Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * common.c - C code for kernel entry and exit
  3 * Copyright (c) 2015 Andrew Lutomirski
  4 * GPL v2
  5 *
  6 * Based on asm and ptrace code by many authors.  The code here originated
  7 * in ptrace.c and signal.c.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/sched.h>
 
 12#include <linux/mm.h>
 13#include <linux/smp.h>
 14#include <linux/errno.h>
 15#include <linux/ptrace.h>
 16#include <linux/tracehook.h>
 17#include <linux/audit.h>
 18#include <linux/seccomp.h>
 19#include <linux/signal.h>
 20#include <linux/export.h>
 21#include <linux/context_tracking.h>
 22#include <linux/user-return-notifier.h>
 
 23#include <linux/uprobes.h>
 
 
 
 24
 25#include <asm/desc.h>
 26#include <asm/traps.h>
 27#include <asm/vdso.h>
 28#include <asm/uaccess.h>
 29#include <asm/cpufeature.h>
 
 
 30
 31#define CREATE_TRACE_POINTS
 32#include <trace/events/syscalls.h>
 33
 34static struct thread_info *pt_regs_to_thread_info(struct pt_regs *regs)
 35{
 36	unsigned long top_of_stack =
 37		(unsigned long)(regs + 1) + TOP_OF_KERNEL_STACK_PADDING;
 38	return (struct thread_info *)(top_of_stack - THREAD_SIZE);
 39}
 40
 41#ifdef CONFIG_CONTEXT_TRACKING
 42/* Called on entry from user mode with IRQs off. */
 43__visible void enter_from_user_mode(void)
 44{
 45	CT_WARN_ON(ct_state() != CONTEXT_USER);
 46	user_exit();
 47}
 48#else
 49static inline void enter_from_user_mode(void) {}
 50#endif
 51
 52static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
 53{
 54#ifdef CONFIG_X86_64
 55	if (arch == AUDIT_ARCH_X86_64) {
 56		audit_syscall_entry(regs->orig_ax, regs->di,
 57				    regs->si, regs->dx, regs->r10);
 58	} else
 59#endif
 60	{
 61		audit_syscall_entry(regs->orig_ax, regs->bx,
 62				    regs->cx, regs->dx, regs->si);
 63	}
 64}
 65
 66/*
 67 * We can return 0 to resume the syscall or anything else to go to phase
 68 * 2.  If we resume the syscall, we need to put something appropriate in
 69 * regs->orig_ax.
 70 *
 71 * NB: We don't have full pt_regs here, but regs->orig_ax and regs->ax
 72 * are fully functional.
 73 *
 74 * For phase 2's benefit, our return value is:
 75 * 0:			resume the syscall
 76 * 1:			go to phase 2; no seccomp phase 2 needed
 77 * anything else:	go to phase 2; pass return value to seccomp
 78 */
 79unsigned long syscall_trace_enter_phase1(struct pt_regs *regs, u32 arch)
 80{
 81	struct thread_info *ti = pt_regs_to_thread_info(regs);
 
 
 82	unsigned long ret = 0;
 83	u32 work;
 84
 85	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
 86		BUG_ON(regs != task_pt_regs(current));
 87
 88	work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
 
 
 
 
 
 
 89
 90#ifdef CONFIG_SECCOMP
 91	/*
 92	 * Do seccomp first -- it should minimize exposure of other
 93	 * code, and keeping seccomp fast is probably more valuable
 94	 * than the rest of this.
 95	 */
 96	if (work & _TIF_SECCOMP) {
 97		struct seccomp_data sd;
 98
 99		sd.arch = arch;
100		sd.nr = regs->orig_ax;
101		sd.instruction_pointer = regs->ip;
102#ifdef CONFIG_X86_64
103		if (arch == AUDIT_ARCH_X86_64) {
104			sd.args[0] = regs->di;
105			sd.args[1] = regs->si;
106			sd.args[2] = regs->dx;
107			sd.args[3] = regs->r10;
108			sd.args[4] = regs->r8;
109			sd.args[5] = regs->r9;
110		} else
111#endif
112		{
113			sd.args[0] = regs->bx;
114			sd.args[1] = regs->cx;
115			sd.args[2] = regs->dx;
116			sd.args[3] = regs->si;
117			sd.args[4] = regs->di;
118			sd.args[5] = regs->bp;
119		}
120
121		BUILD_BUG_ON(SECCOMP_PHASE1_OK != 0);
122		BUILD_BUG_ON(SECCOMP_PHASE1_SKIP != 1);
123
124		ret = seccomp_phase1(&sd);
125		if (ret == SECCOMP_PHASE1_SKIP) {
126			regs->orig_ax = -1;
127			ret = 0;
128		} else if (ret != SECCOMP_PHASE1_OK) {
129			return ret;  /* Go directly to phase 2 */
130		}
131
132		work &= ~_TIF_SECCOMP;
133	}
134#endif
135
136	/* Do our best to finish without phase 2. */
137	if (work == 0)
138		return ret;  /* seccomp and/or nohz only (ret == 0 here) */
139
140#ifdef CONFIG_AUDITSYSCALL
141	if (work == _TIF_SYSCALL_AUDIT) {
142		/*
143		 * If there is no more work to be done except auditing,
144		 * then audit in phase 1.  Phase 2 always audits, so, if
145		 * we audit here, then we can't go on to phase 2.
146		 */
147		do_audit_syscall_entry(regs, arch);
148		return 0;
149	}
150#endif
151
152	return 1;  /* Something is enabled that we can't handle in phase 1 */
153}
154
155/* Returns the syscall nr to run (which should match regs->orig_ax). */
156long syscall_trace_enter_phase2(struct pt_regs *regs, u32 arch,
157				unsigned long phase1_result)
158{
159	struct thread_info *ti = pt_regs_to_thread_info(regs);
160	long ret = 0;
161	u32 work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
162
163	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
164		BUG_ON(regs != task_pt_regs(current));
165
166#ifdef CONFIG_SECCOMP
167	/*
168	 * Call seccomp_phase2 before running the other hooks so that
169	 * they can see any changes made by a seccomp tracer.
170	 */
171	if (phase1_result > 1 && seccomp_phase2(phase1_result)) {
172		/* seccomp failures shouldn't expose any additional code. */
173		return -1;
174	}
175#endif
176
177	if (unlikely(work & _TIF_SYSCALL_EMU))
178		ret = -1L;
179
180	if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
181	    tracehook_report_syscall_entry(regs))
182		ret = -1L;
183
184	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
185		trace_sys_enter(regs, regs->orig_ax);
186
187	do_audit_syscall_entry(regs, arch);
188
189	return ret ?: regs->orig_ax;
190}
191
192long syscall_trace_enter(struct pt_regs *regs)
193{
194	u32 arch = is_ia32_task() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
195	unsigned long phase1_result = syscall_trace_enter_phase1(regs, arch);
196
197	if (phase1_result == 0)
198		return regs->orig_ax;
199	else
200		return syscall_trace_enter_phase2(regs, arch, phase1_result);
201}
202
203#define EXIT_TO_USERMODE_LOOP_FLAGS				\
204	(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE |	\
205	 _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY)
206
207static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
208{
209	/*
210	 * In order to return to user mode, we need to have IRQs off with
211	 * none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY,
212	 * _TIF_UPROBE, or _TIF_NEED_RESCHED set.  Several of these flags
213	 * can be set at any time on preemptable kernels if we have IRQs on,
214	 * so we need to loop.  Disabling preemption wouldn't help: doing the
215	 * work to clear some of the flags can sleep.
216	 */
217	while (true) {
218		/* We have work to do. */
219		local_irq_enable();
220
221		if (cached_flags & _TIF_NEED_RESCHED)
222			schedule();
223
224		if (cached_flags & _TIF_UPROBE)
225			uprobe_notify_resume(regs);
226
 
 
 
227		/* deal with pending signal delivery */
228		if (cached_flags & _TIF_SIGPENDING)
229			do_signal(regs);
230
231		if (cached_flags & _TIF_NOTIFY_RESUME) {
232			clear_thread_flag(TIF_NOTIFY_RESUME);
233			tracehook_notify_resume(regs);
 
234		}
235
236		if (cached_flags & _TIF_USER_RETURN_NOTIFY)
237			fire_user_return_notifiers();
238
239		/* Disable IRQs and retry */
240		local_irq_disable();
241
242		cached_flags = READ_ONCE(pt_regs_to_thread_info(regs)->flags);
243
244		if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
245			break;
246
247	}
248}
249
250/* Called with IRQs disabled. */
251__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
252{
253	struct thread_info *ti = pt_regs_to_thread_info(regs);
254	u32 cached_flags;
255
256	if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled()))
257		local_irq_disable();
258
 
259	lockdep_sys_exit();
260
261	cached_flags = READ_ONCE(ti->flags);
262
263	if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
264		exit_to_usermode_loop(regs, cached_flags);
265
 
 
 
 
 
 
 
266#ifdef CONFIG_COMPAT
267	/*
268	 * Compat syscalls set TS_COMPAT.  Make sure we clear it before
269	 * returning to user mode.  We need to clear it *after* signal
270	 * handling, because syscall restart has a fixup for compat
271	 * syscalls.  The fixup is exercised by the ptrace_syscall_32
272	 * selftest.
 
 
 
 
273	 */
274	ti->status &= ~TS_COMPAT;
275#endif
276
277	user_enter();
 
 
278}
279
280#define SYSCALL_EXIT_WORK_FLAGS				\
281	(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT |	\
282	 _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
283
284static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
285{
286	bool step;
287
288	audit_syscall_exit(regs);
289
290	if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
291		trace_sys_exit(regs, regs->ax);
292
293	/*
294	 * If TIF_SYSCALL_EMU is set, we only get here because of
295	 * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
296	 * We already reported this syscall instruction in
297	 * syscall_trace_enter().
298	 */
299	step = unlikely(
300		(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
301		== _TIF_SINGLESTEP);
302	if (step || cached_flags & _TIF_SYSCALL_TRACE)
303		tracehook_report_syscall_exit(regs, step);
304}
305
306/*
307 * Called with IRQs on and fully valid regs.  Returns with IRQs off in a
308 * state such that we can immediately switch to user mode.
309 */
310__visible inline void syscall_return_slowpath(struct pt_regs *regs)
311{
312	struct thread_info *ti = pt_regs_to_thread_info(regs);
313	u32 cached_flags = READ_ONCE(ti->flags);
314
315	CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
316
317	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
318	    WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
319		local_irq_enable();
320
 
 
321	/*
322	 * First do one-time work.  If these work items are enabled, we
323	 * want to run them exactly once per syscall exit with IRQs on.
324	 */
325	if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
326		syscall_slow_exit_work(regs, cached_flags);
327
328	local_irq_disable();
329	prepare_exit_to_usermode(regs);
330}
331
332#ifdef CONFIG_X86_64
333__visible void do_syscall_64(struct pt_regs *regs)
334{
335	struct thread_info *ti = pt_regs_to_thread_info(regs);
336	unsigned long nr = regs->orig_ax;
337
338	enter_from_user_mode();
339	local_irq_enable();
340
341	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
342		nr = syscall_trace_enter(regs);
343
344	/*
345	 * NB: Native and x32 syscalls are dispatched from the same
346	 * table.  The only functional difference is the x32 bit in
347	 * regs->orig_ax, which changes the behavior of some syscalls.
348	 */
349	if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
350		regs->ax = sys_call_table[nr & __SYSCALL_MASK](
351			regs->di, regs->si, regs->dx,
352			regs->r10, regs->r8, regs->r9);
 
353	}
354
355	syscall_return_slowpath(regs);
356}
357#endif
358
359#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
360/*
361 * Does a 32-bit syscall.  Called with IRQs on in CONTEXT_KERNEL.  Does
362 * all entry and exit work and returns with IRQs off.  This function is
363 * extremely hot in workloads that use it, and it's usually called from
364 * do_fast_syscall_32, so forcibly inline it to improve performance.
365 */
366static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
367{
368	struct thread_info *ti = pt_regs_to_thread_info(regs);
369	unsigned int nr = (unsigned int)regs->orig_ax;
370
371#ifdef CONFIG_IA32_EMULATION
372	ti->status |= TS_COMPAT;
373#endif
374
375	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
376		/*
377		 * Subtlety here: if ptrace pokes something larger than
378		 * 2^32-1 into orig_ax, this truncates it.  This may or
379		 * may not be necessary, but it matches the old asm
380		 * behavior.
381		 */
382		nr = syscall_trace_enter(regs);
383	}
384
385	if (likely(nr < IA32_NR_syscalls)) {
 
 
 
 
386		/*
387		 * It's possible that a 32-bit syscall implementation
388		 * takes a 64-bit parameter but nonetheless assumes that
389		 * the high bits are zero.  Make sure we zero-extend all
390		 * of the args.
391		 */
392		regs->ax = ia32_sys_call_table[nr](
393			(unsigned int)regs->bx, (unsigned int)regs->cx,
394			(unsigned int)regs->dx, (unsigned int)regs->si,
395			(unsigned int)regs->di, (unsigned int)regs->bp);
 
396	}
397
398	syscall_return_slowpath(regs);
399}
400
401/* Handles int $0x80 */
402__visible void do_int80_syscall_32(struct pt_regs *regs)
403{
404	enter_from_user_mode();
405	local_irq_enable();
406	do_syscall_32_irqs_on(regs);
407}
408
409/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
410__visible long do_fast_syscall_32(struct pt_regs *regs)
411{
412	/*
413	 * Called using the internal vDSO SYSENTER/SYSCALL32 calling
414	 * convention.  Adjust regs so it looks like we entered using int80.
415	 */
416
417	unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
418		vdso_image_32.sym_int80_landing_pad;
419
420	/*
421	 * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
422	 * so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
423	 * Fix it up.
424	 */
425	regs->ip = landing_pad;
426
427	enter_from_user_mode();
428
429	local_irq_enable();
430
431	/* Fetch EBP from where the vDSO stashed it. */
432	if (
433#ifdef CONFIG_X86_64
434		/*
435		 * Micro-optimization: the pointer we're following is explicitly
436		 * 32 bits, so it can't be out of range.
437		 */
438		__get_user(*(u32 *)&regs->bp,
439			    (u32 __user __force *)(unsigned long)(u32)regs->sp)
440#else
441		get_user(*(u32 *)&regs->bp,
442			 (u32 __user __force *)(unsigned long)(u32)regs->sp)
443#endif
444		) {
445
446		/* User code screwed up. */
447		local_irq_disable();
448		regs->ax = -EFAULT;
449		prepare_exit_to_usermode(regs);
450		return 0;	/* Keep it simple: use IRET. */
451	}
452
453	/* Now this is just like a normal syscall. */
454	do_syscall_32_irqs_on(regs);
455
456#ifdef CONFIG_X86_64
457	/*
458	 * Opportunistic SYSRETL: if possible, try to return using SYSRETL.
459	 * SYSRETL is available on all 64-bit CPUs, so we don't need to
460	 * bother with SYSEXIT.
461	 *
462	 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
463	 * because the ECX fixup above will ensure that this is essentially
464	 * never the case.
465	 */
466	return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
467		regs->ip == landing_pad &&
468		(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
469#else
470	/*
471	 * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
472	 *
473	 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
474	 * because the ECX fixup above will ensure that this is essentially
475	 * never the case.
476	 *
477	 * We don't allow syscalls at all from VM86 mode, but we still
478	 * need to check VM, because we might be returning from sys_vm86.
479	 */
480	return static_cpu_has(X86_FEATURE_SEP) &&
481		regs->cs == __USER_CS && regs->ss == __USER_DS &&
482		regs->ip == landing_pad &&
483		(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
484#endif
485}
486#endif
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * common.c - C code for kernel entry and exit
  4 * Copyright (c) 2015 Andrew Lutomirski
 
  5 *
  6 * Based on asm and ptrace code by many authors.  The code here originated
  7 * in ptrace.c and signal.c.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/sched.h>
 12#include <linux/sched/task_stack.h>
 13#include <linux/mm.h>
 14#include <linux/smp.h>
 15#include <linux/errno.h>
 16#include <linux/ptrace.h>
 17#include <linux/tracehook.h>
 18#include <linux/audit.h>
 19#include <linux/seccomp.h>
 20#include <linux/signal.h>
 21#include <linux/export.h>
 22#include <linux/context_tracking.h>
 23#include <linux/user-return-notifier.h>
 24#include <linux/nospec.h>
 25#include <linux/uprobes.h>
 26#include <linux/livepatch.h>
 27#include <linux/syscalls.h>
 28#include <linux/uaccess.h>
 29
 30#include <asm/desc.h>
 31#include <asm/traps.h>
 32#include <asm/vdso.h>
 
 33#include <asm/cpufeature.h>
 34#include <asm/fpu/api.h>
 35#include <asm/nospec-branch.h>
 36
 37#define CREATE_TRACE_POINTS
 38#include <trace/events/syscalls.h>
 39
 
 
 
 
 
 
 
 40#ifdef CONFIG_CONTEXT_TRACKING
 41/* Called on entry from user mode with IRQs off. */
 42__visible inline void enter_from_user_mode(void)
 43{
 44	CT_WARN_ON(ct_state() != CONTEXT_USER);
 45	user_exit_irqoff();
 46}
 47#else
 48static inline void enter_from_user_mode(void) {}
 49#endif
 50
 51static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
 52{
 53#ifdef CONFIG_X86_64
 54	if (arch == AUDIT_ARCH_X86_64) {
 55		audit_syscall_entry(regs->orig_ax, regs->di,
 56				    regs->si, regs->dx, regs->r10);
 57	} else
 58#endif
 59	{
 60		audit_syscall_entry(regs->orig_ax, regs->bx,
 61				    regs->cx, regs->dx, regs->si);
 62	}
 63}
 64
 65/*
 66 * Returns the syscall nr to run (which should match regs->orig_ax) or -1
 67 * to skip the syscall.
 
 
 
 
 
 
 
 
 
 68 */
 69static long syscall_trace_enter(struct pt_regs *regs)
 70{
 71	u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
 72
 73	struct thread_info *ti = current_thread_info();
 74	unsigned long ret = 0;
 75	u32 work;
 76
 77	if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
 78		BUG_ON(regs != task_pt_regs(current));
 79
 80	work = READ_ONCE(ti->flags);
 81
 82	if (work & (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_EMU)) {
 83		ret = tracehook_report_syscall_entry(regs);
 84		if (ret || (work & _TIF_SYSCALL_EMU))
 85			return -1L;
 86	}
 87
 88#ifdef CONFIG_SECCOMP
 89	/*
 90	 * Do seccomp after ptrace, to catch any tracer changes.
 
 
 91	 */
 92	if (work & _TIF_SECCOMP) {
 93		struct seccomp_data sd;
 94
 95		sd.arch = arch;
 96		sd.nr = regs->orig_ax;
 97		sd.instruction_pointer = regs->ip;
 98#ifdef CONFIG_X86_64
 99		if (arch == AUDIT_ARCH_X86_64) {
100			sd.args[0] = regs->di;
101			sd.args[1] = regs->si;
102			sd.args[2] = regs->dx;
103			sd.args[3] = regs->r10;
104			sd.args[4] = regs->r8;
105			sd.args[5] = regs->r9;
106		} else
107#endif
108		{
109			sd.args[0] = regs->bx;
110			sd.args[1] = regs->cx;
111			sd.args[2] = regs->dx;
112			sd.args[3] = regs->si;
113			sd.args[4] = regs->di;
114			sd.args[5] = regs->bp;
115		}
116
117		ret = __secure_computing(&sd);
118		if (ret == -1)
119			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120	}
121#endif
122
 
 
 
 
 
 
 
123	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
124		trace_sys_enter(regs, regs->orig_ax);
125
126	do_audit_syscall_entry(regs, arch);
127
128	return ret ?: regs->orig_ax;
129}
130
 
 
 
 
 
 
 
 
 
 
 
131#define EXIT_TO_USERMODE_LOOP_FLAGS				\
132	(_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE |	\
133	 _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY | _TIF_PATCH_PENDING)
134
135static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
136{
137	/*
138	 * In order to return to user mode, we need to have IRQs off with
139	 * none of EXIT_TO_USERMODE_LOOP_FLAGS set.  Several of these flags
140	 * can be set at any time on preemptible kernels if we have IRQs on,
 
141	 * so we need to loop.  Disabling preemption wouldn't help: doing the
142	 * work to clear some of the flags can sleep.
143	 */
144	while (true) {
145		/* We have work to do. */
146		local_irq_enable();
147
148		if (cached_flags & _TIF_NEED_RESCHED)
149			schedule();
150
151		if (cached_flags & _TIF_UPROBE)
152			uprobe_notify_resume(regs);
153
154		if (cached_flags & _TIF_PATCH_PENDING)
155			klp_update_patch_state(current);
156
157		/* deal with pending signal delivery */
158		if (cached_flags & _TIF_SIGPENDING)
159			do_signal(regs);
160
161		if (cached_flags & _TIF_NOTIFY_RESUME) {
162			clear_thread_flag(TIF_NOTIFY_RESUME);
163			tracehook_notify_resume(regs);
164			rseq_handle_notify_resume(NULL, regs);
165		}
166
167		if (cached_flags & _TIF_USER_RETURN_NOTIFY)
168			fire_user_return_notifiers();
169
170		/* Disable IRQs and retry */
171		local_irq_disable();
172
173		cached_flags = READ_ONCE(current_thread_info()->flags);
174
175		if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
176			break;
 
177	}
178}
179
180/* Called with IRQs disabled. */
181__visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
182{
183	struct thread_info *ti = current_thread_info();
184	u32 cached_flags;
185
186	addr_limit_user_check();
 
187
188	lockdep_assert_irqs_disabled();
189	lockdep_sys_exit();
190
191	cached_flags = READ_ONCE(ti->flags);
192
193	if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
194		exit_to_usermode_loop(regs, cached_flags);
195
196	/* Reload ti->flags; we may have rescheduled above. */
197	cached_flags = READ_ONCE(ti->flags);
198
199	fpregs_assert_state_consistent();
200	if (unlikely(cached_flags & _TIF_NEED_FPU_LOAD))
201		switch_fpu_return();
202
203#ifdef CONFIG_COMPAT
204	/*
205	 * Compat syscalls set TS_COMPAT.  Make sure we clear it before
206	 * returning to user mode.  We need to clear it *after* signal
207	 * handling, because syscall restart has a fixup for compat
208	 * syscalls.  The fixup is exercised by the ptrace_syscall_32
209	 * selftest.
210	 *
211	 * We also need to clear TS_REGS_POKED_I386: the 32-bit tracer
212	 * special case only applies after poking regs and before the
213	 * very next return to user mode.
214	 */
215	ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);
216#endif
217
218	user_enter_irqoff();
219
220	mds_user_clear_cpu_buffers();
221}
222
223#define SYSCALL_EXIT_WORK_FLAGS				\
224	(_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT |	\
225	 _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
226
227static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
228{
229	bool step;
230
231	audit_syscall_exit(regs);
232
233	if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
234		trace_sys_exit(regs, regs->ax);
235
236	/*
237	 * If TIF_SYSCALL_EMU is set, we only get here because of
238	 * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
239	 * We already reported this syscall instruction in
240	 * syscall_trace_enter().
241	 */
242	step = unlikely(
243		(cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
244		== _TIF_SINGLESTEP);
245	if (step || cached_flags & _TIF_SYSCALL_TRACE)
246		tracehook_report_syscall_exit(regs, step);
247}
248
249/*
250 * Called with IRQs on and fully valid regs.  Returns with IRQs off in a
251 * state such that we can immediately switch to user mode.
252 */
253__visible inline void syscall_return_slowpath(struct pt_regs *regs)
254{
255	struct thread_info *ti = current_thread_info();
256	u32 cached_flags = READ_ONCE(ti->flags);
257
258	CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
259
260	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
261	    WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
262		local_irq_enable();
263
264	rseq_syscall(regs);
265
266	/*
267	 * First do one-time work.  If these work items are enabled, we
268	 * want to run them exactly once per syscall exit with IRQs on.
269	 */
270	if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
271		syscall_slow_exit_work(regs, cached_flags);
272
273	local_irq_disable();
274	prepare_exit_to_usermode(regs);
275}
276
277#ifdef CONFIG_X86_64
278__visible void do_syscall_64(unsigned long nr, struct pt_regs *regs)
279{
280	struct thread_info *ti;
 
281
282	enter_from_user_mode();
283	local_irq_enable();
284	ti = current_thread_info();
285	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
286		nr = syscall_trace_enter(regs);
287
288	if (likely(nr < NR_syscalls)) {
289		nr = array_index_nospec(nr, NR_syscalls);
290		regs->ax = sys_call_table[nr](regs);
291#ifdef CONFIG_X86_X32_ABI
292	} else if (likely((nr & __X32_SYSCALL_BIT) &&
293			  (nr & ~__X32_SYSCALL_BIT) < X32_NR_syscalls)) {
294		nr = array_index_nospec(nr & ~__X32_SYSCALL_BIT,
295					X32_NR_syscalls);
296		regs->ax = x32_sys_call_table[nr](regs);
297#endif
298	}
299
300	syscall_return_slowpath(regs);
301}
302#endif
303
304#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
305/*
306 * Does a 32-bit syscall.  Called with IRQs on in CONTEXT_KERNEL.  Does
307 * all entry and exit work and returns with IRQs off.  This function is
308 * extremely hot in workloads that use it, and it's usually called from
309 * do_fast_syscall_32, so forcibly inline it to improve performance.
310 */
311static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
312{
313	struct thread_info *ti = current_thread_info();
314	unsigned int nr = (unsigned int)regs->orig_ax;
315
316#ifdef CONFIG_IA32_EMULATION
317	ti->status |= TS_COMPAT;
318#endif
319
320	if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
321		/*
322		 * Subtlety here: if ptrace pokes something larger than
323		 * 2^32-1 into orig_ax, this truncates it.  This may or
324		 * may not be necessary, but it matches the old asm
325		 * behavior.
326		 */
327		nr = syscall_trace_enter(regs);
328	}
329
330	if (likely(nr < IA32_NR_syscalls)) {
331		nr = array_index_nospec(nr, IA32_NR_syscalls);
332#ifdef CONFIG_IA32_EMULATION
333		regs->ax = ia32_sys_call_table[nr](regs);
334#else
335		/*
336		 * It's possible that a 32-bit syscall implementation
337		 * takes a 64-bit parameter but nonetheless assumes that
338		 * the high bits are zero.  Make sure we zero-extend all
339		 * of the args.
340		 */
341		regs->ax = ia32_sys_call_table[nr](
342			(unsigned int)regs->bx, (unsigned int)regs->cx,
343			(unsigned int)regs->dx, (unsigned int)regs->si,
344			(unsigned int)regs->di, (unsigned int)regs->bp);
345#endif /* CONFIG_IA32_EMULATION */
346	}
347
348	syscall_return_slowpath(regs);
349}
350
351/* Handles int $0x80 */
352__visible void do_int80_syscall_32(struct pt_regs *regs)
353{
354	enter_from_user_mode();
355	local_irq_enable();
356	do_syscall_32_irqs_on(regs);
357}
358
359/* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
360__visible long do_fast_syscall_32(struct pt_regs *regs)
361{
362	/*
363	 * Called using the internal vDSO SYSENTER/SYSCALL32 calling
364	 * convention.  Adjust regs so it looks like we entered using int80.
365	 */
366
367	unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
368		vdso_image_32.sym_int80_landing_pad;
369
370	/*
371	 * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
372	 * so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
373	 * Fix it up.
374	 */
375	regs->ip = landing_pad;
376
377	enter_from_user_mode();
378
379	local_irq_enable();
380
381	/* Fetch EBP from where the vDSO stashed it. */
382	if (
383#ifdef CONFIG_X86_64
384		/*
385		 * Micro-optimization: the pointer we're following is explicitly
386		 * 32 bits, so it can't be out of range.
387		 */
388		__get_user(*(u32 *)&regs->bp,
389			    (u32 __user __force *)(unsigned long)(u32)regs->sp)
390#else
391		get_user(*(u32 *)&regs->bp,
392			 (u32 __user __force *)(unsigned long)(u32)regs->sp)
393#endif
394		) {
395
396		/* User code screwed up. */
397		local_irq_disable();
398		regs->ax = -EFAULT;
399		prepare_exit_to_usermode(regs);
400		return 0;	/* Keep it simple: use IRET. */
401	}
402
403	/* Now this is just like a normal syscall. */
404	do_syscall_32_irqs_on(regs);
405
406#ifdef CONFIG_X86_64
407	/*
408	 * Opportunistic SYSRETL: if possible, try to return using SYSRETL.
409	 * SYSRETL is available on all 64-bit CPUs, so we don't need to
410	 * bother with SYSEXIT.
411	 *
412	 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
413	 * because the ECX fixup above will ensure that this is essentially
414	 * never the case.
415	 */
416	return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
417		regs->ip == landing_pad &&
418		(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
419#else
420	/*
421	 * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
422	 *
423	 * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
424	 * because the ECX fixup above will ensure that this is essentially
425	 * never the case.
426	 *
427	 * We don't allow syscalls at all from VM86 mode, but we still
428	 * need to check VM, because we might be returning from sys_vm86.
429	 */
430	return static_cpu_has(X86_FEATURE_SEP) &&
431		regs->cs == __USER_CS && regs->ss == __USER_DS &&
432		regs->ip == landing_pad &&
433		(regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
434#endif
435}
436#endif