)
 607{
 608	while (us) {
 609		u32 delay = 1000;
 610
 611		if (delay > us)
 612			delay = us;
 613		udelay(delay);
 614		touch_nmi_watchdog();
 615		us -= delay;
 616	}
 617}
 618
 619/*
 620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 621 * monotonically increasing timer with 100ns granularity. Do not use
 622 * ktime_get() to implement this function because this function may get
 623 * called after timekeeping has been suspended. Note: calling this function
 624 * after timekeeping has been suspended may lead to unexpected results
 625 * because when timekeeping is suspended the jiffies counter is not
 626 * incremented. See also timekeeping_suspend().
 627 */
 628u64 acpi_os_get_timer(void)
 629{
 630	return (get_jiffies_64() - INITIAL_JIFFIES) *
 631		(ACPI_100NSEC_PER_SEC / HZ);
 
 632}
 633
 634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 635{
 636	u32 dummy;
 637
 638	if (!value)
 639		value = &dummy;
 640
 641	*value = 0;
 642	if (width <= 8) {
 643		*(u8 *) value = inb(port);
 644	} else if (width <= 16) {
 645		*(u16 *) value = inw(port);
 646	} else if (width <= 32) {
 647		*(u32 *) value = inl(port);
 648	} else {
 649		BUG();
 650	}
 651
 652	return AE_OK;
 653}
 654
 655EXPORT_SYMBOL(acpi_os_read_port);
 656
 657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 658{
 659	if (width <= 8) {
 660		outb(value, port);
 661	} else if (width <= 16) {
 662		outw(value, port);
 663	} else if (width <= 32) {
 664		outl(value, port);
 665	} else {
 666		BUG();
 667	}
 668
 669	return AE_OK;
 670}
 671
 672EXPORT_SYMBOL(acpi_os_write_port);
 673
 674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 675{
 676
 677	switch (width) {
 678	case 8:
 679		*(u8 *) value = readb(virt_addr);
 680		break;
 681	case 16:
 682		*(u16 *) value = readw(virt_addr);
 683		break;
 684	case 32:
 685		*(u32 *) value = readl(virt_addr);
 686		break;
 687	case 64:
 688		*(u64 *) value = readq(virt_addr);
 689		break;
 690	default:
 691		return -EINVAL;
 692	}
 693
 694	return 0;
 695}
 696
 697acpi_status
 698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 699{
 700	void __iomem *virt_addr;
 701	unsigned int size = width / 8;
 702	bool unmap = false;
 703	u64 dummy;
 704	int error;
 705
 706	rcu_read_lock();
 707	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 708	if (!virt_addr) {
 709		rcu_read_unlock();
 710		virt_addr = acpi_os_ioremap(phys_addr, size);
 711		if (!virt_addr)
 712			return AE_BAD_ADDRESS;
 713		unmap = true;
 714	}
 715
 716	if (!value)
 717		value = &dummy;
 718
 719	error = acpi_os_read_iomem(virt_addr, value, width);
 720	BUG_ON(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721
 722	if (unmap)
 723		iounmap(virt_addr);
 724	else
 725		rcu_read_unlock();
 726
 727	return AE_OK;
 728}
 729
 730acpi_status
 731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 732{
 733	void __iomem *virt_addr;
 734	unsigned int size = width / 8;
 735	bool unmap = false;
 736
 737	rcu_read_lock();
 738	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 739	if (!virt_addr) {
 740		rcu_read_unlock();
 741		virt_addr = acpi_os_ioremap(phys_addr, size);
 742		if (!virt_addr)
 743			return AE_BAD_ADDRESS;
 744		unmap = true;
 745	}
 746
 747	switch (width) {
 748	case 8:
 749		writeb(value, virt_addr);
 750		break;
 751	case 16:
 752		writew(value, virt_addr);
 753		break;
 754	case 32:
 755		writel(value, virt_addr);
 756		break;
 757	case 64:
 758		writeq(value, virt_addr);
 759		break;
 760	default:
 761		BUG();
 762	}
 763
 764	if (unmap)
 765		iounmap(virt_addr);
 766	else
 767		rcu_read_unlock();
 768
 769	return AE_OK;
 770}
 771
 772#ifdef CONFIG_PCI
 773acpi_status
 774acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 775			       u64 *value, u32 width)
 776{
 777	int result, size;
 778	u32 value32;
 779
 780	if (!value)
 781		return AE_BAD_PARAMETER;
 782
 783	switch (width) {
 784	case 8:
 785		size = 1;
 786		break;
 787	case 16:
 788		size = 2;
 789		break;
 790	case 32:
 791		size = 4;
 792		break;
 793	default:
 794		return AE_ERROR;
 795	}
 796
 797	result = raw_pci_read(pci_id->segment, pci_id->bus,
 798				PCI_DEVFN(pci_id->device, pci_id->function),
 799				reg, size, &value32);
 800	*value = value32;
 801
 802	return (result ? AE_ERROR : AE_OK);
 803}
 804
 805acpi_status
 806acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 807				u64 value, u32 width)
 808{
 809	int result, size;
 810
 811	switch (width) {
 812	case 8:
 813		size = 1;
 814		break;
 815	case 16:
 816		size = 2;
 817		break;
 818	case 32:
 819		size = 4;
 820		break;
 821	default:
 822		return AE_ERROR;
 823	}
 824
 825	result = raw_pci_write(pci_id->segment, pci_id->bus,
 826				PCI_DEVFN(pci_id->device, pci_id->function),
 827				reg, size, value);
 828
 829	return (result ? AE_ERROR : AE_OK);
 830}
 831#endif
 832
 833static void acpi_os_execute_deferred(struct work_struct *work)
 834{
 835	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 836
 837	dpc->function(dpc->context);
 838	kfree(dpc);
 839}
 840
 841#ifdef CONFIG_ACPI_DEBUGGER
 842static struct acpi_debugger acpi_debugger;
 843static bool acpi_debugger_initialized;
 844
 845int acpi_register_debugger(struct module *owner,
 846			   const struct acpi_debugger_ops *ops)
 847{
 848	int ret = 0;
 849
 850	mutex_lock(&acpi_debugger.lock);
 851	if (acpi_debugger.ops) {
 852		ret = -EBUSY;
 853		goto err_lock;
 854	}
 855
 856	acpi_debugger.owner = owner;
 857	acpi_debugger.ops = ops;
 858
 859err_lock:
 860	mutex_unlock(&acpi_debugger.lock);
 861	return ret;
 862}
 863EXPORT_SYMBOL(acpi_register_debugger);
 864
 865void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 866{
 867	mutex_lock(&acpi_debugger.lock);
 868	if (ops == acpi_debugger.ops) {
 869		acpi_debugger.ops = NULL;
 870		acpi_debugger.owner = NULL;
 871	}
 872	mutex_unlock(&acpi_debugger.lock);
 873}
 874EXPORT_SYMBOL(acpi_unregister_debugger);
 875
 876int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 877{
 878	int ret;
 879	int (*func)(acpi_osd_exec_callback, void *);
 880	struct module *owner;
 881
 882	if (!acpi_debugger_initialized)
 883		return -ENODEV;
 884	mutex_lock(&acpi_debugger.lock);
 885	if (!acpi_debugger.ops) {
 886		ret = -ENODEV;
 887		goto err_lock;
 888	}
 889	if (!try_module_get(acpi_debugger.owner)) {
 890		ret = -ENODEV;
 891		goto err_lock;
 892	}
 893	func = acpi_debugger.ops->create_thread;
 894	owner = acpi_debugger.owner;
 895	mutex_unlock(&acpi_debugger.lock);
 896
 897	ret = func(function, context);
 898
 899	mutex_lock(&acpi_debugger.lock);
 900	module_put(owner);
 901err_lock:
 902	mutex_unlock(&acpi_debugger.lock);
 903	return ret;
 904}
 905
 906ssize_t acpi_debugger_write_log(const char *msg)
 907{
 908	ssize_t ret;
 909	ssize_t (*func)(const char *);
 910	struct module *owner;
 911
 912	if (!acpi_debugger_initialized)
 913		return -ENODEV;
 914	mutex_lock(&acpi_debugger.lock);
 915	if (!acpi_debugger.ops) {
 916		ret = -ENODEV;
 917		goto err_lock;
 918	}
 919	if (!try_module_get(acpi_debugger.owner)) {
 920		ret = -ENODEV;
 921		goto err_lock;
 922	}
 923	func = acpi_debugger.ops->write_log;
 924	owner = acpi_debugger.owner;
 925	mutex_unlock(&acpi_debugger.lock);
 926
 927	ret = func(msg);
 928
 929	mutex_lock(&acpi_debugger.lock);
 930	module_put(owner);
 931err_lock:
 932	mutex_unlock(&acpi_debugger.lock);
 933	return ret;
 934}
 935
 936ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 937{
 938	ssize_t ret;
 939	ssize_t (*func)(char *, size_t);
 940	struct module *owner;
 941
 942	if (!acpi_debugger_initialized)
 943		return -ENODEV;
 944	mutex_lock(&acpi_debugger.lock);
 945	if (!acpi_debugger.ops) {
 946		ret = -ENODEV;
 947		goto err_lock;
 948	}
 949	if (!try_module_get(acpi_debugger.owner)) {
 950		ret = -ENODEV;
 951		goto err_lock;
 952	}
 953	func = acpi_debugger.ops->read_cmd;
 954	owner = acpi_debugger.owner;
 955	mutex_unlock(&acpi_debugger.lock);
 956
 957	ret = func(buffer, buffer_length);
 958
 959	mutex_lock(&acpi_debugger.lock);
 960	module_put(owner);
 961err_lock:
 962	mutex_unlock(&acpi_debugger.lock);
 963	return ret;
 964}
 965
 966int acpi_debugger_wait_command_ready(void)
 967{
 968	int ret;
 969	int (*func)(bool, char *, size_t);
 970	struct module *owner;
 971
 972	if (!acpi_debugger_initialized)
 973		return -ENODEV;
 974	mutex_lock(&acpi_debugger.lock);
 975	if (!acpi_debugger.ops) {
 976		ret = -ENODEV;
 977		goto err_lock;
 978	}
 979	if (!try_module_get(acpi_debugger.owner)) {
 980		ret = -ENODEV;
 981		goto err_lock;
 982	}
 983	func = acpi_debugger.ops->wait_command_ready;
 984	owner = acpi_debugger.owner;
 985	mutex_unlock(&acpi_debugger.lock);
 986
 987	ret = func(acpi_gbl_method_executing,
 988		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 989
 990	mutex_lock(&acpi_debugger.lock);
 991	module_put(owner);
 992err_lock:
 993	mutex_unlock(&acpi_debugger.lock);
 994	return ret;
 995}
 996
 997int acpi_debugger_notify_command_complete(void)
 998{
 999	int ret;
1000	int (*func)(void);
1001	struct module *owner;
1002
1003	if (!acpi_debugger_initialized)
1004		return -ENODEV;
1005	mutex_lock(&acpi_debugger.lock);
1006	if (!acpi_debugger.ops) {
1007		ret = -ENODEV;
1008		goto err_lock;
1009	}
1010	if (!try_module_get(acpi_debugger.owner)) {
1011		ret = -ENODEV;
1012		goto err_lock;
1013	}
1014	func = acpi_debugger.ops->notify_command_complete;
1015	owner = acpi_debugger.owner;
1016	mutex_unlock(&acpi_debugger.lock);
1017
1018	ret = func();
1019
1020	mutex_lock(&acpi_debugger.lock);
1021	module_put(owner);
1022err_lock:
1023	mutex_unlock(&acpi_debugger.lock);
1024	return ret;
1025}
1026
1027int __init acpi_debugger_init(void)
1028{
1029	mutex_init(&acpi_debugger.lock);
1030	acpi_debugger_initialized = true;
1031	return 0;
1032}
1033#endif
1034
1035/*******************************************************************************
1036 *
1037 * FUNCTION:    acpi_os_execute
1038 *
1039 * PARAMETERS:  Type               - Type of the callback
1040 *              Function           - Function to be executed
1041 *              Context            - Function parameters
1042 *
1043 * RETURN:      Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 *              immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
1050acpi_status acpi_os_execute(acpi_execute_type type,
1051			    acpi_osd_exec_callback function, void *context)
1052{
1053	acpi_status status = AE_OK;
1054	struct acpi_os_dpc *dpc;
1055	struct workqueue_struct *queue;
1056	int ret;
1057	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058			  "Scheduling function [%p(%p)] for deferred execution.\n",
1059			  function, context));
1060
1061	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062		ret = acpi_debugger_create_thread(function, context);
1063		if (ret) {
1064			pr_err("Call to kthread_create() failed.\n");
1065			status = AE_ERROR;
1066		}
1067		goto out_thread;
1068	}
1069
1070	/*
1071	 * Allocate/initialize DPC structure.  Note that this memory will be
1072	 * freed by the callee.  The kernel handles the work_struct list  in a
1073	 * way that allows us to also free its memory inside the callee.
1074	 * Because we may want to schedule several tasks with different
1075	 * parameters we can't use the approach some kernel code uses of
1076	 * having a static work_struct.
1077	 */
1078
1079	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080	if (!dpc)
1081		return AE_NO_MEMORY;
1082
1083	dpc->function = function;
1084	dpc->context = context;
1085
1086	/*
1087	 * To prevent lockdep from complaining unnecessarily, make sure that
1088	 * there is a different static lockdep key for each workqueue by using
1089	 * INIT_WORK() for each of them separately.
1090	 */
1091	if (type == OSL_NOTIFY_HANDLER) {
1092		queue = kacpi_notify_wq;
1093		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094	} else if (type == OSL_GPE_HANDLER) {
1095		queue = kacpid_wq;
1096		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097	} else {
1098		pr_err("Unsupported os_execute type %d.\n", type);
1099		status = AE_ERROR;
1100	}
1101
1102	if (ACPI_FAILURE(status))
1103		goto err_workqueue;
1104
1105	/*
1106	 * On some machines, a software-initiated SMI causes corruption unless
1107	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1108	 * typically it's done in GPE-related methods that are run via
1109	 * workqueues, so we can avoid the known corruption cases by always
1110	 * queueing on CPU 0.
1111	 */
1112	ret = queue_work_on(0, queue, &dpc->work);
1113	if (!ret) {
1114		printk(KERN_ERR PREFIX
1115			  "Call to queue_work() failed.\n");
1116		status = AE_ERROR;
1117	}
1118err_workqueue:
1119	if (ACPI_FAILURE(status))
1120		kfree(dpc);
1121out_thread:
1122	return status;
1123}
1124EXPORT_SYMBOL(acpi_os_execute);
1125
1126void acpi_os_wait_events_complete(void)
1127{
1128	/*
1129	 * Make sure the GPE handler or the fixed event handler is not used
1130	 * on another CPU after removal.
1131	 */
1132	if (acpi_sci_irq_valid())
1133		synchronize_hardirq(acpi_sci_irq);
1134	flush_workqueue(kacpid_wq);
1135	flush_workqueue(kacpi_notify_wq);
1136}
1137EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139struct acpi_hp_work {
1140	struct work_struct work;
1141	struct acpi_device *adev;
1142	u32 src;
1143};
1144
1145static void acpi_hotplug_work_fn(struct work_struct *work)
1146{
1147	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149	acpi_os_wait_events_complete();
1150	acpi_device_hotplug(hpw->adev, hpw->src);
1151	kfree(hpw);
1152}
1153
1154acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155{
1156	struct acpi_hp_work *hpw;
1157
1158	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160		  adev, src));
1161
1162	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163	if (!hpw)
1164		return AE_NO_MEMORY;
1165
1166	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167	hpw->adev = adev;
1168	hpw->src = src;
1169	/*
1170	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171	 * the hotplug code may call driver .remove() functions, which may
1172	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173	 * these workqueues.
1174	 */
1175	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176		kfree(hpw);
1177		return AE_ERROR;
1178	}
1179	return AE_OK;
1180}
1181
1182bool acpi_queue_hotplug_work(struct work_struct *work)
1183{
1184	return queue_work(kacpi_hotplug_wq, work);
1185}
1186
1187acpi_status
1188acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189{
1190	struct semaphore *sem = NULL;
1191
1192	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193	if (!sem)
1194		return AE_NO_MEMORY;
1195
1196	sema_init(sem, initial_units);
1197
1198	*handle = (acpi_handle *) sem;
1199
1200	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201			  *handle, initial_units));
1202
1203	return AE_OK;
1204}
1205
1206/*
1207 * TODO: A better way to delete semaphores?  Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers.	Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
1213acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214{
1215	struct semaphore *sem = (struct semaphore *)handle;
1216
1217	if (!sem)
1218		return AE_BAD_PARAMETER;
1219
1220	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222	BUG_ON(!list_empty(&sem->wait_list));
1223	kfree(sem);
1224	sem = NULL;
1225
1226	return AE_OK;
1227}
1228
1229/*
1230 * TODO: Support for units > 1?
1231 */
1232acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233{
1234	acpi_status status = AE_OK;
1235	struct semaphore *sem = (struct semaphore *)handle;
1236	long jiffies;
1237	int ret = 0;
1238
1239	if (!acpi_os_initialized)
1240		return AE_OK;
1241
1242	if (!sem || (units < 1))
1243		return AE_BAD_PARAMETER;
1244
1245	if (units > 1)
1246		return AE_SUPPORT;
1247
1248	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249			  handle, units, timeout));
1250
1251	if (timeout == ACPI_WAIT_FOREVER)
1252		jiffies = MAX_SCHEDULE_TIMEOUT;
1253	else
1254		jiffies = msecs_to_jiffies(timeout);
1255
1256	ret = down_timeout(sem, jiffies);
1257	if (ret)
1258		status = AE_TIME;
1259
1260	if (ACPI_FAILURE(status)) {
1261		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262				  "Failed to acquire semaphore[%p|%d|%d], %s",
1263				  handle, units, timeout,
1264				  acpi_format_exception(status)));
1265	} else {
1266		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267				  "Acquired semaphore[%p|%d|%d]", handle,
1268				  units, timeout));
1269	}
1270
1271	return status;
1272}
1273
1274/*
1275 * TODO: Support for units > 1?
1276 */
1277acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278{
1279	struct semaphore *sem = (struct semaphore *)handle;
1280
1281	if (!acpi_os_initialized)
1282		return AE_OK;
1283
1284	if (!sem || (units < 1))
1285		return AE_BAD_PARAMETER;
1286
1287	if (units > 1)
1288		return AE_SUPPORT;
1289
1290	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291			  units));
1292
1293	up(sem);
1294
1295	return AE_OK;
1296}
1297
1298acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299{
1300#ifdef ENABLE_DEBUGGER
1301	if (acpi_in_debugger) {
1302		u32 chars;
1303
1304		kdb_read(buffer, buffer_length);
1305
1306		/* remove the CR kdb includes */
1307		chars = strlen(buffer) - 1;
1308		buffer[chars] = '\0';
1309	}
1310#else
1311	int ret;
1312
1313	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314	if (ret < 0)
1315		return AE_ERROR;
1316	if (bytes_read)
1317		*bytes_read = ret;
1318#endif
1319
1320	return AE_OK;
1321}
1322EXPORT_SYMBOL(acpi_os_get_line);
1323
1324acpi_status acpi_os_wait_command_ready(void)
1325{
1326	int ret;
1327
1328	ret = acpi_debugger_wait_command_ready();
1329	if (ret < 0)
1330		return AE_ERROR;
1331	return AE_OK;
1332}
1333
1334acpi_status acpi_os_notify_command_complete(void)
1335{
1336	int ret;
1337
1338	ret = acpi_debugger_notify_command_complete();
1339	if (ret < 0)
1340		return AE_ERROR;
1341	return AE_OK;
1342}
1343
1344acpi_status acpi_os_signal(u32 function, void *info)
1345{
1346	switch (function) {
1347	case ACPI_SIGNAL_FATAL:
1348		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349		break;
1350	case ACPI_SIGNAL_BREAKPOINT:
1351		/*
1352		 * AML Breakpoint
1353		 * ACPI spec. says to treat it as a NOP unless
1354		 * you are debugging.  So if/when we integrate
1355		 * AML debugger into the kernel debugger its
1356		 * hook will go here.  But until then it is
1357		 * not useful to print anything on breakpoints.
1358		 */
1359		break;
1360	default:
1361		break;
1362	}
1363
1364	return AE_OK;
1365}
1366
1367static int __init acpi_os_name_setup(char *str)
1368{
1369	char *p = acpi_os_name;
1370	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372	if (!str || !*str)
1373		return 0;
1374
1375	for (; count-- && *str; str++) {
1376		if (isalnum(*str) || *str == ' ' || *str == ':')
1377			*p++ = *str;
1378		else if (*str == '\'' || *str == '"')
1379			continue;
1380		else
1381			break;
1382	}
1383	*p = 0;
1384
1385	return 1;
1386
1387}
1388
1389__setup("acpi_os_name=", acpi_os_name_setup);
1390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391/*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default.  It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
1396 */
1397static int __init acpi_no_auto_serialize_setup(char *str)
1398{
1399	acpi_gbl_auto_serialize_methods = FALSE;
1400	pr_info("ACPI: auto-serialization disabled\n");
1401
1402	return 1;
1403}
1404
1405__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407/* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 *   - strict (default) (2)
1414 *     -> further driver trying to access the resources will not load
1415 *   - lax              (1)
1416 *     -> further driver trying to access the resources will load, but you
1417 *     get a system message that something might go wrong...
1418 *
1419 *   - no               (0)
1420 *     -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423#define ENFORCE_RESOURCES_STRICT 2
1424#define ENFORCE_RESOURCES_LAX    1
1425#define ENFORCE_RESOURCES_NO     0
1426
1427static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429static int __init acpi_enforce_resources_setup(char *str)
1430{
1431	if (str == NULL || *str == '\0')
1432		return 0;
1433
1434	if (!strcmp("strict", str))
1435		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436	else if (!strcmp("lax", str))
1437		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438	else if (!strcmp("no", str))
1439		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441	return 1;
1442}
1443
1444__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446/* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
1448int acpi_check_resource_conflict(const struct resource *res)
1449{
1450	acpi_adr_space_type space_id;
1451	acpi_size length;
1452	u8 warn = 0;
1453	int clash = 0;
1454
1455	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456		return 0;
1457	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458		return 0;
1459
1460	if (res->flags & IORESOURCE_IO)
1461		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462	else
1463		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465	length = resource_size(res);
1466	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467		warn = 1;
1468	clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470	if (clash) {
1471		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473				printk(KERN_NOTICE "ACPI: This conflict may"
1474				       " cause random problems and system"
1475				       " instability\n");
1476			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477			       " for this device, you should use it instead of"
1478			       " the native driver\n");
1479		}
1480		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481			return -EBUSY;
1482	}
1483	return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488		      const char *name)
1489{
1490	struct resource res = {
1491		.start = start,
1492		.end   = start + n - 1,
1493		.name  = name,
1494		.flags = IORESOURCE_IO,
1495	};
1496
1497	return acpi_check_resource_conflict(&res);
1498}
1499EXPORT_SYMBOL(acpi_check_region);
1500
1501static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502					      void *_res, void **return_value)
1503{
1504	struct acpi_mem_space_context **mem_ctx;
1505	union acpi_operand_object *handler_obj;
1506	union acpi_operand_object *region_obj2;
1507	union acpi_operand_object *region_obj;
1508	struct resource *res = _res;
1509	acpi_status status;
1510
1511	region_obj = acpi_ns_get_attached_object(handle);
1512	if (!region_obj)
1513		return AE_OK;
1514
1515	handler_obj = region_obj->region.handler;
1516	if (!handler_obj)
1517		return AE_OK;
1518
1519	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520		return AE_OK;
1521
1522	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523		return AE_OK;
1524
1525	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526	if (!region_obj2)
1527		return AE_OK;
1528
1529	mem_ctx = (void *)&region_obj2->extra.region_context;
1530
1531	if (!(mem_ctx[0]->address >= res->start &&
1532	      mem_ctx[0]->address < res->end))
1533		return AE_OK;
1534
1535	status = handler_obj->address_space.setup(region_obj,
1536						  ACPI_REGION_DEACTIVATE,
1537						  NULL, (void **)mem_ctx);
1538	if (ACPI_SUCCESS(status))
1539		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541	return status;
1542}
1543
1544/**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
1560acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561				u32 level)
1562{
1563	if (!(res->flags & IORESOURCE_MEM))
1564		return AE_TYPE;
1565
1566	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567				   acpi_deactivate_mem_region, NULL, res, NULL);
1568}
1569EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571/*
1572 * Let drivers know whether the resource checks are effective
1573 */
1574int acpi_resources_are_enforced(void)
1575{
1576	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577}
1578EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
 
 
 
 
 
 
1580/*
1581 * Deallocate the memory for a spinlock.
1582 */
1583void acpi_os_delete_lock(acpi_spinlock handle)
1584{
1585	ACPI_FREE(handle);
1586}
1587
1588/*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
1594acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595{
1596	acpi_cpu_flags flags;
1597	spin_lock_irqsave(lockp, flags);
1598	return flags;
1599}
1600
1601/*
1602 * Release a spinlock. See above.
1603 */
1604
1605void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606{
1607	spin_unlock_irqrestore(lockp, flags);
1608}
1609
1610#ifndef ACPI_USE_LOCAL_CACHE
1611
1612/*******************************************************************************
1613 *
1614 * FUNCTION:    acpi_os_create_cache
1615 *
1616 * PARAMETERS:  name      - Ascii name for the cache
1617 *              size      - Size of each cached object
1618 *              depth     - Maximum depth of the cache (in objects) <ignored>
1619 *              cache     - Where the new cache object is returned
1620 *
1621 * RETURN:      status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627acpi_status
1628acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629{
1630	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1631	if (*cache == NULL)
1632		return AE_ERROR;
1633	else
1634		return AE_OK;
1635}
1636
1637/*******************************************************************************
1638 *
1639 * FUNCTION:    acpi_os_purge_cache
1640 *
1641 * PARAMETERS:  Cache           - Handle to cache object
1642 *
1643 * RETURN:      Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
1649acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650{
1651	kmem_cache_shrink(cache);
1652	return (AE_OK);
1653}
1654
1655/*******************************************************************************
1656 *
1657 * FUNCTION:    acpi_os_delete_cache
1658 *
1659 * PARAMETERS:  Cache           - Handle to cache object
1660 *
1661 * RETURN:      Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 *              cache object.
1665 *
1666 ******************************************************************************/
1667
1668acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669{
1670	kmem_cache_destroy(cache);
1671	return (AE_OK);
1672}
1673
1674/*******************************************************************************
1675 *
1676 * FUNCTION:    acpi_os_release_object
1677 *
1678 * PARAMETERS:  Cache       - Handle to cache object
1679 *              Object      - The object to be released
1680 *
1681 * RETURN:      None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1684 *              the object is deleted.
1685 *
1686 ******************************************************************************/
1687
1688acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689{
1690	kmem_cache_free(cache, object);
1691	return (AE_OK);
1692}
1693#endif
1694
1695static int __init acpi_no_static_ssdt_setup(char *s)
1696{
1697	acpi_gbl_disable_ssdt_table_install = TRUE;
1698	pr_info("ACPI: static SSDT installation disabled\n");
1699
1700	return 0;
1701}
1702
1703early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705static int __init acpi_disable_return_repair(char *s)
1706{
1707	printk(KERN_NOTICE PREFIX
1708	       "ACPI: Predefined validation mechanism disabled\n");
1709	acpi_gbl_disable_auto_repair = TRUE;
1710
1711	return 1;
1712}
1713
1714__setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716acpi_status __init acpi_os_initialize(void)
1717{
1718	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723		/*
1724		 * Use acpi_os_map_generic_address to pre-map the reset
1725		 * register if it's in system memory.
1726		 */
1727		int rv;
1728
1729		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731	}
1732	acpi_os_initialized = true;
1733
1734	return AE_OK;
1735}
1736
1737acpi_status __init acpi_os_initialize1(void)
1738{
1739	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742	BUG_ON(!kacpid_wq);
1743	BUG_ON(!kacpi_notify_wq);
1744	BUG_ON(!kacpi_hotplug_wq);
1745	acpi_osi_init();
 
1746	return AE_OK;
1747}
1748
1749acpi_status acpi_os_terminate(void)
1750{
1751	if (acpi_irq_handler) {
1752		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753						 acpi_irq_handler);
1754	}
1755
1756	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763	destroy_workqueue(kacpid_wq);
1764	destroy_workqueue(kacpi_notify_wq);
1765	destroy_workqueue(kacpi_hotplug_wq);
1766
1767	return AE_OK;
1768}
1769
1770acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771				  u32 pm1b_control)
1772{
1773	int rc = 0;
1774	if (__acpi_os_prepare_sleep)
1775		rc = __acpi_os_prepare_sleep(sleep_state,
1776					     pm1a_control, pm1b_control);
1777	if (rc < 0)
1778		return AE_ERROR;
1779	else if (rc > 0)
1780		return AE_CTRL_TERMINATE;
1781
1782	return AE_OK;
1783}
1784
1785void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1787{
1788	__acpi_os_prepare_sleep = func;
1789}
1790
1791#if (ACPI_REDUCED_HARDWARE)
1792acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793				  u32 val_b)
1794{
1795	int rc = 0;
1796	if (__acpi_os_prepare_extended_sleep)
1797		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798					     val_a, val_b);
1799	if (rc < 0)
1800		return AE_ERROR;
1801	else if (rc > 0)
1802		return AE_CTRL_TERMINATE;
1803
1804	return AE_OK;
1805}
1806#else
1807acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808				  u32 val_b)
1809{
1810	return AE_OK;
1811}
1812#endif
1813
1814void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815			       u32 val_a, u32 val_b))
1816{
1817	__acpi_os_prepare_extended_sleep = func;
1818}
1819
1820acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821				u32 reg_a_value, u32 reg_b_value)
1822{
1823	acpi_status status;
1824
1825	if (acpi_gbl_reduced_hardware)
1826		status = acpi_os_prepare_extended_sleep(sleep_state,
1827							reg_a_value,
1828							reg_b_value);
1829	else
1830		status = acpi_os_prepare_sleep(sleep_state,
1831					       reg_a_value, reg_b_value);
1832	return status;
1833}