Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * linux/net/sunrpc/sched.c
   3 *
   4 * Scheduling for synchronous and asynchronous RPC requests.
   5 *
   6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   7 *
   8 * TCP NFS related read + write fixes
   9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10 */
  11
  12#include <linux/module.h>
  13
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/mempool.h>
  18#include <linux/smp.h>
  19#include <linux/spinlock.h>
  20#include <linux/mutex.h>
  21#include <linux/freezer.h>
 
  22
  23#include <linux/sunrpc/clnt.h>
 
  24
  25#include "sunrpc.h"
  26
  27#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  28#define RPCDBG_FACILITY		RPCDBG_SCHED
  29#endif
  30
  31#define CREATE_TRACE_POINTS
  32#include <trace/events/sunrpc.h>
  33
  34/*
  35 * RPC slabs and memory pools
  36 */
  37#define RPC_BUFFER_MAXSIZE	(2048)
  38#define RPC_BUFFER_POOLSIZE	(8)
  39#define RPC_TASK_POOLSIZE	(8)
  40static struct kmem_cache	*rpc_task_slabp __read_mostly;
  41static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
  42static mempool_t	*rpc_task_mempool __read_mostly;
  43static mempool_t	*rpc_buffer_mempool __read_mostly;
  44
  45static void			rpc_async_schedule(struct work_struct *);
  46static void			 rpc_release_task(struct rpc_task *task);
  47static void __rpc_queue_timer_fn(unsigned long ptr);
  48
  49/*
  50 * RPC tasks sit here while waiting for conditions to improve.
  51 */
  52static struct rpc_wait_queue delay_queue;
  53
  54/*
  55 * rpciod-related stuff
  56 */
  57struct workqueue_struct *rpciod_workqueue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59/*
  60 * Disable the timer for a given RPC task. Should be called with
  61 * queue->lock and bh_disabled in order to avoid races within
  62 * rpc_run_timer().
  63 */
  64static void
  65__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  66{
  67	if (task->tk_timeout == 0)
  68		return;
  69	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  70	task->tk_timeout = 0;
  71	list_del(&task->u.tk_wait.timer_list);
  72	if (list_empty(&queue->timer_list.list))
  73		del_timer(&queue->timer_list.timer);
  74}
  75
  76static void
  77rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  78{
 
  79	queue->timer_list.expires = expires;
  80	mod_timer(&queue->timer_list.timer, expires);
 
 
 
 
  81}
  82
  83/*
  84 * Set up a timer for the current task.
  85 */
  86static void
  87__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
 
  88{
  89	if (!task->tk_timeout)
  90		return;
  91
  92	dprintk("RPC: %5u setting alarm for %u ms\n",
  93		task->tk_pid, jiffies_to_msecs(task->tk_timeout));
  94
  95	task->u.tk_wait.expires = jiffies + task->tk_timeout;
  96	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  97		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  98	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  99}
 100
 101static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
 102{
 103	struct list_head *q = &queue->tasks[queue->priority];
 104	struct rpc_task *task;
 105
 106	if (!list_empty(q)) {
 107		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 108		if (task->tk_owner == queue->owner)
 109			list_move_tail(&task->u.tk_wait.list, q);
 110	}
 111}
 112
 113static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 114{
 115	if (queue->priority != priority) {
 116		/* Fairness: rotate the list when changing priority */
 117		rpc_rotate_queue_owner(queue);
 118		queue->priority = priority;
 
 119	}
 120}
 121
 122static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
 123{
 124	queue->owner = pid;
 125	queue->nr = RPC_BATCH_COUNT;
 126}
 127
 128static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 129{
 130	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 131	rpc_set_waitqueue_owner(queue, 0);
 132}
 133
 134/*
 135 * Add new request to a priority queue.
 136 */
 137static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 138		struct rpc_task *task,
 139		unsigned char queue_priority)
 140{
 141	struct list_head *q;
 142	struct rpc_task *t;
 143
 144	INIT_LIST_HEAD(&task->u.tk_wait.links);
 145	if (unlikely(queue_priority > queue->maxpriority))
 146		queue_priority = queue->maxpriority;
 147	if (queue_priority > queue->priority)
 148		rpc_set_waitqueue_priority(queue, queue_priority);
 149	q = &queue->tasks[queue_priority];
 150	list_for_each_entry(t, q, u.tk_wait.list) {
 151		if (t->tk_owner == task->tk_owner) {
 152			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
 
 
 
 
 153			return;
 154		}
 155	}
 
 156	list_add_tail(&task->u.tk_wait.list, q);
 157}
 158
 159/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160 * Add new request to wait queue.
 161 *
 162 * Swapper tasks always get inserted at the head of the queue.
 163 * This should avoid many nasty memory deadlocks and hopefully
 164 * improve overall performance.
 165 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 166 */
 167static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 168		struct rpc_task *task,
 169		unsigned char queue_priority)
 170{
 171	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 172	if (RPC_IS_QUEUED(task))
 173		return;
 174
 
 175	if (RPC_IS_PRIORITY(queue))
 176		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 177	else if (RPC_IS_SWAPPER(task))
 178		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 179	else
 180		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 181	task->tk_waitqueue = queue;
 182	queue->qlen++;
 183	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
 184	smp_wmb();
 185	rpc_set_queued(task);
 186
 187	dprintk("RPC: %5u added to queue %p \"%s\"\n",
 188			task->tk_pid, queue, rpc_qname(queue));
 189}
 190
 191/*
 192 * Remove request from a priority queue.
 193 */
 194static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 195{
 196	struct rpc_task *t;
 197
 198	if (!list_empty(&task->u.tk_wait.links)) {
 199		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
 200		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
 201		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
 202	}
 203}
 204
 205/*
 206 * Remove request from queue.
 207 * Note: must be called with spin lock held.
 208 */
 209static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 210{
 211	__rpc_disable_timer(queue, task);
 212	if (RPC_IS_PRIORITY(queue))
 213		__rpc_remove_wait_queue_priority(task);
 214	list_del(&task->u.tk_wait.list);
 
 215	queue->qlen--;
 216	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 217			task->tk_pid, queue, rpc_qname(queue));
 218}
 219
 220static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 221{
 222	int i;
 223
 224	spin_lock_init(&queue->lock);
 225	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 226		INIT_LIST_HEAD(&queue->tasks[i]);
 227	queue->maxpriority = nr_queues - 1;
 228	rpc_reset_waitqueue_priority(queue);
 229	queue->qlen = 0;
 230	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
 
 231	INIT_LIST_HEAD(&queue->timer_list.list);
 232	rpc_assign_waitqueue_name(queue, qname);
 233}
 234
 235void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 236{
 237	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 238}
 239EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 240
 241void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 242{
 243	__rpc_init_priority_wait_queue(queue, qname, 1);
 244}
 245EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 246
 247void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 248{
 249	del_timer_sync(&queue->timer_list.timer);
 250}
 251EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 252
 253static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 254{
 255	freezable_schedule_unsafe();
 256	if (signal_pending_state(mode, current))
 257		return -ERESTARTSYS;
 258	return 0;
 259}
 260
 261#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 262static void rpc_task_set_debuginfo(struct rpc_task *task)
 263{
 264	static atomic_t rpc_pid;
 265
 266	task->tk_pid = atomic_inc_return(&rpc_pid);
 267}
 268#else
 269static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 270{
 271}
 272#endif
 273
 274static void rpc_set_active(struct rpc_task *task)
 275{
 276	trace_rpc_task_begin(task->tk_client, task, NULL);
 277
 278	rpc_task_set_debuginfo(task);
 279	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 
 280}
 281
 282/*
 283 * Mark an RPC call as having completed by clearing the 'active' bit
 284 * and then waking up all tasks that were sleeping.
 285 */
 286static int rpc_complete_task(struct rpc_task *task)
 287{
 288	void *m = &task->tk_runstate;
 289	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 290	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 291	unsigned long flags;
 292	int ret;
 293
 294	trace_rpc_task_complete(task->tk_client, task, NULL);
 295
 296	spin_lock_irqsave(&wq->lock, flags);
 297	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 298	ret = atomic_dec_and_test(&task->tk_count);
 299	if (waitqueue_active(wq))
 300		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 301	spin_unlock_irqrestore(&wq->lock, flags);
 302	return ret;
 303}
 304
 305/*
 306 * Allow callers to wait for completion of an RPC call
 307 *
 308 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 309 * to enforce taking of the wq->lock and hence avoid races with
 310 * rpc_complete_task().
 311 */
 312int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 313{
 314	if (action == NULL)
 315		action = rpc_wait_bit_killable;
 316	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 317			action, TASK_KILLABLE);
 318}
 319EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 320
 321/*
 322 * Make an RPC task runnable.
 323 *
 324 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 325 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 326 * the wait queue operation.
 327 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 328 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 329 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 330 * the RPC_TASK_RUNNING flag.
 331 */
 332static void rpc_make_runnable(struct rpc_task *task)
 
 333{
 334	bool need_wakeup = !rpc_test_and_set_running(task);
 335
 336	rpc_clear_queued(task);
 337	if (!need_wakeup)
 338		return;
 339	if (RPC_IS_ASYNC(task)) {
 340		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 341		queue_work(rpciod_workqueue, &task->u.tk_work);
 342	} else
 343		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 344}
 345
 346/*
 347 * Prepare for sleeping on a wait queue.
 348 * By always appending tasks to the list we ensure FIFO behavior.
 349 * NB: An RPC task will only receive interrupt-driven events as long
 350 * as it's on a wait queue.
 351 */
 352static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 353		struct rpc_task *task,
 354		rpc_action action,
 355		unsigned char queue_priority)
 356{
 357	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 358			task->tk_pid, rpc_qname(q), jiffies);
 359
 360	trace_rpc_task_sleep(task->tk_client, task, q);
 361
 362	__rpc_add_wait_queue(q, task, queue_priority);
 363
 364	WARN_ON_ONCE(task->tk_callback != NULL);
 365	task->tk_callback = action;
 366	__rpc_add_timer(q, task);
 367}
 368
 369void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 370				rpc_action action)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371{
 372	/* We shouldn't ever put an inactive task to sleep */
 373	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 374	if (!RPC_IS_ACTIVATED(task)) {
 375		task->tk_status = -EIO;
 376		rpc_put_task_async(task);
 377		return;
 378	}
 
 
 
 
 
 
 
 
 
 
 379
 380	/*
 381	 * Protect the queue operations.
 382	 */
 383	spin_lock_bh(&q->lock);
 384	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
 385	spin_unlock_bh(&q->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386}
 387EXPORT_SYMBOL_GPL(rpc_sleep_on);
 388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 390		rpc_action action, int priority)
 391{
 392	/* We shouldn't ever put an inactive task to sleep */
 393	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
 394	if (!RPC_IS_ACTIVATED(task)) {
 395		task->tk_status = -EIO;
 396		rpc_put_task_async(task);
 397		return;
 398	}
 399
 
 
 400	/*
 401	 * Protect the queue operations.
 402	 */
 403	spin_lock_bh(&q->lock);
 404	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
 405	spin_unlock_bh(&q->lock);
 406}
 407EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 408
 409/**
 410 * __rpc_do_wake_up_task - wake up a single rpc_task
 
 411 * @queue: wait queue
 412 * @task: task to be woken up
 413 *
 414 * Caller must hold queue->lock, and have cleared the task queued flag.
 415 */
 416static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 
 
 417{
 418	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 419			task->tk_pid, jiffies);
 420
 421	/* Has the task been executed yet? If not, we cannot wake it up! */
 422	if (!RPC_IS_ACTIVATED(task)) {
 423		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 424		return;
 425	}
 426
 427	trace_rpc_task_wakeup(task->tk_client, task, queue);
 428
 429	__rpc_remove_wait_queue(queue, task);
 430
 431	rpc_make_runnable(task);
 432
 433	dprintk("RPC:       __rpc_wake_up_task done\n");
 434}
 435
 436/*
 437 * Wake up a queued task while the queue lock is being held
 438 */
 439static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
 
 
 
 440{
 441	if (RPC_IS_QUEUED(task)) {
 442		smp_rmb();
 443		if (task->tk_waitqueue == queue)
 444			__rpc_do_wake_up_task(queue, task);
 
 
 
 
 445	}
 
 
 
 
 
 
 
 
 
 
 
 446}
 447
 448/*
 449 * Wake up a task on a specific queue
 450 */
 451void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 452{
 453	spin_lock_bh(&queue->lock);
 
 
 454	rpc_wake_up_task_queue_locked(queue, task);
 455	spin_unlock_bh(&queue->lock);
 456}
 457EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459/*
 460 * Wake up the next task on a priority queue.
 461 */
 462static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 463{
 464	struct list_head *q;
 465	struct rpc_task *task;
 466
 467	/*
 468	 * Service a batch of tasks from a single owner.
 469	 */
 470	q = &queue->tasks[queue->priority];
 471	if (!list_empty(q)) {
 472		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 473		if (queue->owner == task->tk_owner) {
 474			if (--queue->nr)
 475				goto out;
 476			list_move_tail(&task->u.tk_wait.list, q);
 477		}
 478		/*
 479		 * Check if we need to switch queues.
 480		 */
 481		goto new_owner;
 482	}
 483
 484	/*
 485	 * Service the next queue.
 486	 */
 487	do {
 488		if (q == &queue->tasks[0])
 489			q = &queue->tasks[queue->maxpriority];
 490		else
 491			q = q - 1;
 492		if (!list_empty(q)) {
 493			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
 494			goto new_queue;
 495		}
 496	} while (q != &queue->tasks[queue->priority]);
 497
 498	rpc_reset_waitqueue_priority(queue);
 499	return NULL;
 500
 501new_queue:
 502	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 503new_owner:
 504	rpc_set_waitqueue_owner(queue, task->tk_owner);
 505out:
 506	return task;
 507}
 508
 509static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 510{
 511	if (RPC_IS_PRIORITY(queue))
 512		return __rpc_find_next_queued_priority(queue);
 513	if (!list_empty(&queue->tasks[0]))
 514		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 515	return NULL;
 516}
 517
 518/*
 519 * Wake up the first task on the wait queue.
 520 */
 521struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 
 522		bool (*func)(struct rpc_task *, void *), void *data)
 523{
 524	struct rpc_task	*task = NULL;
 525
 526	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 527			queue, rpc_qname(queue));
 528	spin_lock_bh(&queue->lock);
 529	task = __rpc_find_next_queued(queue);
 530	if (task != NULL) {
 531		if (func(task, data))
 532			rpc_wake_up_task_queue_locked(queue, task);
 533		else
 534			task = NULL;
 535	}
 536	spin_unlock_bh(&queue->lock);
 537
 538	return task;
 539}
 
 
 
 
 
 
 
 
 
 540EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 541
 542static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 543{
 544	return true;
 545}
 546
 547/*
 548 * Wake up the next task on the wait queue.
 549*/
 550struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 551{
 552	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 553}
 554EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 555
 556/**
 557 * rpc_wake_up - wake up all rpc_tasks
 558 * @queue: rpc_wait_queue on which the tasks are sleeping
 559 *
 560 * Grabs queue->lock
 561 */
 562void rpc_wake_up(struct rpc_wait_queue *queue)
 563{
 564	struct list_head *head;
 565
 566	spin_lock_bh(&queue->lock);
 567	head = &queue->tasks[queue->maxpriority];
 568	for (;;) {
 569		while (!list_empty(head)) {
 570			struct rpc_task *task;
 571			task = list_first_entry(head,
 572					struct rpc_task,
 573					u.tk_wait.list);
 574			rpc_wake_up_task_queue_locked(queue, task);
 575		}
 576		if (head == &queue->tasks[0])
 577			break;
 578		head--;
 579	}
 580	spin_unlock_bh(&queue->lock);
 581}
 582EXPORT_SYMBOL_GPL(rpc_wake_up);
 583
 584/**
 585 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 586 * @queue: rpc_wait_queue on which the tasks are sleeping
 587 * @status: status value to set
 588 *
 589 * Grabs queue->lock
 590 */
 591void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 592{
 593	struct list_head *head;
 594
 595	spin_lock_bh(&queue->lock);
 596	head = &queue->tasks[queue->maxpriority];
 597	for (;;) {
 598		while (!list_empty(head)) {
 599			struct rpc_task *task;
 600			task = list_first_entry(head,
 601					struct rpc_task,
 602					u.tk_wait.list);
 603			task->tk_status = status;
 604			rpc_wake_up_task_queue_locked(queue, task);
 605		}
 606		if (head == &queue->tasks[0])
 607			break;
 608		head--;
 609	}
 610	spin_unlock_bh(&queue->lock);
 611}
 612EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 613
 614static void __rpc_queue_timer_fn(unsigned long ptr)
 615{
 616	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
 
 
 617	struct rpc_task *task, *n;
 618	unsigned long expires, now, timeo;
 619
 620	spin_lock(&queue->lock);
 621	expires = now = jiffies;
 622	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 623		timeo = task->u.tk_wait.expires;
 624		if (time_after_eq(now, timeo)) {
 625			dprintk("RPC: %5u timeout\n", task->tk_pid);
 626			task->tk_status = -ETIMEDOUT;
 627			rpc_wake_up_task_queue_locked(queue, task);
 628			continue;
 629		}
 630		if (expires == now || time_after(expires, timeo))
 631			expires = timeo;
 632	}
 633	if (!list_empty(&queue->timer_list.list))
 634		rpc_set_queue_timer(queue, expires);
 635	spin_unlock(&queue->lock);
 636}
 637
 638static void __rpc_atrun(struct rpc_task *task)
 639{
 640	if (task->tk_status == -ETIMEDOUT)
 641		task->tk_status = 0;
 642}
 643
 644/*
 645 * Run a task at a later time
 646 */
 647void rpc_delay(struct rpc_task *task, unsigned long delay)
 648{
 649	task->tk_timeout = delay;
 650	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
 651}
 652EXPORT_SYMBOL_GPL(rpc_delay);
 653
 654/*
 655 * Helper to call task->tk_ops->rpc_call_prepare
 656 */
 657void rpc_prepare_task(struct rpc_task *task)
 658{
 659	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 660}
 661
 662static void
 663rpc_init_task_statistics(struct rpc_task *task)
 664{
 665	/* Initialize retry counters */
 666	task->tk_garb_retry = 2;
 667	task->tk_cred_retry = 2;
 668	task->tk_rebind_retry = 2;
 669
 670	/* starting timestamp */
 671	task->tk_start = ktime_get();
 672}
 673
 674static void
 675rpc_reset_task_statistics(struct rpc_task *task)
 676{
 677	task->tk_timeouts = 0;
 678	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
 679
 680	rpc_init_task_statistics(task);
 681}
 682
 683/*
 684 * Helper that calls task->tk_ops->rpc_call_done if it exists
 685 */
 686void rpc_exit_task(struct rpc_task *task)
 687{
 688	task->tk_action = NULL;
 
 
 
 
 689	if (task->tk_ops->rpc_call_done != NULL) {
 690		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 691		if (task->tk_action != NULL) {
 692			WARN_ON(RPC_ASSASSINATED(task));
 693			/* Always release the RPC slot and buffer memory */
 694			xprt_release(task);
 695			rpc_reset_task_statistics(task);
 696		}
 697	}
 698}
 699
 
 
 
 
 
 
 
 
 
 
 
 
 
 700void rpc_exit(struct rpc_task *task, int status)
 701{
 702	task->tk_status = status;
 703	task->tk_action = rpc_exit_task;
 704	if (RPC_IS_QUEUED(task))
 705		rpc_wake_up_queued_task(task->tk_waitqueue, task);
 706}
 707EXPORT_SYMBOL_GPL(rpc_exit);
 708
 709void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 710{
 711	if (ops->rpc_release != NULL)
 712		ops->rpc_release(calldata);
 713}
 714
 715/*
 716 * This is the RPC `scheduler' (or rather, the finite state machine).
 717 */
 718static void __rpc_execute(struct rpc_task *task)
 719{
 720	struct rpc_wait_queue *queue;
 721	int task_is_async = RPC_IS_ASYNC(task);
 722	int status = 0;
 723
 724	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 725			task->tk_pid, task->tk_flags);
 726
 727	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 728	if (RPC_IS_QUEUED(task))
 729		return;
 730
 731	for (;;) {
 732		void (*do_action)(struct rpc_task *);
 733
 734		/*
 735		 * Execute any pending callback first.
 
 
 
 
 736		 */
 737		do_action = task->tk_callback;
 738		task->tk_callback = NULL;
 739		if (do_action == NULL) {
 740			/*
 741			 * Perform the next FSM step.
 742			 * tk_action may be NULL if the task has been killed.
 743			 * In particular, note that rpc_killall_tasks may
 744			 * do this at any time, so beware when dereferencing.
 745			 */
 746			do_action = task->tk_action;
 747			if (do_action == NULL)
 748				break;
 749		}
 750		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
 
 
 751		do_action(task);
 752
 753		/*
 754		 * Lockless check for whether task is sleeping or not.
 755		 */
 756		if (!RPC_IS_QUEUED(task))
 757			continue;
 
 
 
 
 
 
 
 
 
 758		/*
 759		 * The queue->lock protects against races with
 760		 * rpc_make_runnable().
 761		 *
 762		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 763		 * rpc_task, rpc_make_runnable() can assign it to a
 764		 * different workqueue. We therefore cannot assume that the
 765		 * rpc_task pointer may still be dereferenced.
 766		 */
 767		queue = task->tk_waitqueue;
 768		spin_lock_bh(&queue->lock);
 769		if (!RPC_IS_QUEUED(task)) {
 770			spin_unlock_bh(&queue->lock);
 771			continue;
 772		}
 773		rpc_clear_running(task);
 774		spin_unlock_bh(&queue->lock);
 775		if (task_is_async)
 776			return;
 777
 778		/* sync task: sleep here */
 779		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 780		status = out_of_line_wait_on_bit(&task->tk_runstate,
 781				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 782				TASK_KILLABLE);
 783		if (status == -ERESTARTSYS) {
 784			/*
 785			 * When a sync task receives a signal, it exits with
 786			 * -ERESTARTSYS. In order to catch any callbacks that
 787			 * clean up after sleeping on some queue, we don't
 788			 * break the loop here, but go around once more.
 789			 */
 790			dprintk("RPC: %5u got signal\n", task->tk_pid);
 791			task->tk_flags |= RPC_TASK_KILLED;
 
 792			rpc_exit(task, -ERESTARTSYS);
 793		}
 794		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 795	}
 796
 797	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 798			task->tk_status);
 799	/* Release all resources associated with the task */
 800	rpc_release_task(task);
 801}
 802
 803/*
 804 * User-visible entry point to the scheduler.
 805 *
 806 * This may be called recursively if e.g. an async NFS task updates
 807 * the attributes and finds that dirty pages must be flushed.
 808 * NOTE: Upon exit of this function the task is guaranteed to be
 809 *	 released. In particular note that tk_release() will have
 810 *	 been called, so your task memory may have been freed.
 811 */
 812void rpc_execute(struct rpc_task *task)
 813{
 814	bool is_async = RPC_IS_ASYNC(task);
 815
 816	rpc_set_active(task);
 817	rpc_make_runnable(task);
 818	if (!is_async)
 819		__rpc_execute(task);
 820}
 821
 822static void rpc_async_schedule(struct work_struct *work)
 823{
 
 
 824	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 
 825}
 826
 827/**
 828 * rpc_malloc - allocate an RPC buffer
 829 * @task: RPC task that will use this buffer
 830 * @size: requested byte size
 
 
 
 831 *
 832 * To prevent rpciod from hanging, this allocator never sleeps,
 833 * returning NULL and suppressing warning if the request cannot be serviced
 834 * immediately.
 835 * The caller can arrange to sleep in a way that is safe for rpciod.
 836 *
 837 * Most requests are 'small' (under 2KiB) and can be serviced from a
 838 * mempool, ensuring that NFS reads and writes can always proceed,
 839 * and that there is good locality of reference for these buffers.
 840 *
 841 * In order to avoid memory starvation triggering more writebacks of
 842 * NFS requests, we avoid using GFP_KERNEL.
 843 */
 844void *rpc_malloc(struct rpc_task *task, size_t size)
 845{
 
 
 846	struct rpc_buffer *buf;
 847	gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
 848
 849	if (RPC_IS_SWAPPER(task))
 850		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
 851
 852	size += sizeof(struct rpc_buffer);
 853	if (size <= RPC_BUFFER_MAXSIZE)
 854		buf = mempool_alloc(rpc_buffer_mempool, gfp);
 855	else
 856		buf = kmalloc(size, gfp);
 857
 858	if (!buf)
 859		return NULL;
 860
 861	buf->len = size;
 862	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
 863			task->tk_pid, size, buf);
 864	return &buf->data;
 
 
 865}
 866EXPORT_SYMBOL_GPL(rpc_malloc);
 867
 868/**
 869 * rpc_free - free buffer allocated via rpc_malloc
 870 * @buffer: buffer to free
 871 *
 872 */
 873void rpc_free(void *buffer)
 874{
 
 875	size_t size;
 876	struct rpc_buffer *buf;
 877
 878	if (!buffer)
 879		return;
 880
 881	buf = container_of(buffer, struct rpc_buffer, data);
 882	size = buf->len;
 883
 884	dprintk("RPC:       freeing buffer of size %zu at %p\n",
 885			size, buf);
 886
 887	if (size <= RPC_BUFFER_MAXSIZE)
 888		mempool_free(buf, rpc_buffer_mempool);
 889	else
 890		kfree(buf);
 891}
 892EXPORT_SYMBOL_GPL(rpc_free);
 893
 894/*
 895 * Creation and deletion of RPC task structures
 896 */
 897static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
 898{
 899	memset(task, 0, sizeof(*task));
 900	atomic_set(&task->tk_count, 1);
 901	task->tk_flags  = task_setup_data->flags;
 902	task->tk_ops = task_setup_data->callback_ops;
 903	task->tk_calldata = task_setup_data->callback_data;
 904	INIT_LIST_HEAD(&task->tk_task);
 905
 906	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
 907	task->tk_owner = current->tgid;
 908
 909	/* Initialize workqueue for async tasks */
 910	task->tk_workqueue = task_setup_data->workqueue;
 911
 912	task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
 
 
 
 913
 914	if (task->tk_ops->rpc_call_prepare != NULL)
 915		task->tk_action = rpc_prepare_task;
 916
 917	rpc_init_task_statistics(task);
 918
 919	dprintk("RPC:       new task initialized, procpid %u\n",
 920				task_pid_nr(current));
 921}
 922
 923static struct rpc_task *
 924rpc_alloc_task(void)
 925{
 926	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
 927}
 928
 929/*
 930 * Create a new task for the specified client.
 931 */
 932struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
 933{
 934	struct rpc_task	*task = setup_data->task;
 935	unsigned short flags = 0;
 936
 937	if (task == NULL) {
 938		task = rpc_alloc_task();
 939		if (task == NULL) {
 940			rpc_release_calldata(setup_data->callback_ops,
 941					setup_data->callback_data);
 942			return ERR_PTR(-ENOMEM);
 943		}
 944		flags = RPC_TASK_DYNAMIC;
 945	}
 946
 947	rpc_init_task(task, setup_data);
 948	task->tk_flags |= flags;
 949	dprintk("RPC:       allocated task %p\n", task);
 950	return task;
 951}
 952
 953/*
 954 * rpc_free_task - release rpc task and perform cleanups
 955 *
 956 * Note that we free up the rpc_task _after_ rpc_release_calldata()
 957 * in order to work around a workqueue dependency issue.
 958 *
 959 * Tejun Heo states:
 960 * "Workqueue currently considers two work items to be the same if they're
 961 * on the same address and won't execute them concurrently - ie. it
 962 * makes a work item which is queued again while being executed wait
 963 * for the previous execution to complete.
 964 *
 965 * If a work function frees the work item, and then waits for an event
 966 * which should be performed by another work item and *that* work item
 967 * recycles the freed work item, it can create a false dependency loop.
 968 * There really is no reliable way to detect this short of verifying
 969 * every memory free."
 970 *
 971 */
 972static void rpc_free_task(struct rpc_task *task)
 973{
 974	unsigned short tk_flags = task->tk_flags;
 975
 
 976	rpc_release_calldata(task->tk_ops, task->tk_calldata);
 977
 978	if (tk_flags & RPC_TASK_DYNAMIC) {
 979		dprintk("RPC: %5u freeing task\n", task->tk_pid);
 980		mempool_free(task, rpc_task_mempool);
 981	}
 982}
 983
 984static void rpc_async_release(struct work_struct *work)
 985{
 
 
 986	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
 
 987}
 988
 989static void rpc_release_resources_task(struct rpc_task *task)
 990{
 991	xprt_release(task);
 992	if (task->tk_msg.rpc_cred) {
 993		put_rpccred(task->tk_msg.rpc_cred);
 994		task->tk_msg.rpc_cred = NULL;
 995	}
 996	rpc_task_release_client(task);
 997}
 998
 999static void rpc_final_put_task(struct rpc_task *task,
1000		struct workqueue_struct *q)
1001{
1002	if (q != NULL) {
1003		INIT_WORK(&task->u.tk_work, rpc_async_release);
1004		queue_work(q, &task->u.tk_work);
1005	} else
1006		rpc_free_task(task);
1007}
1008
1009static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1010{
1011	if (atomic_dec_and_test(&task->tk_count)) {
1012		rpc_release_resources_task(task);
1013		rpc_final_put_task(task, q);
1014	}
1015}
1016
1017void rpc_put_task(struct rpc_task *task)
1018{
1019	rpc_do_put_task(task, NULL);
1020}
1021EXPORT_SYMBOL_GPL(rpc_put_task);
1022
1023void rpc_put_task_async(struct rpc_task *task)
1024{
1025	rpc_do_put_task(task, task->tk_workqueue);
1026}
1027EXPORT_SYMBOL_GPL(rpc_put_task_async);
1028
1029static void rpc_release_task(struct rpc_task *task)
1030{
1031	dprintk("RPC: %5u release task\n", task->tk_pid);
1032
1033	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1034
1035	rpc_release_resources_task(task);
1036
1037	/*
1038	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1039	 * so it should be safe to use task->tk_count as a test for whether
1040	 * or not any other processes still hold references to our rpc_task.
1041	 */
1042	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1043		/* Wake up anyone who may be waiting for task completion */
1044		if (!rpc_complete_task(task))
1045			return;
1046	} else {
1047		if (!atomic_dec_and_test(&task->tk_count))
1048			return;
1049	}
1050	rpc_final_put_task(task, task->tk_workqueue);
1051}
1052
1053int rpciod_up(void)
1054{
1055	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1056}
1057
1058void rpciod_down(void)
1059{
1060	module_put(THIS_MODULE);
1061}
1062
1063/*
1064 * Start up the rpciod workqueue.
1065 */
1066static int rpciod_start(void)
1067{
1068	struct workqueue_struct *wq;
1069
1070	/*
1071	 * Create the rpciod thread and wait for it to start.
1072	 */
1073	dprintk("RPC:       creating workqueue rpciod\n");
1074	/* Note: highpri because network receive is latency sensitive */
1075	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
 
1076	rpciod_workqueue = wq;
1077	return rpciod_workqueue != NULL;
 
 
 
 
 
 
 
 
 
 
 
1078}
1079
1080static void rpciod_stop(void)
1081{
1082	struct workqueue_struct *wq = NULL;
1083
1084	if (rpciod_workqueue == NULL)
1085		return;
1086	dprintk("RPC:       destroying workqueue rpciod\n");
1087
1088	wq = rpciod_workqueue;
1089	rpciod_workqueue = NULL;
 
 
 
1090	destroy_workqueue(wq);
1091}
1092
1093void
1094rpc_destroy_mempool(void)
1095{
1096	rpciod_stop();
1097	mempool_destroy(rpc_buffer_mempool);
1098	mempool_destroy(rpc_task_mempool);
1099	kmem_cache_destroy(rpc_task_slabp);
1100	kmem_cache_destroy(rpc_buffer_slabp);
1101	rpc_destroy_wait_queue(&delay_queue);
1102}
1103
1104int
1105rpc_init_mempool(void)
1106{
1107	/*
1108	 * The following is not strictly a mempool initialisation,
1109	 * but there is no harm in doing it here
1110	 */
1111	rpc_init_wait_queue(&delay_queue, "delayq");
1112	if (!rpciod_start())
1113		goto err_nomem;
1114
1115	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1116					     sizeof(struct rpc_task),
1117					     0, SLAB_HWCACHE_ALIGN,
1118					     NULL);
1119	if (!rpc_task_slabp)
1120		goto err_nomem;
1121	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1122					     RPC_BUFFER_MAXSIZE,
1123					     0, SLAB_HWCACHE_ALIGN,
1124					     NULL);
1125	if (!rpc_buffer_slabp)
1126		goto err_nomem;
1127	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1128						    rpc_task_slabp);
1129	if (!rpc_task_mempool)
1130		goto err_nomem;
1131	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1132						      rpc_buffer_slabp);
1133	if (!rpc_buffer_mempool)
1134		goto err_nomem;
1135	return 0;
1136err_nomem:
1137	rpc_destroy_mempool();
1138	return -ENOMEM;
1139}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/sched.c
   4 *
   5 * Scheduling for synchronous and asynchronous RPC requests.
   6 *
   7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
   8 *
   9 * TCP NFS related read + write fixes
  10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  11 */
  12
  13#include <linux/module.h>
  14
  15#include <linux/sched.h>
  16#include <linux/interrupt.h>
  17#include <linux/slab.h>
  18#include <linux/mempool.h>
  19#include <linux/smp.h>
  20#include <linux/spinlock.h>
  21#include <linux/mutex.h>
  22#include <linux/freezer.h>
  23#include <linux/sched/mm.h>
  24
  25#include <linux/sunrpc/clnt.h>
  26#include <linux/sunrpc/metrics.h>
  27
  28#include "sunrpc.h"
  29
  30#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  31#define RPCDBG_FACILITY		RPCDBG_SCHED
  32#endif
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/sunrpc.h>
  36
  37/*
  38 * RPC slabs and memory pools
  39 */
  40#define RPC_BUFFER_MAXSIZE	(2048)
  41#define RPC_BUFFER_POOLSIZE	(8)
  42#define RPC_TASK_POOLSIZE	(8)
  43static struct kmem_cache	*rpc_task_slabp __read_mostly;
  44static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
  45static mempool_t	*rpc_task_mempool __read_mostly;
  46static mempool_t	*rpc_buffer_mempool __read_mostly;
  47
  48static void			rpc_async_schedule(struct work_struct *);
  49static void			 rpc_release_task(struct rpc_task *task);
  50static void __rpc_queue_timer_fn(struct work_struct *);
  51
  52/*
  53 * RPC tasks sit here while waiting for conditions to improve.
  54 */
  55static struct rpc_wait_queue delay_queue;
  56
  57/*
  58 * rpciod-related stuff
  59 */
  60struct workqueue_struct *rpciod_workqueue __read_mostly;
  61struct workqueue_struct *xprtiod_workqueue __read_mostly;
  62EXPORT_SYMBOL_GPL(xprtiod_workqueue);
  63
  64unsigned long
  65rpc_task_timeout(const struct rpc_task *task)
  66{
  67	unsigned long timeout = READ_ONCE(task->tk_timeout);
  68
  69	if (timeout != 0) {
  70		unsigned long now = jiffies;
  71		if (time_before(now, timeout))
  72			return timeout - now;
  73	}
  74	return 0;
  75}
  76EXPORT_SYMBOL_GPL(rpc_task_timeout);
  77
  78/*
  79 * Disable the timer for a given RPC task. Should be called with
  80 * queue->lock and bh_disabled in order to avoid races within
  81 * rpc_run_timer().
  82 */
  83static void
  84__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  85{
  86	if (list_empty(&task->u.tk_wait.timer_list))
  87		return;
  88	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  89	task->tk_timeout = 0;
  90	list_del(&task->u.tk_wait.timer_list);
  91	if (list_empty(&queue->timer_list.list))
  92		cancel_delayed_work(&queue->timer_list.dwork);
  93}
  94
  95static void
  96rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  97{
  98	unsigned long now = jiffies;
  99	queue->timer_list.expires = expires;
 100	if (time_before_eq(expires, now))
 101		expires = 0;
 102	else
 103		expires -= now;
 104	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
 105}
 106
 107/*
 108 * Set up a timer for the current task.
 109 */
 110static void
 111__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
 112		unsigned long timeout)
 113{
 
 
 
 114	dprintk("RPC: %5u setting alarm for %u ms\n",
 115		task->tk_pid, jiffies_to_msecs(timeout - jiffies));
 116
 117	task->tk_timeout = timeout;
 118	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
 119		rpc_set_queue_timer(queue, timeout);
 120	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
 121}
 122
 
 
 
 
 
 
 
 
 
 
 
 
 123static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
 124{
 125	if (queue->priority != priority) {
 
 
 126		queue->priority = priority;
 127		queue->nr = 1U << priority;
 128	}
 129}
 130
 
 
 
 
 
 
 131static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
 132{
 133	rpc_set_waitqueue_priority(queue, queue->maxpriority);
 
 134}
 135
 136/*
 137 * Add a request to a queue list
 138 */
 139static void
 140__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
 
 141{
 
 142	struct rpc_task *t;
 143
 
 
 
 
 
 
 144	list_for_each_entry(t, q, u.tk_wait.list) {
 145		if (t->tk_owner == task->tk_owner) {
 146			list_add_tail(&task->u.tk_wait.links,
 147					&t->u.tk_wait.links);
 148			/* Cache the queue head in task->u.tk_wait.list */
 149			task->u.tk_wait.list.next = q;
 150			task->u.tk_wait.list.prev = NULL;
 151			return;
 152		}
 153	}
 154	INIT_LIST_HEAD(&task->u.tk_wait.links);
 155	list_add_tail(&task->u.tk_wait.list, q);
 156}
 157
 158/*
 159 * Remove request from a queue list
 160 */
 161static void
 162__rpc_list_dequeue_task(struct rpc_task *task)
 163{
 164	struct list_head *q;
 165	struct rpc_task *t;
 166
 167	if (task->u.tk_wait.list.prev == NULL) {
 168		list_del(&task->u.tk_wait.links);
 169		return;
 170	}
 171	if (!list_empty(&task->u.tk_wait.links)) {
 172		t = list_first_entry(&task->u.tk_wait.links,
 173				struct rpc_task,
 174				u.tk_wait.links);
 175		/* Assume __rpc_list_enqueue_task() cached the queue head */
 176		q = t->u.tk_wait.list.next;
 177		list_add_tail(&t->u.tk_wait.list, q);
 178		list_del(&task->u.tk_wait.links);
 179	}
 180	list_del(&task->u.tk_wait.list);
 181}
 182
 183/*
 184 * Add new request to a priority queue.
 185 */
 186static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
 187		struct rpc_task *task,
 188		unsigned char queue_priority)
 189{
 190	if (unlikely(queue_priority > queue->maxpriority))
 191		queue_priority = queue->maxpriority;
 192	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
 193}
 194
 195/*
 196 * Add new request to wait queue.
 197 *
 198 * Swapper tasks always get inserted at the head of the queue.
 199 * This should avoid many nasty memory deadlocks and hopefully
 200 * improve overall performance.
 201 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
 202 */
 203static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
 204		struct rpc_task *task,
 205		unsigned char queue_priority)
 206{
 207	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 208	if (RPC_IS_QUEUED(task))
 209		return;
 210
 211	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
 212	if (RPC_IS_PRIORITY(queue))
 213		__rpc_add_wait_queue_priority(queue, task, queue_priority);
 214	else if (RPC_IS_SWAPPER(task))
 215		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
 216	else
 217		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
 218	task->tk_waitqueue = queue;
 219	queue->qlen++;
 220	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
 221	smp_wmb();
 222	rpc_set_queued(task);
 223
 224	dprintk("RPC: %5u added to queue %p \"%s\"\n",
 225			task->tk_pid, queue, rpc_qname(queue));
 226}
 227
 228/*
 229 * Remove request from a priority queue.
 230 */
 231static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
 232{
 233	__rpc_list_dequeue_task(task);
 
 
 
 
 
 
 234}
 235
 236/*
 237 * Remove request from queue.
 238 * Note: must be called with spin lock held.
 239 */
 240static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
 241{
 242	__rpc_disable_timer(queue, task);
 243	if (RPC_IS_PRIORITY(queue))
 244		__rpc_remove_wait_queue_priority(task);
 245	else
 246		list_del(&task->u.tk_wait.list);
 247	queue->qlen--;
 248	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
 249			task->tk_pid, queue, rpc_qname(queue));
 250}
 251
 252static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
 253{
 254	int i;
 255
 256	spin_lock_init(&queue->lock);
 257	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
 258		INIT_LIST_HEAD(&queue->tasks[i]);
 259	queue->maxpriority = nr_queues - 1;
 260	rpc_reset_waitqueue_priority(queue);
 261	queue->qlen = 0;
 262	queue->timer_list.expires = 0;
 263	INIT_DEFERRABLE_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
 264	INIT_LIST_HEAD(&queue->timer_list.list);
 265	rpc_assign_waitqueue_name(queue, qname);
 266}
 267
 268void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 269{
 270	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
 271}
 272EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
 273
 274void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
 275{
 276	__rpc_init_priority_wait_queue(queue, qname, 1);
 277}
 278EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
 279
 280void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
 281{
 282	cancel_delayed_work_sync(&queue->timer_list.dwork);
 283}
 284EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
 285
 286static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
 287{
 288	freezable_schedule_unsafe();
 289	if (signal_pending_state(mode, current))
 290		return -ERESTARTSYS;
 291	return 0;
 292}
 293
 294#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
 295static void rpc_task_set_debuginfo(struct rpc_task *task)
 296{
 297	static atomic_t rpc_pid;
 298
 299	task->tk_pid = atomic_inc_return(&rpc_pid);
 300}
 301#else
 302static inline void rpc_task_set_debuginfo(struct rpc_task *task)
 303{
 304}
 305#endif
 306
 307static void rpc_set_active(struct rpc_task *task)
 308{
 
 
 309	rpc_task_set_debuginfo(task);
 310	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 311	trace_rpc_task_begin(task, NULL);
 312}
 313
 314/*
 315 * Mark an RPC call as having completed by clearing the 'active' bit
 316 * and then waking up all tasks that were sleeping.
 317 */
 318static int rpc_complete_task(struct rpc_task *task)
 319{
 320	void *m = &task->tk_runstate;
 321	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
 322	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
 323	unsigned long flags;
 324	int ret;
 325
 326	trace_rpc_task_complete(task, NULL);
 327
 328	spin_lock_irqsave(&wq->lock, flags);
 329	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
 330	ret = atomic_dec_and_test(&task->tk_count);
 331	if (waitqueue_active(wq))
 332		__wake_up_locked_key(wq, TASK_NORMAL, &k);
 333	spin_unlock_irqrestore(&wq->lock, flags);
 334	return ret;
 335}
 336
 337/*
 338 * Allow callers to wait for completion of an RPC call
 339 *
 340 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
 341 * to enforce taking of the wq->lock and hence avoid races with
 342 * rpc_complete_task().
 343 */
 344int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
 345{
 346	if (action == NULL)
 347		action = rpc_wait_bit_killable;
 348	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
 349			action, TASK_KILLABLE);
 350}
 351EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
 352
 353/*
 354 * Make an RPC task runnable.
 355 *
 356 * Note: If the task is ASYNC, and is being made runnable after sitting on an
 357 * rpc_wait_queue, this must be called with the queue spinlock held to protect
 358 * the wait queue operation.
 359 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
 360 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
 361 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
 362 * the RPC_TASK_RUNNING flag.
 363 */
 364static void rpc_make_runnable(struct workqueue_struct *wq,
 365		struct rpc_task *task)
 366{
 367	bool need_wakeup = !rpc_test_and_set_running(task);
 368
 369	rpc_clear_queued(task);
 370	if (!need_wakeup)
 371		return;
 372	if (RPC_IS_ASYNC(task)) {
 373		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
 374		queue_work(wq, &task->u.tk_work);
 375	} else
 376		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
 377}
 378
 379/*
 380 * Prepare for sleeping on a wait queue.
 381 * By always appending tasks to the list we ensure FIFO behavior.
 382 * NB: An RPC task will only receive interrupt-driven events as long
 383 * as it's on a wait queue.
 384 */
 385static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
 386		struct rpc_task *task,
 
 387		unsigned char queue_priority)
 388{
 389	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
 390			task->tk_pid, rpc_qname(q), jiffies);
 391
 392	trace_rpc_task_sleep(task, q);
 393
 394	__rpc_add_wait_queue(q, task, queue_priority);
 395
 
 
 
 396}
 397
 398static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 399		struct rpc_task *task, unsigned long timeout,
 400		unsigned char queue_priority)
 401{
 402	if (time_is_after_jiffies(timeout)) {
 403		__rpc_sleep_on_priority(q, task, queue_priority);
 404		__rpc_add_timer(q, task, timeout);
 405	} else
 406		task->tk_status = -ETIMEDOUT;
 407}
 408
 409static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
 410{
 411	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
 412		task->tk_callback = action;
 413}
 414
 415static bool rpc_sleep_check_activated(struct rpc_task *task)
 416{
 417	/* We shouldn't ever put an inactive task to sleep */
 418	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
 
 419		task->tk_status = -EIO;
 420		rpc_put_task_async(task);
 421		return false;
 422	}
 423	return true;
 424}
 425
 426void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
 427				rpc_action action, unsigned long timeout)
 428{
 429	if (!rpc_sleep_check_activated(task))
 430		return;
 431
 432	rpc_set_tk_callback(task, action);
 433
 434	/*
 435	 * Protect the queue operations.
 436	 */
 437	spin_lock(&q->lock);
 438	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
 439	spin_unlock(&q->lock);
 440}
 441EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
 442
 443void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
 444				rpc_action action)
 445{
 446	if (!rpc_sleep_check_activated(task))
 447		return;
 448
 449	rpc_set_tk_callback(task, action);
 450
 451	WARN_ON_ONCE(task->tk_timeout != 0);
 452	/*
 453	 * Protect the queue operations.
 454	 */
 455	spin_lock(&q->lock);
 456	__rpc_sleep_on_priority(q, task, task->tk_priority);
 457	spin_unlock(&q->lock);
 458}
 459EXPORT_SYMBOL_GPL(rpc_sleep_on);
 460
 461void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
 462		struct rpc_task *task, unsigned long timeout, int priority)
 463{
 464	if (!rpc_sleep_check_activated(task))
 465		return;
 466
 467	priority -= RPC_PRIORITY_LOW;
 468	/*
 469	 * Protect the queue operations.
 470	 */
 471	spin_lock(&q->lock);
 472	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
 473	spin_unlock(&q->lock);
 474}
 475EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
 476
 477void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
 478		int priority)
 479{
 480	if (!rpc_sleep_check_activated(task))
 
 
 
 
 481		return;
 
 482
 483	WARN_ON_ONCE(task->tk_timeout != 0);
 484	priority -= RPC_PRIORITY_LOW;
 485	/*
 486	 * Protect the queue operations.
 487	 */
 488	spin_lock(&q->lock);
 489	__rpc_sleep_on_priority(q, task, priority);
 490	spin_unlock(&q->lock);
 491}
 492EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
 493
 494/**
 495 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
 496 * @wq: workqueue on which to run task
 497 * @queue: wait queue
 498 * @task: task to be woken up
 499 *
 500 * Caller must hold queue->lock, and have cleared the task queued flag.
 501 */
 502static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
 503		struct rpc_wait_queue *queue,
 504		struct rpc_task *task)
 505{
 506	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
 507			task->tk_pid, jiffies);
 508
 509	/* Has the task been executed yet? If not, we cannot wake it up! */
 510	if (!RPC_IS_ACTIVATED(task)) {
 511		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
 512		return;
 513	}
 514
 515	trace_rpc_task_wakeup(task, queue);
 516
 517	__rpc_remove_wait_queue(queue, task);
 518
 519	rpc_make_runnable(wq, task);
 520
 521	dprintk("RPC:       __rpc_wake_up_task done\n");
 522}
 523
 524/*
 525 * Wake up a queued task while the queue lock is being held
 526 */
 527static struct rpc_task *
 528rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
 529		struct rpc_wait_queue *queue, struct rpc_task *task,
 530		bool (*action)(struct rpc_task *, void *), void *data)
 531{
 532	if (RPC_IS_QUEUED(task)) {
 533		smp_rmb();
 534		if (task->tk_waitqueue == queue) {
 535			if (action == NULL || action(task, data)) {
 536				__rpc_do_wake_up_task_on_wq(wq, queue, task);
 537				return task;
 538			}
 539		}
 540	}
 541	return NULL;
 542}
 543
 544/*
 545 * Wake up a queued task while the queue lock is being held
 546 */
 547static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
 548					  struct rpc_task *task)
 549{
 550	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 551						   task, NULL, NULL);
 552}
 553
 554/*
 555 * Wake up a task on a specific queue
 556 */
 557void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
 558{
 559	if (!RPC_IS_QUEUED(task))
 560		return;
 561	spin_lock(&queue->lock);
 562	rpc_wake_up_task_queue_locked(queue, task);
 563	spin_unlock(&queue->lock);
 564}
 565EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
 566
 567static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
 568{
 569	task->tk_status = *(int *)status;
 570	return true;
 571}
 572
 573static void
 574rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
 575		struct rpc_task *task, int status)
 576{
 577	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
 578			task, rpc_task_action_set_status, &status);
 579}
 580
 581/**
 582 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
 583 * @queue: pointer to rpc_wait_queue
 584 * @task: pointer to rpc_task
 585 * @status: integer error value
 586 *
 587 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
 588 * set to the value of @status.
 589 */
 590void
 591rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
 592		struct rpc_task *task, int status)
 593{
 594	if (!RPC_IS_QUEUED(task))
 595		return;
 596	spin_lock(&queue->lock);
 597	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
 598	spin_unlock(&queue->lock);
 599}
 600
 601/*
 602 * Wake up the next task on a priority queue.
 603 */
 604static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
 605{
 606	struct list_head *q;
 607	struct rpc_task *task;
 608
 609	/*
 610	 * Service a batch of tasks from a single owner.
 611	 */
 612	q = &queue->tasks[queue->priority];
 613	if (!list_empty(q) && --queue->nr) {
 614		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 615		goto out;
 
 
 
 
 
 
 
 
 616	}
 617
 618	/*
 619	 * Service the next queue.
 620	 */
 621	do {
 622		if (q == &queue->tasks[0])
 623			q = &queue->tasks[queue->maxpriority];
 624		else
 625			q = q - 1;
 626		if (!list_empty(q)) {
 627			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
 628			goto new_queue;
 629		}
 630	} while (q != &queue->tasks[queue->priority]);
 631
 632	rpc_reset_waitqueue_priority(queue);
 633	return NULL;
 634
 635new_queue:
 636	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
 
 
 637out:
 638	return task;
 639}
 640
 641static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
 642{
 643	if (RPC_IS_PRIORITY(queue))
 644		return __rpc_find_next_queued_priority(queue);
 645	if (!list_empty(&queue->tasks[0]))
 646		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
 647	return NULL;
 648}
 649
 650/*
 651 * Wake up the first task on the wait queue.
 652 */
 653struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
 654		struct rpc_wait_queue *queue,
 655		bool (*func)(struct rpc_task *, void *), void *data)
 656{
 657	struct rpc_task	*task = NULL;
 658
 659	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
 660			queue, rpc_qname(queue));
 661	spin_lock(&queue->lock);
 662	task = __rpc_find_next_queued(queue);
 663	if (task != NULL)
 664		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
 665				task, func, data);
 666	spin_unlock(&queue->lock);
 
 
 
 667
 668	return task;
 669}
 670
 671/*
 672 * Wake up the first task on the wait queue.
 673 */
 674struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
 675		bool (*func)(struct rpc_task *, void *), void *data)
 676{
 677	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
 678}
 679EXPORT_SYMBOL_GPL(rpc_wake_up_first);
 680
 681static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
 682{
 683	return true;
 684}
 685
 686/*
 687 * Wake up the next task on the wait queue.
 688*/
 689struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
 690{
 691	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
 692}
 693EXPORT_SYMBOL_GPL(rpc_wake_up_next);
 694
 695/**
 696 * rpc_wake_up - wake up all rpc_tasks
 697 * @queue: rpc_wait_queue on which the tasks are sleeping
 698 *
 699 * Grabs queue->lock
 700 */
 701void rpc_wake_up(struct rpc_wait_queue *queue)
 702{
 703	struct list_head *head;
 704
 705	spin_lock(&queue->lock);
 706	head = &queue->tasks[queue->maxpriority];
 707	for (;;) {
 708		while (!list_empty(head)) {
 709			struct rpc_task *task;
 710			task = list_first_entry(head,
 711					struct rpc_task,
 712					u.tk_wait.list);
 713			rpc_wake_up_task_queue_locked(queue, task);
 714		}
 715		if (head == &queue->tasks[0])
 716			break;
 717		head--;
 718	}
 719	spin_unlock(&queue->lock);
 720}
 721EXPORT_SYMBOL_GPL(rpc_wake_up);
 722
 723/**
 724 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
 725 * @queue: rpc_wait_queue on which the tasks are sleeping
 726 * @status: status value to set
 727 *
 728 * Grabs queue->lock
 729 */
 730void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
 731{
 732	struct list_head *head;
 733
 734	spin_lock(&queue->lock);
 735	head = &queue->tasks[queue->maxpriority];
 736	for (;;) {
 737		while (!list_empty(head)) {
 738			struct rpc_task *task;
 739			task = list_first_entry(head,
 740					struct rpc_task,
 741					u.tk_wait.list);
 742			task->tk_status = status;
 743			rpc_wake_up_task_queue_locked(queue, task);
 744		}
 745		if (head == &queue->tasks[0])
 746			break;
 747		head--;
 748	}
 749	spin_unlock(&queue->lock);
 750}
 751EXPORT_SYMBOL_GPL(rpc_wake_up_status);
 752
 753static void __rpc_queue_timer_fn(struct work_struct *work)
 754{
 755	struct rpc_wait_queue *queue = container_of(work,
 756			struct rpc_wait_queue,
 757			timer_list.dwork.work);
 758	struct rpc_task *task, *n;
 759	unsigned long expires, now, timeo;
 760
 761	spin_lock(&queue->lock);
 762	expires = now = jiffies;
 763	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
 764		timeo = task->tk_timeout;
 765		if (time_after_eq(now, timeo)) {
 766			dprintk("RPC: %5u timeout\n", task->tk_pid);
 767			task->tk_status = -ETIMEDOUT;
 768			rpc_wake_up_task_queue_locked(queue, task);
 769			continue;
 770		}
 771		if (expires == now || time_after(expires, timeo))
 772			expires = timeo;
 773	}
 774	if (!list_empty(&queue->timer_list.list))
 775		rpc_set_queue_timer(queue, expires);
 776	spin_unlock(&queue->lock);
 777}
 778
 779static void __rpc_atrun(struct rpc_task *task)
 780{
 781	if (task->tk_status == -ETIMEDOUT)
 782		task->tk_status = 0;
 783}
 784
 785/*
 786 * Run a task at a later time
 787 */
 788void rpc_delay(struct rpc_task *task, unsigned long delay)
 789{
 790	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
 
 791}
 792EXPORT_SYMBOL_GPL(rpc_delay);
 793
 794/*
 795 * Helper to call task->tk_ops->rpc_call_prepare
 796 */
 797void rpc_prepare_task(struct rpc_task *task)
 798{
 799	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
 800}
 801
 802static void
 803rpc_init_task_statistics(struct rpc_task *task)
 804{
 805	/* Initialize retry counters */
 806	task->tk_garb_retry = 2;
 807	task->tk_cred_retry = 2;
 808	task->tk_rebind_retry = 2;
 809
 810	/* starting timestamp */
 811	task->tk_start = ktime_get();
 812}
 813
 814static void
 815rpc_reset_task_statistics(struct rpc_task *task)
 816{
 817	task->tk_timeouts = 0;
 818	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
 
 819	rpc_init_task_statistics(task);
 820}
 821
 822/*
 823 * Helper that calls task->tk_ops->rpc_call_done if it exists
 824 */
 825void rpc_exit_task(struct rpc_task *task)
 826{
 827	task->tk_action = NULL;
 828	if (task->tk_ops->rpc_count_stats)
 829		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
 830	else if (task->tk_client)
 831		rpc_count_iostats(task, task->tk_client->cl_metrics);
 832	if (task->tk_ops->rpc_call_done != NULL) {
 833		task->tk_ops->rpc_call_done(task, task->tk_calldata);
 834		if (task->tk_action != NULL) {
 
 835			/* Always release the RPC slot and buffer memory */
 836			xprt_release(task);
 837			rpc_reset_task_statistics(task);
 838		}
 839	}
 840}
 841
 842void rpc_signal_task(struct rpc_task *task)
 843{
 844	struct rpc_wait_queue *queue;
 845
 846	if (!RPC_IS_ACTIVATED(task))
 847		return;
 848	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 849	smp_mb__after_atomic();
 850	queue = READ_ONCE(task->tk_waitqueue);
 851	if (queue)
 852		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
 853}
 854
 855void rpc_exit(struct rpc_task *task, int status)
 856{
 857	task->tk_status = status;
 858	task->tk_action = rpc_exit_task;
 859	rpc_wake_up_queued_task(task->tk_waitqueue, task);
 
 860}
 861EXPORT_SYMBOL_GPL(rpc_exit);
 862
 863void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
 864{
 865	if (ops->rpc_release != NULL)
 866		ops->rpc_release(calldata);
 867}
 868
 869/*
 870 * This is the RPC `scheduler' (or rather, the finite state machine).
 871 */
 872static void __rpc_execute(struct rpc_task *task)
 873{
 874	struct rpc_wait_queue *queue;
 875	int task_is_async = RPC_IS_ASYNC(task);
 876	int status = 0;
 877
 878	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
 879			task->tk_pid, task->tk_flags);
 880
 881	WARN_ON_ONCE(RPC_IS_QUEUED(task));
 882	if (RPC_IS_QUEUED(task))
 883		return;
 884
 885	for (;;) {
 886		void (*do_action)(struct rpc_task *);
 887
 888		/*
 889		 * Perform the next FSM step or a pending callback.
 890		 *
 891		 * tk_action may be NULL if the task has been killed.
 892		 * In particular, note that rpc_killall_tasks may
 893		 * do this at any time, so beware when dereferencing.
 894		 */
 895		do_action = task->tk_action;
 896		if (task->tk_callback) {
 897			do_action = task->tk_callback;
 898			task->tk_callback = NULL;
 
 
 
 
 
 
 
 
 899		}
 900		if (!do_action)
 901			break;
 902		trace_rpc_task_run_action(task, do_action);
 903		do_action(task);
 904
 905		/*
 906		 * Lockless check for whether task is sleeping or not.
 907		 */
 908		if (!RPC_IS_QUEUED(task))
 909			continue;
 910
 911		/*
 912		 * Signalled tasks should exit rather than sleep.
 913		 */
 914		if (RPC_SIGNALLED(task)) {
 915			task->tk_rpc_status = -ERESTARTSYS;
 916			rpc_exit(task, -ERESTARTSYS);
 917		}
 918
 919		/*
 920		 * The queue->lock protects against races with
 921		 * rpc_make_runnable().
 922		 *
 923		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
 924		 * rpc_task, rpc_make_runnable() can assign it to a
 925		 * different workqueue. We therefore cannot assume that the
 926		 * rpc_task pointer may still be dereferenced.
 927		 */
 928		queue = task->tk_waitqueue;
 929		spin_lock(&queue->lock);
 930		if (!RPC_IS_QUEUED(task)) {
 931			spin_unlock(&queue->lock);
 932			continue;
 933		}
 934		rpc_clear_running(task);
 935		spin_unlock(&queue->lock);
 936		if (task_is_async)
 937			return;
 938
 939		/* sync task: sleep here */
 940		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
 941		status = out_of_line_wait_on_bit(&task->tk_runstate,
 942				RPC_TASK_QUEUED, rpc_wait_bit_killable,
 943				TASK_KILLABLE);
 944		if (status < 0) {
 945			/*
 946			 * When a sync task receives a signal, it exits with
 947			 * -ERESTARTSYS. In order to catch any callbacks that
 948			 * clean up after sleeping on some queue, we don't
 949			 * break the loop here, but go around once more.
 950			 */
 951			dprintk("RPC: %5u got signal\n", task->tk_pid);
 952			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
 953			task->tk_rpc_status = -ERESTARTSYS;
 954			rpc_exit(task, -ERESTARTSYS);
 955		}
 956		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
 957	}
 958
 959	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
 960			task->tk_status);
 961	/* Release all resources associated with the task */
 962	rpc_release_task(task);
 963}
 964
 965/*
 966 * User-visible entry point to the scheduler.
 967 *
 968 * This may be called recursively if e.g. an async NFS task updates
 969 * the attributes and finds that dirty pages must be flushed.
 970 * NOTE: Upon exit of this function the task is guaranteed to be
 971 *	 released. In particular note that tk_release() will have
 972 *	 been called, so your task memory may have been freed.
 973 */
 974void rpc_execute(struct rpc_task *task)
 975{
 976	bool is_async = RPC_IS_ASYNC(task);
 977
 978	rpc_set_active(task);
 979	rpc_make_runnable(rpciod_workqueue, task);
 980	if (!is_async)
 981		__rpc_execute(task);
 982}
 983
 984static void rpc_async_schedule(struct work_struct *work)
 985{
 986	unsigned int pflags = memalloc_nofs_save();
 987
 988	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
 989	memalloc_nofs_restore(pflags);
 990}
 991
 992/**
 993 * rpc_malloc - allocate RPC buffer resources
 994 * @task: RPC task
 995 *
 996 * A single memory region is allocated, which is split between the
 997 * RPC call and RPC reply that this task is being used for. When
 998 * this RPC is retired, the memory is released by calling rpc_free.
 999 *
1000 * To prevent rpciod from hanging, this allocator never sleeps,
1001 * returning -ENOMEM and suppressing warning if the request cannot
1002 * be serviced immediately. The caller can arrange to sleep in a
1003 * way that is safe for rpciod.
1004 *
1005 * Most requests are 'small' (under 2KiB) and can be serviced from a
1006 * mempool, ensuring that NFS reads and writes can always proceed,
1007 * and that there is good locality of reference for these buffers.
 
 
 
1008 */
1009int rpc_malloc(struct rpc_task *task)
1010{
1011	struct rpc_rqst *rqst = task->tk_rqstp;
1012	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1013	struct rpc_buffer *buf;
1014	gfp_t gfp = GFP_NOFS;
1015
1016	if (RPC_IS_SWAPPER(task))
1017		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
1018
1019	size += sizeof(struct rpc_buffer);
1020	if (size <= RPC_BUFFER_MAXSIZE)
1021		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1022	else
1023		buf = kmalloc(size, gfp);
1024
1025	if (!buf)
1026		return -ENOMEM;
1027
1028	buf->len = size;
1029	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1030			task->tk_pid, size, buf);
1031	rqst->rq_buffer = buf->data;
1032	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1033	return 0;
1034}
1035EXPORT_SYMBOL_GPL(rpc_malloc);
1036
1037/**
1038 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1039 * @task: RPC task
1040 *
1041 */
1042void rpc_free(struct rpc_task *task)
1043{
1044	void *buffer = task->tk_rqstp->rq_buffer;
1045	size_t size;
1046	struct rpc_buffer *buf;
1047
 
 
 
1048	buf = container_of(buffer, struct rpc_buffer, data);
1049	size = buf->len;
1050
1051	dprintk("RPC:       freeing buffer of size %zu at %p\n",
1052			size, buf);
1053
1054	if (size <= RPC_BUFFER_MAXSIZE)
1055		mempool_free(buf, rpc_buffer_mempool);
1056	else
1057		kfree(buf);
1058}
1059EXPORT_SYMBOL_GPL(rpc_free);
1060
1061/*
1062 * Creation and deletion of RPC task structures
1063 */
1064static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1065{
1066	memset(task, 0, sizeof(*task));
1067	atomic_set(&task->tk_count, 1);
1068	task->tk_flags  = task_setup_data->flags;
1069	task->tk_ops = task_setup_data->callback_ops;
1070	task->tk_calldata = task_setup_data->callback_data;
1071	INIT_LIST_HEAD(&task->tk_task);
1072
1073	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1074	task->tk_owner = current->tgid;
1075
1076	/* Initialize workqueue for async tasks */
1077	task->tk_workqueue = task_setup_data->workqueue;
1078
1079	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1080			xprt_get(task_setup_data->rpc_xprt));
1081
1082	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1083
1084	if (task->tk_ops->rpc_call_prepare != NULL)
1085		task->tk_action = rpc_prepare_task;
1086
1087	rpc_init_task_statistics(task);
1088
1089	dprintk("RPC:       new task initialized, procpid %u\n",
1090				task_pid_nr(current));
1091}
1092
1093static struct rpc_task *
1094rpc_alloc_task(void)
1095{
1096	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1097}
1098
1099/*
1100 * Create a new task for the specified client.
1101 */
1102struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1103{
1104	struct rpc_task	*task = setup_data->task;
1105	unsigned short flags = 0;
1106
1107	if (task == NULL) {
1108		task = rpc_alloc_task();
 
 
 
 
 
1109		flags = RPC_TASK_DYNAMIC;
1110	}
1111
1112	rpc_init_task(task, setup_data);
1113	task->tk_flags |= flags;
1114	dprintk("RPC:       allocated task %p\n", task);
1115	return task;
1116}
1117
1118/*
1119 * rpc_free_task - release rpc task and perform cleanups
1120 *
1121 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1122 * in order to work around a workqueue dependency issue.
1123 *
1124 * Tejun Heo states:
1125 * "Workqueue currently considers two work items to be the same if they're
1126 * on the same address and won't execute them concurrently - ie. it
1127 * makes a work item which is queued again while being executed wait
1128 * for the previous execution to complete.
1129 *
1130 * If a work function frees the work item, and then waits for an event
1131 * which should be performed by another work item and *that* work item
1132 * recycles the freed work item, it can create a false dependency loop.
1133 * There really is no reliable way to detect this short of verifying
1134 * every memory free."
1135 *
1136 */
1137static void rpc_free_task(struct rpc_task *task)
1138{
1139	unsigned short tk_flags = task->tk_flags;
1140
1141	put_rpccred(task->tk_op_cred);
1142	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1143
1144	if (tk_flags & RPC_TASK_DYNAMIC) {
1145		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1146		mempool_free(task, rpc_task_mempool);
1147	}
1148}
1149
1150static void rpc_async_release(struct work_struct *work)
1151{
1152	unsigned int pflags = memalloc_nofs_save();
1153
1154	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1155	memalloc_nofs_restore(pflags);
1156}
1157
1158static void rpc_release_resources_task(struct rpc_task *task)
1159{
1160	xprt_release(task);
1161	if (task->tk_msg.rpc_cred) {
1162		put_cred(task->tk_msg.rpc_cred);
1163		task->tk_msg.rpc_cred = NULL;
1164	}
1165	rpc_task_release_client(task);
1166}
1167
1168static void rpc_final_put_task(struct rpc_task *task,
1169		struct workqueue_struct *q)
1170{
1171	if (q != NULL) {
1172		INIT_WORK(&task->u.tk_work, rpc_async_release);
1173		queue_work(q, &task->u.tk_work);
1174	} else
1175		rpc_free_task(task);
1176}
1177
1178static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1179{
1180	if (atomic_dec_and_test(&task->tk_count)) {
1181		rpc_release_resources_task(task);
1182		rpc_final_put_task(task, q);
1183	}
1184}
1185
1186void rpc_put_task(struct rpc_task *task)
1187{
1188	rpc_do_put_task(task, NULL);
1189}
1190EXPORT_SYMBOL_GPL(rpc_put_task);
1191
1192void rpc_put_task_async(struct rpc_task *task)
1193{
1194	rpc_do_put_task(task, task->tk_workqueue);
1195}
1196EXPORT_SYMBOL_GPL(rpc_put_task_async);
1197
1198static void rpc_release_task(struct rpc_task *task)
1199{
1200	dprintk("RPC: %5u release task\n", task->tk_pid);
1201
1202	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1203
1204	rpc_release_resources_task(task);
1205
1206	/*
1207	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1208	 * so it should be safe to use task->tk_count as a test for whether
1209	 * or not any other processes still hold references to our rpc_task.
1210	 */
1211	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1212		/* Wake up anyone who may be waiting for task completion */
1213		if (!rpc_complete_task(task))
1214			return;
1215	} else {
1216		if (!atomic_dec_and_test(&task->tk_count))
1217			return;
1218	}
1219	rpc_final_put_task(task, task->tk_workqueue);
1220}
1221
1222int rpciod_up(void)
1223{
1224	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1225}
1226
1227void rpciod_down(void)
1228{
1229	module_put(THIS_MODULE);
1230}
1231
1232/*
1233 * Start up the rpciod workqueue.
1234 */
1235static int rpciod_start(void)
1236{
1237	struct workqueue_struct *wq;
1238
1239	/*
1240	 * Create the rpciod thread and wait for it to start.
1241	 */
1242	dprintk("RPC:       creating workqueue rpciod\n");
1243	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1244	if (!wq)
1245		goto out_failed;
1246	rpciod_workqueue = wq;
1247	/* Note: highpri because network receive is latency sensitive */
1248	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1249	if (!wq)
1250		goto free_rpciod;
1251	xprtiod_workqueue = wq;
1252	return 1;
1253free_rpciod:
1254	wq = rpciod_workqueue;
1255	rpciod_workqueue = NULL;
1256	destroy_workqueue(wq);
1257out_failed:
1258	return 0;
1259}
1260
1261static void rpciod_stop(void)
1262{
1263	struct workqueue_struct *wq = NULL;
1264
1265	if (rpciod_workqueue == NULL)
1266		return;
1267	dprintk("RPC:       destroying workqueue rpciod\n");
1268
1269	wq = rpciod_workqueue;
1270	rpciod_workqueue = NULL;
1271	destroy_workqueue(wq);
1272	wq = xprtiod_workqueue;
1273	xprtiod_workqueue = NULL;
1274	destroy_workqueue(wq);
1275}
1276
1277void
1278rpc_destroy_mempool(void)
1279{
1280	rpciod_stop();
1281	mempool_destroy(rpc_buffer_mempool);
1282	mempool_destroy(rpc_task_mempool);
1283	kmem_cache_destroy(rpc_task_slabp);
1284	kmem_cache_destroy(rpc_buffer_slabp);
1285	rpc_destroy_wait_queue(&delay_queue);
1286}
1287
1288int
1289rpc_init_mempool(void)
1290{
1291	/*
1292	 * The following is not strictly a mempool initialisation,
1293	 * but there is no harm in doing it here
1294	 */
1295	rpc_init_wait_queue(&delay_queue, "delayq");
1296	if (!rpciod_start())
1297		goto err_nomem;
1298
1299	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1300					     sizeof(struct rpc_task),
1301					     0, SLAB_HWCACHE_ALIGN,
1302					     NULL);
1303	if (!rpc_task_slabp)
1304		goto err_nomem;
1305	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1306					     RPC_BUFFER_MAXSIZE,
1307					     0, SLAB_HWCACHE_ALIGN,
1308					     NULL);
1309	if (!rpc_buffer_slabp)
1310		goto err_nomem;
1311	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1312						    rpc_task_slabp);
1313	if (!rpc_task_mempool)
1314		goto err_nomem;
1315	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1316						      rpc_buffer_slabp);
1317	if (!rpc_buffer_mempool)
1318		goto err_nomem;
1319	return 0;
1320err_nomem:
1321	rpc_destroy_mempool();
1322	return -ENOMEM;
1323}