Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (C) 2014-2016 Linaro Ltd. <ard.biesheuvel@linaro.org>
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 */
  8
  9#include <linux/elf.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/sort.h>
 13
 14struct plt_entry {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15	/*
 16	 * A program that conforms to the AArch64 Procedure Call Standard
 17	 * (AAPCS64) must assume that a veneer that alters IP0 (x16) and/or
 18	 * IP1 (x17) may be inserted at any branch instruction that is
 19	 * exposed to a relocation that supports long branches. Since that
 20	 * is exactly what we are dealing with here, we are free to use x16
 21	 * as a scratch register in the PLT veneers.
 22	 */
 23	__le32	mov0;	/* movn	x16, #0x....			*/
 24	__le32	mov1;	/* movk	x16, #0x...., lsl #16		*/
 25	__le32	mov2;	/* movk	x16, #0x...., lsl #32		*/
 26	__le32	br;	/* br	x16				*/
 27};
 
 
 
 
 
 
 28
 29u64 module_emit_plt_entry(struct module *mod, const Elf64_Rela *rela,
 
 30			  Elf64_Sym *sym)
 31{
 32	struct plt_entry *plt = (struct plt_entry *)mod->arch.plt->sh_addr;
 33	int i = mod->arch.plt_num_entries;
 
 
 
 34	u64 val = sym->st_value + rela->r_addend;
 35
 36	/*
 37	 * We only emit PLT entries against undefined (SHN_UNDEF) symbols,
 38	 * which are listed in the ELF symtab section, but without a type
 39	 * or a size.
 40	 * So, similar to how the module loader uses the Elf64_Sym::st_value
 41	 * field to store the resolved addresses of undefined symbols, let's
 42	 * borrow the Elf64_Sym::st_size field (whose value is never used by
 43	 * the module loader, even for symbols that are defined) to record
 44	 * the address of a symbol's associated PLT entry as we emit it for a
 45	 * zero addend relocation (which is the only kind we have to deal with
 46	 * in practice). This allows us to find duplicates without having to
 47	 * go through the table every time.
 48	 */
 49	if (rela->r_addend == 0 && sym->st_size != 0) {
 50		BUG_ON(sym->st_size < (u64)plt || sym->st_size >= (u64)&plt[i]);
 51		return sym->st_size;
 52	}
 53
 54	mod->arch.plt_num_entries++;
 55	BUG_ON(mod->arch.plt_num_entries > mod->arch.plt_max_entries);
 56
 57	/*
 58	 * MOVK/MOVN/MOVZ opcode:
 59	 * +--------+------------+--------+-----------+-------------+---------+
 60	 * | sf[31] | opc[30:29] | 100101 | hw[22:21] | imm16[20:5] | Rd[4:0] |
 61	 * +--------+------------+--------+-----------+-------------+---------+
 62	 *
 63	 * Rd     := 0x10 (x16)
 64	 * hw     := 0b00 (no shift), 0b01 (lsl #16), 0b10 (lsl #32)
 65	 * opc    := 0b11 (MOVK), 0b00 (MOVN), 0b10 (MOVZ)
 66	 * sf     := 1 (64-bit variant)
 67	 */
 68	plt[i] = (struct plt_entry){
 69		cpu_to_le32(0x92800010 | (((~val      ) & 0xffff)) << 5),
 70		cpu_to_le32(0xf2a00010 | ((( val >> 16) & 0xffff)) << 5),
 71		cpu_to_le32(0xf2c00010 | ((( val >> 32) & 0xffff)) << 5),
 72		cpu_to_le32(0xd61f0200)
 73	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 75	if (rela->r_addend == 0)
 76		sym->st_size = (u64)&plt[i];
 77
 78	return (u64)&plt[i];
 79}
 
 80
 81#define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))
 82
 83static int cmp_rela(const void *a, const void *b)
 84{
 85	const Elf64_Rela *x = a, *y = b;
 86	int i;
 87
 88	/* sort by type, symbol index and addend */
 89	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
 90	if (i == 0)
 91		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
 92	if (i == 0)
 93		i = cmp_3way(x->r_addend, y->r_addend);
 94	return i;
 95}
 96
 97static bool duplicate_rel(const Elf64_Rela *rela, int num)
 98{
 99	/*
100	 * Entries are sorted by type, symbol index and addend. That means
101	 * that, if a duplicate entry exists, it must be in the preceding
102	 * slot.
103	 */
104	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
105}
106
107static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num)
 
108{
109	unsigned int ret = 0;
110	Elf64_Sym *s;
111	int i;
112
113	for (i = 0; i < num; i++) {
 
 
114		switch (ELF64_R_TYPE(rela[i].r_info)) {
115		case R_AARCH64_JUMP26:
116		case R_AARCH64_CALL26:
 
 
 
117			/*
118			 * We only have to consider branch targets that resolve
119			 * to undefined symbols. This is not simply a heuristic,
120			 * it is a fundamental limitation, since the PLT itself
121			 * is part of the module, and needs to be within 128 MB
122			 * as well, so modules can never grow beyond that limit.
 
 
 
 
123			 */
124			s = syms + ELF64_R_SYM(rela[i].r_info);
125			if (s->st_shndx != SHN_UNDEF)
126				break;
127
128			/*
129			 * Jump relocations with non-zero addends against
130			 * undefined symbols are supported by the ELF spec, but
131			 * do not occur in practice (e.g., 'jump n bytes past
132			 * the entry point of undefined function symbol f').
133			 * So we need to support them, but there is no need to
134			 * take them into consideration when trying to optimize
135			 * this code. So let's only check for duplicates when
136			 * the addend is zero: this allows us to record the PLT
137			 * entry address in the symbol table itself, rather than
138			 * having to search the list for duplicates each time we
139			 * emit one.
140			 */
141			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
142				ret++;
143			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144		}
145	}
 
 
 
 
 
 
 
 
 
146	return ret;
147}
148
149int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
150			      char *secstrings, struct module *mod)
151{
152	unsigned long plt_max_entries = 0;
 
153	Elf64_Sym *syms = NULL;
 
154	int i;
155
156	/*
157	 * Find the empty .plt section so we can expand it to store the PLT
158	 * entries. Record the symtab address as well.
159	 */
160	for (i = 0; i < ehdr->e_shnum; i++) {
161		if (strcmp(".plt", secstrings + sechdrs[i].sh_name) == 0)
162			mod->arch.plt = sechdrs + i;
 
 
 
 
 
 
163		else if (sechdrs[i].sh_type == SHT_SYMTAB)
164			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
165	}
166
167	if (!mod->arch.plt) {
168		pr_err("%s: module PLT section missing\n", mod->name);
169		return -ENOEXEC;
170	}
171	if (!syms) {
172		pr_err("%s: module symtab section missing\n", mod->name);
173		return -ENOEXEC;
174	}
175
176	for (i = 0; i < ehdr->e_shnum; i++) {
177		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
178		int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
179		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
180
181		if (sechdrs[i].sh_type != SHT_RELA)
182			continue;
183
184		/* ignore relocations that operate on non-exec sections */
185		if (!(dstsec->sh_flags & SHF_EXECINSTR))
186			continue;
187
188		/* sort by type, symbol index and addend */
189		sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
190
191		plt_max_entries += count_plts(syms, rels, numrels);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192	}
193
194	mod->arch.plt->sh_type = SHT_NOBITS;
195	mod->arch.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
196	mod->arch.plt->sh_addralign = L1_CACHE_BYTES;
197	mod->arch.plt->sh_size = plt_max_entries * sizeof(struct plt_entry);
198	mod->arch.plt_num_entries = 0;
199	mod->arch.plt_max_entries = plt_max_entries;
200	return 0;
201}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
 
 
 
 
  4 */
  5
  6#include <linux/elf.h>
  7#include <linux/kernel.h>
  8#include <linux/module.h>
  9#include <linux/sort.h>
 10
 11static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
 12					    enum aarch64_insn_register reg)
 13{
 14	u32 adrp, add;
 15
 16	adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
 17	add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
 18					   AARCH64_INSN_VARIANT_64BIT,
 19					   AARCH64_INSN_ADSB_ADD);
 20
 21	return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
 22}
 23
 24struct plt_entry get_plt_entry(u64 dst, void *pc)
 25{
 26	struct plt_entry plt;
 27	static u32 br;
 28
 29	if (!br)
 30		br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
 31						 AARCH64_INSN_BRANCH_NOLINK);
 32
 33	plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
 34	plt.br = cpu_to_le32(br);
 35
 36	return plt;
 37}
 38
 39bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
 40{
 41	u64 p, q;
 42
 43	/*
 44	 * Check whether both entries refer to the same target:
 45	 * do the cheapest checks first.
 46	 * If the 'add' or 'br' opcodes are different, then the target
 47	 * cannot be the same.
 48	 */
 49	if (a->add != b->add || a->br != b->br)
 50		return false;
 51
 52	p = ALIGN_DOWN((u64)a, SZ_4K);
 53	q = ALIGN_DOWN((u64)b, SZ_4K);
 54
 55	/*
 56	 * If the 'adrp' opcodes are the same then we just need to check
 57	 * that they refer to the same 4k region.
 
 
 
 
 58	 */
 59	if (a->adrp == b->adrp && p == q)
 60		return true;
 61
 62	return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
 63	       (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
 64}
 65
 66static bool in_init(const struct module *mod, void *loc)
 67{
 68	return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
 69}
 70
 71u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
 72			  void *loc, const Elf64_Rela *rela,
 73			  Elf64_Sym *sym)
 74{
 75	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
 76							  &mod->arch.init;
 77	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
 78	int i = pltsec->plt_num_entries;
 79	int j = i - 1;
 80	u64 val = sym->st_value + rela->r_addend;
 81
 82	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
 83		i++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84
 85	plt[i] = get_plt_entry(val, &plt[i]);
 
 86
 87	/*
 88	 * Check if the entry we just created is a duplicate. Given that the
 89	 * relocations are sorted, this will be the last entry we allocated.
 90	 * (if one exists).
 
 
 
 
 
 
 91	 */
 92	if (j >= 0 && plt_entries_equal(plt + i, plt + j))
 93		return (u64)&plt[j];
 94
 95	pltsec->plt_num_entries += i - j;
 96	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
 97		return 0;
 98
 99	return (u64)&plt[i];
100}
101
102#ifdef CONFIG_ARM64_ERRATUM_843419
103u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
104				void *loc, u64 val)
105{
106	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
107							  &mod->arch.init;
108	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
109	int i = pltsec->plt_num_entries++;
110	u32 br;
111	int rd;
112
113	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
114		return 0;
115
116	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
117		i = pltsec->plt_num_entries++;
118
119	/* get the destination register of the ADRP instruction */
120	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
121					  le32_to_cpup((__le32 *)loc));
122
123	br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
124					 AARCH64_INSN_BRANCH_NOLINK);
125
126	plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
127	plt[i].br = cpu_to_le32(br);
128
129	return (u64)&plt[i];
130}
131#endif
132
133#define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))
134
135static int cmp_rela(const void *a, const void *b)
136{
137	const Elf64_Rela *x = a, *y = b;
138	int i;
139
140	/* sort by type, symbol index and addend */
141	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
142	if (i == 0)
143		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
144	if (i == 0)
145		i = cmp_3way(x->r_addend, y->r_addend);
146	return i;
147}
148
149static bool duplicate_rel(const Elf64_Rela *rela, int num)
150{
151	/*
152	 * Entries are sorted by type, symbol index and addend. That means
153	 * that, if a duplicate entry exists, it must be in the preceding
154	 * slot.
155	 */
156	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
157}
158
159static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
160			       Elf64_Word dstidx, Elf_Shdr *dstsec)
161{
162	unsigned int ret = 0;
163	Elf64_Sym *s;
164	int i;
165
166	for (i = 0; i < num; i++) {
167		u64 min_align;
168
169		switch (ELF64_R_TYPE(rela[i].r_info)) {
170		case R_AARCH64_JUMP26:
171		case R_AARCH64_CALL26:
172			if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
173				break;
174
175			/*
176			 * We only have to consider branch targets that resolve
177			 * to symbols that are defined in a different section.
178			 * This is not simply a heuristic, it is a fundamental
179			 * limitation, since there is no guaranteed way to emit
180			 * PLT entries sufficiently close to the branch if the
181			 * section size exceeds the range of a branch
182			 * instruction. So ignore relocations against defined
183			 * symbols if they live in the same section as the
184			 * relocation target.
185			 */
186			s = syms + ELF64_R_SYM(rela[i].r_info);
187			if (s->st_shndx == dstidx)
188				break;
189
190			/*
191			 * Jump relocations with non-zero addends against
192			 * undefined symbols are supported by the ELF spec, but
193			 * do not occur in practice (e.g., 'jump n bytes past
194			 * the entry point of undefined function symbol f').
195			 * So we need to support them, but there is no need to
196			 * take them into consideration when trying to optimize
197			 * this code. So let's only check for duplicates when
198			 * the addend is zero: this allows us to record the PLT
199			 * entry address in the symbol table itself, rather than
200			 * having to search the list for duplicates each time we
201			 * emit one.
202			 */
203			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
204				ret++;
205			break;
206		case R_AARCH64_ADR_PREL_PG_HI21_NC:
207		case R_AARCH64_ADR_PREL_PG_HI21:
208			if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
209			    !cpus_have_const_cap(ARM64_WORKAROUND_843419))
210				break;
211
212			/*
213			 * Determine the minimal safe alignment for this ADRP
214			 * instruction: the section alignment at which it is
215			 * guaranteed not to appear at a vulnerable offset.
216			 *
217			 * This comes down to finding the least significant zero
218			 * bit in bits [11:3] of the section offset, and
219			 * increasing the section's alignment so that the
220			 * resulting address of this instruction is guaranteed
221			 * to equal the offset in that particular bit (as well
222			 * as all less signficant bits). This ensures that the
223			 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
224			 * have all ones in bits [11:3])
225			 */
226			min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
227
228			/*
229			 * Allocate veneer space for each ADRP that may appear
230			 * at a vulnerable offset nonetheless. At relocation
231			 * time, some of these will remain unused since some
232			 * ADRP instructions can be patched to ADR instructions
233			 * instead.
234			 */
235			if (min_align > SZ_4K)
236				ret++;
237			else
238				dstsec->sh_addralign = max(dstsec->sh_addralign,
239							   min_align);
240			break;
241		}
242	}
243
244	if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
245	    cpus_have_const_cap(ARM64_WORKAROUND_843419))
246		/*
247		 * Add some slack so we can skip PLT slots that may trigger
248		 * the erratum due to the placement of the ADRP instruction.
249		 */
250		ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
251
252	return ret;
253}
254
255int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
256			      char *secstrings, struct module *mod)
257{
258	unsigned long core_plts = 0;
259	unsigned long init_plts = 0;
260	Elf64_Sym *syms = NULL;
261	Elf_Shdr *pltsec, *tramp = NULL;
262	int i;
263
264	/*
265	 * Find the empty .plt section so we can expand it to store the PLT
266	 * entries. Record the symtab address as well.
267	 */
268	for (i = 0; i < ehdr->e_shnum; i++) {
269		if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
270			mod->arch.core.plt_shndx = i;
271		else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
272			mod->arch.init.plt_shndx = i;
273		else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
274			 !strcmp(secstrings + sechdrs[i].sh_name,
275				 ".text.ftrace_trampoline"))
276			tramp = sechdrs + i;
277		else if (sechdrs[i].sh_type == SHT_SYMTAB)
278			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
279	}
280
281	if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
282		pr_err("%s: module PLT section(s) missing\n", mod->name);
283		return -ENOEXEC;
284	}
285	if (!syms) {
286		pr_err("%s: module symtab section missing\n", mod->name);
287		return -ENOEXEC;
288	}
289
290	for (i = 0; i < ehdr->e_shnum; i++) {
291		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
292		int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
293		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
294
295		if (sechdrs[i].sh_type != SHT_RELA)
296			continue;
297
298		/* ignore relocations that operate on non-exec sections */
299		if (!(dstsec->sh_flags & SHF_EXECINSTR))
300			continue;
301
302		/* sort by type, symbol index and addend */
303		sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
304
305		if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
306			core_plts += count_plts(syms, rels, numrels,
307						sechdrs[i].sh_info, dstsec);
308		else
309			init_plts += count_plts(syms, rels, numrels,
310						sechdrs[i].sh_info, dstsec);
311	}
312
313	pltsec = sechdrs + mod->arch.core.plt_shndx;
314	pltsec->sh_type = SHT_NOBITS;
315	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
316	pltsec->sh_addralign = L1_CACHE_BYTES;
317	pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
318	mod->arch.core.plt_num_entries = 0;
319	mod->arch.core.plt_max_entries = core_plts;
320
321	pltsec = sechdrs + mod->arch.init.plt_shndx;
322	pltsec->sh_type = SHT_NOBITS;
323	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
324	pltsec->sh_addralign = L1_CACHE_BYTES;
325	pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
326	mod->arch.init.plt_num_entries = 0;
327	mod->arch.init.plt_max_entries = init_plts;
328
329	if (tramp) {
330		tramp->sh_type = SHT_NOBITS;
331		tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
332		tramp->sh_addralign = __alignof__(struct plt_entry);
333		tramp->sh_size = sizeof(struct plt_entry);
334	}
335
 
 
 
 
 
 
336	return 0;
337}