Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Coherent per-device memory handling.
  4 * Borrowed from i386
  5 */
  6#include <linux/io.h>
  7#include <linux/slab.h>
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10#include <linux/dma-mapping.h>
 11
 12struct dma_coherent_mem {
 13	void		*virt_base;
 14	dma_addr_t	device_base;
 15	unsigned long	pfn_base;
 16	int		size;
 17	unsigned long	*bitmap;
 18	spinlock_t	spinlock;
 19	bool		use_dev_dma_pfn_offset;
 20};
 21
 22static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
 23
 24static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
 25{
 26	if (dev && dev->dma_mem)
 27		return dev->dma_mem;
 28	return NULL;
 29}
 30
 31static inline dma_addr_t dma_get_device_base(struct device *dev,
 32					     struct dma_coherent_mem * mem)
 33{
 34	if (mem->use_dev_dma_pfn_offset)
 35		return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
 36	else
 37		return mem->device_base;
 38}
 39
 40static int dma_init_coherent_memory(phys_addr_t phys_addr,
 41		dma_addr_t device_addr, size_t size,
 42		struct dma_coherent_mem **mem)
 43{
 44	struct dma_coherent_mem *dma_mem = NULL;
 45	void *mem_base = NULL;
 46	int pages = size >> PAGE_SHIFT;
 47	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
 48	int ret;
 49
 50	if (!size) {
 51		ret = -EINVAL;
 52		goto out;
 53	}
 54
 55	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
 56	if (!mem_base) {
 57		ret = -EINVAL;
 58		goto out;
 59	}
 60	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
 61	if (!dma_mem) {
 62		ret = -ENOMEM;
 63		goto out;
 64	}
 65	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 66	if (!dma_mem->bitmap) {
 67		ret = -ENOMEM;
 68		goto out;
 69	}
 70
 71	dma_mem->virt_base = mem_base;
 72	dma_mem->device_base = device_addr;
 73	dma_mem->pfn_base = PFN_DOWN(phys_addr);
 74	dma_mem->size = pages;
 75	spin_lock_init(&dma_mem->spinlock);
 76
 77	*mem = dma_mem;
 78	return 0;
 79
 80out:
 81	kfree(dma_mem);
 82	if (mem_base)
 83		memunmap(mem_base);
 84	return ret;
 85}
 86
 87static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
 88{
 89	if (!mem)
 90		return;
 91
 92	memunmap(mem->virt_base);
 93	kfree(mem->bitmap);
 94	kfree(mem);
 95}
 96
 97static int dma_assign_coherent_memory(struct device *dev,
 98				      struct dma_coherent_mem *mem)
 99{
100	if (!dev)
101		return -ENODEV;
102
103	if (dev->dma_mem)
104		return -EBUSY;
105
106	dev->dma_mem = mem;
107	return 0;
108}
109
110int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
111				dma_addr_t device_addr, size_t size)
112{
113	struct dma_coherent_mem *mem;
114	int ret;
115
116	ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
117	if (ret)
118		return ret;
119
120	ret = dma_assign_coherent_memory(dev, mem);
121	if (ret)
122		dma_release_coherent_memory(mem);
123	return ret;
124}
125
126static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
127		ssize_t size, dma_addr_t *dma_handle)
128{
129	int order = get_order(size);
130	unsigned long flags;
131	int pageno;
132	void *ret;
133
134	spin_lock_irqsave(&mem->spinlock, flags);
135
136	if (unlikely(size > (mem->size << PAGE_SHIFT)))
137		goto err;
138
139	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
140	if (unlikely(pageno < 0))
141		goto err;
142
143	/*
144	 * Memory was found in the coherent area.
145	 */
146	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
147	ret = mem->virt_base + (pageno << PAGE_SHIFT);
148	spin_unlock_irqrestore(&mem->spinlock, flags);
149	memset(ret, 0, size);
150	return ret;
151err:
152	spin_unlock_irqrestore(&mem->spinlock, flags);
153	return NULL;
154}
155
156/**
157 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
158 * @dev:	device from which we allocate memory
159 * @size:	size of requested memory area
160 * @dma_handle:	This will be filled with the correct dma handle
161 * @ret:	This pointer will be filled with the virtual address
162 *		to allocated area.
163 *
164 * This function should be only called from per-arch dma_alloc_coherent()
165 * to support allocation from per-device coherent memory pools.
166 *
167 * Returns 0 if dma_alloc_coherent should continue with allocating from
168 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
169 */
170int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
171		dma_addr_t *dma_handle, void **ret)
172{
173	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
174
175	if (!mem)
176		return 0;
177
178	*ret = __dma_alloc_from_coherent(mem, size, dma_handle);
179	return 1;
180}
181
182void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
183{
184	if (!dma_coherent_default_memory)
185		return NULL;
186
187	return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
188			dma_handle);
189}
190
191static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
192				       int order, void *vaddr)
193{
194	if (mem && vaddr >= mem->virt_base && vaddr <
195		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
196		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
197		unsigned long flags;
198
199		spin_lock_irqsave(&mem->spinlock, flags);
200		bitmap_release_region(mem->bitmap, page, order);
201		spin_unlock_irqrestore(&mem->spinlock, flags);
202		return 1;
203	}
204	return 0;
205}
206
207/**
208 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
209 * @dev:	device from which the memory was allocated
210 * @order:	the order of pages allocated
211 * @vaddr:	virtual address of allocated pages
212 *
213 * This checks whether the memory was allocated from the per-device
214 * coherent memory pool and if so, releases that memory.
215 *
216 * Returns 1 if we correctly released the memory, or 0 if the caller should
217 * proceed with releasing memory from generic pools.
218 */
219int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
220{
221	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
222
223	return __dma_release_from_coherent(mem, order, vaddr);
224}
225
226int dma_release_from_global_coherent(int order, void *vaddr)
227{
228	if (!dma_coherent_default_memory)
229		return 0;
230
231	return __dma_release_from_coherent(dma_coherent_default_memory, order,
232			vaddr);
233}
234
235static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
236		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
237{
238	if (mem && vaddr >= mem->virt_base && vaddr + size <=
239		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
240		unsigned long off = vma->vm_pgoff;
241		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
242		int user_count = vma_pages(vma);
243		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
244
245		*ret = -ENXIO;
246		if (off < count && user_count <= count - off) {
247			unsigned long pfn = mem->pfn_base + start + off;
248			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
249					       user_count << PAGE_SHIFT,
250					       vma->vm_page_prot);
251		}
252		return 1;
253	}
254	return 0;
255}
256
257/**
258 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
259 * @dev:	device from which the memory was allocated
260 * @vma:	vm_area for the userspace memory
261 * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
262 * @size:	size of the memory buffer allocated
263 * @ret:	result from remap_pfn_range()
264 *
265 * This checks whether the memory was allocated from the per-device
266 * coherent memory pool and if so, maps that memory to the provided vma.
267 *
268 * Returns 1 if @vaddr belongs to the device coherent pool and the caller
269 * should return @ret, or 0 if they should proceed with mapping memory from
270 * generic areas.
271 */
272int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
273			   void *vaddr, size_t size, int *ret)
274{
275	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
276
277	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
278}
279
280int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
281				   size_t size, int *ret)
282{
283	if (!dma_coherent_default_memory)
284		return 0;
285
286	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
287					vaddr, size, ret);
288}
289
290/*
291 * Support for reserved memory regions defined in device tree
292 */
293#ifdef CONFIG_OF_RESERVED_MEM
294#include <linux/of.h>
295#include <linux/of_fdt.h>
296#include <linux/of_reserved_mem.h>
297
298static struct reserved_mem *dma_reserved_default_memory __initdata;
299
300static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
301{
302	struct dma_coherent_mem *mem = rmem->priv;
303	int ret;
304
305	if (!mem) {
306		ret = dma_init_coherent_memory(rmem->base, rmem->base,
307					       rmem->size, &mem);
308		if (ret) {
309			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
310				&rmem->base, (unsigned long)rmem->size / SZ_1M);
311			return ret;
312		}
313	}
314	mem->use_dev_dma_pfn_offset = true;
315	rmem->priv = mem;
316	dma_assign_coherent_memory(dev, mem);
317	return 0;
318}
319
320static void rmem_dma_device_release(struct reserved_mem *rmem,
321				    struct device *dev)
322{
323	if (dev)
324		dev->dma_mem = NULL;
325}
326
327static const struct reserved_mem_ops rmem_dma_ops = {
328	.device_init	= rmem_dma_device_init,
329	.device_release	= rmem_dma_device_release,
330};
331
332static int __init rmem_dma_setup(struct reserved_mem *rmem)
333{
334	unsigned long node = rmem->fdt_node;
335
336	if (of_get_flat_dt_prop(node, "reusable", NULL))
337		return -EINVAL;
338
339#ifdef CONFIG_ARM
340	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
341		pr_err("Reserved memory: regions without no-map are not yet supported\n");
342		return -EINVAL;
343	}
344
345	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
346		WARN(dma_reserved_default_memory,
347		     "Reserved memory: region for default DMA coherent area is redefined\n");
348		dma_reserved_default_memory = rmem;
349	}
350#endif
351
352	rmem->ops = &rmem_dma_ops;
353	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
354		&rmem->base, (unsigned long)rmem->size / SZ_1M);
355	return 0;
356}
357
358static int __init dma_init_reserved_memory(void)
359{
360	const struct reserved_mem_ops *ops;
361	int ret;
362
363	if (!dma_reserved_default_memory)
364		return -ENOMEM;
365
366	ops = dma_reserved_default_memory->ops;
367
368	/*
369	 * We rely on rmem_dma_device_init() does not propagate error of
370	 * dma_assign_coherent_memory() for "NULL" device.
371	 */
372	ret = ops->device_init(dma_reserved_default_memory, NULL);
373
374	if (!ret) {
375		dma_coherent_default_memory = dma_reserved_default_memory->priv;
376		pr_info("DMA: default coherent area is set\n");
377	}
378
379	return ret;
380}
381
382core_initcall(dma_init_reserved_memory);
383
384RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
385#endif