Loading...
1/*
2 * Copyright (C) 2014-2016 Linaro Ltd. <ard.biesheuvel@linaro.org>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9#include <linux/elf.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/sort.h>
13
14struct plt_entry {
15 /*
16 * A program that conforms to the AArch64 Procedure Call Standard
17 * (AAPCS64) must assume that a veneer that alters IP0 (x16) and/or
18 * IP1 (x17) may be inserted at any branch instruction that is
19 * exposed to a relocation that supports long branches. Since that
20 * is exactly what we are dealing with here, we are free to use x16
21 * as a scratch register in the PLT veneers.
22 */
23 __le32 mov0; /* movn x16, #0x.... */
24 __le32 mov1; /* movk x16, #0x...., lsl #16 */
25 __le32 mov2; /* movk x16, #0x...., lsl #32 */
26 __le32 br; /* br x16 */
27};
28
29u64 module_emit_plt_entry(struct module *mod, const Elf64_Rela *rela,
30 Elf64_Sym *sym)
31{
32 struct plt_entry *plt = (struct plt_entry *)mod->arch.plt->sh_addr;
33 int i = mod->arch.plt_num_entries;
34 u64 val = sym->st_value + rela->r_addend;
35
36 /*
37 * We only emit PLT entries against undefined (SHN_UNDEF) symbols,
38 * which are listed in the ELF symtab section, but without a type
39 * or a size.
40 * So, similar to how the module loader uses the Elf64_Sym::st_value
41 * field to store the resolved addresses of undefined symbols, let's
42 * borrow the Elf64_Sym::st_size field (whose value is never used by
43 * the module loader, even for symbols that are defined) to record
44 * the address of a symbol's associated PLT entry as we emit it for a
45 * zero addend relocation (which is the only kind we have to deal with
46 * in practice). This allows us to find duplicates without having to
47 * go through the table every time.
48 */
49 if (rela->r_addend == 0 && sym->st_size != 0) {
50 BUG_ON(sym->st_size < (u64)plt || sym->st_size >= (u64)&plt[i]);
51 return sym->st_size;
52 }
53
54 mod->arch.plt_num_entries++;
55 BUG_ON(mod->arch.plt_num_entries > mod->arch.plt_max_entries);
56
57 /*
58 * MOVK/MOVN/MOVZ opcode:
59 * +--------+------------+--------+-----------+-------------+---------+
60 * | sf[31] | opc[30:29] | 100101 | hw[22:21] | imm16[20:5] | Rd[4:0] |
61 * +--------+------------+--------+-----------+-------------+---------+
62 *
63 * Rd := 0x10 (x16)
64 * hw := 0b00 (no shift), 0b01 (lsl #16), 0b10 (lsl #32)
65 * opc := 0b11 (MOVK), 0b00 (MOVN), 0b10 (MOVZ)
66 * sf := 1 (64-bit variant)
67 */
68 plt[i] = (struct plt_entry){
69 cpu_to_le32(0x92800010 | (((~val ) & 0xffff)) << 5),
70 cpu_to_le32(0xf2a00010 | ((( val >> 16) & 0xffff)) << 5),
71 cpu_to_le32(0xf2c00010 | ((( val >> 32) & 0xffff)) << 5),
72 cpu_to_le32(0xd61f0200)
73 };
74
75 if (rela->r_addend == 0)
76 sym->st_size = (u64)&plt[i];
77
78 return (u64)&plt[i];
79}
80
81#define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
82
83static int cmp_rela(const void *a, const void *b)
84{
85 const Elf64_Rela *x = a, *y = b;
86 int i;
87
88 /* sort by type, symbol index and addend */
89 i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
90 if (i == 0)
91 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
92 if (i == 0)
93 i = cmp_3way(x->r_addend, y->r_addend);
94 return i;
95}
96
97static bool duplicate_rel(const Elf64_Rela *rela, int num)
98{
99 /*
100 * Entries are sorted by type, symbol index and addend. That means
101 * that, if a duplicate entry exists, it must be in the preceding
102 * slot.
103 */
104 return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
105}
106
107static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num)
108{
109 unsigned int ret = 0;
110 Elf64_Sym *s;
111 int i;
112
113 for (i = 0; i < num; i++) {
114 switch (ELF64_R_TYPE(rela[i].r_info)) {
115 case R_AARCH64_JUMP26:
116 case R_AARCH64_CALL26:
117 /*
118 * We only have to consider branch targets that resolve
119 * to undefined symbols. This is not simply a heuristic,
120 * it is a fundamental limitation, since the PLT itself
121 * is part of the module, and needs to be within 128 MB
122 * as well, so modules can never grow beyond that limit.
123 */
124 s = syms + ELF64_R_SYM(rela[i].r_info);
125 if (s->st_shndx != SHN_UNDEF)
126 break;
127
128 /*
129 * Jump relocations with non-zero addends against
130 * undefined symbols are supported by the ELF spec, but
131 * do not occur in practice (e.g., 'jump n bytes past
132 * the entry point of undefined function symbol f').
133 * So we need to support them, but there is no need to
134 * take them into consideration when trying to optimize
135 * this code. So let's only check for duplicates when
136 * the addend is zero: this allows us to record the PLT
137 * entry address in the symbol table itself, rather than
138 * having to search the list for duplicates each time we
139 * emit one.
140 */
141 if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
142 ret++;
143 break;
144 }
145 }
146 return ret;
147}
148
149int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
150 char *secstrings, struct module *mod)
151{
152 unsigned long plt_max_entries = 0;
153 Elf64_Sym *syms = NULL;
154 int i;
155
156 /*
157 * Find the empty .plt section so we can expand it to store the PLT
158 * entries. Record the symtab address as well.
159 */
160 for (i = 0; i < ehdr->e_shnum; i++) {
161 if (strcmp(".plt", secstrings + sechdrs[i].sh_name) == 0)
162 mod->arch.plt = sechdrs + i;
163 else if (sechdrs[i].sh_type == SHT_SYMTAB)
164 syms = (Elf64_Sym *)sechdrs[i].sh_addr;
165 }
166
167 if (!mod->arch.plt) {
168 pr_err("%s: module PLT section missing\n", mod->name);
169 return -ENOEXEC;
170 }
171 if (!syms) {
172 pr_err("%s: module symtab section missing\n", mod->name);
173 return -ENOEXEC;
174 }
175
176 for (i = 0; i < ehdr->e_shnum; i++) {
177 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
178 int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
179 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
180
181 if (sechdrs[i].sh_type != SHT_RELA)
182 continue;
183
184 /* ignore relocations that operate on non-exec sections */
185 if (!(dstsec->sh_flags & SHF_EXECINSTR))
186 continue;
187
188 /* sort by type, symbol index and addend */
189 sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
190
191 plt_max_entries += count_plts(syms, rels, numrels);
192 }
193
194 mod->arch.plt->sh_type = SHT_NOBITS;
195 mod->arch.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
196 mod->arch.plt->sh_addralign = L1_CACHE_BYTES;
197 mod->arch.plt->sh_size = plt_max_entries * sizeof(struct plt_entry);
198 mod->arch.plt_num_entries = 0;
199 mod->arch.plt_max_entries = plt_max_entries;
200 return 0;
201}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6#include <linux/elf.h>
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/sort.h>
10
11static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
12 enum aarch64_insn_register reg)
13{
14 u32 adrp, add;
15
16 adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
17 add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
18 AARCH64_INSN_VARIANT_64BIT,
19 AARCH64_INSN_ADSB_ADD);
20
21 return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
22}
23
24struct plt_entry get_plt_entry(u64 dst, void *pc)
25{
26 struct plt_entry plt;
27 static u32 br;
28
29 if (!br)
30 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
31 AARCH64_INSN_BRANCH_NOLINK);
32
33 plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
34 plt.br = cpu_to_le32(br);
35
36 return plt;
37}
38
39bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
40{
41 u64 p, q;
42
43 /*
44 * Check whether both entries refer to the same target:
45 * do the cheapest checks first.
46 * If the 'add' or 'br' opcodes are different, then the target
47 * cannot be the same.
48 */
49 if (a->add != b->add || a->br != b->br)
50 return false;
51
52 p = ALIGN_DOWN((u64)a, SZ_4K);
53 q = ALIGN_DOWN((u64)b, SZ_4K);
54
55 /*
56 * If the 'adrp' opcodes are the same then we just need to check
57 * that they refer to the same 4k region.
58 */
59 if (a->adrp == b->adrp && p == q)
60 return true;
61
62 return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
63 (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
64}
65
66static bool in_init(const struct module *mod, void *loc)
67{
68 return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
69}
70
71u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
72 void *loc, const Elf64_Rela *rela,
73 Elf64_Sym *sym)
74{
75 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
76 &mod->arch.init;
77 struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
78 int i = pltsec->plt_num_entries;
79 int j = i - 1;
80 u64 val = sym->st_value + rela->r_addend;
81
82 if (is_forbidden_offset_for_adrp(&plt[i].adrp))
83 i++;
84
85 plt[i] = get_plt_entry(val, &plt[i]);
86
87 /*
88 * Check if the entry we just created is a duplicate. Given that the
89 * relocations are sorted, this will be the last entry we allocated.
90 * (if one exists).
91 */
92 if (j >= 0 && plt_entries_equal(plt + i, plt + j))
93 return (u64)&plt[j];
94
95 pltsec->plt_num_entries += i - j;
96 if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
97 return 0;
98
99 return (u64)&plt[i];
100}
101
102#ifdef CONFIG_ARM64_ERRATUM_843419
103u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
104 void *loc, u64 val)
105{
106 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
107 &mod->arch.init;
108 struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
109 int i = pltsec->plt_num_entries++;
110 u32 br;
111 int rd;
112
113 if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
114 return 0;
115
116 if (is_forbidden_offset_for_adrp(&plt[i].adrp))
117 i = pltsec->plt_num_entries++;
118
119 /* get the destination register of the ADRP instruction */
120 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
121 le32_to_cpup((__le32 *)loc));
122
123 br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
124 AARCH64_INSN_BRANCH_NOLINK);
125
126 plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
127 plt[i].br = cpu_to_le32(br);
128
129 return (u64)&plt[i];
130}
131#endif
132
133#define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
134
135static int cmp_rela(const void *a, const void *b)
136{
137 const Elf64_Rela *x = a, *y = b;
138 int i;
139
140 /* sort by type, symbol index and addend */
141 i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
142 if (i == 0)
143 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
144 if (i == 0)
145 i = cmp_3way(x->r_addend, y->r_addend);
146 return i;
147}
148
149static bool duplicate_rel(const Elf64_Rela *rela, int num)
150{
151 /*
152 * Entries are sorted by type, symbol index and addend. That means
153 * that, if a duplicate entry exists, it must be in the preceding
154 * slot.
155 */
156 return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
157}
158
159static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
160 Elf64_Word dstidx, Elf_Shdr *dstsec)
161{
162 unsigned int ret = 0;
163 Elf64_Sym *s;
164 int i;
165
166 for (i = 0; i < num; i++) {
167 u64 min_align;
168
169 switch (ELF64_R_TYPE(rela[i].r_info)) {
170 case R_AARCH64_JUMP26:
171 case R_AARCH64_CALL26:
172 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
173 break;
174
175 /*
176 * We only have to consider branch targets that resolve
177 * to symbols that are defined in a different section.
178 * This is not simply a heuristic, it is a fundamental
179 * limitation, since there is no guaranteed way to emit
180 * PLT entries sufficiently close to the branch if the
181 * section size exceeds the range of a branch
182 * instruction. So ignore relocations against defined
183 * symbols if they live in the same section as the
184 * relocation target.
185 */
186 s = syms + ELF64_R_SYM(rela[i].r_info);
187 if (s->st_shndx == dstidx)
188 break;
189
190 /*
191 * Jump relocations with non-zero addends against
192 * undefined symbols are supported by the ELF spec, but
193 * do not occur in practice (e.g., 'jump n bytes past
194 * the entry point of undefined function symbol f').
195 * So we need to support them, but there is no need to
196 * take them into consideration when trying to optimize
197 * this code. So let's only check for duplicates when
198 * the addend is zero: this allows us to record the PLT
199 * entry address in the symbol table itself, rather than
200 * having to search the list for duplicates each time we
201 * emit one.
202 */
203 if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
204 ret++;
205 break;
206 case R_AARCH64_ADR_PREL_PG_HI21_NC:
207 case R_AARCH64_ADR_PREL_PG_HI21:
208 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
209 !cpus_have_const_cap(ARM64_WORKAROUND_843419))
210 break;
211
212 /*
213 * Determine the minimal safe alignment for this ADRP
214 * instruction: the section alignment at which it is
215 * guaranteed not to appear at a vulnerable offset.
216 *
217 * This comes down to finding the least significant zero
218 * bit in bits [11:3] of the section offset, and
219 * increasing the section's alignment so that the
220 * resulting address of this instruction is guaranteed
221 * to equal the offset in that particular bit (as well
222 * as all less signficant bits). This ensures that the
223 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
224 * have all ones in bits [11:3])
225 */
226 min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
227
228 /*
229 * Allocate veneer space for each ADRP that may appear
230 * at a vulnerable offset nonetheless. At relocation
231 * time, some of these will remain unused since some
232 * ADRP instructions can be patched to ADR instructions
233 * instead.
234 */
235 if (min_align > SZ_4K)
236 ret++;
237 else
238 dstsec->sh_addralign = max(dstsec->sh_addralign,
239 min_align);
240 break;
241 }
242 }
243
244 if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
245 cpus_have_const_cap(ARM64_WORKAROUND_843419))
246 /*
247 * Add some slack so we can skip PLT slots that may trigger
248 * the erratum due to the placement of the ADRP instruction.
249 */
250 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
251
252 return ret;
253}
254
255int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
256 char *secstrings, struct module *mod)
257{
258 unsigned long core_plts = 0;
259 unsigned long init_plts = 0;
260 Elf64_Sym *syms = NULL;
261 Elf_Shdr *pltsec, *tramp = NULL;
262 int i;
263
264 /*
265 * Find the empty .plt section so we can expand it to store the PLT
266 * entries. Record the symtab address as well.
267 */
268 for (i = 0; i < ehdr->e_shnum; i++) {
269 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
270 mod->arch.core.plt_shndx = i;
271 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
272 mod->arch.init.plt_shndx = i;
273 else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
274 !strcmp(secstrings + sechdrs[i].sh_name,
275 ".text.ftrace_trampoline"))
276 tramp = sechdrs + i;
277 else if (sechdrs[i].sh_type == SHT_SYMTAB)
278 syms = (Elf64_Sym *)sechdrs[i].sh_addr;
279 }
280
281 if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
282 pr_err("%s: module PLT section(s) missing\n", mod->name);
283 return -ENOEXEC;
284 }
285 if (!syms) {
286 pr_err("%s: module symtab section missing\n", mod->name);
287 return -ENOEXEC;
288 }
289
290 for (i = 0; i < ehdr->e_shnum; i++) {
291 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
292 int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
293 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
294
295 if (sechdrs[i].sh_type != SHT_RELA)
296 continue;
297
298 /* ignore relocations that operate on non-exec sections */
299 if (!(dstsec->sh_flags & SHF_EXECINSTR))
300 continue;
301
302 /* sort by type, symbol index and addend */
303 sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
304
305 if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
306 core_plts += count_plts(syms, rels, numrels,
307 sechdrs[i].sh_info, dstsec);
308 else
309 init_plts += count_plts(syms, rels, numrels,
310 sechdrs[i].sh_info, dstsec);
311 }
312
313 pltsec = sechdrs + mod->arch.core.plt_shndx;
314 pltsec->sh_type = SHT_NOBITS;
315 pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
316 pltsec->sh_addralign = L1_CACHE_BYTES;
317 pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
318 mod->arch.core.plt_num_entries = 0;
319 mod->arch.core.plt_max_entries = core_plts;
320
321 pltsec = sechdrs + mod->arch.init.plt_shndx;
322 pltsec->sh_type = SHT_NOBITS;
323 pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
324 pltsec->sh_addralign = L1_CACHE_BYTES;
325 pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
326 mod->arch.init.plt_num_entries = 0;
327 mod->arch.init.plt_max_entries = init_plts;
328
329 if (tramp) {
330 tramp->sh_type = SHT_NOBITS;
331 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
332 tramp->sh_addralign = __alignof__(struct plt_entry);
333 tramp->sh_size = sizeof(struct plt_entry);
334 }
335
336 return 0;
337}