Loading...
Note: File does not exist in v4.6.
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-direct.h>
11#include <linux/dma-noncoherent.h>
12#include <linux/export.h>
13#include <linux/gfp.h>
14#include <linux/of_device.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17
18/*
19 * Managed DMA API
20 */
21struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
26};
27
28static void dmam_release(struct device *dev, void *res)
29{
30 struct dma_devres *this = res;
31
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
34}
35
36static int dmam_match(struct device *dev, void *res, void *match_data)
37{
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46}
47
48/**
49 * dmam_free_coherent - Managed dma_free_coherent()
50 * @dev: Device to free coherent memory for
51 * @size: Size of allocation
52 * @vaddr: Virtual address of the memory to free
53 * @dma_handle: DMA handle of the memory to free
54 *
55 * Managed dma_free_coherent().
56 */
57void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 dma_addr_t dma_handle)
59{
60 struct dma_devres match_data = { size, vaddr, dma_handle };
61
62 dma_free_coherent(dev, size, vaddr, dma_handle);
63 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64}
65EXPORT_SYMBOL(dmam_free_coherent);
66
67/**
68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
69 * @dev: Device to allocate non_coherent memory for
70 * @size: Size of allocation
71 * @dma_handle: Out argument for allocated DMA handle
72 * @gfp: Allocation flags
73 * @attrs: Flags in the DMA_ATTR_* namespace.
74 *
75 * Managed dma_alloc_attrs(). Memory allocated using this function will be
76 * automatically released on driver detach.
77 *
78 * RETURNS:
79 * Pointer to allocated memory on success, NULL on failure.
80 */
81void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 gfp_t gfp, unsigned long attrs)
83{
84 struct dma_devres *dr;
85 void *vaddr;
86
87 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 if (!dr)
89 return NULL;
90
91 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 if (!vaddr) {
93 devres_free(dr);
94 return NULL;
95 }
96
97 dr->vaddr = vaddr;
98 dr->dma_handle = *dma_handle;
99 dr->size = size;
100 dr->attrs = attrs;
101
102 devres_add(dev, dr);
103
104 return vaddr;
105}
106EXPORT_SYMBOL(dmam_alloc_attrs);
107
108/*
109 * Create scatter-list for the already allocated DMA buffer.
110 */
111int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 unsigned long attrs)
114{
115 struct page *page;
116 int ret;
117
118 if (!dev_is_dma_coherent(dev)) {
119 unsigned long pfn;
120
121 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122 return -ENXIO;
123
124 /* If the PFN is not valid, we do not have a struct page */
125 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126 if (!pfn_valid(pfn))
127 return -ENXIO;
128 page = pfn_to_page(pfn);
129 } else {
130 page = virt_to_page(cpu_addr);
131 }
132
133 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134 if (!ret)
135 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136 return ret;
137}
138
139/*
140 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
141 * that the intention is to allow exporting memory allocated via the
142 * coherent DMA APIs through the dma_buf API, which only accepts a
143 * scattertable. This presents a couple of problems:
144 * 1. Not all memory allocated via the coherent DMA APIs is backed by
145 * a struct page
146 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
147 * as we will try to flush the memory through a different alias to that
148 * actually being used (and the flushes are redundant.)
149 */
150int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
151 void *cpu_addr, dma_addr_t dma_addr, size_t size,
152 unsigned long attrs)
153{
154 const struct dma_map_ops *ops = get_dma_ops(dev);
155
156 if (dma_is_direct(ops))
157 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
158 size, attrs);
159 if (!ops->get_sgtable)
160 return -ENXIO;
161 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
162}
163EXPORT_SYMBOL(dma_get_sgtable_attrs);
164
165#ifdef CONFIG_MMU
166/*
167 * Return the page attributes used for mapping dma_alloc_* memory, either in
168 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
169 */
170pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
171{
172 if (dev_is_dma_coherent(dev) ||
173 (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
174 (attrs & DMA_ATTR_NON_CONSISTENT)))
175 return prot;
176#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
177 if (attrs & DMA_ATTR_WRITE_COMBINE)
178 return pgprot_writecombine(prot);
179#endif
180 return pgprot_dmacoherent(prot);
181}
182#endif /* CONFIG_MMU */
183
184/*
185 * Create userspace mapping for the DMA-coherent memory.
186 */
187int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
188 void *cpu_addr, dma_addr_t dma_addr, size_t size,
189 unsigned long attrs)
190{
191#ifdef CONFIG_MMU
192 unsigned long user_count = vma_pages(vma);
193 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
194 unsigned long off = vma->vm_pgoff;
195 unsigned long pfn;
196 int ret = -ENXIO;
197
198 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
199
200 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
201 return ret;
202
203 if (off >= count || user_count > count - off)
204 return -ENXIO;
205
206 if (!dev_is_dma_coherent(dev)) {
207 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
208 return -ENXIO;
209
210 /* If the PFN is not valid, we do not have a struct page */
211 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
212 if (!pfn_valid(pfn))
213 return -ENXIO;
214 } else {
215 pfn = page_to_pfn(virt_to_page(cpu_addr));
216 }
217
218 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
219 user_count << PAGE_SHIFT, vma->vm_page_prot);
220#else
221 return -ENXIO;
222#endif /* CONFIG_MMU */
223}
224
225/**
226 * dma_can_mmap - check if a given device supports dma_mmap_*
227 * @dev: device to check
228 *
229 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
230 * map DMA allocations to userspace.
231 */
232bool dma_can_mmap(struct device *dev)
233{
234 const struct dma_map_ops *ops = get_dma_ops(dev);
235
236 if (dma_is_direct(ops)) {
237 return IS_ENABLED(CONFIG_MMU) &&
238 (dev_is_dma_coherent(dev) ||
239 IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
240 }
241
242 return ops->mmap != NULL;
243}
244EXPORT_SYMBOL_GPL(dma_can_mmap);
245
246/**
247 * dma_mmap_attrs - map a coherent DMA allocation into user space
248 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
249 * @vma: vm_area_struct describing requested user mapping
250 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
251 * @dma_addr: device-view address returned from dma_alloc_attrs
252 * @size: size of memory originally requested in dma_alloc_attrs
253 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
254 *
255 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
256 * space. The coherent DMA buffer must not be freed by the driver until the
257 * user space mapping has been released.
258 */
259int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
260 void *cpu_addr, dma_addr_t dma_addr, size_t size,
261 unsigned long attrs)
262{
263 const struct dma_map_ops *ops = get_dma_ops(dev);
264
265 if (dma_is_direct(ops))
266 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
267 attrs);
268 if (!ops->mmap)
269 return -ENXIO;
270 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
271}
272EXPORT_SYMBOL(dma_mmap_attrs);
273
274u64 dma_get_required_mask(struct device *dev)
275{
276 const struct dma_map_ops *ops = get_dma_ops(dev);
277
278 if (dma_is_direct(ops))
279 return dma_direct_get_required_mask(dev);
280 if (ops->get_required_mask)
281 return ops->get_required_mask(dev);
282
283 /*
284 * We require every DMA ops implementation to at least support a 32-bit
285 * DMA mask (and use bounce buffering if that isn't supported in
286 * hardware). As the direct mapping code has its own routine to
287 * actually report an optimal mask we default to 32-bit here as that
288 * is the right thing for most IOMMUs, and at least not actively
289 * harmful in general.
290 */
291 return DMA_BIT_MASK(32);
292}
293EXPORT_SYMBOL_GPL(dma_get_required_mask);
294
295void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
296 gfp_t flag, unsigned long attrs)
297{
298 const struct dma_map_ops *ops = get_dma_ops(dev);
299 void *cpu_addr;
300
301 WARN_ON_ONCE(!dev->coherent_dma_mask);
302
303 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
304 return cpu_addr;
305
306 /* let the implementation decide on the zone to allocate from: */
307 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
308
309 if (dma_is_direct(ops))
310 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
311 else if (ops->alloc)
312 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
313 else
314 return NULL;
315
316 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
317 return cpu_addr;
318}
319EXPORT_SYMBOL(dma_alloc_attrs);
320
321void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
322 dma_addr_t dma_handle, unsigned long attrs)
323{
324 const struct dma_map_ops *ops = get_dma_ops(dev);
325
326 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
327 return;
328 /*
329 * On non-coherent platforms which implement DMA-coherent buffers via
330 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
331 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
332 * sleep on some machines, and b) an indication that the driver is
333 * probably misusing the coherent API anyway.
334 */
335 WARN_ON(irqs_disabled());
336
337 if (!cpu_addr)
338 return;
339
340 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
341 if (dma_is_direct(ops))
342 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
343 else if (ops->free)
344 ops->free(dev, size, cpu_addr, dma_handle, attrs);
345}
346EXPORT_SYMBOL(dma_free_attrs);
347
348int dma_supported(struct device *dev, u64 mask)
349{
350 const struct dma_map_ops *ops = get_dma_ops(dev);
351
352 if (dma_is_direct(ops))
353 return dma_direct_supported(dev, mask);
354 if (!ops->dma_supported)
355 return 1;
356 return ops->dma_supported(dev, mask);
357}
358EXPORT_SYMBOL(dma_supported);
359
360#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
361void arch_dma_set_mask(struct device *dev, u64 mask);
362#else
363#define arch_dma_set_mask(dev, mask) do { } while (0)
364#endif
365
366int dma_set_mask(struct device *dev, u64 mask)
367{
368 /*
369 * Truncate the mask to the actually supported dma_addr_t width to
370 * avoid generating unsupportable addresses.
371 */
372 mask = (dma_addr_t)mask;
373
374 if (!dev->dma_mask || !dma_supported(dev, mask))
375 return -EIO;
376
377 arch_dma_set_mask(dev, mask);
378 *dev->dma_mask = mask;
379 return 0;
380}
381EXPORT_SYMBOL(dma_set_mask);
382
383#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
384int dma_set_coherent_mask(struct device *dev, u64 mask)
385{
386 /*
387 * Truncate the mask to the actually supported dma_addr_t width to
388 * avoid generating unsupportable addresses.
389 */
390 mask = (dma_addr_t)mask;
391
392 if (!dma_supported(dev, mask))
393 return -EIO;
394
395 dev->coherent_dma_mask = mask;
396 return 0;
397}
398EXPORT_SYMBOL(dma_set_coherent_mask);
399#endif
400
401void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
402 enum dma_data_direction dir)
403{
404 const struct dma_map_ops *ops = get_dma_ops(dev);
405
406 BUG_ON(!valid_dma_direction(dir));
407
408 if (dma_is_direct(ops))
409 arch_dma_cache_sync(dev, vaddr, size, dir);
410 else if (ops->cache_sync)
411 ops->cache_sync(dev, vaddr, size, dir);
412}
413EXPORT_SYMBOL(dma_cache_sync);
414
415size_t dma_max_mapping_size(struct device *dev)
416{
417 const struct dma_map_ops *ops = get_dma_ops(dev);
418 size_t size = SIZE_MAX;
419
420 if (dma_is_direct(ops))
421 size = dma_direct_max_mapping_size(dev);
422 else if (ops && ops->max_mapping_size)
423 size = ops->max_mapping_size(dev);
424
425 return size;
426}
427EXPORT_SYMBOL_GPL(dma_max_mapping_size);
428
429unsigned long dma_get_merge_boundary(struct device *dev)
430{
431 const struct dma_map_ops *ops = get_dma_ops(dev);
432
433 if (!ops || !ops->get_merge_boundary)
434 return 0; /* can't merge */
435
436 return ops->get_merge_boundary(dev);
437}
438EXPORT_SYMBOL_GPL(dma_get_merge_boundary);