Loading...
1/*
2 * Performance events support for SH-4A performance counters
3 *
4 * Copyright (C) 2009, 2010 Paul Mundt
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 */
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/io.h>
13#include <linux/irq.h>
14#include <linux/perf_event.h>
15#include <asm/processor.h>
16
17#define PPC_CCBR(idx) (0xff200800 + (sizeof(u32) * idx))
18#define PPC_PMCTR(idx) (0xfc100000 + (sizeof(u32) * idx))
19
20#define CCBR_CIT_MASK (0x7ff << 6)
21#define CCBR_DUC (1 << 3)
22#define CCBR_CMDS (1 << 1)
23#define CCBR_PPCE (1 << 0)
24
25#ifdef CONFIG_CPU_SHX3
26/*
27 * The PMCAT location for SH-X3 CPUs was quietly moved, while the CCBR
28 * and PMCTR locations remains tentatively constant. This change remains
29 * wholly undocumented, and was simply found through trial and error.
30 *
31 * Early cuts of SH-X3 still appear to use the SH-X/SH-X2 locations, and
32 * it's unclear when this ceased to be the case. For now we always use
33 * the new location (if future parts keep up with this trend then
34 * scanning for them at runtime also remains a viable option.)
35 *
36 * The gap in the register space also suggests that there are other
37 * undocumented counters, so this will need to be revisited at a later
38 * point in time.
39 */
40#define PPC_PMCAT 0xfc100240
41#else
42#define PPC_PMCAT 0xfc100080
43#endif
44
45#define PMCAT_OVF3 (1 << 27)
46#define PMCAT_CNN3 (1 << 26)
47#define PMCAT_CLR3 (1 << 25)
48#define PMCAT_OVF2 (1 << 19)
49#define PMCAT_CLR2 (1 << 17)
50#define PMCAT_OVF1 (1 << 11)
51#define PMCAT_CNN1 (1 << 10)
52#define PMCAT_CLR1 (1 << 9)
53#define PMCAT_OVF0 (1 << 3)
54#define PMCAT_CLR0 (1 << 1)
55
56static struct sh_pmu sh4a_pmu;
57
58/*
59 * Supported raw event codes:
60 *
61 * Event Code Description
62 * ---------- -----------
63 *
64 * 0x0000 number of elapsed cycles
65 * 0x0200 number of elapsed cycles in privileged mode
66 * 0x0280 number of elapsed cycles while SR.BL is asserted
67 * 0x0202 instruction execution
68 * 0x0203 instruction execution in parallel
69 * 0x0204 number of unconditional branches
70 * 0x0208 number of exceptions
71 * 0x0209 number of interrupts
72 * 0x0220 UTLB miss caused by instruction fetch
73 * 0x0222 UTLB miss caused by operand access
74 * 0x02a0 number of ITLB misses
75 * 0x0028 number of accesses to instruction memories
76 * 0x0029 number of accesses to instruction cache
77 * 0x002a instruction cache miss
78 * 0x022e number of access to instruction X/Y memory
79 * 0x0030 number of reads to operand memories
80 * 0x0038 number of writes to operand memories
81 * 0x0031 number of operand cache read accesses
82 * 0x0039 number of operand cache write accesses
83 * 0x0032 operand cache read miss
84 * 0x003a operand cache write miss
85 * 0x0236 number of reads to operand X/Y memory
86 * 0x023e number of writes to operand X/Y memory
87 * 0x0237 number of reads to operand U memory
88 * 0x023f number of writes to operand U memory
89 * 0x0337 number of U memory read buffer misses
90 * 0x02b4 number of wait cycles due to operand read access
91 * 0x02bc number of wait cycles due to operand write access
92 * 0x0033 number of wait cycles due to operand cache read miss
93 * 0x003b number of wait cycles due to operand cache write miss
94 */
95
96/*
97 * Special reserved bits used by hardware emulators, read values will
98 * vary, but writes must always be 0.
99 */
100#define PMCAT_EMU_CLR_MASK ((1 << 24) | (1 << 16) | (1 << 8) | (1 << 0))
101
102static const int sh4a_general_events[] = {
103 [PERF_COUNT_HW_CPU_CYCLES] = 0x0000,
104 [PERF_COUNT_HW_INSTRUCTIONS] = 0x0202,
105 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0029, /* I-cache */
106 [PERF_COUNT_HW_CACHE_MISSES] = 0x002a, /* I-cache */
107 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x0204,
108 [PERF_COUNT_HW_BRANCH_MISSES] = -1,
109 [PERF_COUNT_HW_BUS_CYCLES] = -1,
110};
111
112#define C(x) PERF_COUNT_HW_CACHE_##x
113
114static const int sh4a_cache_events
115 [PERF_COUNT_HW_CACHE_MAX]
116 [PERF_COUNT_HW_CACHE_OP_MAX]
117 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
118{
119 [ C(L1D) ] = {
120 [ C(OP_READ) ] = {
121 [ C(RESULT_ACCESS) ] = 0x0031,
122 [ C(RESULT_MISS) ] = 0x0032,
123 },
124 [ C(OP_WRITE) ] = {
125 [ C(RESULT_ACCESS) ] = 0x0039,
126 [ C(RESULT_MISS) ] = 0x003a,
127 },
128 [ C(OP_PREFETCH) ] = {
129 [ C(RESULT_ACCESS) ] = 0,
130 [ C(RESULT_MISS) ] = 0,
131 },
132 },
133
134 [ C(L1I) ] = {
135 [ C(OP_READ) ] = {
136 [ C(RESULT_ACCESS) ] = 0x0029,
137 [ C(RESULT_MISS) ] = 0x002a,
138 },
139 [ C(OP_WRITE) ] = {
140 [ C(RESULT_ACCESS) ] = -1,
141 [ C(RESULT_MISS) ] = -1,
142 },
143 [ C(OP_PREFETCH) ] = {
144 [ C(RESULT_ACCESS) ] = 0,
145 [ C(RESULT_MISS) ] = 0,
146 },
147 },
148
149 [ C(LL) ] = {
150 [ C(OP_READ) ] = {
151 [ C(RESULT_ACCESS) ] = 0x0030,
152 [ C(RESULT_MISS) ] = 0,
153 },
154 [ C(OP_WRITE) ] = {
155 [ C(RESULT_ACCESS) ] = 0x0038,
156 [ C(RESULT_MISS) ] = 0,
157 },
158 [ C(OP_PREFETCH) ] = {
159 [ C(RESULT_ACCESS) ] = 0,
160 [ C(RESULT_MISS) ] = 0,
161 },
162 },
163
164 [ C(DTLB) ] = {
165 [ C(OP_READ) ] = {
166 [ C(RESULT_ACCESS) ] = 0x0222,
167 [ C(RESULT_MISS) ] = 0x0220,
168 },
169 [ C(OP_WRITE) ] = {
170 [ C(RESULT_ACCESS) ] = 0,
171 [ C(RESULT_MISS) ] = 0,
172 },
173 [ C(OP_PREFETCH) ] = {
174 [ C(RESULT_ACCESS) ] = 0,
175 [ C(RESULT_MISS) ] = 0,
176 },
177 },
178
179 [ C(ITLB) ] = {
180 [ C(OP_READ) ] = {
181 [ C(RESULT_ACCESS) ] = 0,
182 [ C(RESULT_MISS) ] = 0x02a0,
183 },
184 [ C(OP_WRITE) ] = {
185 [ C(RESULT_ACCESS) ] = -1,
186 [ C(RESULT_MISS) ] = -1,
187 },
188 [ C(OP_PREFETCH) ] = {
189 [ C(RESULT_ACCESS) ] = -1,
190 [ C(RESULT_MISS) ] = -1,
191 },
192 },
193
194 [ C(BPU) ] = {
195 [ C(OP_READ) ] = {
196 [ C(RESULT_ACCESS) ] = -1,
197 [ C(RESULT_MISS) ] = -1,
198 },
199 [ C(OP_WRITE) ] = {
200 [ C(RESULT_ACCESS) ] = -1,
201 [ C(RESULT_MISS) ] = -1,
202 },
203 [ C(OP_PREFETCH) ] = {
204 [ C(RESULT_ACCESS) ] = -1,
205 [ C(RESULT_MISS) ] = -1,
206 },
207 },
208
209 [ C(NODE) ] = {
210 [ C(OP_READ) ] = {
211 [ C(RESULT_ACCESS) ] = -1,
212 [ C(RESULT_MISS) ] = -1,
213 },
214 [ C(OP_WRITE) ] = {
215 [ C(RESULT_ACCESS) ] = -1,
216 [ C(RESULT_MISS) ] = -1,
217 },
218 [ C(OP_PREFETCH) ] = {
219 [ C(RESULT_ACCESS) ] = -1,
220 [ C(RESULT_MISS) ] = -1,
221 },
222 },
223};
224
225static int sh4a_event_map(int event)
226{
227 return sh4a_general_events[event];
228}
229
230static u64 sh4a_pmu_read(int idx)
231{
232 return __raw_readl(PPC_PMCTR(idx));
233}
234
235static void sh4a_pmu_disable(struct hw_perf_event *hwc, int idx)
236{
237 unsigned int tmp;
238
239 tmp = __raw_readl(PPC_CCBR(idx));
240 tmp &= ~(CCBR_CIT_MASK | CCBR_DUC);
241 __raw_writel(tmp, PPC_CCBR(idx));
242}
243
244static void sh4a_pmu_enable(struct hw_perf_event *hwc, int idx)
245{
246 unsigned int tmp;
247
248 tmp = __raw_readl(PPC_PMCAT);
249 tmp &= ~PMCAT_EMU_CLR_MASK;
250 tmp |= idx ? PMCAT_CLR1 : PMCAT_CLR0;
251 __raw_writel(tmp, PPC_PMCAT);
252
253 tmp = __raw_readl(PPC_CCBR(idx));
254 tmp |= (hwc->config << 6) | CCBR_CMDS | CCBR_PPCE;
255 __raw_writel(tmp, PPC_CCBR(idx));
256
257 __raw_writel(__raw_readl(PPC_CCBR(idx)) | CCBR_DUC, PPC_CCBR(idx));
258}
259
260static void sh4a_pmu_disable_all(void)
261{
262 int i;
263
264 for (i = 0; i < sh4a_pmu.num_events; i++)
265 __raw_writel(__raw_readl(PPC_CCBR(i)) & ~CCBR_DUC, PPC_CCBR(i));
266}
267
268static void sh4a_pmu_enable_all(void)
269{
270 int i;
271
272 for (i = 0; i < sh4a_pmu.num_events; i++)
273 __raw_writel(__raw_readl(PPC_CCBR(i)) | CCBR_DUC, PPC_CCBR(i));
274}
275
276static struct sh_pmu sh4a_pmu = {
277 .name = "sh4a",
278 .num_events = 2,
279 .event_map = sh4a_event_map,
280 .max_events = ARRAY_SIZE(sh4a_general_events),
281 .raw_event_mask = 0x3ff,
282 .cache_events = &sh4a_cache_events,
283 .read = sh4a_pmu_read,
284 .disable = sh4a_pmu_disable,
285 .enable = sh4a_pmu_enable,
286 .disable_all = sh4a_pmu_disable_all,
287 .enable_all = sh4a_pmu_enable_all,
288};
289
290static int __init sh4a_pmu_init(void)
291{
292 /*
293 * Make sure this CPU actually has perf counters.
294 */
295 if (!(boot_cpu_data.flags & CPU_HAS_PERF_COUNTER)) {
296 pr_notice("HW perf events unsupported, software events only.\n");
297 return -ENODEV;
298 }
299
300 return register_sh_pmu(&sh4a_pmu);
301}
302early_initcall(sh4a_pmu_init);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Performance events support for SH-4A performance counters
4 *
5 * Copyright (C) 2009, 2010 Paul Mundt
6 */
7#include <linux/kernel.h>
8#include <linux/init.h>
9#include <linux/io.h>
10#include <linux/irq.h>
11#include <linux/perf_event.h>
12#include <asm/processor.h>
13
14#define PPC_CCBR(idx) (0xff200800 + (sizeof(u32) * idx))
15#define PPC_PMCTR(idx) (0xfc100000 + (sizeof(u32) * idx))
16
17#define CCBR_CIT_MASK (0x7ff << 6)
18#define CCBR_DUC (1 << 3)
19#define CCBR_CMDS (1 << 1)
20#define CCBR_PPCE (1 << 0)
21
22#ifdef CONFIG_CPU_SHX3
23/*
24 * The PMCAT location for SH-X3 CPUs was quietly moved, while the CCBR
25 * and PMCTR locations remains tentatively constant. This change remains
26 * wholly undocumented, and was simply found through trial and error.
27 *
28 * Early cuts of SH-X3 still appear to use the SH-X/SH-X2 locations, and
29 * it's unclear when this ceased to be the case. For now we always use
30 * the new location (if future parts keep up with this trend then
31 * scanning for them at runtime also remains a viable option.)
32 *
33 * The gap in the register space also suggests that there are other
34 * undocumented counters, so this will need to be revisited at a later
35 * point in time.
36 */
37#define PPC_PMCAT 0xfc100240
38#else
39#define PPC_PMCAT 0xfc100080
40#endif
41
42#define PMCAT_OVF3 (1 << 27)
43#define PMCAT_CNN3 (1 << 26)
44#define PMCAT_CLR3 (1 << 25)
45#define PMCAT_OVF2 (1 << 19)
46#define PMCAT_CLR2 (1 << 17)
47#define PMCAT_OVF1 (1 << 11)
48#define PMCAT_CNN1 (1 << 10)
49#define PMCAT_CLR1 (1 << 9)
50#define PMCAT_OVF0 (1 << 3)
51#define PMCAT_CLR0 (1 << 1)
52
53static struct sh_pmu sh4a_pmu;
54
55/*
56 * Supported raw event codes:
57 *
58 * Event Code Description
59 * ---------- -----------
60 *
61 * 0x0000 number of elapsed cycles
62 * 0x0200 number of elapsed cycles in privileged mode
63 * 0x0280 number of elapsed cycles while SR.BL is asserted
64 * 0x0202 instruction execution
65 * 0x0203 instruction execution in parallel
66 * 0x0204 number of unconditional branches
67 * 0x0208 number of exceptions
68 * 0x0209 number of interrupts
69 * 0x0220 UTLB miss caused by instruction fetch
70 * 0x0222 UTLB miss caused by operand access
71 * 0x02a0 number of ITLB misses
72 * 0x0028 number of accesses to instruction memories
73 * 0x0029 number of accesses to instruction cache
74 * 0x002a instruction cache miss
75 * 0x022e number of access to instruction X/Y memory
76 * 0x0030 number of reads to operand memories
77 * 0x0038 number of writes to operand memories
78 * 0x0031 number of operand cache read accesses
79 * 0x0039 number of operand cache write accesses
80 * 0x0032 operand cache read miss
81 * 0x003a operand cache write miss
82 * 0x0236 number of reads to operand X/Y memory
83 * 0x023e number of writes to operand X/Y memory
84 * 0x0237 number of reads to operand U memory
85 * 0x023f number of writes to operand U memory
86 * 0x0337 number of U memory read buffer misses
87 * 0x02b4 number of wait cycles due to operand read access
88 * 0x02bc number of wait cycles due to operand write access
89 * 0x0033 number of wait cycles due to operand cache read miss
90 * 0x003b number of wait cycles due to operand cache write miss
91 */
92
93/*
94 * Special reserved bits used by hardware emulators, read values will
95 * vary, but writes must always be 0.
96 */
97#define PMCAT_EMU_CLR_MASK ((1 << 24) | (1 << 16) | (1 << 8) | (1 << 0))
98
99static const int sh4a_general_events[] = {
100 [PERF_COUNT_HW_CPU_CYCLES] = 0x0000,
101 [PERF_COUNT_HW_INSTRUCTIONS] = 0x0202,
102 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0029, /* I-cache */
103 [PERF_COUNT_HW_CACHE_MISSES] = 0x002a, /* I-cache */
104 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x0204,
105 [PERF_COUNT_HW_BRANCH_MISSES] = -1,
106 [PERF_COUNT_HW_BUS_CYCLES] = -1,
107};
108
109#define C(x) PERF_COUNT_HW_CACHE_##x
110
111static const int sh4a_cache_events
112 [PERF_COUNT_HW_CACHE_MAX]
113 [PERF_COUNT_HW_CACHE_OP_MAX]
114 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
115{
116 [ C(L1D) ] = {
117 [ C(OP_READ) ] = {
118 [ C(RESULT_ACCESS) ] = 0x0031,
119 [ C(RESULT_MISS) ] = 0x0032,
120 },
121 [ C(OP_WRITE) ] = {
122 [ C(RESULT_ACCESS) ] = 0x0039,
123 [ C(RESULT_MISS) ] = 0x003a,
124 },
125 [ C(OP_PREFETCH) ] = {
126 [ C(RESULT_ACCESS) ] = 0,
127 [ C(RESULT_MISS) ] = 0,
128 },
129 },
130
131 [ C(L1I) ] = {
132 [ C(OP_READ) ] = {
133 [ C(RESULT_ACCESS) ] = 0x0029,
134 [ C(RESULT_MISS) ] = 0x002a,
135 },
136 [ C(OP_WRITE) ] = {
137 [ C(RESULT_ACCESS) ] = -1,
138 [ C(RESULT_MISS) ] = -1,
139 },
140 [ C(OP_PREFETCH) ] = {
141 [ C(RESULT_ACCESS) ] = 0,
142 [ C(RESULT_MISS) ] = 0,
143 },
144 },
145
146 [ C(LL) ] = {
147 [ C(OP_READ) ] = {
148 [ C(RESULT_ACCESS) ] = 0x0030,
149 [ C(RESULT_MISS) ] = 0,
150 },
151 [ C(OP_WRITE) ] = {
152 [ C(RESULT_ACCESS) ] = 0x0038,
153 [ C(RESULT_MISS) ] = 0,
154 },
155 [ C(OP_PREFETCH) ] = {
156 [ C(RESULT_ACCESS) ] = 0,
157 [ C(RESULT_MISS) ] = 0,
158 },
159 },
160
161 [ C(DTLB) ] = {
162 [ C(OP_READ) ] = {
163 [ C(RESULT_ACCESS) ] = 0x0222,
164 [ C(RESULT_MISS) ] = 0x0220,
165 },
166 [ C(OP_WRITE) ] = {
167 [ C(RESULT_ACCESS) ] = 0,
168 [ C(RESULT_MISS) ] = 0,
169 },
170 [ C(OP_PREFETCH) ] = {
171 [ C(RESULT_ACCESS) ] = 0,
172 [ C(RESULT_MISS) ] = 0,
173 },
174 },
175
176 [ C(ITLB) ] = {
177 [ C(OP_READ) ] = {
178 [ C(RESULT_ACCESS) ] = 0,
179 [ C(RESULT_MISS) ] = 0x02a0,
180 },
181 [ C(OP_WRITE) ] = {
182 [ C(RESULT_ACCESS) ] = -1,
183 [ C(RESULT_MISS) ] = -1,
184 },
185 [ C(OP_PREFETCH) ] = {
186 [ C(RESULT_ACCESS) ] = -1,
187 [ C(RESULT_MISS) ] = -1,
188 },
189 },
190
191 [ C(BPU) ] = {
192 [ C(OP_READ) ] = {
193 [ C(RESULT_ACCESS) ] = -1,
194 [ C(RESULT_MISS) ] = -1,
195 },
196 [ C(OP_WRITE) ] = {
197 [ C(RESULT_ACCESS) ] = -1,
198 [ C(RESULT_MISS) ] = -1,
199 },
200 [ C(OP_PREFETCH) ] = {
201 [ C(RESULT_ACCESS) ] = -1,
202 [ C(RESULT_MISS) ] = -1,
203 },
204 },
205
206 [ C(NODE) ] = {
207 [ C(OP_READ) ] = {
208 [ C(RESULT_ACCESS) ] = -1,
209 [ C(RESULT_MISS) ] = -1,
210 },
211 [ C(OP_WRITE) ] = {
212 [ C(RESULT_ACCESS) ] = -1,
213 [ C(RESULT_MISS) ] = -1,
214 },
215 [ C(OP_PREFETCH) ] = {
216 [ C(RESULT_ACCESS) ] = -1,
217 [ C(RESULT_MISS) ] = -1,
218 },
219 },
220};
221
222static int sh4a_event_map(int event)
223{
224 return sh4a_general_events[event];
225}
226
227static u64 sh4a_pmu_read(int idx)
228{
229 return __raw_readl(PPC_PMCTR(idx));
230}
231
232static void sh4a_pmu_disable(struct hw_perf_event *hwc, int idx)
233{
234 unsigned int tmp;
235
236 tmp = __raw_readl(PPC_CCBR(idx));
237 tmp &= ~(CCBR_CIT_MASK | CCBR_DUC);
238 __raw_writel(tmp, PPC_CCBR(idx));
239}
240
241static void sh4a_pmu_enable(struct hw_perf_event *hwc, int idx)
242{
243 unsigned int tmp;
244
245 tmp = __raw_readl(PPC_PMCAT);
246 tmp &= ~PMCAT_EMU_CLR_MASK;
247 tmp |= idx ? PMCAT_CLR1 : PMCAT_CLR0;
248 __raw_writel(tmp, PPC_PMCAT);
249
250 tmp = __raw_readl(PPC_CCBR(idx));
251 tmp |= (hwc->config << 6) | CCBR_CMDS | CCBR_PPCE;
252 __raw_writel(tmp, PPC_CCBR(idx));
253
254 __raw_writel(__raw_readl(PPC_CCBR(idx)) | CCBR_DUC, PPC_CCBR(idx));
255}
256
257static void sh4a_pmu_disable_all(void)
258{
259 int i;
260
261 for (i = 0; i < sh4a_pmu.num_events; i++)
262 __raw_writel(__raw_readl(PPC_CCBR(i)) & ~CCBR_DUC, PPC_CCBR(i));
263}
264
265static void sh4a_pmu_enable_all(void)
266{
267 int i;
268
269 for (i = 0; i < sh4a_pmu.num_events; i++)
270 __raw_writel(__raw_readl(PPC_CCBR(i)) | CCBR_DUC, PPC_CCBR(i));
271}
272
273static struct sh_pmu sh4a_pmu = {
274 .name = "sh4a",
275 .num_events = 2,
276 .event_map = sh4a_event_map,
277 .max_events = ARRAY_SIZE(sh4a_general_events),
278 .raw_event_mask = 0x3ff,
279 .cache_events = &sh4a_cache_events,
280 .read = sh4a_pmu_read,
281 .disable = sh4a_pmu_disable,
282 .enable = sh4a_pmu_enable,
283 .disable_all = sh4a_pmu_disable_all,
284 .enable_all = sh4a_pmu_enable_all,
285};
286
287static int __init sh4a_pmu_init(void)
288{
289 /*
290 * Make sure this CPU actually has perf counters.
291 */
292 if (!(boot_cpu_data.flags & CPU_HAS_PERF_COUNTER)) {
293 pr_notice("HW perf events unsupported, software events only.\n");
294 return -ENODEV;
295 }
296
297 return register_sh_pmu(&sh4a_pmu);
298}
299early_initcall(sh4a_pmu_init);