Linux Audio

Check our new training course

Loading...
   1/*
   2 *  linux/fs/block_dev.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
   6 */
   7
   8#include <linux/init.h>
   9#include <linux/mm.h>
  10#include <linux/fcntl.h>
  11#include <linux/slab.h>
  12#include <linux/kmod.h>
  13#include <linux/major.h>
  14#include <linux/device_cgroup.h>
  15#include <linux/highmem.h>
  16#include <linux/blkdev.h>
  17#include <linux/backing-dev.h>
  18#include <linux/module.h>
  19#include <linux/blkpg.h>
  20#include <linux/magic.h>
  21#include <linux/buffer_head.h>
  22#include <linux/swap.h>
  23#include <linux/pagevec.h>
  24#include <linux/writeback.h>
  25#include <linux/mpage.h>
  26#include <linux/mount.h>
  27#include <linux/uio.h>
  28#include <linux/namei.h>
  29#include <linux/log2.h>
  30#include <linux/cleancache.h>
  31#include <linux/dax.h>
  32#include <asm/uaccess.h>
  33#include "internal.h"
  34
  35struct bdev_inode {
  36	struct block_device bdev;
  37	struct inode vfs_inode;
  38};
  39
  40static const struct address_space_operations def_blk_aops;
  41
  42static inline struct bdev_inode *BDEV_I(struct inode *inode)
  43{
  44	return container_of(inode, struct bdev_inode, vfs_inode);
  45}
  46
  47struct block_device *I_BDEV(struct inode *inode)
  48{
  49	return &BDEV_I(inode)->bdev;
  50}
  51EXPORT_SYMBOL(I_BDEV);
  52
  53static void bdev_write_inode(struct block_device *bdev)
  54{
  55	struct inode *inode = bdev->bd_inode;
  56	int ret;
  57
  58	spin_lock(&inode->i_lock);
  59	while (inode->i_state & I_DIRTY) {
  60		spin_unlock(&inode->i_lock);
  61		ret = write_inode_now(inode, true);
  62		if (ret) {
  63			char name[BDEVNAME_SIZE];
  64			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
  65					    "for block device %s (err=%d).\n",
  66					    bdevname(bdev, name), ret);
  67		}
  68		spin_lock(&inode->i_lock);
  69	}
  70	spin_unlock(&inode->i_lock);
  71}
  72
  73/* Kill _all_ buffers and pagecache , dirty or not.. */
  74void kill_bdev(struct block_device *bdev)
  75{
  76	struct address_space *mapping = bdev->bd_inode->i_mapping;
  77
  78	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
  79		return;
  80
  81	invalidate_bh_lrus();
  82	truncate_inode_pages(mapping, 0);
  83}	
  84EXPORT_SYMBOL(kill_bdev);
  85
  86/* Invalidate clean unused buffers and pagecache. */
  87void invalidate_bdev(struct block_device *bdev)
  88{
  89	struct address_space *mapping = bdev->bd_inode->i_mapping;
  90
  91	if (mapping->nrpages == 0)
  92		return;
  93
  94	invalidate_bh_lrus();
  95	lru_add_drain_all();	/* make sure all lru add caches are flushed */
  96	invalidate_mapping_pages(mapping, 0, -1);
  97	/* 99% of the time, we don't need to flush the cleancache on the bdev.
  98	 * But, for the strange corners, lets be cautious
  99	 */
 100	cleancache_invalidate_inode(mapping);
 101}
 102EXPORT_SYMBOL(invalidate_bdev);
 103
 104int set_blocksize(struct block_device *bdev, int size)
 105{
 106	/* Size must be a power of two, and between 512 and PAGE_SIZE */
 107	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
 108		return -EINVAL;
 109
 110	/* Size cannot be smaller than the size supported by the device */
 111	if (size < bdev_logical_block_size(bdev))
 112		return -EINVAL;
 113
 114	/* Don't change the size if it is same as current */
 115	if (bdev->bd_block_size != size) {
 116		sync_blockdev(bdev);
 117		bdev->bd_block_size = size;
 118		bdev->bd_inode->i_blkbits = blksize_bits(size);
 119		kill_bdev(bdev);
 120	}
 121	return 0;
 122}
 123
 124EXPORT_SYMBOL(set_blocksize);
 125
 126int sb_set_blocksize(struct super_block *sb, int size)
 127{
 128	if (set_blocksize(sb->s_bdev, size))
 129		return 0;
 130	/* If we get here, we know size is power of two
 131	 * and it's value is between 512 and PAGE_SIZE */
 132	sb->s_blocksize = size;
 133	sb->s_blocksize_bits = blksize_bits(size);
 134	return sb->s_blocksize;
 135}
 136
 137EXPORT_SYMBOL(sb_set_blocksize);
 138
 139int sb_min_blocksize(struct super_block *sb, int size)
 140{
 141	int minsize = bdev_logical_block_size(sb->s_bdev);
 142	if (size < minsize)
 143		size = minsize;
 144	return sb_set_blocksize(sb, size);
 145}
 146
 147EXPORT_SYMBOL(sb_min_blocksize);
 148
 149static int
 150blkdev_get_block(struct inode *inode, sector_t iblock,
 151		struct buffer_head *bh, int create)
 152{
 153	bh->b_bdev = I_BDEV(inode);
 154	bh->b_blocknr = iblock;
 155	set_buffer_mapped(bh);
 156	return 0;
 157}
 158
 159static struct inode *bdev_file_inode(struct file *file)
 160{
 161	return file->f_mapping->host;
 162}
 163
 164static ssize_t
 165blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
 166{
 167	struct file *file = iocb->ki_filp;
 168	struct inode *inode = bdev_file_inode(file);
 169
 170	if (IS_DAX(inode))
 171		return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
 172				NULL, DIO_SKIP_DIO_COUNT);
 173	return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
 174				    blkdev_get_block, NULL, NULL,
 175				    DIO_SKIP_DIO_COUNT);
 176}
 177
 178int __sync_blockdev(struct block_device *bdev, int wait)
 179{
 180	if (!bdev)
 181		return 0;
 182	if (!wait)
 183		return filemap_flush(bdev->bd_inode->i_mapping);
 184	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
 185}
 186
 187/*
 188 * Write out and wait upon all the dirty data associated with a block
 189 * device via its mapping.  Does not take the superblock lock.
 190 */
 191int sync_blockdev(struct block_device *bdev)
 192{
 193	return __sync_blockdev(bdev, 1);
 194}
 195EXPORT_SYMBOL(sync_blockdev);
 196
 197/*
 198 * Write out and wait upon all dirty data associated with this
 199 * device.   Filesystem data as well as the underlying block
 200 * device.  Takes the superblock lock.
 201 */
 202int fsync_bdev(struct block_device *bdev)
 203{
 204	struct super_block *sb = get_super(bdev);
 205	if (sb) {
 206		int res = sync_filesystem(sb);
 207		drop_super(sb);
 208		return res;
 209	}
 210	return sync_blockdev(bdev);
 211}
 212EXPORT_SYMBOL(fsync_bdev);
 213
 214/**
 215 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 216 * @bdev:	blockdevice to lock
 217 *
 218 * If a superblock is found on this device, we take the s_umount semaphore
 219 * on it to make sure nobody unmounts until the snapshot creation is done.
 220 * The reference counter (bd_fsfreeze_count) guarantees that only the last
 221 * unfreeze process can unfreeze the frozen filesystem actually when multiple
 222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
 223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
 224 * actually.
 225 */
 226struct super_block *freeze_bdev(struct block_device *bdev)
 227{
 228	struct super_block *sb;
 229	int error = 0;
 230
 231	mutex_lock(&bdev->bd_fsfreeze_mutex);
 232	if (++bdev->bd_fsfreeze_count > 1) {
 233		/*
 234		 * We don't even need to grab a reference - the first call
 235		 * to freeze_bdev grab an active reference and only the last
 236		 * thaw_bdev drops it.
 237		 */
 238		sb = get_super(bdev);
 239		drop_super(sb);
 240		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 241		return sb;
 242	}
 243
 244	sb = get_active_super(bdev);
 245	if (!sb)
 246		goto out;
 247	if (sb->s_op->freeze_super)
 248		error = sb->s_op->freeze_super(sb);
 249	else
 250		error = freeze_super(sb);
 251	if (error) {
 252		deactivate_super(sb);
 253		bdev->bd_fsfreeze_count--;
 254		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 255		return ERR_PTR(error);
 256	}
 257	deactivate_super(sb);
 258 out:
 259	sync_blockdev(bdev);
 260	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 261	return sb;	/* thaw_bdev releases s->s_umount */
 262}
 263EXPORT_SYMBOL(freeze_bdev);
 264
 265/**
 266 * thaw_bdev  -- unlock filesystem
 267 * @bdev:	blockdevice to unlock
 268 * @sb:		associated superblock
 269 *
 270 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 271 */
 272int thaw_bdev(struct block_device *bdev, struct super_block *sb)
 273{
 274	int error = -EINVAL;
 275
 276	mutex_lock(&bdev->bd_fsfreeze_mutex);
 277	if (!bdev->bd_fsfreeze_count)
 278		goto out;
 279
 280	error = 0;
 281	if (--bdev->bd_fsfreeze_count > 0)
 282		goto out;
 283
 284	if (!sb)
 285		goto out;
 286
 287	if (sb->s_op->thaw_super)
 288		error = sb->s_op->thaw_super(sb);
 289	else
 290		error = thaw_super(sb);
 291	if (error) {
 292		bdev->bd_fsfreeze_count++;
 293		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 294		return error;
 295	}
 296out:
 297	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 298	return 0;
 299}
 300EXPORT_SYMBOL(thaw_bdev);
 301
 302static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
 303{
 304	return block_write_full_page(page, blkdev_get_block, wbc);
 305}
 306
 307static int blkdev_readpage(struct file * file, struct page * page)
 308{
 309	return block_read_full_page(page, blkdev_get_block);
 310}
 311
 312static int blkdev_readpages(struct file *file, struct address_space *mapping,
 313			struct list_head *pages, unsigned nr_pages)
 314{
 315	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
 316}
 317
 318static int blkdev_write_begin(struct file *file, struct address_space *mapping,
 319			loff_t pos, unsigned len, unsigned flags,
 320			struct page **pagep, void **fsdata)
 321{
 322	return block_write_begin(mapping, pos, len, flags, pagep,
 323				 blkdev_get_block);
 324}
 325
 326static int blkdev_write_end(struct file *file, struct address_space *mapping,
 327			loff_t pos, unsigned len, unsigned copied,
 328			struct page *page, void *fsdata)
 329{
 330	int ret;
 331	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 332
 333	unlock_page(page);
 334	put_page(page);
 335
 336	return ret;
 337}
 338
 339/*
 340 * private llseek:
 341 * for a block special file file_inode(file)->i_size is zero
 342 * so we compute the size by hand (just as in block_read/write above)
 343 */
 344static loff_t block_llseek(struct file *file, loff_t offset, int whence)
 345{
 346	struct inode *bd_inode = bdev_file_inode(file);
 347	loff_t retval;
 348
 349	inode_lock(bd_inode);
 350	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
 351	inode_unlock(bd_inode);
 352	return retval;
 353}
 354	
 355int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 356{
 357	struct inode *bd_inode = bdev_file_inode(filp);
 358	struct block_device *bdev = I_BDEV(bd_inode);
 359	int error;
 360	
 361	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
 362	if (error)
 363		return error;
 364
 365	/*
 366	 * There is no need to serialise calls to blkdev_issue_flush with
 367	 * i_mutex and doing so causes performance issues with concurrent
 368	 * O_SYNC writers to a block device.
 369	 */
 370	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
 371	if (error == -EOPNOTSUPP)
 372		error = 0;
 373
 374	return error;
 375}
 376EXPORT_SYMBOL(blkdev_fsync);
 377
 378/**
 379 * bdev_read_page() - Start reading a page from a block device
 380 * @bdev: The device to read the page from
 381 * @sector: The offset on the device to read the page to (need not be aligned)
 382 * @page: The page to read
 383 *
 384 * On entry, the page should be locked.  It will be unlocked when the page
 385 * has been read.  If the block driver implements rw_page synchronously,
 386 * that will be true on exit from this function, but it need not be.
 387 *
 388 * Errors returned by this function are usually "soft", eg out of memory, or
 389 * queue full; callers should try a different route to read this page rather
 390 * than propagate an error back up the stack.
 391 *
 392 * Return: negative errno if an error occurs, 0 if submission was successful.
 393 */
 394int bdev_read_page(struct block_device *bdev, sector_t sector,
 395			struct page *page)
 396{
 397	const struct block_device_operations *ops = bdev->bd_disk->fops;
 398	int result = -EOPNOTSUPP;
 399
 400	if (!ops->rw_page || bdev_get_integrity(bdev))
 401		return result;
 402
 403	result = blk_queue_enter(bdev->bd_queue, false);
 404	if (result)
 405		return result;
 406	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
 407	blk_queue_exit(bdev->bd_queue);
 408	return result;
 409}
 410EXPORT_SYMBOL_GPL(bdev_read_page);
 411
 412/**
 413 * bdev_write_page() - Start writing a page to a block device
 414 * @bdev: The device to write the page to
 415 * @sector: The offset on the device to write the page to (need not be aligned)
 416 * @page: The page to write
 417 * @wbc: The writeback_control for the write
 418 *
 419 * On entry, the page should be locked and not currently under writeback.
 420 * On exit, if the write started successfully, the page will be unlocked and
 421 * under writeback.  If the write failed already (eg the driver failed to
 422 * queue the page to the device), the page will still be locked.  If the
 423 * caller is a ->writepage implementation, it will need to unlock the page.
 424 *
 425 * Errors returned by this function are usually "soft", eg out of memory, or
 426 * queue full; callers should try a different route to write this page rather
 427 * than propagate an error back up the stack.
 428 *
 429 * Return: negative errno if an error occurs, 0 if submission was successful.
 430 */
 431int bdev_write_page(struct block_device *bdev, sector_t sector,
 432			struct page *page, struct writeback_control *wbc)
 433{
 434	int result;
 435	int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
 436	const struct block_device_operations *ops = bdev->bd_disk->fops;
 437
 438	if (!ops->rw_page || bdev_get_integrity(bdev))
 439		return -EOPNOTSUPP;
 440	result = blk_queue_enter(bdev->bd_queue, false);
 441	if (result)
 442		return result;
 443
 444	set_page_writeback(page);
 445	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
 446	if (result)
 447		end_page_writeback(page);
 448	else
 449		unlock_page(page);
 450	blk_queue_exit(bdev->bd_queue);
 451	return result;
 452}
 453EXPORT_SYMBOL_GPL(bdev_write_page);
 454
 455/**
 456 * bdev_direct_access() - Get the address for directly-accessibly memory
 457 * @bdev: The device containing the memory
 458 * @dax: control and output parameters for ->direct_access
 459 *
 460 * If a block device is made up of directly addressable memory, this function
 461 * will tell the caller the PFN and the address of the memory.  The address
 462 * may be directly dereferenced within the kernel without the need to call
 463 * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
 464 * page tables.
 465 *
 466 * Return: negative errno if an error occurs, otherwise the number of bytes
 467 * accessible at this address.
 468 */
 469long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
 470{
 471	sector_t sector = dax->sector;
 472	long avail, size = dax->size;
 473	const struct block_device_operations *ops = bdev->bd_disk->fops;
 474
 475	/*
 476	 * The device driver is allowed to sleep, in order to make the
 477	 * memory directly accessible.
 478	 */
 479	might_sleep();
 480
 481	if (size < 0)
 482		return size;
 483	if (!ops->direct_access)
 484		return -EOPNOTSUPP;
 485	if ((sector + DIV_ROUND_UP(size, 512)) >
 486					part_nr_sects_read(bdev->bd_part))
 487		return -ERANGE;
 488	sector += get_start_sect(bdev);
 489	if (sector % (PAGE_SIZE / 512))
 490		return -EINVAL;
 491	avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn);
 492	if (!avail)
 493		return -ERANGE;
 494	if (avail > 0 && avail & ~PAGE_MASK)
 495		return -ENXIO;
 496	return min(avail, size);
 497}
 498EXPORT_SYMBOL_GPL(bdev_direct_access);
 499
 500/*
 501 * pseudo-fs
 502 */
 503
 504static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
 505static struct kmem_cache * bdev_cachep __read_mostly;
 506
 507static struct inode *bdev_alloc_inode(struct super_block *sb)
 508{
 509	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
 510	if (!ei)
 511		return NULL;
 512	return &ei->vfs_inode;
 513}
 514
 515static void bdev_i_callback(struct rcu_head *head)
 516{
 517	struct inode *inode = container_of(head, struct inode, i_rcu);
 518	struct bdev_inode *bdi = BDEV_I(inode);
 519
 520	kmem_cache_free(bdev_cachep, bdi);
 521}
 522
 523static void bdev_destroy_inode(struct inode *inode)
 524{
 525	call_rcu(&inode->i_rcu, bdev_i_callback);
 526}
 527
 528static void init_once(void *foo)
 529{
 530	struct bdev_inode *ei = (struct bdev_inode *) foo;
 531	struct block_device *bdev = &ei->bdev;
 532
 533	memset(bdev, 0, sizeof(*bdev));
 534	mutex_init(&bdev->bd_mutex);
 535	INIT_LIST_HEAD(&bdev->bd_inodes);
 536	INIT_LIST_HEAD(&bdev->bd_list);
 537#ifdef CONFIG_SYSFS
 538	INIT_LIST_HEAD(&bdev->bd_holder_disks);
 539#endif
 540	inode_init_once(&ei->vfs_inode);
 541	/* Initialize mutex for freeze. */
 542	mutex_init(&bdev->bd_fsfreeze_mutex);
 543}
 544
 545static inline void __bd_forget(struct inode *inode)
 546{
 547	list_del_init(&inode->i_devices);
 548	inode->i_bdev = NULL;
 549	inode->i_mapping = &inode->i_data;
 550}
 551
 552static void bdev_evict_inode(struct inode *inode)
 553{
 554	struct block_device *bdev = &BDEV_I(inode)->bdev;
 555	struct list_head *p;
 556	truncate_inode_pages_final(&inode->i_data);
 557	invalidate_inode_buffers(inode); /* is it needed here? */
 558	clear_inode(inode);
 559	spin_lock(&bdev_lock);
 560	while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
 561		__bd_forget(list_entry(p, struct inode, i_devices));
 562	}
 563	list_del_init(&bdev->bd_list);
 564	spin_unlock(&bdev_lock);
 565}
 566
 567static const struct super_operations bdev_sops = {
 568	.statfs = simple_statfs,
 569	.alloc_inode = bdev_alloc_inode,
 570	.destroy_inode = bdev_destroy_inode,
 571	.drop_inode = generic_delete_inode,
 572	.evict_inode = bdev_evict_inode,
 573};
 574
 575static struct dentry *bd_mount(struct file_system_type *fs_type,
 576	int flags, const char *dev_name, void *data)
 577{
 578	struct dentry *dent;
 579	dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
 580	if (dent)
 581		dent->d_sb->s_iflags |= SB_I_CGROUPWB;
 582	return dent;
 583}
 584
 585static struct file_system_type bd_type = {
 586	.name		= "bdev",
 587	.mount		= bd_mount,
 588	.kill_sb	= kill_anon_super,
 589};
 590
 591struct super_block *blockdev_superblock __read_mostly;
 592EXPORT_SYMBOL_GPL(blockdev_superblock);
 593
 594void __init bdev_cache_init(void)
 595{
 596	int err;
 597	static struct vfsmount *bd_mnt;
 598
 599	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
 600			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
 601				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
 602			init_once);
 603	err = register_filesystem(&bd_type);
 604	if (err)
 605		panic("Cannot register bdev pseudo-fs");
 606	bd_mnt = kern_mount(&bd_type);
 607	if (IS_ERR(bd_mnt))
 608		panic("Cannot create bdev pseudo-fs");
 609	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
 610}
 611
 612/*
 613 * Most likely _very_ bad one - but then it's hardly critical for small
 614 * /dev and can be fixed when somebody will need really large one.
 615 * Keep in mind that it will be fed through icache hash function too.
 616 */
 617static inline unsigned long hash(dev_t dev)
 618{
 619	return MAJOR(dev)+MINOR(dev);
 620}
 621
 622static int bdev_test(struct inode *inode, void *data)
 623{
 624	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
 625}
 626
 627static int bdev_set(struct inode *inode, void *data)
 628{
 629	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
 630	return 0;
 631}
 632
 633static LIST_HEAD(all_bdevs);
 634
 635struct block_device *bdget(dev_t dev)
 636{
 637	struct block_device *bdev;
 638	struct inode *inode;
 639
 640	inode = iget5_locked(blockdev_superblock, hash(dev),
 641			bdev_test, bdev_set, &dev);
 642
 643	if (!inode)
 644		return NULL;
 645
 646	bdev = &BDEV_I(inode)->bdev;
 647
 648	if (inode->i_state & I_NEW) {
 649		bdev->bd_contains = NULL;
 650		bdev->bd_super = NULL;
 651		bdev->bd_inode = inode;
 652		bdev->bd_block_size = (1 << inode->i_blkbits);
 653		bdev->bd_part_count = 0;
 654		bdev->bd_invalidated = 0;
 655		inode->i_mode = S_IFBLK;
 656		inode->i_rdev = dev;
 657		inode->i_bdev = bdev;
 658		inode->i_data.a_ops = &def_blk_aops;
 659		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
 660		spin_lock(&bdev_lock);
 661		list_add(&bdev->bd_list, &all_bdevs);
 662		spin_unlock(&bdev_lock);
 663		unlock_new_inode(inode);
 664	}
 665	return bdev;
 666}
 667
 668EXPORT_SYMBOL(bdget);
 669
 670/**
 671 * bdgrab -- Grab a reference to an already referenced block device
 672 * @bdev:	Block device to grab a reference to.
 673 */
 674struct block_device *bdgrab(struct block_device *bdev)
 675{
 676	ihold(bdev->bd_inode);
 677	return bdev;
 678}
 679EXPORT_SYMBOL(bdgrab);
 680
 681long nr_blockdev_pages(void)
 682{
 683	struct block_device *bdev;
 684	long ret = 0;
 685	spin_lock(&bdev_lock);
 686	list_for_each_entry(bdev, &all_bdevs, bd_list) {
 687		ret += bdev->bd_inode->i_mapping->nrpages;
 688	}
 689	spin_unlock(&bdev_lock);
 690	return ret;
 691}
 692
 693void bdput(struct block_device *bdev)
 694{
 695	iput(bdev->bd_inode);
 696}
 697
 698EXPORT_SYMBOL(bdput);
 699 
 700static struct block_device *bd_acquire(struct inode *inode)
 701{
 702	struct block_device *bdev;
 703
 704	spin_lock(&bdev_lock);
 705	bdev = inode->i_bdev;
 706	if (bdev) {
 707		bdgrab(bdev);
 708		spin_unlock(&bdev_lock);
 709		return bdev;
 710	}
 711	spin_unlock(&bdev_lock);
 712
 713	bdev = bdget(inode->i_rdev);
 714	if (bdev) {
 715		spin_lock(&bdev_lock);
 716		if (!inode->i_bdev) {
 717			/*
 718			 * We take an additional reference to bd_inode,
 719			 * and it's released in clear_inode() of inode.
 720			 * So, we can access it via ->i_mapping always
 721			 * without igrab().
 722			 */
 723			bdgrab(bdev);
 724			inode->i_bdev = bdev;
 725			inode->i_mapping = bdev->bd_inode->i_mapping;
 726			list_add(&inode->i_devices, &bdev->bd_inodes);
 727		}
 728		spin_unlock(&bdev_lock);
 729	}
 730	return bdev;
 731}
 732
 733/* Call when you free inode */
 734
 735void bd_forget(struct inode *inode)
 736{
 737	struct block_device *bdev = NULL;
 738
 739	spin_lock(&bdev_lock);
 740	if (!sb_is_blkdev_sb(inode->i_sb))
 741		bdev = inode->i_bdev;
 742	__bd_forget(inode);
 743	spin_unlock(&bdev_lock);
 744
 745	if (bdev)
 746		bdput(bdev);
 747}
 748
 749/**
 750 * bd_may_claim - test whether a block device can be claimed
 751 * @bdev: block device of interest
 752 * @whole: whole block device containing @bdev, may equal @bdev
 753 * @holder: holder trying to claim @bdev
 754 *
 755 * Test whether @bdev can be claimed by @holder.
 756 *
 757 * CONTEXT:
 758 * spin_lock(&bdev_lock).
 759 *
 760 * RETURNS:
 761 * %true if @bdev can be claimed, %false otherwise.
 762 */
 763static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
 764			 void *holder)
 765{
 766	if (bdev->bd_holder == holder)
 767		return true;	 /* already a holder */
 768	else if (bdev->bd_holder != NULL)
 769		return false; 	 /* held by someone else */
 770	else if (bdev->bd_contains == bdev)
 771		return true;  	 /* is a whole device which isn't held */
 772
 773	else if (whole->bd_holder == bd_may_claim)
 774		return true; 	 /* is a partition of a device that is being partitioned */
 775	else if (whole->bd_holder != NULL)
 776		return false;	 /* is a partition of a held device */
 777	else
 778		return true;	 /* is a partition of an un-held device */
 779}
 780
 781/**
 782 * bd_prepare_to_claim - prepare to claim a block device
 783 * @bdev: block device of interest
 784 * @whole: the whole device containing @bdev, may equal @bdev
 785 * @holder: holder trying to claim @bdev
 786 *
 787 * Prepare to claim @bdev.  This function fails if @bdev is already
 788 * claimed by another holder and waits if another claiming is in
 789 * progress.  This function doesn't actually claim.  On successful
 790 * return, the caller has ownership of bd_claiming and bd_holder[s].
 791 *
 792 * CONTEXT:
 793 * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
 794 * it multiple times.
 795 *
 796 * RETURNS:
 797 * 0 if @bdev can be claimed, -EBUSY otherwise.
 798 */
 799static int bd_prepare_to_claim(struct block_device *bdev,
 800			       struct block_device *whole, void *holder)
 801{
 802retry:
 803	/* if someone else claimed, fail */
 804	if (!bd_may_claim(bdev, whole, holder))
 805		return -EBUSY;
 806
 807	/* if claiming is already in progress, wait for it to finish */
 808	if (whole->bd_claiming) {
 809		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
 810		DEFINE_WAIT(wait);
 811
 812		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
 813		spin_unlock(&bdev_lock);
 814		schedule();
 815		finish_wait(wq, &wait);
 816		spin_lock(&bdev_lock);
 817		goto retry;
 818	}
 819
 820	/* yay, all mine */
 821	return 0;
 822}
 823
 824/**
 825 * bd_start_claiming - start claiming a block device
 826 * @bdev: block device of interest
 827 * @holder: holder trying to claim @bdev
 828 *
 829 * @bdev is about to be opened exclusively.  Check @bdev can be opened
 830 * exclusively and mark that an exclusive open is in progress.  Each
 831 * successful call to this function must be matched with a call to
 832 * either bd_finish_claiming() or bd_abort_claiming() (which do not
 833 * fail).
 834 *
 835 * This function is used to gain exclusive access to the block device
 836 * without actually causing other exclusive open attempts to fail. It
 837 * should be used when the open sequence itself requires exclusive
 838 * access but may subsequently fail.
 839 *
 840 * CONTEXT:
 841 * Might sleep.
 842 *
 843 * RETURNS:
 844 * Pointer to the block device containing @bdev on success, ERR_PTR()
 845 * value on failure.
 846 */
 847static struct block_device *bd_start_claiming(struct block_device *bdev,
 848					      void *holder)
 849{
 850	struct gendisk *disk;
 851	struct block_device *whole;
 852	int partno, err;
 853
 854	might_sleep();
 855
 856	/*
 857	 * @bdev might not have been initialized properly yet, look up
 858	 * and grab the outer block device the hard way.
 859	 */
 860	disk = get_gendisk(bdev->bd_dev, &partno);
 861	if (!disk)
 862		return ERR_PTR(-ENXIO);
 863
 864	/*
 865	 * Normally, @bdev should equal what's returned from bdget_disk()
 866	 * if partno is 0; however, some drivers (floppy) use multiple
 867	 * bdev's for the same physical device and @bdev may be one of the
 868	 * aliases.  Keep @bdev if partno is 0.  This means claimer
 869	 * tracking is broken for those devices but it has always been that
 870	 * way.
 871	 */
 872	if (partno)
 873		whole = bdget_disk(disk, 0);
 874	else
 875		whole = bdgrab(bdev);
 876
 877	module_put(disk->fops->owner);
 878	put_disk(disk);
 879	if (!whole)
 880		return ERR_PTR(-ENOMEM);
 881
 882	/* prepare to claim, if successful, mark claiming in progress */
 883	spin_lock(&bdev_lock);
 884
 885	err = bd_prepare_to_claim(bdev, whole, holder);
 886	if (err == 0) {
 887		whole->bd_claiming = holder;
 888		spin_unlock(&bdev_lock);
 889		return whole;
 890	} else {
 891		spin_unlock(&bdev_lock);
 892		bdput(whole);
 893		return ERR_PTR(err);
 894	}
 895}
 896
 897#ifdef CONFIG_SYSFS
 898struct bd_holder_disk {
 899	struct list_head	list;
 900	struct gendisk		*disk;
 901	int			refcnt;
 902};
 903
 904static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
 905						  struct gendisk *disk)
 906{
 907	struct bd_holder_disk *holder;
 908
 909	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
 910		if (holder->disk == disk)
 911			return holder;
 912	return NULL;
 913}
 914
 915static int add_symlink(struct kobject *from, struct kobject *to)
 916{
 917	return sysfs_create_link(from, to, kobject_name(to));
 918}
 919
 920static void del_symlink(struct kobject *from, struct kobject *to)
 921{
 922	sysfs_remove_link(from, kobject_name(to));
 923}
 924
 925/**
 926 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
 927 * @bdev: the claimed slave bdev
 928 * @disk: the holding disk
 929 *
 930 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
 931 *
 932 * This functions creates the following sysfs symlinks.
 933 *
 934 * - from "slaves" directory of the holder @disk to the claimed @bdev
 935 * - from "holders" directory of the @bdev to the holder @disk
 936 *
 937 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
 938 * passed to bd_link_disk_holder(), then:
 939 *
 940 *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
 941 *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
 942 *
 943 * The caller must have claimed @bdev before calling this function and
 944 * ensure that both @bdev and @disk are valid during the creation and
 945 * lifetime of these symlinks.
 946 *
 947 * CONTEXT:
 948 * Might sleep.
 949 *
 950 * RETURNS:
 951 * 0 on success, -errno on failure.
 952 */
 953int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
 954{
 955	struct bd_holder_disk *holder;
 956	int ret = 0;
 957
 958	mutex_lock(&bdev->bd_mutex);
 959
 960	WARN_ON_ONCE(!bdev->bd_holder);
 961
 962	/* FIXME: remove the following once add_disk() handles errors */
 963	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
 964		goto out_unlock;
 965
 966	holder = bd_find_holder_disk(bdev, disk);
 967	if (holder) {
 968		holder->refcnt++;
 969		goto out_unlock;
 970	}
 971
 972	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
 973	if (!holder) {
 974		ret = -ENOMEM;
 975		goto out_unlock;
 976	}
 977
 978	INIT_LIST_HEAD(&holder->list);
 979	holder->disk = disk;
 980	holder->refcnt = 1;
 981
 982	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
 983	if (ret)
 984		goto out_free;
 985
 986	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
 987	if (ret)
 988		goto out_del;
 989	/*
 990	 * bdev could be deleted beneath us which would implicitly destroy
 991	 * the holder directory.  Hold on to it.
 992	 */
 993	kobject_get(bdev->bd_part->holder_dir);
 994
 995	list_add(&holder->list, &bdev->bd_holder_disks);
 996	goto out_unlock;
 997
 998out_del:
 999	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1000out_free:
1001	kfree(holder);
1002out_unlock:
1003	mutex_unlock(&bdev->bd_mutex);
1004	return ret;
1005}
1006EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1007
1008/**
1009 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1010 * @bdev: the calimed slave bdev
1011 * @disk: the holding disk
1012 *
1013 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1014 *
1015 * CONTEXT:
1016 * Might sleep.
1017 */
1018void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1019{
1020	struct bd_holder_disk *holder;
1021
1022	mutex_lock(&bdev->bd_mutex);
1023
1024	holder = bd_find_holder_disk(bdev, disk);
1025
1026	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1027		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1028		del_symlink(bdev->bd_part->holder_dir,
1029			    &disk_to_dev(disk)->kobj);
1030		kobject_put(bdev->bd_part->holder_dir);
1031		list_del_init(&holder->list);
1032		kfree(holder);
1033	}
1034
1035	mutex_unlock(&bdev->bd_mutex);
1036}
1037EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1038#endif
1039
1040/**
1041 * flush_disk - invalidates all buffer-cache entries on a disk
1042 *
1043 * @bdev:      struct block device to be flushed
1044 * @kill_dirty: flag to guide handling of dirty inodes
1045 *
1046 * Invalidates all buffer-cache entries on a disk. It should be called
1047 * when a disk has been changed -- either by a media change or online
1048 * resize.
1049 */
1050static void flush_disk(struct block_device *bdev, bool kill_dirty)
1051{
1052	if (__invalidate_device(bdev, kill_dirty)) {
1053		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1054		       "resized disk %s\n",
1055		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1056	}
1057
1058	if (!bdev->bd_disk)
1059		return;
1060	if (disk_part_scan_enabled(bdev->bd_disk))
1061		bdev->bd_invalidated = 1;
1062}
1063
1064/**
1065 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1066 * @disk: struct gendisk to check
1067 * @bdev: struct bdev to adjust.
1068 *
1069 * This routine checks to see if the bdev size does not match the disk size
1070 * and adjusts it if it differs.
1071 */
1072void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1073{
1074	loff_t disk_size, bdev_size;
1075
1076	disk_size = (loff_t)get_capacity(disk) << 9;
1077	bdev_size = i_size_read(bdev->bd_inode);
1078	if (disk_size != bdev_size) {
1079		printk(KERN_INFO
1080		       "%s: detected capacity change from %lld to %lld\n",
1081		       disk->disk_name, bdev_size, disk_size);
1082		i_size_write(bdev->bd_inode, disk_size);
1083		flush_disk(bdev, false);
1084	}
1085}
1086EXPORT_SYMBOL(check_disk_size_change);
1087
1088/**
1089 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1090 * @disk: struct gendisk to be revalidated
1091 *
1092 * This routine is a wrapper for lower-level driver's revalidate_disk
1093 * call-backs.  It is used to do common pre and post operations needed
1094 * for all revalidate_disk operations.
1095 */
1096int revalidate_disk(struct gendisk *disk)
1097{
1098	struct block_device *bdev;
1099	int ret = 0;
1100
1101	if (disk->fops->revalidate_disk)
1102		ret = disk->fops->revalidate_disk(disk);
1103	blk_integrity_revalidate(disk);
1104	bdev = bdget_disk(disk, 0);
1105	if (!bdev)
1106		return ret;
1107
1108	mutex_lock(&bdev->bd_mutex);
1109	check_disk_size_change(disk, bdev);
1110	bdev->bd_invalidated = 0;
1111	mutex_unlock(&bdev->bd_mutex);
1112	bdput(bdev);
1113	return ret;
1114}
1115EXPORT_SYMBOL(revalidate_disk);
1116
1117/*
1118 * This routine checks whether a removable media has been changed,
1119 * and invalidates all buffer-cache-entries in that case. This
1120 * is a relatively slow routine, so we have to try to minimize using
1121 * it. Thus it is called only upon a 'mount' or 'open'. This
1122 * is the best way of combining speed and utility, I think.
1123 * People changing diskettes in the middle of an operation deserve
1124 * to lose :-)
1125 */
1126int check_disk_change(struct block_device *bdev)
1127{
1128	struct gendisk *disk = bdev->bd_disk;
1129	const struct block_device_operations *bdops = disk->fops;
1130	unsigned int events;
1131
1132	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1133				   DISK_EVENT_EJECT_REQUEST);
1134	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1135		return 0;
1136
1137	flush_disk(bdev, true);
1138	if (bdops->revalidate_disk)
1139		bdops->revalidate_disk(bdev->bd_disk);
1140	return 1;
1141}
1142
1143EXPORT_SYMBOL(check_disk_change);
1144
1145void bd_set_size(struct block_device *bdev, loff_t size)
1146{
1147	unsigned bsize = bdev_logical_block_size(bdev);
1148
1149	inode_lock(bdev->bd_inode);
1150	i_size_write(bdev->bd_inode, size);
1151	inode_unlock(bdev->bd_inode);
1152	while (bsize < PAGE_SIZE) {
1153		if (size & bsize)
1154			break;
1155		bsize <<= 1;
1156	}
1157	bdev->bd_block_size = bsize;
1158	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1159}
1160EXPORT_SYMBOL(bd_set_size);
1161
1162static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1163
1164/*
1165 * bd_mutex locking:
1166 *
1167 *  mutex_lock(part->bd_mutex)
1168 *    mutex_lock_nested(whole->bd_mutex, 1)
1169 */
1170
1171static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1172{
1173	struct gendisk *disk;
1174	struct module *owner;
1175	int ret;
1176	int partno;
1177	int perm = 0;
1178
1179	if (mode & FMODE_READ)
1180		perm |= MAY_READ;
1181	if (mode & FMODE_WRITE)
1182		perm |= MAY_WRITE;
1183	/*
1184	 * hooks: /n/, see "layering violations".
1185	 */
1186	if (!for_part) {
1187		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1188		if (ret != 0) {
1189			bdput(bdev);
1190			return ret;
1191		}
1192	}
1193
1194 restart:
1195
1196	ret = -ENXIO;
1197	disk = get_gendisk(bdev->bd_dev, &partno);
1198	if (!disk)
1199		goto out;
1200	owner = disk->fops->owner;
1201
1202	disk_block_events(disk);
1203	mutex_lock_nested(&bdev->bd_mutex, for_part);
1204	if (!bdev->bd_openers) {
1205		bdev->bd_disk = disk;
1206		bdev->bd_queue = disk->queue;
1207		bdev->bd_contains = bdev;
1208		if (IS_ENABLED(CONFIG_BLK_DEV_DAX) && disk->fops->direct_access)
1209			bdev->bd_inode->i_flags = S_DAX;
1210		else
1211			bdev->bd_inode->i_flags = 0;
1212
1213		if (!partno) {
1214			ret = -ENXIO;
1215			bdev->bd_part = disk_get_part(disk, partno);
1216			if (!bdev->bd_part)
1217				goto out_clear;
1218
1219			ret = 0;
1220			if (disk->fops->open) {
1221				ret = disk->fops->open(bdev, mode);
1222				if (ret == -ERESTARTSYS) {
1223					/* Lost a race with 'disk' being
1224					 * deleted, try again.
1225					 * See md.c
1226					 */
1227					disk_put_part(bdev->bd_part);
1228					bdev->bd_part = NULL;
1229					bdev->bd_disk = NULL;
1230					bdev->bd_queue = NULL;
1231					mutex_unlock(&bdev->bd_mutex);
1232					disk_unblock_events(disk);
1233					put_disk(disk);
1234					module_put(owner);
1235					goto restart;
1236				}
1237			}
1238
1239			if (!ret) {
1240				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1241				if (!blkdev_dax_capable(bdev))
1242					bdev->bd_inode->i_flags &= ~S_DAX;
1243			}
1244
1245			/*
1246			 * If the device is invalidated, rescan partition
1247			 * if open succeeded or failed with -ENOMEDIUM.
1248			 * The latter is necessary to prevent ghost
1249			 * partitions on a removed medium.
1250			 */
1251			if (bdev->bd_invalidated) {
1252				if (!ret)
1253					rescan_partitions(disk, bdev);
1254				else if (ret == -ENOMEDIUM)
1255					invalidate_partitions(disk, bdev);
1256			}
1257
1258			if (ret)
1259				goto out_clear;
1260		} else {
1261			struct block_device *whole;
1262			whole = bdget_disk(disk, 0);
1263			ret = -ENOMEM;
1264			if (!whole)
1265				goto out_clear;
1266			BUG_ON(for_part);
1267			ret = __blkdev_get(whole, mode, 1);
1268			if (ret)
1269				goto out_clear;
1270			bdev->bd_contains = whole;
1271			bdev->bd_part = disk_get_part(disk, partno);
1272			if (!(disk->flags & GENHD_FL_UP) ||
1273			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1274				ret = -ENXIO;
1275				goto out_clear;
1276			}
1277			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1278			if (!blkdev_dax_capable(bdev))
1279				bdev->bd_inode->i_flags &= ~S_DAX;
1280		}
1281	} else {
1282		if (bdev->bd_contains == bdev) {
1283			ret = 0;
1284			if (bdev->bd_disk->fops->open)
1285				ret = bdev->bd_disk->fops->open(bdev, mode);
1286			/* the same as first opener case, read comment there */
1287			if (bdev->bd_invalidated) {
1288				if (!ret)
1289					rescan_partitions(bdev->bd_disk, bdev);
1290				else if (ret == -ENOMEDIUM)
1291					invalidate_partitions(bdev->bd_disk, bdev);
1292			}
1293			if (ret)
1294				goto out_unlock_bdev;
1295		}
1296		/* only one opener holds refs to the module and disk */
1297		put_disk(disk);
1298		module_put(owner);
1299	}
1300	bdev->bd_openers++;
1301	if (for_part)
1302		bdev->bd_part_count++;
1303	mutex_unlock(&bdev->bd_mutex);
1304	disk_unblock_events(disk);
1305	return 0;
1306
1307 out_clear:
1308	disk_put_part(bdev->bd_part);
1309	bdev->bd_disk = NULL;
1310	bdev->bd_part = NULL;
1311	bdev->bd_queue = NULL;
1312	if (bdev != bdev->bd_contains)
1313		__blkdev_put(bdev->bd_contains, mode, 1);
1314	bdev->bd_contains = NULL;
1315 out_unlock_bdev:
1316	mutex_unlock(&bdev->bd_mutex);
1317	disk_unblock_events(disk);
1318	put_disk(disk);
1319	module_put(owner);
1320 out:
1321	bdput(bdev);
1322
1323	return ret;
1324}
1325
1326/**
1327 * blkdev_get - open a block device
1328 * @bdev: block_device to open
1329 * @mode: FMODE_* mask
1330 * @holder: exclusive holder identifier
1331 *
1332 * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1333 * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1334 * @holder is invalid.  Exclusive opens may nest for the same @holder.
1335 *
1336 * On success, the reference count of @bdev is unchanged.  On failure,
1337 * @bdev is put.
1338 *
1339 * CONTEXT:
1340 * Might sleep.
1341 *
1342 * RETURNS:
1343 * 0 on success, -errno on failure.
1344 */
1345int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1346{
1347	struct block_device *whole = NULL;
1348	int res;
1349
1350	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1351
1352	if ((mode & FMODE_EXCL) && holder) {
1353		whole = bd_start_claiming(bdev, holder);
1354		if (IS_ERR(whole)) {
1355			bdput(bdev);
1356			return PTR_ERR(whole);
1357		}
1358	}
1359
1360	res = __blkdev_get(bdev, mode, 0);
1361
1362	if (whole) {
1363		struct gendisk *disk = whole->bd_disk;
1364
1365		/* finish claiming */
1366		mutex_lock(&bdev->bd_mutex);
1367		spin_lock(&bdev_lock);
1368
1369		if (!res) {
1370			BUG_ON(!bd_may_claim(bdev, whole, holder));
1371			/*
1372			 * Note that for a whole device bd_holders
1373			 * will be incremented twice, and bd_holder
1374			 * will be set to bd_may_claim before being
1375			 * set to holder
1376			 */
1377			whole->bd_holders++;
1378			whole->bd_holder = bd_may_claim;
1379			bdev->bd_holders++;
1380			bdev->bd_holder = holder;
1381		}
1382
1383		/* tell others that we're done */
1384		BUG_ON(whole->bd_claiming != holder);
1385		whole->bd_claiming = NULL;
1386		wake_up_bit(&whole->bd_claiming, 0);
1387
1388		spin_unlock(&bdev_lock);
1389
1390		/*
1391		 * Block event polling for write claims if requested.  Any
1392		 * write holder makes the write_holder state stick until
1393		 * all are released.  This is good enough and tracking
1394		 * individual writeable reference is too fragile given the
1395		 * way @mode is used in blkdev_get/put().
1396		 */
1397		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1398		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1399			bdev->bd_write_holder = true;
1400			disk_block_events(disk);
1401		}
1402
1403		mutex_unlock(&bdev->bd_mutex);
1404		bdput(whole);
1405	}
1406
1407	return res;
1408}
1409EXPORT_SYMBOL(blkdev_get);
1410
1411/**
1412 * blkdev_get_by_path - open a block device by name
1413 * @path: path to the block device to open
1414 * @mode: FMODE_* mask
1415 * @holder: exclusive holder identifier
1416 *
1417 * Open the blockdevice described by the device file at @path.  @mode
1418 * and @holder are identical to blkdev_get().
1419 *
1420 * On success, the returned block_device has reference count of one.
1421 *
1422 * CONTEXT:
1423 * Might sleep.
1424 *
1425 * RETURNS:
1426 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1427 */
1428struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1429					void *holder)
1430{
1431	struct block_device *bdev;
1432	int err;
1433
1434	bdev = lookup_bdev(path);
1435	if (IS_ERR(bdev))
1436		return bdev;
1437
1438	err = blkdev_get(bdev, mode, holder);
1439	if (err)
1440		return ERR_PTR(err);
1441
1442	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1443		blkdev_put(bdev, mode);
1444		return ERR_PTR(-EACCES);
1445	}
1446
1447	return bdev;
1448}
1449EXPORT_SYMBOL(blkdev_get_by_path);
1450
1451/**
1452 * blkdev_get_by_dev - open a block device by device number
1453 * @dev: device number of block device to open
1454 * @mode: FMODE_* mask
1455 * @holder: exclusive holder identifier
1456 *
1457 * Open the blockdevice described by device number @dev.  @mode and
1458 * @holder are identical to blkdev_get().
1459 *
1460 * Use it ONLY if you really do not have anything better - i.e. when
1461 * you are behind a truly sucky interface and all you are given is a
1462 * device number.  _Never_ to be used for internal purposes.  If you
1463 * ever need it - reconsider your API.
1464 *
1465 * On success, the returned block_device has reference count of one.
1466 *
1467 * CONTEXT:
1468 * Might sleep.
1469 *
1470 * RETURNS:
1471 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1472 */
1473struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1474{
1475	struct block_device *bdev;
1476	int err;
1477
1478	bdev = bdget(dev);
1479	if (!bdev)
1480		return ERR_PTR(-ENOMEM);
1481
1482	err = blkdev_get(bdev, mode, holder);
1483	if (err)
1484		return ERR_PTR(err);
1485
1486	return bdev;
1487}
1488EXPORT_SYMBOL(blkdev_get_by_dev);
1489
1490static int blkdev_open(struct inode * inode, struct file * filp)
1491{
1492	struct block_device *bdev;
1493
1494	/*
1495	 * Preserve backwards compatibility and allow large file access
1496	 * even if userspace doesn't ask for it explicitly. Some mkfs
1497	 * binary needs it. We might want to drop this workaround
1498	 * during an unstable branch.
1499	 */
1500	filp->f_flags |= O_LARGEFILE;
1501
1502	if (filp->f_flags & O_NDELAY)
1503		filp->f_mode |= FMODE_NDELAY;
1504	if (filp->f_flags & O_EXCL)
1505		filp->f_mode |= FMODE_EXCL;
1506	if ((filp->f_flags & O_ACCMODE) == 3)
1507		filp->f_mode |= FMODE_WRITE_IOCTL;
1508
1509	bdev = bd_acquire(inode);
1510	if (bdev == NULL)
1511		return -ENOMEM;
1512
1513	filp->f_mapping = bdev->bd_inode->i_mapping;
1514
1515	return blkdev_get(bdev, filp->f_mode, filp);
1516}
1517
1518static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1519{
1520	struct gendisk *disk = bdev->bd_disk;
1521	struct block_device *victim = NULL;
1522
1523	mutex_lock_nested(&bdev->bd_mutex, for_part);
1524	if (for_part)
1525		bdev->bd_part_count--;
1526
1527	if (!--bdev->bd_openers) {
1528		WARN_ON_ONCE(bdev->bd_holders);
1529		sync_blockdev(bdev);
1530		kill_bdev(bdev);
1531
1532		bdev_write_inode(bdev);
1533		/*
1534		 * Detaching bdev inode from its wb in __destroy_inode()
1535		 * is too late: the queue which embeds its bdi (along with
1536		 * root wb) can be gone as soon as we put_disk() below.
1537		 */
1538		inode_detach_wb(bdev->bd_inode);
1539	}
1540	if (bdev->bd_contains == bdev) {
1541		if (disk->fops->release)
1542			disk->fops->release(disk, mode);
1543	}
1544	if (!bdev->bd_openers) {
1545		struct module *owner = disk->fops->owner;
1546
1547		disk_put_part(bdev->bd_part);
1548		bdev->bd_part = NULL;
1549		bdev->bd_disk = NULL;
1550		if (bdev != bdev->bd_contains)
1551			victim = bdev->bd_contains;
1552		bdev->bd_contains = NULL;
1553
1554		put_disk(disk);
1555		module_put(owner);
1556	}
1557	mutex_unlock(&bdev->bd_mutex);
1558	bdput(bdev);
1559	if (victim)
1560		__blkdev_put(victim, mode, 1);
1561}
1562
1563void blkdev_put(struct block_device *bdev, fmode_t mode)
1564{
1565	mutex_lock(&bdev->bd_mutex);
1566
1567	if (mode & FMODE_EXCL) {
1568		bool bdev_free;
1569
1570		/*
1571		 * Release a claim on the device.  The holder fields
1572		 * are protected with bdev_lock.  bd_mutex is to
1573		 * synchronize disk_holder unlinking.
1574		 */
1575		spin_lock(&bdev_lock);
1576
1577		WARN_ON_ONCE(--bdev->bd_holders < 0);
1578		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1579
1580		/* bd_contains might point to self, check in a separate step */
1581		if ((bdev_free = !bdev->bd_holders))
1582			bdev->bd_holder = NULL;
1583		if (!bdev->bd_contains->bd_holders)
1584			bdev->bd_contains->bd_holder = NULL;
1585
1586		spin_unlock(&bdev_lock);
1587
1588		/*
1589		 * If this was the last claim, remove holder link and
1590		 * unblock evpoll if it was a write holder.
1591		 */
1592		if (bdev_free && bdev->bd_write_holder) {
1593			disk_unblock_events(bdev->bd_disk);
1594			bdev->bd_write_holder = false;
1595		}
1596	}
1597
1598	/*
1599	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1600	 * event.  This is to ensure detection of media removal commanded
1601	 * from userland - e.g. eject(1).
1602	 */
1603	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1604
1605	mutex_unlock(&bdev->bd_mutex);
1606
1607	__blkdev_put(bdev, mode, 0);
1608}
1609EXPORT_SYMBOL(blkdev_put);
1610
1611static int blkdev_close(struct inode * inode, struct file * filp)
1612{
1613	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1614	blkdev_put(bdev, filp->f_mode);
1615	return 0;
1616}
1617
1618static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1619{
1620	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1621	fmode_t mode = file->f_mode;
1622
1623	/*
1624	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1625	 * to updated it before every ioctl.
1626	 */
1627	if (file->f_flags & O_NDELAY)
1628		mode |= FMODE_NDELAY;
1629	else
1630		mode &= ~FMODE_NDELAY;
1631
1632	return blkdev_ioctl(bdev, mode, cmd, arg);
1633}
1634
1635/*
1636 * Write data to the block device.  Only intended for the block device itself
1637 * and the raw driver which basically is a fake block device.
1638 *
1639 * Does not take i_mutex for the write and thus is not for general purpose
1640 * use.
1641 */
1642ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1643{
1644	struct file *file = iocb->ki_filp;
1645	struct inode *bd_inode = bdev_file_inode(file);
1646	loff_t size = i_size_read(bd_inode);
1647	struct blk_plug plug;
1648	ssize_t ret;
1649
1650	if (bdev_read_only(I_BDEV(bd_inode)))
1651		return -EPERM;
1652
1653	if (!iov_iter_count(from))
1654		return 0;
1655
1656	if (iocb->ki_pos >= size)
1657		return -ENOSPC;
1658
1659	iov_iter_truncate(from, size - iocb->ki_pos);
1660
1661	blk_start_plug(&plug);
1662	ret = __generic_file_write_iter(iocb, from);
1663	if (ret > 0) {
1664		ssize_t err;
1665		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1666		if (err < 0)
1667			ret = err;
1668	}
1669	blk_finish_plug(&plug);
1670	return ret;
1671}
1672EXPORT_SYMBOL_GPL(blkdev_write_iter);
1673
1674ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1675{
1676	struct file *file = iocb->ki_filp;
1677	struct inode *bd_inode = bdev_file_inode(file);
1678	loff_t size = i_size_read(bd_inode);
1679	loff_t pos = iocb->ki_pos;
1680
1681	if (pos >= size)
1682		return 0;
1683
1684	size -= pos;
1685	iov_iter_truncate(to, size);
1686	return generic_file_read_iter(iocb, to);
1687}
1688EXPORT_SYMBOL_GPL(blkdev_read_iter);
1689
1690/*
1691 * Try to release a page associated with block device when the system
1692 * is under memory pressure.
1693 */
1694static int blkdev_releasepage(struct page *page, gfp_t wait)
1695{
1696	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1697
1698	if (super && super->s_op->bdev_try_to_free_page)
1699		return super->s_op->bdev_try_to_free_page(super, page, wait);
1700
1701	return try_to_free_buffers(page);
1702}
1703
1704static int blkdev_writepages(struct address_space *mapping,
1705			     struct writeback_control *wbc)
1706{
1707	if (dax_mapping(mapping)) {
1708		struct block_device *bdev = I_BDEV(mapping->host);
1709
1710		return dax_writeback_mapping_range(mapping, bdev, wbc);
1711	}
1712	return generic_writepages(mapping, wbc);
1713}
1714
1715static const struct address_space_operations def_blk_aops = {
1716	.readpage	= blkdev_readpage,
1717	.readpages	= blkdev_readpages,
1718	.writepage	= blkdev_writepage,
1719	.write_begin	= blkdev_write_begin,
1720	.write_end	= blkdev_write_end,
1721	.writepages	= blkdev_writepages,
1722	.releasepage	= blkdev_releasepage,
1723	.direct_IO	= blkdev_direct_IO,
1724	.is_dirty_writeback = buffer_check_dirty_writeback,
1725};
1726
1727#ifdef CONFIG_FS_DAX
1728/*
1729 * In the raw block case we do not need to contend with truncation nor
1730 * unwritten file extents.  Without those concerns there is no need for
1731 * additional locking beyond the mmap_sem context that these routines
1732 * are already executing under.
1733 *
1734 * Note, there is no protection if the block device is dynamically
1735 * resized (partition grow/shrink) during a fault. A stable block device
1736 * size is already not enforced in the blkdev_direct_IO path.
1737 *
1738 * For DAX, it is the responsibility of the block device driver to
1739 * ensure the whole-disk device size is stable while requests are in
1740 * flight.
1741 *
1742 * Finally, unlike the filemap_page_mkwrite() case there is no
1743 * filesystem superblock to sync against freezing.  We still include a
1744 * pfn_mkwrite callback for dax drivers to receive write fault
1745 * notifications.
1746 */
1747static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1748{
1749	return __dax_fault(vma, vmf, blkdev_get_block, NULL);
1750}
1751
1752static int blkdev_dax_pfn_mkwrite(struct vm_area_struct *vma,
1753		struct vm_fault *vmf)
1754{
1755	return dax_pfn_mkwrite(vma, vmf);
1756}
1757
1758static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
1759		pmd_t *pmd, unsigned int flags)
1760{
1761	return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block, NULL);
1762}
1763
1764static const struct vm_operations_struct blkdev_dax_vm_ops = {
1765	.fault		= blkdev_dax_fault,
1766	.pmd_fault	= blkdev_dax_pmd_fault,
1767	.pfn_mkwrite	= blkdev_dax_pfn_mkwrite,
1768};
1769
1770static const struct vm_operations_struct blkdev_default_vm_ops = {
1771	.fault		= filemap_fault,
1772	.map_pages	= filemap_map_pages,
1773};
1774
1775static int blkdev_mmap(struct file *file, struct vm_area_struct *vma)
1776{
1777	struct inode *bd_inode = bdev_file_inode(file);
1778
1779	file_accessed(file);
1780	if (IS_DAX(bd_inode)) {
1781		vma->vm_ops = &blkdev_dax_vm_ops;
1782		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1783	} else {
1784		vma->vm_ops = &blkdev_default_vm_ops;
1785	}
1786
1787	return 0;
1788}
1789#else
1790#define blkdev_mmap generic_file_mmap
1791#endif
1792
1793const struct file_operations def_blk_fops = {
1794	.open		= blkdev_open,
1795	.release	= blkdev_close,
1796	.llseek		= block_llseek,
1797	.read_iter	= blkdev_read_iter,
1798	.write_iter	= blkdev_write_iter,
1799	.mmap		= blkdev_mmap,
1800	.fsync		= blkdev_fsync,
1801	.unlocked_ioctl	= block_ioctl,
1802#ifdef CONFIG_COMPAT
1803	.compat_ioctl	= compat_blkdev_ioctl,
1804#endif
1805	.splice_read	= generic_file_splice_read,
1806	.splice_write	= iter_file_splice_write,
1807};
1808
1809int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1810{
1811	int res;
1812	mm_segment_t old_fs = get_fs();
1813	set_fs(KERNEL_DS);
1814	res = blkdev_ioctl(bdev, 0, cmd, arg);
1815	set_fs(old_fs);
1816	return res;
1817}
1818
1819EXPORT_SYMBOL(ioctl_by_bdev);
1820
1821/**
1822 * lookup_bdev  - lookup a struct block_device by name
1823 * @pathname:	special file representing the block device
1824 *
1825 * Get a reference to the blockdevice at @pathname in the current
1826 * namespace if possible and return it.  Return ERR_PTR(error)
1827 * otherwise.
1828 */
1829struct block_device *lookup_bdev(const char *pathname)
1830{
1831	struct block_device *bdev;
1832	struct inode *inode;
1833	struct path path;
1834	int error;
1835
1836	if (!pathname || !*pathname)
1837		return ERR_PTR(-EINVAL);
1838
1839	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1840	if (error)
1841		return ERR_PTR(error);
1842
1843	inode = d_backing_inode(path.dentry);
1844	error = -ENOTBLK;
1845	if (!S_ISBLK(inode->i_mode))
1846		goto fail;
1847	error = -EACCES;
1848	if (path.mnt->mnt_flags & MNT_NODEV)
1849		goto fail;
1850	error = -ENOMEM;
1851	bdev = bd_acquire(inode);
1852	if (!bdev)
1853		goto fail;
1854out:
1855	path_put(&path);
1856	return bdev;
1857fail:
1858	bdev = ERR_PTR(error);
1859	goto out;
1860}
1861EXPORT_SYMBOL(lookup_bdev);
1862
1863int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1864{
1865	struct super_block *sb = get_super(bdev);
1866	int res = 0;
1867
1868	if (sb) {
1869		/*
1870		 * no need to lock the super, get_super holds the
1871		 * read mutex so the filesystem cannot go away
1872		 * under us (->put_super runs with the write lock
1873		 * hold).
1874		 */
1875		shrink_dcache_sb(sb);
1876		res = invalidate_inodes(sb, kill_dirty);
1877		drop_super(sb);
1878	}
1879	invalidate_bdev(bdev);
1880	return res;
1881}
1882EXPORT_SYMBOL(__invalidate_device);
1883
1884void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1885{
1886	struct inode *inode, *old_inode = NULL;
1887
1888	spin_lock(&blockdev_superblock->s_inode_list_lock);
1889	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1890		struct address_space *mapping = inode->i_mapping;
1891
1892		spin_lock(&inode->i_lock);
1893		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1894		    mapping->nrpages == 0) {
1895			spin_unlock(&inode->i_lock);
1896			continue;
1897		}
1898		__iget(inode);
1899		spin_unlock(&inode->i_lock);
1900		spin_unlock(&blockdev_superblock->s_inode_list_lock);
1901		/*
1902		 * We hold a reference to 'inode' so it couldn't have been
1903		 * removed from s_inodes list while we dropped the
1904		 * s_inode_list_lock  We cannot iput the inode now as we can
1905		 * be holding the last reference and we cannot iput it under
1906		 * s_inode_list_lock. So we keep the reference and iput it
1907		 * later.
1908		 */
1909		iput(old_inode);
1910		old_inode = inode;
1911
1912		func(I_BDEV(inode), arg);
1913
1914		spin_lock(&blockdev_superblock->s_inode_list_lock);
1915	}
1916	spin_unlock(&blockdev_superblock->s_inode_list_lock);
1917	iput(old_inode);
1918}
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/block_dev.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/fcntl.h>
  12#include <linux/slab.h>
  13#include <linux/kmod.h>
  14#include <linux/major.h>
  15#include <linux/device_cgroup.h>
  16#include <linux/highmem.h>
  17#include <linux/blkdev.h>
  18#include <linux/backing-dev.h>
  19#include <linux/module.h>
  20#include <linux/blkpg.h>
  21#include <linux/magic.h>
  22#include <linux/dax.h>
  23#include <linux/buffer_head.h>
  24#include <linux/swap.h>
  25#include <linux/pagevec.h>
  26#include <linux/writeback.h>
  27#include <linux/mpage.h>
  28#include <linux/mount.h>
  29#include <linux/pseudo_fs.h>
  30#include <linux/uio.h>
  31#include <linux/namei.h>
  32#include <linux/log2.h>
  33#include <linux/cleancache.h>
  34#include <linux/task_io_accounting_ops.h>
  35#include <linux/falloc.h>
  36#include <linux/uaccess.h>
  37#include "internal.h"
  38
  39struct bdev_inode {
  40	struct block_device bdev;
  41	struct inode vfs_inode;
  42};
  43
  44static const struct address_space_operations def_blk_aops;
  45
  46static inline struct bdev_inode *BDEV_I(struct inode *inode)
  47{
  48	return container_of(inode, struct bdev_inode, vfs_inode);
  49}
  50
  51struct block_device *I_BDEV(struct inode *inode)
  52{
  53	return &BDEV_I(inode)->bdev;
  54}
  55EXPORT_SYMBOL(I_BDEV);
  56
  57static void bdev_write_inode(struct block_device *bdev)
  58{
  59	struct inode *inode = bdev->bd_inode;
  60	int ret;
  61
  62	spin_lock(&inode->i_lock);
  63	while (inode->i_state & I_DIRTY) {
  64		spin_unlock(&inode->i_lock);
  65		ret = write_inode_now(inode, true);
  66		if (ret) {
  67			char name[BDEVNAME_SIZE];
  68			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
  69					    "for block device %s (err=%d).\n",
  70					    bdevname(bdev, name), ret);
  71		}
  72		spin_lock(&inode->i_lock);
  73	}
  74	spin_unlock(&inode->i_lock);
  75}
  76
  77/* Kill _all_ buffers and pagecache , dirty or not.. */
  78void kill_bdev(struct block_device *bdev)
  79{
  80	struct address_space *mapping = bdev->bd_inode->i_mapping;
  81
  82	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
  83		return;
  84
  85	invalidate_bh_lrus();
  86	truncate_inode_pages(mapping, 0);
  87}	
  88EXPORT_SYMBOL(kill_bdev);
  89
  90/* Invalidate clean unused buffers and pagecache. */
  91void invalidate_bdev(struct block_device *bdev)
  92{
  93	struct address_space *mapping = bdev->bd_inode->i_mapping;
  94
  95	if (mapping->nrpages) {
  96		invalidate_bh_lrus();
  97		lru_add_drain_all();	/* make sure all lru add caches are flushed */
  98		invalidate_mapping_pages(mapping, 0, -1);
  99	}
 100	/* 99% of the time, we don't need to flush the cleancache on the bdev.
 101	 * But, for the strange corners, lets be cautious
 102	 */
 103	cleancache_invalidate_inode(mapping);
 104}
 105EXPORT_SYMBOL(invalidate_bdev);
 106
 107static void set_init_blocksize(struct block_device *bdev)
 108{
 109	unsigned bsize = bdev_logical_block_size(bdev);
 110	loff_t size = i_size_read(bdev->bd_inode);
 111
 112	while (bsize < PAGE_SIZE) {
 113		if (size & bsize)
 114			break;
 115		bsize <<= 1;
 116	}
 117	bdev->bd_block_size = bsize;
 118	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
 119}
 120
 121int set_blocksize(struct block_device *bdev, int size)
 122{
 123	/* Size must be a power of two, and between 512 and PAGE_SIZE */
 124	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
 125		return -EINVAL;
 126
 127	/* Size cannot be smaller than the size supported by the device */
 128	if (size < bdev_logical_block_size(bdev))
 129		return -EINVAL;
 130
 131	/* Don't change the size if it is same as current */
 132	if (bdev->bd_block_size != size) {
 133		sync_blockdev(bdev);
 134		bdev->bd_block_size = size;
 135		bdev->bd_inode->i_blkbits = blksize_bits(size);
 136		kill_bdev(bdev);
 137	}
 138	return 0;
 139}
 140
 141EXPORT_SYMBOL(set_blocksize);
 142
 143int sb_set_blocksize(struct super_block *sb, int size)
 144{
 145	if (set_blocksize(sb->s_bdev, size))
 146		return 0;
 147	/* If we get here, we know size is power of two
 148	 * and it's value is between 512 and PAGE_SIZE */
 149	sb->s_blocksize = size;
 150	sb->s_blocksize_bits = blksize_bits(size);
 151	return sb->s_blocksize;
 152}
 153
 154EXPORT_SYMBOL(sb_set_blocksize);
 155
 156int sb_min_blocksize(struct super_block *sb, int size)
 157{
 158	int minsize = bdev_logical_block_size(sb->s_bdev);
 159	if (size < minsize)
 160		size = minsize;
 161	return sb_set_blocksize(sb, size);
 162}
 163
 164EXPORT_SYMBOL(sb_min_blocksize);
 165
 166static int
 167blkdev_get_block(struct inode *inode, sector_t iblock,
 168		struct buffer_head *bh, int create)
 169{
 170	bh->b_bdev = I_BDEV(inode);
 171	bh->b_blocknr = iblock;
 172	set_buffer_mapped(bh);
 173	return 0;
 174}
 175
 176static struct inode *bdev_file_inode(struct file *file)
 177{
 178	return file->f_mapping->host;
 179}
 180
 181static unsigned int dio_bio_write_op(struct kiocb *iocb)
 182{
 183	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
 184
 185	/* avoid the need for a I/O completion work item */
 186	if (iocb->ki_flags & IOCB_DSYNC)
 187		op |= REQ_FUA;
 188	return op;
 189}
 190
 191#define DIO_INLINE_BIO_VECS 4
 192
 193static void blkdev_bio_end_io_simple(struct bio *bio)
 194{
 195	struct task_struct *waiter = bio->bi_private;
 196
 197	WRITE_ONCE(bio->bi_private, NULL);
 198	blk_wake_io_task(waiter);
 199}
 200
 201static ssize_t
 202__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
 203		int nr_pages)
 204{
 205	struct file *file = iocb->ki_filp;
 206	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
 207	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
 208	loff_t pos = iocb->ki_pos;
 209	bool should_dirty = false;
 210	struct bio bio;
 211	ssize_t ret;
 212	blk_qc_t qc;
 213
 214	if ((pos | iov_iter_alignment(iter)) &
 215	    (bdev_logical_block_size(bdev) - 1))
 216		return -EINVAL;
 217
 218	if (nr_pages <= DIO_INLINE_BIO_VECS)
 219		vecs = inline_vecs;
 220	else {
 221		vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
 222				     GFP_KERNEL);
 223		if (!vecs)
 224			return -ENOMEM;
 225	}
 226
 227	bio_init(&bio, vecs, nr_pages);
 228	bio_set_dev(&bio, bdev);
 229	bio.bi_iter.bi_sector = pos >> 9;
 230	bio.bi_write_hint = iocb->ki_hint;
 231	bio.bi_private = current;
 232	bio.bi_end_io = blkdev_bio_end_io_simple;
 233	bio.bi_ioprio = iocb->ki_ioprio;
 234
 235	ret = bio_iov_iter_get_pages(&bio, iter);
 236	if (unlikely(ret))
 237		goto out;
 238	ret = bio.bi_iter.bi_size;
 239
 240	if (iov_iter_rw(iter) == READ) {
 241		bio.bi_opf = REQ_OP_READ;
 242		if (iter_is_iovec(iter))
 243			should_dirty = true;
 244	} else {
 245		bio.bi_opf = dio_bio_write_op(iocb);
 246		task_io_account_write(ret);
 247	}
 248	if (iocb->ki_flags & IOCB_HIPRI)
 249		bio_set_polled(&bio, iocb);
 250
 251	qc = submit_bio(&bio);
 252	for (;;) {
 253		set_current_state(TASK_UNINTERRUPTIBLE);
 254		if (!READ_ONCE(bio.bi_private))
 255			break;
 256		if (!(iocb->ki_flags & IOCB_HIPRI) ||
 257		    !blk_poll(bdev_get_queue(bdev), qc, true))
 258			io_schedule();
 259	}
 260	__set_current_state(TASK_RUNNING);
 261
 262	bio_release_pages(&bio, should_dirty);
 263	if (unlikely(bio.bi_status))
 264		ret = blk_status_to_errno(bio.bi_status);
 265
 266out:
 267	if (vecs != inline_vecs)
 268		kfree(vecs);
 269
 270	bio_uninit(&bio);
 271
 272	return ret;
 273}
 274
 275struct blkdev_dio {
 276	union {
 277		struct kiocb		*iocb;
 278		struct task_struct	*waiter;
 279	};
 280	size_t			size;
 281	atomic_t		ref;
 282	bool			multi_bio : 1;
 283	bool			should_dirty : 1;
 284	bool			is_sync : 1;
 285	struct bio		bio;
 286};
 287
 288static struct bio_set blkdev_dio_pool;
 289
 290static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
 291{
 292	struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
 293	struct request_queue *q = bdev_get_queue(bdev);
 294
 295	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
 296}
 297
 298static void blkdev_bio_end_io(struct bio *bio)
 299{
 300	struct blkdev_dio *dio = bio->bi_private;
 301	bool should_dirty = dio->should_dirty;
 302
 303	if (bio->bi_status && !dio->bio.bi_status)
 304		dio->bio.bi_status = bio->bi_status;
 305
 306	if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
 307		if (!dio->is_sync) {
 308			struct kiocb *iocb = dio->iocb;
 309			ssize_t ret;
 310
 311			if (likely(!dio->bio.bi_status)) {
 312				ret = dio->size;
 313				iocb->ki_pos += ret;
 314			} else {
 315				ret = blk_status_to_errno(dio->bio.bi_status);
 316			}
 317
 318			dio->iocb->ki_complete(iocb, ret, 0);
 319			if (dio->multi_bio)
 320				bio_put(&dio->bio);
 321		} else {
 322			struct task_struct *waiter = dio->waiter;
 323
 324			WRITE_ONCE(dio->waiter, NULL);
 325			blk_wake_io_task(waiter);
 326		}
 327	}
 328
 329	if (should_dirty) {
 330		bio_check_pages_dirty(bio);
 331	} else {
 332		bio_release_pages(bio, false);
 333		bio_put(bio);
 334	}
 335}
 336
 337static ssize_t
 338__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
 339{
 340	struct file *file = iocb->ki_filp;
 341	struct inode *inode = bdev_file_inode(file);
 342	struct block_device *bdev = I_BDEV(inode);
 343	struct blk_plug plug;
 344	struct blkdev_dio *dio;
 345	struct bio *bio;
 346	bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
 347	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
 348	loff_t pos = iocb->ki_pos;
 349	blk_qc_t qc = BLK_QC_T_NONE;
 350	int ret = 0;
 351
 352	if ((pos | iov_iter_alignment(iter)) &
 353	    (bdev_logical_block_size(bdev) - 1))
 354		return -EINVAL;
 355
 356	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
 357
 358	dio = container_of(bio, struct blkdev_dio, bio);
 359	dio->is_sync = is_sync = is_sync_kiocb(iocb);
 360	if (dio->is_sync) {
 361		dio->waiter = current;
 362		bio_get(bio);
 363	} else {
 364		dio->iocb = iocb;
 365	}
 366
 367	dio->size = 0;
 368	dio->multi_bio = false;
 369	dio->should_dirty = is_read && iter_is_iovec(iter);
 370
 371	/*
 372	 * Don't plug for HIPRI/polled IO, as those should go straight
 373	 * to issue
 374	 */
 375	if (!is_poll)
 376		blk_start_plug(&plug);
 377
 378	for (;;) {
 379		bio_set_dev(bio, bdev);
 380		bio->bi_iter.bi_sector = pos >> 9;
 381		bio->bi_write_hint = iocb->ki_hint;
 382		bio->bi_private = dio;
 383		bio->bi_end_io = blkdev_bio_end_io;
 384		bio->bi_ioprio = iocb->ki_ioprio;
 385
 386		ret = bio_iov_iter_get_pages(bio, iter);
 387		if (unlikely(ret)) {
 388			bio->bi_status = BLK_STS_IOERR;
 389			bio_endio(bio);
 390			break;
 391		}
 392
 393		if (is_read) {
 394			bio->bi_opf = REQ_OP_READ;
 395			if (dio->should_dirty)
 396				bio_set_pages_dirty(bio);
 397		} else {
 398			bio->bi_opf = dio_bio_write_op(iocb);
 399			task_io_account_write(bio->bi_iter.bi_size);
 400		}
 401
 402		dio->size += bio->bi_iter.bi_size;
 403		pos += bio->bi_iter.bi_size;
 404
 405		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
 406		if (!nr_pages) {
 407			bool polled = false;
 408
 409			if (iocb->ki_flags & IOCB_HIPRI) {
 410				bio_set_polled(bio, iocb);
 411				polled = true;
 412			}
 413
 414			qc = submit_bio(bio);
 415
 416			if (polled)
 417				WRITE_ONCE(iocb->ki_cookie, qc);
 418			break;
 419		}
 420
 421		if (!dio->multi_bio) {
 422			/*
 423			 * AIO needs an extra reference to ensure the dio
 424			 * structure which is embedded into the first bio
 425			 * stays around.
 426			 */
 427			if (!is_sync)
 428				bio_get(bio);
 429			dio->multi_bio = true;
 430			atomic_set(&dio->ref, 2);
 431		} else {
 432			atomic_inc(&dio->ref);
 433		}
 434
 435		submit_bio(bio);
 436		bio = bio_alloc(GFP_KERNEL, nr_pages);
 437	}
 438
 439	if (!is_poll)
 440		blk_finish_plug(&plug);
 441
 442	if (!is_sync)
 443		return -EIOCBQUEUED;
 444
 445	for (;;) {
 446		set_current_state(TASK_UNINTERRUPTIBLE);
 447		if (!READ_ONCE(dio->waiter))
 448			break;
 449
 450		if (!(iocb->ki_flags & IOCB_HIPRI) ||
 451		    !blk_poll(bdev_get_queue(bdev), qc, true))
 452			io_schedule();
 453	}
 454	__set_current_state(TASK_RUNNING);
 455
 456	if (!ret)
 457		ret = blk_status_to_errno(dio->bio.bi_status);
 458	if (likely(!ret))
 459		ret = dio->size;
 460
 461	bio_put(&dio->bio);
 462	return ret;
 463}
 464
 465static ssize_t
 466blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 467{
 468	int nr_pages;
 469
 470	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
 471	if (!nr_pages)
 472		return 0;
 473	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
 474		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
 475
 476	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
 477}
 478
 479static __init int blkdev_init(void)
 480{
 481	return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
 482}
 483module_init(blkdev_init);
 484
 485int __sync_blockdev(struct block_device *bdev, int wait)
 486{
 487	if (!bdev)
 488		return 0;
 489	if (!wait)
 490		return filemap_flush(bdev->bd_inode->i_mapping);
 491	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
 492}
 493
 494/*
 495 * Write out and wait upon all the dirty data associated with a block
 496 * device via its mapping.  Does not take the superblock lock.
 497 */
 498int sync_blockdev(struct block_device *bdev)
 499{
 500	return __sync_blockdev(bdev, 1);
 501}
 502EXPORT_SYMBOL(sync_blockdev);
 503
 504/*
 505 * Write out and wait upon all dirty data associated with this
 506 * device.   Filesystem data as well as the underlying block
 507 * device.  Takes the superblock lock.
 508 */
 509int fsync_bdev(struct block_device *bdev)
 510{
 511	struct super_block *sb = get_super(bdev);
 512	if (sb) {
 513		int res = sync_filesystem(sb);
 514		drop_super(sb);
 515		return res;
 516	}
 517	return sync_blockdev(bdev);
 518}
 519EXPORT_SYMBOL(fsync_bdev);
 520
 521/**
 522 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 523 * @bdev:	blockdevice to lock
 524 *
 525 * If a superblock is found on this device, we take the s_umount semaphore
 526 * on it to make sure nobody unmounts until the snapshot creation is done.
 527 * The reference counter (bd_fsfreeze_count) guarantees that only the last
 528 * unfreeze process can unfreeze the frozen filesystem actually when multiple
 529 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
 530 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
 531 * actually.
 532 */
 533struct super_block *freeze_bdev(struct block_device *bdev)
 534{
 535	struct super_block *sb;
 536	int error = 0;
 537
 538	mutex_lock(&bdev->bd_fsfreeze_mutex);
 539	if (++bdev->bd_fsfreeze_count > 1) {
 540		/*
 541		 * We don't even need to grab a reference - the first call
 542		 * to freeze_bdev grab an active reference and only the last
 543		 * thaw_bdev drops it.
 544		 */
 545		sb = get_super(bdev);
 546		if (sb)
 547			drop_super(sb);
 548		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 549		return sb;
 550	}
 551
 552	sb = get_active_super(bdev);
 553	if (!sb)
 554		goto out;
 555	if (sb->s_op->freeze_super)
 556		error = sb->s_op->freeze_super(sb);
 557	else
 558		error = freeze_super(sb);
 559	if (error) {
 560		deactivate_super(sb);
 561		bdev->bd_fsfreeze_count--;
 562		mutex_unlock(&bdev->bd_fsfreeze_mutex);
 563		return ERR_PTR(error);
 564	}
 565	deactivate_super(sb);
 566 out:
 567	sync_blockdev(bdev);
 568	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 569	return sb;	/* thaw_bdev releases s->s_umount */
 570}
 571EXPORT_SYMBOL(freeze_bdev);
 572
 573/**
 574 * thaw_bdev  -- unlock filesystem
 575 * @bdev:	blockdevice to unlock
 576 * @sb:		associated superblock
 577 *
 578 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 579 */
 580int thaw_bdev(struct block_device *bdev, struct super_block *sb)
 581{
 582	int error = -EINVAL;
 583
 584	mutex_lock(&bdev->bd_fsfreeze_mutex);
 585	if (!bdev->bd_fsfreeze_count)
 586		goto out;
 587
 588	error = 0;
 589	if (--bdev->bd_fsfreeze_count > 0)
 590		goto out;
 591
 592	if (!sb)
 593		goto out;
 594
 595	if (sb->s_op->thaw_super)
 596		error = sb->s_op->thaw_super(sb);
 597	else
 598		error = thaw_super(sb);
 599	if (error)
 600		bdev->bd_fsfreeze_count++;
 601out:
 602	mutex_unlock(&bdev->bd_fsfreeze_mutex);
 603	return error;
 604}
 605EXPORT_SYMBOL(thaw_bdev);
 606
 607static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
 608{
 609	return block_write_full_page(page, blkdev_get_block, wbc);
 610}
 611
 612static int blkdev_readpage(struct file * file, struct page * page)
 613{
 614	return block_read_full_page(page, blkdev_get_block);
 615}
 616
 617static int blkdev_readpages(struct file *file, struct address_space *mapping,
 618			struct list_head *pages, unsigned nr_pages)
 619{
 620	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
 621}
 622
 623static int blkdev_write_begin(struct file *file, struct address_space *mapping,
 624			loff_t pos, unsigned len, unsigned flags,
 625			struct page **pagep, void **fsdata)
 626{
 627	return block_write_begin(mapping, pos, len, flags, pagep,
 628				 blkdev_get_block);
 629}
 630
 631static int blkdev_write_end(struct file *file, struct address_space *mapping,
 632			loff_t pos, unsigned len, unsigned copied,
 633			struct page *page, void *fsdata)
 634{
 635	int ret;
 636	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 637
 638	unlock_page(page);
 639	put_page(page);
 640
 641	return ret;
 642}
 643
 644/*
 645 * private llseek:
 646 * for a block special file file_inode(file)->i_size is zero
 647 * so we compute the size by hand (just as in block_read/write above)
 648 */
 649static loff_t block_llseek(struct file *file, loff_t offset, int whence)
 650{
 651	struct inode *bd_inode = bdev_file_inode(file);
 652	loff_t retval;
 653
 654	inode_lock(bd_inode);
 655	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
 656	inode_unlock(bd_inode);
 657	return retval;
 658}
 659	
 660int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 661{
 662	struct inode *bd_inode = bdev_file_inode(filp);
 663	struct block_device *bdev = I_BDEV(bd_inode);
 664	int error;
 665	
 666	error = file_write_and_wait_range(filp, start, end);
 667	if (error)
 668		return error;
 669
 670	/*
 671	 * There is no need to serialise calls to blkdev_issue_flush with
 672	 * i_mutex and doing so causes performance issues with concurrent
 673	 * O_SYNC writers to a block device.
 674	 */
 675	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
 676	if (error == -EOPNOTSUPP)
 677		error = 0;
 678
 679	return error;
 680}
 681EXPORT_SYMBOL(blkdev_fsync);
 682
 683/**
 684 * bdev_read_page() - Start reading a page from a block device
 685 * @bdev: The device to read the page from
 686 * @sector: The offset on the device to read the page to (need not be aligned)
 687 * @page: The page to read
 688 *
 689 * On entry, the page should be locked.  It will be unlocked when the page
 690 * has been read.  If the block driver implements rw_page synchronously,
 691 * that will be true on exit from this function, but it need not be.
 692 *
 693 * Errors returned by this function are usually "soft", eg out of memory, or
 694 * queue full; callers should try a different route to read this page rather
 695 * than propagate an error back up the stack.
 696 *
 697 * Return: negative errno if an error occurs, 0 if submission was successful.
 698 */
 699int bdev_read_page(struct block_device *bdev, sector_t sector,
 700			struct page *page)
 701{
 702	const struct block_device_operations *ops = bdev->bd_disk->fops;
 703	int result = -EOPNOTSUPP;
 704
 705	if (!ops->rw_page || bdev_get_integrity(bdev))
 706		return result;
 707
 708	result = blk_queue_enter(bdev->bd_queue, 0);
 709	if (result)
 710		return result;
 711	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
 712			      REQ_OP_READ);
 713	blk_queue_exit(bdev->bd_queue);
 714	return result;
 715}
 716EXPORT_SYMBOL_GPL(bdev_read_page);
 717
 718/**
 719 * bdev_write_page() - Start writing a page to a block device
 720 * @bdev: The device to write the page to
 721 * @sector: The offset on the device to write the page to (need not be aligned)
 722 * @page: The page to write
 723 * @wbc: The writeback_control for the write
 724 *
 725 * On entry, the page should be locked and not currently under writeback.
 726 * On exit, if the write started successfully, the page will be unlocked and
 727 * under writeback.  If the write failed already (eg the driver failed to
 728 * queue the page to the device), the page will still be locked.  If the
 729 * caller is a ->writepage implementation, it will need to unlock the page.
 730 *
 731 * Errors returned by this function are usually "soft", eg out of memory, or
 732 * queue full; callers should try a different route to write this page rather
 733 * than propagate an error back up the stack.
 734 *
 735 * Return: negative errno if an error occurs, 0 if submission was successful.
 736 */
 737int bdev_write_page(struct block_device *bdev, sector_t sector,
 738			struct page *page, struct writeback_control *wbc)
 739{
 740	int result;
 741	const struct block_device_operations *ops = bdev->bd_disk->fops;
 742
 743	if (!ops->rw_page || bdev_get_integrity(bdev))
 744		return -EOPNOTSUPP;
 745	result = blk_queue_enter(bdev->bd_queue, 0);
 746	if (result)
 747		return result;
 748
 749	set_page_writeback(page);
 750	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
 751			      REQ_OP_WRITE);
 752	if (result) {
 753		end_page_writeback(page);
 754	} else {
 755		clean_page_buffers(page);
 756		unlock_page(page);
 757	}
 758	blk_queue_exit(bdev->bd_queue);
 759	return result;
 760}
 761EXPORT_SYMBOL_GPL(bdev_write_page);
 762
 763/*
 764 * pseudo-fs
 765 */
 766
 767static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
 768static struct kmem_cache * bdev_cachep __read_mostly;
 769
 770static struct inode *bdev_alloc_inode(struct super_block *sb)
 771{
 772	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
 773	if (!ei)
 774		return NULL;
 775	return &ei->vfs_inode;
 776}
 777
 778static void bdev_free_inode(struct inode *inode)
 779{
 780	kmem_cache_free(bdev_cachep, BDEV_I(inode));
 781}
 782
 783static void init_once(void *foo)
 784{
 785	struct bdev_inode *ei = (struct bdev_inode *) foo;
 786	struct block_device *bdev = &ei->bdev;
 787
 788	memset(bdev, 0, sizeof(*bdev));
 789	mutex_init(&bdev->bd_mutex);
 790	INIT_LIST_HEAD(&bdev->bd_list);
 791#ifdef CONFIG_SYSFS
 792	INIT_LIST_HEAD(&bdev->bd_holder_disks);
 793#endif
 794	bdev->bd_bdi = &noop_backing_dev_info;
 795	inode_init_once(&ei->vfs_inode);
 796	/* Initialize mutex for freeze. */
 797	mutex_init(&bdev->bd_fsfreeze_mutex);
 798}
 799
 800static void bdev_evict_inode(struct inode *inode)
 801{
 802	struct block_device *bdev = &BDEV_I(inode)->bdev;
 803	truncate_inode_pages_final(&inode->i_data);
 804	invalidate_inode_buffers(inode); /* is it needed here? */
 805	clear_inode(inode);
 806	spin_lock(&bdev_lock);
 807	list_del_init(&bdev->bd_list);
 808	spin_unlock(&bdev_lock);
 809	/* Detach inode from wb early as bdi_put() may free bdi->wb */
 810	inode_detach_wb(inode);
 811	if (bdev->bd_bdi != &noop_backing_dev_info) {
 812		bdi_put(bdev->bd_bdi);
 813		bdev->bd_bdi = &noop_backing_dev_info;
 814	}
 815}
 816
 817static const struct super_operations bdev_sops = {
 818	.statfs = simple_statfs,
 819	.alloc_inode = bdev_alloc_inode,
 820	.free_inode = bdev_free_inode,
 821	.drop_inode = generic_delete_inode,
 822	.evict_inode = bdev_evict_inode,
 823};
 824
 825static int bd_init_fs_context(struct fs_context *fc)
 826{
 827	struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
 828	if (!ctx)
 829		return -ENOMEM;
 830	fc->s_iflags |= SB_I_CGROUPWB;
 831	ctx->ops = &bdev_sops;
 832	return 0;
 833}
 834
 835static struct file_system_type bd_type = {
 836	.name		= "bdev",
 837	.init_fs_context = bd_init_fs_context,
 838	.kill_sb	= kill_anon_super,
 839};
 840
 841struct super_block *blockdev_superblock __read_mostly;
 842EXPORT_SYMBOL_GPL(blockdev_superblock);
 843
 844void __init bdev_cache_init(void)
 845{
 846	int err;
 847	static struct vfsmount *bd_mnt;
 848
 849	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
 850			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
 851				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
 852			init_once);
 853	err = register_filesystem(&bd_type);
 854	if (err)
 855		panic("Cannot register bdev pseudo-fs");
 856	bd_mnt = kern_mount(&bd_type);
 857	if (IS_ERR(bd_mnt))
 858		panic("Cannot create bdev pseudo-fs");
 859	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
 860}
 861
 862/*
 863 * Most likely _very_ bad one - but then it's hardly critical for small
 864 * /dev and can be fixed when somebody will need really large one.
 865 * Keep in mind that it will be fed through icache hash function too.
 866 */
 867static inline unsigned long hash(dev_t dev)
 868{
 869	return MAJOR(dev)+MINOR(dev);
 870}
 871
 872static int bdev_test(struct inode *inode, void *data)
 873{
 874	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
 875}
 876
 877static int bdev_set(struct inode *inode, void *data)
 878{
 879	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
 880	return 0;
 881}
 882
 883static LIST_HEAD(all_bdevs);
 884
 885/*
 886 * If there is a bdev inode for this device, unhash it so that it gets evicted
 887 * as soon as last inode reference is dropped.
 888 */
 889void bdev_unhash_inode(dev_t dev)
 890{
 891	struct inode *inode;
 892
 893	inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
 894	if (inode) {
 895		remove_inode_hash(inode);
 896		iput(inode);
 897	}
 898}
 899
 900struct block_device *bdget(dev_t dev)
 901{
 902	struct block_device *bdev;
 903	struct inode *inode;
 904
 905	inode = iget5_locked(blockdev_superblock, hash(dev),
 906			bdev_test, bdev_set, &dev);
 907
 908	if (!inode)
 909		return NULL;
 910
 911	bdev = &BDEV_I(inode)->bdev;
 912
 913	if (inode->i_state & I_NEW) {
 914		bdev->bd_contains = NULL;
 915		bdev->bd_super = NULL;
 916		bdev->bd_inode = inode;
 917		bdev->bd_block_size = i_blocksize(inode);
 918		bdev->bd_part_count = 0;
 919		bdev->bd_invalidated = 0;
 920		inode->i_mode = S_IFBLK;
 921		inode->i_rdev = dev;
 922		inode->i_bdev = bdev;
 923		inode->i_data.a_ops = &def_blk_aops;
 924		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
 925		spin_lock(&bdev_lock);
 926		list_add(&bdev->bd_list, &all_bdevs);
 927		spin_unlock(&bdev_lock);
 928		unlock_new_inode(inode);
 929	}
 930	return bdev;
 931}
 932
 933EXPORT_SYMBOL(bdget);
 934
 935/**
 936 * bdgrab -- Grab a reference to an already referenced block device
 937 * @bdev:	Block device to grab a reference to.
 938 */
 939struct block_device *bdgrab(struct block_device *bdev)
 940{
 941	ihold(bdev->bd_inode);
 942	return bdev;
 943}
 944EXPORT_SYMBOL(bdgrab);
 945
 946long nr_blockdev_pages(void)
 947{
 948	struct block_device *bdev;
 949	long ret = 0;
 950	spin_lock(&bdev_lock);
 951	list_for_each_entry(bdev, &all_bdevs, bd_list) {
 952		ret += bdev->bd_inode->i_mapping->nrpages;
 953	}
 954	spin_unlock(&bdev_lock);
 955	return ret;
 956}
 957
 958void bdput(struct block_device *bdev)
 959{
 960	iput(bdev->bd_inode);
 961}
 962
 963EXPORT_SYMBOL(bdput);
 964 
 965static struct block_device *bd_acquire(struct inode *inode)
 966{
 967	struct block_device *bdev;
 968
 969	spin_lock(&bdev_lock);
 970	bdev = inode->i_bdev;
 971	if (bdev && !inode_unhashed(bdev->bd_inode)) {
 972		bdgrab(bdev);
 973		spin_unlock(&bdev_lock);
 974		return bdev;
 975	}
 976	spin_unlock(&bdev_lock);
 977
 978	/*
 979	 * i_bdev references block device inode that was already shut down
 980	 * (corresponding device got removed).  Remove the reference and look
 981	 * up block device inode again just in case new device got
 982	 * reestablished under the same device number.
 983	 */
 984	if (bdev)
 985		bd_forget(inode);
 986
 987	bdev = bdget(inode->i_rdev);
 988	if (bdev) {
 989		spin_lock(&bdev_lock);
 990		if (!inode->i_bdev) {
 991			/*
 992			 * We take an additional reference to bd_inode,
 993			 * and it's released in clear_inode() of inode.
 994			 * So, we can access it via ->i_mapping always
 995			 * without igrab().
 996			 */
 997			bdgrab(bdev);
 998			inode->i_bdev = bdev;
 999			inode->i_mapping = bdev->bd_inode->i_mapping;
1000		}
1001		spin_unlock(&bdev_lock);
1002	}
1003	return bdev;
1004}
1005
1006/* Call when you free inode */
1007
1008void bd_forget(struct inode *inode)
1009{
1010	struct block_device *bdev = NULL;
1011
1012	spin_lock(&bdev_lock);
1013	if (!sb_is_blkdev_sb(inode->i_sb))
1014		bdev = inode->i_bdev;
1015	inode->i_bdev = NULL;
1016	inode->i_mapping = &inode->i_data;
1017	spin_unlock(&bdev_lock);
1018
1019	if (bdev)
1020		bdput(bdev);
1021}
1022
1023/**
1024 * bd_may_claim - test whether a block device can be claimed
1025 * @bdev: block device of interest
1026 * @whole: whole block device containing @bdev, may equal @bdev
1027 * @holder: holder trying to claim @bdev
1028 *
1029 * Test whether @bdev can be claimed by @holder.
1030 *
1031 * CONTEXT:
1032 * spin_lock(&bdev_lock).
1033 *
1034 * RETURNS:
1035 * %true if @bdev can be claimed, %false otherwise.
1036 */
1037static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1038			 void *holder)
1039{
1040	if (bdev->bd_holder == holder)
1041		return true;	 /* already a holder */
1042	else if (bdev->bd_holder != NULL)
1043		return false; 	 /* held by someone else */
1044	else if (whole == bdev)
1045		return true;  	 /* is a whole device which isn't held */
1046
1047	else if (whole->bd_holder == bd_may_claim)
1048		return true; 	 /* is a partition of a device that is being partitioned */
1049	else if (whole->bd_holder != NULL)
1050		return false;	 /* is a partition of a held device */
1051	else
1052		return true;	 /* is a partition of an un-held device */
1053}
1054
1055/**
1056 * bd_prepare_to_claim - prepare to claim a block device
1057 * @bdev: block device of interest
1058 * @whole: the whole device containing @bdev, may equal @bdev
1059 * @holder: holder trying to claim @bdev
1060 *
1061 * Prepare to claim @bdev.  This function fails if @bdev is already
1062 * claimed by another holder and waits if another claiming is in
1063 * progress.  This function doesn't actually claim.  On successful
1064 * return, the caller has ownership of bd_claiming and bd_holder[s].
1065 *
1066 * CONTEXT:
1067 * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
1068 * it multiple times.
1069 *
1070 * RETURNS:
1071 * 0 if @bdev can be claimed, -EBUSY otherwise.
1072 */
1073static int bd_prepare_to_claim(struct block_device *bdev,
1074			       struct block_device *whole, void *holder)
1075{
1076retry:
1077	/* if someone else claimed, fail */
1078	if (!bd_may_claim(bdev, whole, holder))
1079		return -EBUSY;
1080
1081	/* if claiming is already in progress, wait for it to finish */
1082	if (whole->bd_claiming) {
1083		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1084		DEFINE_WAIT(wait);
1085
1086		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1087		spin_unlock(&bdev_lock);
1088		schedule();
1089		finish_wait(wq, &wait);
1090		spin_lock(&bdev_lock);
1091		goto retry;
1092	}
1093
1094	/* yay, all mine */
1095	return 0;
1096}
1097
1098static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1099{
1100	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1101
1102	if (!disk)
1103		return NULL;
1104	/*
1105	 * Now that we hold gendisk reference we make sure bdev we looked up is
1106	 * not stale. If it is, it means device got removed and created before
1107	 * we looked up gendisk and we fail open in such case. Associating
1108	 * unhashed bdev with newly created gendisk could lead to two bdevs
1109	 * (and thus two independent caches) being associated with one device
1110	 * which is bad.
1111	 */
1112	if (inode_unhashed(bdev->bd_inode)) {
1113		put_disk_and_module(disk);
1114		return NULL;
1115	}
1116	return disk;
1117}
1118
1119/**
1120 * bd_start_claiming - start claiming a block device
1121 * @bdev: block device of interest
1122 * @holder: holder trying to claim @bdev
1123 *
1124 * @bdev is about to be opened exclusively.  Check @bdev can be opened
1125 * exclusively and mark that an exclusive open is in progress.  Each
1126 * successful call to this function must be matched with a call to
1127 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1128 * fail).
1129 *
1130 * This function is used to gain exclusive access to the block device
1131 * without actually causing other exclusive open attempts to fail. It
1132 * should be used when the open sequence itself requires exclusive
1133 * access but may subsequently fail.
1134 *
1135 * CONTEXT:
1136 * Might sleep.
1137 *
1138 * RETURNS:
1139 * Pointer to the block device containing @bdev on success, ERR_PTR()
1140 * value on failure.
1141 */
1142struct block_device *bd_start_claiming(struct block_device *bdev, void *holder)
1143{
1144	struct gendisk *disk;
1145	struct block_device *whole;
1146	int partno, err;
1147
1148	might_sleep();
1149
1150	/*
1151	 * @bdev might not have been initialized properly yet, look up
1152	 * and grab the outer block device the hard way.
1153	 */
1154	disk = bdev_get_gendisk(bdev, &partno);
1155	if (!disk)
1156		return ERR_PTR(-ENXIO);
1157
1158	/*
1159	 * Normally, @bdev should equal what's returned from bdget_disk()
1160	 * if partno is 0; however, some drivers (floppy) use multiple
1161	 * bdev's for the same physical device and @bdev may be one of the
1162	 * aliases.  Keep @bdev if partno is 0.  This means claimer
1163	 * tracking is broken for those devices but it has always been that
1164	 * way.
1165	 */
1166	if (partno)
1167		whole = bdget_disk(disk, 0);
1168	else
1169		whole = bdgrab(bdev);
1170
1171	put_disk_and_module(disk);
1172	if (!whole)
1173		return ERR_PTR(-ENOMEM);
1174
1175	/* prepare to claim, if successful, mark claiming in progress */
1176	spin_lock(&bdev_lock);
1177
1178	err = bd_prepare_to_claim(bdev, whole, holder);
1179	if (err == 0) {
1180		whole->bd_claiming = holder;
1181		spin_unlock(&bdev_lock);
1182		return whole;
1183	} else {
1184		spin_unlock(&bdev_lock);
1185		bdput(whole);
1186		return ERR_PTR(err);
1187	}
1188}
1189EXPORT_SYMBOL(bd_start_claiming);
1190
1191static void bd_clear_claiming(struct block_device *whole, void *holder)
1192{
1193	lockdep_assert_held(&bdev_lock);
1194	/* tell others that we're done */
1195	BUG_ON(whole->bd_claiming != holder);
1196	whole->bd_claiming = NULL;
1197	wake_up_bit(&whole->bd_claiming, 0);
1198}
1199
1200/**
1201 * bd_finish_claiming - finish claiming of a block device
1202 * @bdev: block device of interest
1203 * @whole: whole block device (returned from bd_start_claiming())
1204 * @holder: holder that has claimed @bdev
1205 *
1206 * Finish exclusive open of a block device. Mark the device as exlusively
1207 * open by the holder and wake up all waiters for exclusive open to finish.
1208 */
1209void bd_finish_claiming(struct block_device *bdev, struct block_device *whole,
1210			void *holder)
1211{
1212	spin_lock(&bdev_lock);
1213	BUG_ON(!bd_may_claim(bdev, whole, holder));
1214	/*
1215	 * Note that for a whole device bd_holders will be incremented twice,
1216	 * and bd_holder will be set to bd_may_claim before being set to holder
1217	 */
1218	whole->bd_holders++;
1219	whole->bd_holder = bd_may_claim;
1220	bdev->bd_holders++;
1221	bdev->bd_holder = holder;
1222	bd_clear_claiming(whole, holder);
1223	spin_unlock(&bdev_lock);
1224}
1225EXPORT_SYMBOL(bd_finish_claiming);
1226
1227/**
1228 * bd_abort_claiming - abort claiming of a block device
1229 * @bdev: block device of interest
1230 * @whole: whole block device (returned from bd_start_claiming())
1231 * @holder: holder that has claimed @bdev
1232 *
1233 * Abort claiming of a block device when the exclusive open failed. This can be
1234 * also used when exclusive open is not actually desired and we just needed
1235 * to block other exclusive openers for a while.
1236 */
1237void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1238		       void *holder)
1239{
1240	spin_lock(&bdev_lock);
1241	bd_clear_claiming(whole, holder);
1242	spin_unlock(&bdev_lock);
1243}
1244EXPORT_SYMBOL(bd_abort_claiming);
1245
1246#ifdef CONFIG_SYSFS
1247struct bd_holder_disk {
1248	struct list_head	list;
1249	struct gendisk		*disk;
1250	int			refcnt;
1251};
1252
1253static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1254						  struct gendisk *disk)
1255{
1256	struct bd_holder_disk *holder;
1257
1258	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1259		if (holder->disk == disk)
1260			return holder;
1261	return NULL;
1262}
1263
1264static int add_symlink(struct kobject *from, struct kobject *to)
1265{
1266	return sysfs_create_link(from, to, kobject_name(to));
1267}
1268
1269static void del_symlink(struct kobject *from, struct kobject *to)
1270{
1271	sysfs_remove_link(from, kobject_name(to));
1272}
1273
1274/**
1275 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1276 * @bdev: the claimed slave bdev
1277 * @disk: the holding disk
1278 *
1279 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1280 *
1281 * This functions creates the following sysfs symlinks.
1282 *
1283 * - from "slaves" directory of the holder @disk to the claimed @bdev
1284 * - from "holders" directory of the @bdev to the holder @disk
1285 *
1286 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1287 * passed to bd_link_disk_holder(), then:
1288 *
1289 *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1290 *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1291 *
1292 * The caller must have claimed @bdev before calling this function and
1293 * ensure that both @bdev and @disk are valid during the creation and
1294 * lifetime of these symlinks.
1295 *
1296 * CONTEXT:
1297 * Might sleep.
1298 *
1299 * RETURNS:
1300 * 0 on success, -errno on failure.
1301 */
1302int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1303{
1304	struct bd_holder_disk *holder;
1305	int ret = 0;
1306
1307	mutex_lock(&bdev->bd_mutex);
1308
1309	WARN_ON_ONCE(!bdev->bd_holder);
1310
1311	/* FIXME: remove the following once add_disk() handles errors */
1312	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1313		goto out_unlock;
1314
1315	holder = bd_find_holder_disk(bdev, disk);
1316	if (holder) {
1317		holder->refcnt++;
1318		goto out_unlock;
1319	}
1320
1321	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1322	if (!holder) {
1323		ret = -ENOMEM;
1324		goto out_unlock;
1325	}
1326
1327	INIT_LIST_HEAD(&holder->list);
1328	holder->disk = disk;
1329	holder->refcnt = 1;
1330
1331	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1332	if (ret)
1333		goto out_free;
1334
1335	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1336	if (ret)
1337		goto out_del;
1338	/*
1339	 * bdev could be deleted beneath us which would implicitly destroy
1340	 * the holder directory.  Hold on to it.
1341	 */
1342	kobject_get(bdev->bd_part->holder_dir);
1343
1344	list_add(&holder->list, &bdev->bd_holder_disks);
1345	goto out_unlock;
1346
1347out_del:
1348	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1349out_free:
1350	kfree(holder);
1351out_unlock:
1352	mutex_unlock(&bdev->bd_mutex);
1353	return ret;
1354}
1355EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1356
1357/**
1358 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1359 * @bdev: the calimed slave bdev
1360 * @disk: the holding disk
1361 *
1362 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1363 *
1364 * CONTEXT:
1365 * Might sleep.
1366 */
1367void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1368{
1369	struct bd_holder_disk *holder;
1370
1371	mutex_lock(&bdev->bd_mutex);
1372
1373	holder = bd_find_holder_disk(bdev, disk);
1374
1375	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1376		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1377		del_symlink(bdev->bd_part->holder_dir,
1378			    &disk_to_dev(disk)->kobj);
1379		kobject_put(bdev->bd_part->holder_dir);
1380		list_del_init(&holder->list);
1381		kfree(holder);
1382	}
1383
1384	mutex_unlock(&bdev->bd_mutex);
1385}
1386EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1387#endif
1388
1389/**
1390 * flush_disk - invalidates all buffer-cache entries on a disk
1391 *
1392 * @bdev:      struct block device to be flushed
1393 * @kill_dirty: flag to guide handling of dirty inodes
1394 *
1395 * Invalidates all buffer-cache entries on a disk. It should be called
1396 * when a disk has been changed -- either by a media change or online
1397 * resize.
1398 */
1399static void flush_disk(struct block_device *bdev, bool kill_dirty)
1400{
1401	if (__invalidate_device(bdev, kill_dirty)) {
1402		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1403		       "resized disk %s\n",
1404		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1405	}
1406
1407	if (!bdev->bd_disk)
1408		return;
1409	if (disk_part_scan_enabled(bdev->bd_disk))
1410		bdev->bd_invalidated = 1;
1411}
1412
1413/**
1414 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1415 * @disk: struct gendisk to check
1416 * @bdev: struct bdev to adjust.
1417 * @verbose: if %true log a message about a size change if there is any
1418 *
1419 * This routine checks to see if the bdev size does not match the disk size
1420 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1421 * are freed.
1422 */
1423void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1424		bool verbose)
1425{
1426	loff_t disk_size, bdev_size;
1427
1428	disk_size = (loff_t)get_capacity(disk) << 9;
1429	bdev_size = i_size_read(bdev->bd_inode);
1430	if (disk_size != bdev_size) {
1431		if (verbose) {
1432			printk(KERN_INFO
1433			       "%s: detected capacity change from %lld to %lld\n",
1434			       disk->disk_name, bdev_size, disk_size);
1435		}
1436		i_size_write(bdev->bd_inode, disk_size);
1437		if (bdev_size > disk_size)
1438			flush_disk(bdev, false);
1439	}
1440}
1441
1442/**
1443 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1444 * @disk: struct gendisk to be revalidated
1445 *
1446 * This routine is a wrapper for lower-level driver's revalidate_disk
1447 * call-backs.  It is used to do common pre and post operations needed
1448 * for all revalidate_disk operations.
1449 */
1450int revalidate_disk(struct gendisk *disk)
1451{
1452	int ret = 0;
1453
1454	if (disk->fops->revalidate_disk)
1455		ret = disk->fops->revalidate_disk(disk);
1456
1457	/*
1458	 * Hidden disks don't have associated bdev so there's no point in
1459	 * revalidating it.
1460	 */
1461	if (!(disk->flags & GENHD_FL_HIDDEN)) {
1462		struct block_device *bdev = bdget_disk(disk, 0);
1463
1464		if (!bdev)
1465			return ret;
1466
1467		mutex_lock(&bdev->bd_mutex);
1468		check_disk_size_change(disk, bdev, ret == 0);
1469		bdev->bd_invalidated = 0;
1470		mutex_unlock(&bdev->bd_mutex);
1471		bdput(bdev);
1472	}
1473	return ret;
1474}
1475EXPORT_SYMBOL(revalidate_disk);
1476
1477/*
1478 * This routine checks whether a removable media has been changed,
1479 * and invalidates all buffer-cache-entries in that case. This
1480 * is a relatively slow routine, so we have to try to minimize using
1481 * it. Thus it is called only upon a 'mount' or 'open'. This
1482 * is the best way of combining speed and utility, I think.
1483 * People changing diskettes in the middle of an operation deserve
1484 * to lose :-)
1485 */
1486int check_disk_change(struct block_device *bdev)
1487{
1488	struct gendisk *disk = bdev->bd_disk;
1489	const struct block_device_operations *bdops = disk->fops;
1490	unsigned int events;
1491
1492	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1493				   DISK_EVENT_EJECT_REQUEST);
1494	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1495		return 0;
1496
1497	flush_disk(bdev, true);
1498	if (bdops->revalidate_disk)
1499		bdops->revalidate_disk(bdev->bd_disk);
1500	return 1;
1501}
1502
1503EXPORT_SYMBOL(check_disk_change);
1504
1505void bd_set_size(struct block_device *bdev, loff_t size)
1506{
1507	inode_lock(bdev->bd_inode);
1508	i_size_write(bdev->bd_inode, size);
1509	inode_unlock(bdev->bd_inode);
1510}
1511EXPORT_SYMBOL(bd_set_size);
1512
1513static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1514
1515/*
1516 * bd_mutex locking:
1517 *
1518 *  mutex_lock(part->bd_mutex)
1519 *    mutex_lock_nested(whole->bd_mutex, 1)
1520 */
1521
1522static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1523{
1524	struct gendisk *disk;
1525	int ret;
1526	int partno;
1527	int perm = 0;
1528	bool first_open = false;
1529
1530	if (mode & FMODE_READ)
1531		perm |= MAY_READ;
1532	if (mode & FMODE_WRITE)
1533		perm |= MAY_WRITE;
1534	/*
1535	 * hooks: /n/, see "layering violations".
1536	 */
1537	if (!for_part) {
1538		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1539		if (ret != 0) {
1540			bdput(bdev);
1541			return ret;
1542		}
1543	}
1544
1545 restart:
1546
1547	ret = -ENXIO;
1548	disk = bdev_get_gendisk(bdev, &partno);
1549	if (!disk)
1550		goto out;
1551
1552	disk_block_events(disk);
1553	mutex_lock_nested(&bdev->bd_mutex, for_part);
1554	if (!bdev->bd_openers) {
1555		first_open = true;
1556		bdev->bd_disk = disk;
1557		bdev->bd_queue = disk->queue;
1558		bdev->bd_contains = bdev;
1559		bdev->bd_partno = partno;
1560
1561		if (!partno) {
1562			ret = -ENXIO;
1563			bdev->bd_part = disk_get_part(disk, partno);
1564			if (!bdev->bd_part)
1565				goto out_clear;
1566
1567			ret = 0;
1568			if (disk->fops->open) {
1569				ret = disk->fops->open(bdev, mode);
1570				if (ret == -ERESTARTSYS) {
1571					/* Lost a race with 'disk' being
1572					 * deleted, try again.
1573					 * See md.c
1574					 */
1575					disk_put_part(bdev->bd_part);
1576					bdev->bd_part = NULL;
1577					bdev->bd_disk = NULL;
1578					bdev->bd_queue = NULL;
1579					mutex_unlock(&bdev->bd_mutex);
1580					disk_unblock_events(disk);
1581					put_disk_and_module(disk);
1582					goto restart;
1583				}
1584			}
1585
1586			if (!ret) {
1587				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1588				set_init_blocksize(bdev);
1589			}
1590
1591			/*
1592			 * If the device is invalidated, rescan partition
1593			 * if open succeeded or failed with -ENOMEDIUM.
1594			 * The latter is necessary to prevent ghost
1595			 * partitions on a removed medium.
1596			 */
1597			if (bdev->bd_invalidated) {
1598				if (!ret)
1599					rescan_partitions(disk, bdev);
1600				else if (ret == -ENOMEDIUM)
1601					invalidate_partitions(disk, bdev);
1602			}
1603
1604			if (ret)
1605				goto out_clear;
1606		} else {
1607			struct block_device *whole;
1608			whole = bdget_disk(disk, 0);
1609			ret = -ENOMEM;
1610			if (!whole)
1611				goto out_clear;
1612			BUG_ON(for_part);
1613			ret = __blkdev_get(whole, mode, 1);
1614			if (ret)
1615				goto out_clear;
1616			bdev->bd_contains = whole;
1617			bdev->bd_part = disk_get_part(disk, partno);
1618			if (!(disk->flags & GENHD_FL_UP) ||
1619			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1620				ret = -ENXIO;
1621				goto out_clear;
1622			}
1623			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1624			set_init_blocksize(bdev);
1625		}
1626
1627		if (bdev->bd_bdi == &noop_backing_dev_info)
1628			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1629	} else {
1630		if (bdev->bd_contains == bdev) {
1631			ret = 0;
1632			if (bdev->bd_disk->fops->open)
1633				ret = bdev->bd_disk->fops->open(bdev, mode);
1634			/* the same as first opener case, read comment there */
1635			if (bdev->bd_invalidated) {
1636				if (!ret)
1637					rescan_partitions(bdev->bd_disk, bdev);
1638				else if (ret == -ENOMEDIUM)
1639					invalidate_partitions(bdev->bd_disk, bdev);
1640			}
1641			if (ret)
1642				goto out_unlock_bdev;
1643		}
1644	}
1645	bdev->bd_openers++;
1646	if (for_part)
1647		bdev->bd_part_count++;
1648	mutex_unlock(&bdev->bd_mutex);
1649	disk_unblock_events(disk);
1650	/* only one opener holds refs to the module and disk */
1651	if (!first_open)
1652		put_disk_and_module(disk);
1653	return 0;
1654
1655 out_clear:
1656	disk_put_part(bdev->bd_part);
1657	bdev->bd_disk = NULL;
1658	bdev->bd_part = NULL;
1659	bdev->bd_queue = NULL;
1660	if (bdev != bdev->bd_contains)
1661		__blkdev_put(bdev->bd_contains, mode, 1);
1662	bdev->bd_contains = NULL;
1663 out_unlock_bdev:
1664	mutex_unlock(&bdev->bd_mutex);
1665	disk_unblock_events(disk);
1666	put_disk_and_module(disk);
1667 out:
1668	bdput(bdev);
1669
1670	return ret;
1671}
1672
1673/**
1674 * blkdev_get - open a block device
1675 * @bdev: block_device to open
1676 * @mode: FMODE_* mask
1677 * @holder: exclusive holder identifier
1678 *
1679 * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1680 * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1681 * @holder is invalid.  Exclusive opens may nest for the same @holder.
1682 *
1683 * On success, the reference count of @bdev is unchanged.  On failure,
1684 * @bdev is put.
1685 *
1686 * CONTEXT:
1687 * Might sleep.
1688 *
1689 * RETURNS:
1690 * 0 on success, -errno on failure.
1691 */
1692int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1693{
1694	struct block_device *whole = NULL;
1695	int res;
1696
1697	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1698
1699	if ((mode & FMODE_EXCL) && holder) {
1700		whole = bd_start_claiming(bdev, holder);
1701		if (IS_ERR(whole)) {
1702			bdput(bdev);
1703			return PTR_ERR(whole);
1704		}
1705	}
1706
1707	res = __blkdev_get(bdev, mode, 0);
1708
1709	if (whole) {
1710		struct gendisk *disk = whole->bd_disk;
1711
1712		/* finish claiming */
1713		mutex_lock(&bdev->bd_mutex);
1714		if (!res)
1715			bd_finish_claiming(bdev, whole, holder);
1716		else
1717			bd_abort_claiming(bdev, whole, holder);
1718		/*
1719		 * Block event polling for write claims if requested.  Any
1720		 * write holder makes the write_holder state stick until
1721		 * all are released.  This is good enough and tracking
1722		 * individual writeable reference is too fragile given the
1723		 * way @mode is used in blkdev_get/put().
1724		 */
1725		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1726		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1727			bdev->bd_write_holder = true;
1728			disk_block_events(disk);
1729		}
1730
1731		mutex_unlock(&bdev->bd_mutex);
1732		bdput(whole);
1733	}
1734
1735	return res;
1736}
1737EXPORT_SYMBOL(blkdev_get);
1738
1739/**
1740 * blkdev_get_by_path - open a block device by name
1741 * @path: path to the block device to open
1742 * @mode: FMODE_* mask
1743 * @holder: exclusive holder identifier
1744 *
1745 * Open the blockdevice described by the device file at @path.  @mode
1746 * and @holder are identical to blkdev_get().
1747 *
1748 * On success, the returned block_device has reference count of one.
1749 *
1750 * CONTEXT:
1751 * Might sleep.
1752 *
1753 * RETURNS:
1754 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1755 */
1756struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1757					void *holder)
1758{
1759	struct block_device *bdev;
1760	int err;
1761
1762	bdev = lookup_bdev(path);
1763	if (IS_ERR(bdev))
1764		return bdev;
1765
1766	err = blkdev_get(bdev, mode, holder);
1767	if (err)
1768		return ERR_PTR(err);
1769
1770	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1771		blkdev_put(bdev, mode);
1772		return ERR_PTR(-EACCES);
1773	}
1774
1775	return bdev;
1776}
1777EXPORT_SYMBOL(blkdev_get_by_path);
1778
1779/**
1780 * blkdev_get_by_dev - open a block device by device number
1781 * @dev: device number of block device to open
1782 * @mode: FMODE_* mask
1783 * @holder: exclusive holder identifier
1784 *
1785 * Open the blockdevice described by device number @dev.  @mode and
1786 * @holder are identical to blkdev_get().
1787 *
1788 * Use it ONLY if you really do not have anything better - i.e. when
1789 * you are behind a truly sucky interface and all you are given is a
1790 * device number.  _Never_ to be used for internal purposes.  If you
1791 * ever need it - reconsider your API.
1792 *
1793 * On success, the returned block_device has reference count of one.
1794 *
1795 * CONTEXT:
1796 * Might sleep.
1797 *
1798 * RETURNS:
1799 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1800 */
1801struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1802{
1803	struct block_device *bdev;
1804	int err;
1805
1806	bdev = bdget(dev);
1807	if (!bdev)
1808		return ERR_PTR(-ENOMEM);
1809
1810	err = blkdev_get(bdev, mode, holder);
1811	if (err)
1812		return ERR_PTR(err);
1813
1814	return bdev;
1815}
1816EXPORT_SYMBOL(blkdev_get_by_dev);
1817
1818static int blkdev_open(struct inode * inode, struct file * filp)
1819{
1820	struct block_device *bdev;
1821
1822	/*
1823	 * Preserve backwards compatibility and allow large file access
1824	 * even if userspace doesn't ask for it explicitly. Some mkfs
1825	 * binary needs it. We might want to drop this workaround
1826	 * during an unstable branch.
1827	 */
1828	filp->f_flags |= O_LARGEFILE;
1829
1830	filp->f_mode |= FMODE_NOWAIT;
1831
1832	if (filp->f_flags & O_NDELAY)
1833		filp->f_mode |= FMODE_NDELAY;
1834	if (filp->f_flags & O_EXCL)
1835		filp->f_mode |= FMODE_EXCL;
1836	if ((filp->f_flags & O_ACCMODE) == 3)
1837		filp->f_mode |= FMODE_WRITE_IOCTL;
1838
1839	bdev = bd_acquire(inode);
1840	if (bdev == NULL)
1841		return -ENOMEM;
1842
1843	filp->f_mapping = bdev->bd_inode->i_mapping;
1844	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1845
1846	return blkdev_get(bdev, filp->f_mode, filp);
1847}
1848
1849static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1850{
1851	struct gendisk *disk = bdev->bd_disk;
1852	struct block_device *victim = NULL;
1853
1854	mutex_lock_nested(&bdev->bd_mutex, for_part);
1855	if (for_part)
1856		bdev->bd_part_count--;
1857
1858	if (!--bdev->bd_openers) {
1859		WARN_ON_ONCE(bdev->bd_holders);
1860		sync_blockdev(bdev);
1861		kill_bdev(bdev);
1862
1863		bdev_write_inode(bdev);
1864	}
1865	if (bdev->bd_contains == bdev) {
1866		if (disk->fops->release)
1867			disk->fops->release(disk, mode);
1868	}
1869	if (!bdev->bd_openers) {
1870		disk_put_part(bdev->bd_part);
1871		bdev->bd_part = NULL;
1872		bdev->bd_disk = NULL;
1873		if (bdev != bdev->bd_contains)
1874			victim = bdev->bd_contains;
1875		bdev->bd_contains = NULL;
1876
1877		put_disk_and_module(disk);
1878	}
1879	mutex_unlock(&bdev->bd_mutex);
1880	bdput(bdev);
1881	if (victim)
1882		__blkdev_put(victim, mode, 1);
1883}
1884
1885void blkdev_put(struct block_device *bdev, fmode_t mode)
1886{
1887	mutex_lock(&bdev->bd_mutex);
1888
1889	if (mode & FMODE_EXCL) {
1890		bool bdev_free;
1891
1892		/*
1893		 * Release a claim on the device.  The holder fields
1894		 * are protected with bdev_lock.  bd_mutex is to
1895		 * synchronize disk_holder unlinking.
1896		 */
1897		spin_lock(&bdev_lock);
1898
1899		WARN_ON_ONCE(--bdev->bd_holders < 0);
1900		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1901
1902		/* bd_contains might point to self, check in a separate step */
1903		if ((bdev_free = !bdev->bd_holders))
1904			bdev->bd_holder = NULL;
1905		if (!bdev->bd_contains->bd_holders)
1906			bdev->bd_contains->bd_holder = NULL;
1907
1908		spin_unlock(&bdev_lock);
1909
1910		/*
1911		 * If this was the last claim, remove holder link and
1912		 * unblock evpoll if it was a write holder.
1913		 */
1914		if (bdev_free && bdev->bd_write_holder) {
1915			disk_unblock_events(bdev->bd_disk);
1916			bdev->bd_write_holder = false;
1917		}
1918	}
1919
1920	/*
1921	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1922	 * event.  This is to ensure detection of media removal commanded
1923	 * from userland - e.g. eject(1).
1924	 */
1925	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1926
1927	mutex_unlock(&bdev->bd_mutex);
1928
1929	__blkdev_put(bdev, mode, 0);
1930}
1931EXPORT_SYMBOL(blkdev_put);
1932
1933static int blkdev_close(struct inode * inode, struct file * filp)
1934{
1935	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1936	blkdev_put(bdev, filp->f_mode);
1937	return 0;
1938}
1939
1940static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1941{
1942	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1943	fmode_t mode = file->f_mode;
1944
1945	/*
1946	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1947	 * to updated it before every ioctl.
1948	 */
1949	if (file->f_flags & O_NDELAY)
1950		mode |= FMODE_NDELAY;
1951	else
1952		mode &= ~FMODE_NDELAY;
1953
1954	return blkdev_ioctl(bdev, mode, cmd, arg);
1955}
1956
1957/*
1958 * Write data to the block device.  Only intended for the block device itself
1959 * and the raw driver which basically is a fake block device.
1960 *
1961 * Does not take i_mutex for the write and thus is not for general purpose
1962 * use.
1963 */
1964ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1965{
1966	struct file *file = iocb->ki_filp;
1967	struct inode *bd_inode = bdev_file_inode(file);
1968	loff_t size = i_size_read(bd_inode);
1969	struct blk_plug plug;
1970	ssize_t ret;
1971
1972	if (bdev_read_only(I_BDEV(bd_inode)))
1973		return -EPERM;
1974
1975	if (IS_SWAPFILE(bd_inode))
1976		return -ETXTBSY;
1977
1978	if (!iov_iter_count(from))
1979		return 0;
1980
1981	if (iocb->ki_pos >= size)
1982		return -ENOSPC;
1983
1984	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1985		return -EOPNOTSUPP;
1986
1987	iov_iter_truncate(from, size - iocb->ki_pos);
1988
1989	blk_start_plug(&plug);
1990	ret = __generic_file_write_iter(iocb, from);
1991	if (ret > 0)
1992		ret = generic_write_sync(iocb, ret);
1993	blk_finish_plug(&plug);
1994	return ret;
1995}
1996EXPORT_SYMBOL_GPL(blkdev_write_iter);
1997
1998ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1999{
2000	struct file *file = iocb->ki_filp;
2001	struct inode *bd_inode = bdev_file_inode(file);
2002	loff_t size = i_size_read(bd_inode);
2003	loff_t pos = iocb->ki_pos;
2004
2005	if (pos >= size)
2006		return 0;
2007
2008	size -= pos;
2009	iov_iter_truncate(to, size);
2010	return generic_file_read_iter(iocb, to);
2011}
2012EXPORT_SYMBOL_GPL(blkdev_read_iter);
2013
2014/*
2015 * Try to release a page associated with block device when the system
2016 * is under memory pressure.
2017 */
2018static int blkdev_releasepage(struct page *page, gfp_t wait)
2019{
2020	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2021
2022	if (super && super->s_op->bdev_try_to_free_page)
2023		return super->s_op->bdev_try_to_free_page(super, page, wait);
2024
2025	return try_to_free_buffers(page);
2026}
2027
2028static int blkdev_writepages(struct address_space *mapping,
2029			     struct writeback_control *wbc)
2030{
2031	return generic_writepages(mapping, wbc);
2032}
2033
2034static const struct address_space_operations def_blk_aops = {
2035	.readpage	= blkdev_readpage,
2036	.readpages	= blkdev_readpages,
2037	.writepage	= blkdev_writepage,
2038	.write_begin	= blkdev_write_begin,
2039	.write_end	= blkdev_write_end,
2040	.writepages	= blkdev_writepages,
2041	.releasepage	= blkdev_releasepage,
2042	.direct_IO	= blkdev_direct_IO,
2043	.migratepage	= buffer_migrate_page_norefs,
2044	.is_dirty_writeback = buffer_check_dirty_writeback,
2045};
2046
2047#define	BLKDEV_FALLOC_FL_SUPPORTED					\
2048		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
2049		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2050
2051static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2052			     loff_t len)
2053{
2054	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2055	struct address_space *mapping;
2056	loff_t end = start + len - 1;
2057	loff_t isize;
2058	int error;
2059
2060	/* Fail if we don't recognize the flags. */
2061	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2062		return -EOPNOTSUPP;
2063
2064	/* Don't go off the end of the device. */
2065	isize = i_size_read(bdev->bd_inode);
2066	if (start >= isize)
2067		return -EINVAL;
2068	if (end >= isize) {
2069		if (mode & FALLOC_FL_KEEP_SIZE) {
2070			len = isize - start;
2071			end = start + len - 1;
2072		} else
2073			return -EINVAL;
2074	}
2075
2076	/*
2077	 * Don't allow IO that isn't aligned to logical block size.
2078	 */
2079	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2080		return -EINVAL;
2081
2082	/* Invalidate the page cache, including dirty pages. */
2083	mapping = bdev->bd_inode->i_mapping;
2084	truncate_inode_pages_range(mapping, start, end);
2085
2086	switch (mode) {
2087	case FALLOC_FL_ZERO_RANGE:
2088	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2089		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2090					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2091		break;
2092	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2093		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2094					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2095		break;
2096	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2097		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2098					     GFP_KERNEL, 0);
2099		break;
2100	default:
2101		return -EOPNOTSUPP;
2102	}
2103	if (error)
2104		return error;
2105
2106	/*
2107	 * Invalidate again; if someone wandered in and dirtied a page,
2108	 * the caller will be given -EBUSY.  The third argument is
2109	 * inclusive, so the rounding here is safe.
2110	 */
2111	return invalidate_inode_pages2_range(mapping,
2112					     start >> PAGE_SHIFT,
2113					     end >> PAGE_SHIFT);
2114}
2115
2116const struct file_operations def_blk_fops = {
2117	.open		= blkdev_open,
2118	.release	= blkdev_close,
2119	.llseek		= block_llseek,
2120	.read_iter	= blkdev_read_iter,
2121	.write_iter	= blkdev_write_iter,
2122	.iopoll		= blkdev_iopoll,
2123	.mmap		= generic_file_mmap,
2124	.fsync		= blkdev_fsync,
2125	.unlocked_ioctl	= block_ioctl,
2126#ifdef CONFIG_COMPAT
2127	.compat_ioctl	= compat_blkdev_ioctl,
2128#endif
2129	.splice_read	= generic_file_splice_read,
2130	.splice_write	= iter_file_splice_write,
2131	.fallocate	= blkdev_fallocate,
2132};
2133
2134int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2135{
2136	int res;
2137	mm_segment_t old_fs = get_fs();
2138	set_fs(KERNEL_DS);
2139	res = blkdev_ioctl(bdev, 0, cmd, arg);
2140	set_fs(old_fs);
2141	return res;
2142}
2143
2144EXPORT_SYMBOL(ioctl_by_bdev);
2145
2146/**
2147 * lookup_bdev  - lookup a struct block_device by name
2148 * @pathname:	special file representing the block device
2149 *
2150 * Get a reference to the blockdevice at @pathname in the current
2151 * namespace if possible and return it.  Return ERR_PTR(error)
2152 * otherwise.
2153 */
2154struct block_device *lookup_bdev(const char *pathname)
2155{
2156	struct block_device *bdev;
2157	struct inode *inode;
2158	struct path path;
2159	int error;
2160
2161	if (!pathname || !*pathname)
2162		return ERR_PTR(-EINVAL);
2163
2164	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2165	if (error)
2166		return ERR_PTR(error);
2167
2168	inode = d_backing_inode(path.dentry);
2169	error = -ENOTBLK;
2170	if (!S_ISBLK(inode->i_mode))
2171		goto fail;
2172	error = -EACCES;
2173	if (!may_open_dev(&path))
2174		goto fail;
2175	error = -ENOMEM;
2176	bdev = bd_acquire(inode);
2177	if (!bdev)
2178		goto fail;
2179out:
2180	path_put(&path);
2181	return bdev;
2182fail:
2183	bdev = ERR_PTR(error);
2184	goto out;
2185}
2186EXPORT_SYMBOL(lookup_bdev);
2187
2188int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2189{
2190	struct super_block *sb = get_super(bdev);
2191	int res = 0;
2192
2193	if (sb) {
2194		/*
2195		 * no need to lock the super, get_super holds the
2196		 * read mutex so the filesystem cannot go away
2197		 * under us (->put_super runs with the write lock
2198		 * hold).
2199		 */
2200		shrink_dcache_sb(sb);
2201		res = invalidate_inodes(sb, kill_dirty);
2202		drop_super(sb);
2203	}
2204	invalidate_bdev(bdev);
2205	return res;
2206}
2207EXPORT_SYMBOL(__invalidate_device);
2208
2209void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2210{
2211	struct inode *inode, *old_inode = NULL;
2212
2213	spin_lock(&blockdev_superblock->s_inode_list_lock);
2214	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2215		struct address_space *mapping = inode->i_mapping;
2216		struct block_device *bdev;
2217
2218		spin_lock(&inode->i_lock);
2219		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2220		    mapping->nrpages == 0) {
2221			spin_unlock(&inode->i_lock);
2222			continue;
2223		}
2224		__iget(inode);
2225		spin_unlock(&inode->i_lock);
2226		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2227		/*
2228		 * We hold a reference to 'inode' so it couldn't have been
2229		 * removed from s_inodes list while we dropped the
2230		 * s_inode_list_lock  We cannot iput the inode now as we can
2231		 * be holding the last reference and we cannot iput it under
2232		 * s_inode_list_lock. So we keep the reference and iput it
2233		 * later.
2234		 */
2235		iput(old_inode);
2236		old_inode = inode;
2237		bdev = I_BDEV(inode);
2238
2239		mutex_lock(&bdev->bd_mutex);
2240		if (bdev->bd_openers)
2241			func(bdev, arg);
2242		mutex_unlock(&bdev->bd_mutex);
2243
2244		spin_lock(&blockdev_superblock->s_inode_list_lock);
2245	}
2246	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2247	iput(old_inode);
2248}