Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (C) 2012 - 2014 Allwinner Tech
  3 * Pan Nan <pannan@allwinnertech.com>
  4 *
  5 * Copyright (C) 2014 Maxime Ripard
  6 * Maxime Ripard <maxime.ripard@free-electrons.com>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License as
 10 * published by the Free Software Foundation; either version 2 of
 11 * the License, or (at your option) any later version.
 12 */
 13
 14#include <linux/clk.h>
 15#include <linux/delay.h>
 16#include <linux/device.h>
 17#include <linux/interrupt.h>
 18#include <linux/io.h>
 19#include <linux/module.h>
 
 20#include <linux/platform_device.h>
 21#include <linux/pm_runtime.h>
 22#include <linux/reset.h>
 23
 24#include <linux/spi/spi.h>
 25
 26#define SUN6I_FIFO_DEPTH		128
 
 27
 28#define SUN6I_GBL_CTL_REG		0x04
 29#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 30#define SUN6I_GBL_CTL_MASTER			BIT(1)
 31#define SUN6I_GBL_CTL_TP			BIT(7)
 32#define SUN6I_GBL_CTL_RST			BIT(31)
 33
 34#define SUN6I_TFR_CTL_REG		0x08
 35#define SUN6I_TFR_CTL_CPHA			BIT(0)
 36#define SUN6I_TFR_CTL_CPOL			BIT(1)
 37#define SUN6I_TFR_CTL_SPOL			BIT(2)
 38#define SUN6I_TFR_CTL_CS_MASK			0x30
 39#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 40#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 41#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 42#define SUN6I_TFR_CTL_DHB			BIT(8)
 43#define SUN6I_TFR_CTL_FBS			BIT(12)
 44#define SUN6I_TFR_CTL_XCH			BIT(31)
 45
 46#define SUN6I_INT_CTL_REG		0x10
 
 
 47#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 48#define SUN6I_INT_CTL_TC			BIT(12)
 49
 50#define SUN6I_INT_STA_REG		0x14
 51
 52#define SUN6I_FIFO_CTL_REG		0x18
 
 
 53#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 
 
 54#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 55
 56#define SUN6I_FIFO_STA_REG		0x1c
 57#define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
 58#define SUN6I_FIFO_STA_RF_CNT_BITS		0
 59#define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
 60#define SUN6I_FIFO_STA_TF_CNT_BITS		16
 61
 62#define SUN6I_CLK_CTL_REG		0x24
 63#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 64#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 65#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 66#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 67#define SUN6I_CLK_CTL_DRS			BIT(12)
 68
 
 
 69#define SUN6I_BURST_CNT_REG		0x30
 70#define SUN6I_BURST_CNT(cnt)			((cnt) & 0xffffff)
 71
 72#define SUN6I_XMIT_CNT_REG		0x34
 73#define SUN6I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
 74
 75#define SUN6I_BURST_CTL_CNT_REG		0x38
 76#define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & 0xffffff)
 77
 78#define SUN6I_TXDATA_REG		0x200
 79#define SUN6I_RXDATA_REG		0x300
 80
 81struct sun6i_spi {
 82	struct spi_master	*master;
 83	void __iomem		*base_addr;
 84	struct clk		*hclk;
 85	struct clk		*mclk;
 86	struct reset_control	*rstc;
 87
 88	struct completion	done;
 89
 90	const u8		*tx_buf;
 91	u8			*rx_buf;
 92	int			len;
 
 93};
 94
 95static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
 96{
 97	return readl(sspi->base_addr + reg);
 98}
 99
100static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
101{
102	writel(value, sspi->base_addr + reg);
103}
104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
106{
107	u32 reg, cnt;
108	u8 byte;
109
110	/* See how much data is available */
111	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
114
115	if (len > cnt)
116		len = cnt;
117
118	while (len--) {
119		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120		if (sspi->rx_buf)
121			*sspi->rx_buf++ = byte;
122	}
123}
124
125static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
126{
 
127	u8 byte;
128
129	if (len > sspi->len)
130		len = sspi->len;
 
 
131
132	while (len--) {
133		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135		sspi->len--;
136	}
137}
138
139static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
140{
141	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142	u32 reg;
143
144	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145	reg &= ~SUN6I_TFR_CTL_CS_MASK;
146	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
147
148	if (enable)
149		reg |= SUN6I_TFR_CTL_CS_LEVEL;
150	else
151		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
152
153	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
154}
155
 
 
 
 
156
157static int sun6i_spi_transfer_one(struct spi_master *master,
158				  struct spi_device *spi,
159				  struct spi_transfer *tfr)
160{
161	struct sun6i_spi *sspi = spi_master_get_devdata(master);
162	unsigned int mclk_rate, div, timeout;
 
 
163	unsigned int tx_len = 0;
164	int ret = 0;
165	u32 reg;
166
167	/* We don't support transfer larger than the FIFO */
168	if (tfr->len > SUN6I_FIFO_DEPTH)
169		return -EINVAL;
170
171	reinit_completion(&sspi->done);
172	sspi->tx_buf = tfr->tx_buf;
173	sspi->rx_buf = tfr->rx_buf;
174	sspi->len = tfr->len;
175
176	/* Clear pending interrupts */
177	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
178
179	/* Reset FIFO */
180	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
181			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
182
183	/*
 
 
 
 
 
 
 
 
 
 
 
184	 * Setup the transfer control register: Chip Select,
185	 * polarities, etc.
186	 */
187	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
188
189	if (spi->mode & SPI_CPOL)
190		reg |= SUN6I_TFR_CTL_CPOL;
191	else
192		reg &= ~SUN6I_TFR_CTL_CPOL;
193
194	if (spi->mode & SPI_CPHA)
195		reg |= SUN6I_TFR_CTL_CPHA;
196	else
197		reg &= ~SUN6I_TFR_CTL_CPHA;
198
199	if (spi->mode & SPI_LSB_FIRST)
200		reg |= SUN6I_TFR_CTL_FBS;
201	else
202		reg &= ~SUN6I_TFR_CTL_FBS;
203
204	/*
205	 * If it's a TX only transfer, we don't want to fill the RX
206	 * FIFO with bogus data
207	 */
208	if (sspi->rx_buf)
209		reg &= ~SUN6I_TFR_CTL_DHB;
210	else
211		reg |= SUN6I_TFR_CTL_DHB;
212
213	/* We want to control the chip select manually */
214	reg |= SUN6I_TFR_CTL_CS_MANUAL;
215
216	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
217
218	/* Ensure that we have a parent clock fast enough */
219	mclk_rate = clk_get_rate(sspi->mclk);
220	if (mclk_rate < (2 * tfr->speed_hz)) {
221		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
222		mclk_rate = clk_get_rate(sspi->mclk);
223	}
224
225	/*
226	 * Setup clock divider.
227	 *
228	 * We have two choices there. Either we can use the clock
229	 * divide rate 1, which is calculated thanks to this formula:
230	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
231	 * Or we can use CDR2, which is calculated with the formula:
232	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
233	 * Wether we use the former or the latter is set through the
234	 * DRS bit.
235	 *
236	 * First try CDR2, and if we can't reach the expected
237	 * frequency, fall back to CDR1.
238	 */
239	div = mclk_rate / (2 * tfr->speed_hz);
240	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
241		if (div > 0)
242			div--;
243
244		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
245	} else {
246		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
247		reg = SUN6I_CLK_CTL_CDR1(div);
248	}
249
250	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
251
252	/* Setup the transfer now... */
253	if (sspi->tx_buf)
254		tx_len = tfr->len;
255
256	/* Setup the counters */
257	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
258	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
259	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
260			SUN6I_BURST_CTL_CNT_STC(tx_len));
261
262	/* Fill the TX FIFO */
263	sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
264
265	/* Enable the interrupts */
266	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
 
 
 
 
267
268	/* Start the transfer */
269	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
270	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
271
 
 
272	timeout = wait_for_completion_timeout(&sspi->done,
273					      msecs_to_jiffies(1000));
 
274	if (!timeout) {
 
 
 
 
275		ret = -ETIMEDOUT;
276		goto out;
277	}
278
279	sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
280
281out:
282	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
283
284	return ret;
285}
286
287static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
288{
289	struct sun6i_spi *sspi = dev_id;
290	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
291
292	/* Transfer complete */
293	if (status & SUN6I_INT_CTL_TC) {
294		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
 
295		complete(&sspi->done);
296		return IRQ_HANDLED;
297	}
298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299	return IRQ_NONE;
300}
301
302static int sun6i_spi_runtime_resume(struct device *dev)
303{
304	struct spi_master *master = dev_get_drvdata(dev);
305	struct sun6i_spi *sspi = spi_master_get_devdata(master);
306	int ret;
307
308	ret = clk_prepare_enable(sspi->hclk);
309	if (ret) {
310		dev_err(dev, "Couldn't enable AHB clock\n");
311		goto out;
312	}
313
314	ret = clk_prepare_enable(sspi->mclk);
315	if (ret) {
316		dev_err(dev, "Couldn't enable module clock\n");
317		goto err;
318	}
319
320	ret = reset_control_deassert(sspi->rstc);
321	if (ret) {
322		dev_err(dev, "Couldn't deassert the device from reset\n");
323		goto err2;
324	}
325
326	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
327			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
328
329	return 0;
330
331err2:
332	clk_disable_unprepare(sspi->mclk);
333err:
334	clk_disable_unprepare(sspi->hclk);
335out:
336	return ret;
337}
338
339static int sun6i_spi_runtime_suspend(struct device *dev)
340{
341	struct spi_master *master = dev_get_drvdata(dev);
342	struct sun6i_spi *sspi = spi_master_get_devdata(master);
343
344	reset_control_assert(sspi->rstc);
345	clk_disable_unprepare(sspi->mclk);
346	clk_disable_unprepare(sspi->hclk);
347
348	return 0;
349}
350
351static int sun6i_spi_probe(struct platform_device *pdev)
352{
353	struct spi_master *master;
354	struct sun6i_spi *sspi;
355	struct resource	*res;
356	int ret = 0, irq;
357
358	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
359	if (!master) {
360		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
361		return -ENOMEM;
362	}
363
364	platform_set_drvdata(pdev, master);
365	sspi = spi_master_get_devdata(master);
366
367	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
368	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
369	if (IS_ERR(sspi->base_addr)) {
370		ret = PTR_ERR(sspi->base_addr);
371		goto err_free_master;
372	}
373
374	irq = platform_get_irq(pdev, 0);
375	if (irq < 0) {
376		dev_err(&pdev->dev, "No spi IRQ specified\n");
377		ret = -ENXIO;
378		goto err_free_master;
379	}
380
381	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
382			       0, "sun6i-spi", sspi);
383	if (ret) {
384		dev_err(&pdev->dev, "Cannot request IRQ\n");
385		goto err_free_master;
386	}
387
388	sspi->master = master;
 
 
 
 
389	master->set_cs = sun6i_spi_set_cs;
390	master->transfer_one = sun6i_spi_transfer_one;
391	master->num_chipselect = 4;
392	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
393	master->bits_per_word_mask = SPI_BPW_MASK(8);
394	master->dev.of_node = pdev->dev.of_node;
395	master->auto_runtime_pm = true;
 
396
397	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
398	if (IS_ERR(sspi->hclk)) {
399		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
400		ret = PTR_ERR(sspi->hclk);
401		goto err_free_master;
402	}
403
404	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
405	if (IS_ERR(sspi->mclk)) {
406		dev_err(&pdev->dev, "Unable to acquire module clock\n");
407		ret = PTR_ERR(sspi->mclk);
408		goto err_free_master;
409	}
410
411	init_completion(&sspi->done);
412
413	sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
414	if (IS_ERR(sspi->rstc)) {
415		dev_err(&pdev->dev, "Couldn't get reset controller\n");
416		ret = PTR_ERR(sspi->rstc);
417		goto err_free_master;
418	}
419
420	/*
421	 * This wake-up/shutdown pattern is to be able to have the
422	 * device woken up, even if runtime_pm is disabled
423	 */
424	ret = sun6i_spi_runtime_resume(&pdev->dev);
425	if (ret) {
426		dev_err(&pdev->dev, "Couldn't resume the device\n");
427		goto err_free_master;
428	}
429
430	pm_runtime_set_active(&pdev->dev);
431	pm_runtime_enable(&pdev->dev);
432	pm_runtime_idle(&pdev->dev);
433
434	ret = devm_spi_register_master(&pdev->dev, master);
435	if (ret) {
436		dev_err(&pdev->dev, "cannot register SPI master\n");
437		goto err_pm_disable;
438	}
439
440	return 0;
441
442err_pm_disable:
443	pm_runtime_disable(&pdev->dev);
444	sun6i_spi_runtime_suspend(&pdev->dev);
445err_free_master:
446	spi_master_put(master);
447	return ret;
448}
449
450static int sun6i_spi_remove(struct platform_device *pdev)
451{
452	pm_runtime_disable(&pdev->dev);
453
454	return 0;
455}
456
457static const struct of_device_id sun6i_spi_match[] = {
458	{ .compatible = "allwinner,sun6i-a31-spi", },
 
459	{}
460};
461MODULE_DEVICE_TABLE(of, sun6i_spi_match);
462
463static const struct dev_pm_ops sun6i_spi_pm_ops = {
464	.runtime_resume		= sun6i_spi_runtime_resume,
465	.runtime_suspend	= sun6i_spi_runtime_suspend,
466};
467
468static struct platform_driver sun6i_spi_driver = {
469	.probe	= sun6i_spi_probe,
470	.remove	= sun6i_spi_remove,
471	.driver	= {
472		.name		= "sun6i-spi",
473		.of_match_table	= sun6i_spi_match,
474		.pm		= &sun6i_spi_pm_ops,
475	},
476};
477module_platform_driver(sun6i_spi_driver);
478
479MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
480MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
481MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
482MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2012 - 2014 Allwinner Tech
  4 * Pan Nan <pannan@allwinnertech.com>
  5 *
  6 * Copyright (C) 2014 Maxime Ripard
  7 * Maxime Ripard <maxime.ripard@free-electrons.com>
 
 
 
 
 
  8 */
  9
 10#include <linux/clk.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <linux/interrupt.h>
 14#include <linux/io.h>
 15#include <linux/module.h>
 16#include <linux/of_device.h>
 17#include <linux/platform_device.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/reset.h>
 20
 21#include <linux/spi/spi.h>
 22
 23#define SUN6I_FIFO_DEPTH		128
 24#define SUN8I_FIFO_DEPTH		64
 25
 26#define SUN6I_GBL_CTL_REG		0x04
 27#define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 28#define SUN6I_GBL_CTL_MASTER			BIT(1)
 29#define SUN6I_GBL_CTL_TP			BIT(7)
 30#define SUN6I_GBL_CTL_RST			BIT(31)
 31
 32#define SUN6I_TFR_CTL_REG		0x08
 33#define SUN6I_TFR_CTL_CPHA			BIT(0)
 34#define SUN6I_TFR_CTL_CPOL			BIT(1)
 35#define SUN6I_TFR_CTL_SPOL			BIT(2)
 36#define SUN6I_TFR_CTL_CS_MASK			0x30
 37#define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 38#define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 39#define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 40#define SUN6I_TFR_CTL_DHB			BIT(8)
 41#define SUN6I_TFR_CTL_FBS			BIT(12)
 42#define SUN6I_TFR_CTL_XCH			BIT(31)
 43
 44#define SUN6I_INT_CTL_REG		0x10
 45#define SUN6I_INT_CTL_RF_RDY			BIT(0)
 46#define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 47#define SUN6I_INT_CTL_RF_OVF			BIT(8)
 48#define SUN6I_INT_CTL_TC			BIT(12)
 49
 50#define SUN6I_INT_STA_REG		0x14
 51
 52#define SUN6I_FIFO_CTL_REG		0x18
 53#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 54#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 55#define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 56#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 57#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 58#define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 59
 60#define SUN6I_FIFO_STA_REG		0x1c
 61#define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
 62#define SUN6I_FIFO_STA_RF_CNT_BITS		0
 63#define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
 64#define SUN6I_FIFO_STA_TF_CNT_BITS		16
 65
 66#define SUN6I_CLK_CTL_REG		0x24
 67#define SUN6I_CLK_CTL_CDR2_MASK			0xff
 68#define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 69#define SUN6I_CLK_CTL_CDR1_MASK			0xf
 70#define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 71#define SUN6I_CLK_CTL_DRS			BIT(12)
 72
 73#define SUN6I_MAX_XFER_SIZE		0xffffff
 74
 75#define SUN6I_BURST_CNT_REG		0x30
 76#define SUN6I_BURST_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
 77
 78#define SUN6I_XMIT_CNT_REG		0x34
 79#define SUN6I_XMIT_CNT(cnt)			((cnt) & SUN6I_MAX_XFER_SIZE)
 80
 81#define SUN6I_BURST_CTL_CNT_REG		0x38
 82#define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & SUN6I_MAX_XFER_SIZE)
 83
 84#define SUN6I_TXDATA_REG		0x200
 85#define SUN6I_RXDATA_REG		0x300
 86
 87struct sun6i_spi {
 88	struct spi_master	*master;
 89	void __iomem		*base_addr;
 90	struct clk		*hclk;
 91	struct clk		*mclk;
 92	struct reset_control	*rstc;
 93
 94	struct completion	done;
 95
 96	const u8		*tx_buf;
 97	u8			*rx_buf;
 98	int			len;
 99	unsigned long		fifo_depth;
100};
101
102static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
103{
104	return readl(sspi->base_addr + reg);
105}
106
107static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
108{
109	writel(value, sspi->base_addr + reg);
110}
111
112static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
113{
114	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
115
116	reg >>= SUN6I_FIFO_STA_TF_CNT_BITS;
117
118	return reg & SUN6I_FIFO_STA_TF_CNT_MASK;
119}
120
121static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
122{
123	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
124
125	reg |= mask;
126	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
127}
128
129static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130{
131	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132
133	reg &= ~mask;
134	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135}
136
137static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
138{
139	u32 reg, cnt;
140	u8 byte;
141
142	/* See how much data is available */
143	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
144	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
145	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
146
147	if (len > cnt)
148		len = cnt;
149
150	while (len--) {
151		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
152		if (sspi->rx_buf)
153			*sspi->rx_buf++ = byte;
154	}
155}
156
157static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
158{
159	u32 cnt;
160	u8 byte;
161
162	/* See how much data we can fit */
163	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
164
165	len = min3(len, (int)cnt, sspi->len);
166
167	while (len--) {
168		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
169		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
170		sspi->len--;
171	}
172}
173
174static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
175{
176	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
177	u32 reg;
178
179	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
180	reg &= ~SUN6I_TFR_CTL_CS_MASK;
181	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
182
183	if (enable)
184		reg |= SUN6I_TFR_CTL_CS_LEVEL;
185	else
186		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
187
188	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
189}
190
191static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
192{
193	return SUN6I_MAX_XFER_SIZE - 1;
194}
195
196static int sun6i_spi_transfer_one(struct spi_master *master,
197				  struct spi_device *spi,
198				  struct spi_transfer *tfr)
199{
200	struct sun6i_spi *sspi = spi_master_get_devdata(master);
201	unsigned int mclk_rate, div, timeout;
202	unsigned int start, end, tx_time;
203	unsigned int trig_level;
204	unsigned int tx_len = 0;
205	int ret = 0;
206	u32 reg;
207
208	if (tfr->len > SUN6I_MAX_XFER_SIZE)
 
209		return -EINVAL;
210
211	reinit_completion(&sspi->done);
212	sspi->tx_buf = tfr->tx_buf;
213	sspi->rx_buf = tfr->rx_buf;
214	sspi->len = tfr->len;
215
216	/* Clear pending interrupts */
217	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
218
219	/* Reset FIFO */
220	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
221			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
222
223	/*
224	 * Setup FIFO interrupt trigger level
225	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
226	 * value used in old generation of Allwinner SPI controller.
227	 * (See spi-sun4i.c)
228	 */
229	trig_level = sspi->fifo_depth / 4 * 3;
230	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
231			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
232			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
233
234	/*
235	 * Setup the transfer control register: Chip Select,
236	 * polarities, etc.
237	 */
238	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
239
240	if (spi->mode & SPI_CPOL)
241		reg |= SUN6I_TFR_CTL_CPOL;
242	else
243		reg &= ~SUN6I_TFR_CTL_CPOL;
244
245	if (spi->mode & SPI_CPHA)
246		reg |= SUN6I_TFR_CTL_CPHA;
247	else
248		reg &= ~SUN6I_TFR_CTL_CPHA;
249
250	if (spi->mode & SPI_LSB_FIRST)
251		reg |= SUN6I_TFR_CTL_FBS;
252	else
253		reg &= ~SUN6I_TFR_CTL_FBS;
254
255	/*
256	 * If it's a TX only transfer, we don't want to fill the RX
257	 * FIFO with bogus data
258	 */
259	if (sspi->rx_buf)
260		reg &= ~SUN6I_TFR_CTL_DHB;
261	else
262		reg |= SUN6I_TFR_CTL_DHB;
263
264	/* We want to control the chip select manually */
265	reg |= SUN6I_TFR_CTL_CS_MANUAL;
266
267	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
268
269	/* Ensure that we have a parent clock fast enough */
270	mclk_rate = clk_get_rate(sspi->mclk);
271	if (mclk_rate < (2 * tfr->speed_hz)) {
272		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
273		mclk_rate = clk_get_rate(sspi->mclk);
274	}
275
276	/*
277	 * Setup clock divider.
278	 *
279	 * We have two choices there. Either we can use the clock
280	 * divide rate 1, which is calculated thanks to this formula:
281	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
282	 * Or we can use CDR2, which is calculated with the formula:
283	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
284	 * Wether we use the former or the latter is set through the
285	 * DRS bit.
286	 *
287	 * First try CDR2, and if we can't reach the expected
288	 * frequency, fall back to CDR1.
289	 */
290	div = mclk_rate / (2 * tfr->speed_hz);
291	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
292		if (div > 0)
293			div--;
294
295		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
296	} else {
297		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
298		reg = SUN6I_CLK_CTL_CDR1(div);
299	}
300
301	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
302
303	/* Setup the transfer now... */
304	if (sspi->tx_buf)
305		tx_len = tfr->len;
306
307	/* Setup the counters */
308	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
309	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
310	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
311			SUN6I_BURST_CTL_CNT_STC(tx_len));
312
313	/* Fill the TX FIFO */
314	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
315
316	/* Enable the interrupts */
317	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
318	sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
319					 SUN6I_INT_CTL_RF_RDY);
320	if (tx_len > sspi->fifo_depth)
321		sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
322
323	/* Start the transfer */
324	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
325	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
326
327	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
328	start = jiffies;
329	timeout = wait_for_completion_timeout(&sspi->done,
330					      msecs_to_jiffies(tx_time));
331	end = jiffies;
332	if (!timeout) {
333		dev_warn(&master->dev,
334			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
335			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
336			 jiffies_to_msecs(end - start), tx_time);
337		ret = -ETIMEDOUT;
338		goto out;
339	}
340
 
 
341out:
342	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
343
344	return ret;
345}
346
347static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
348{
349	struct sun6i_spi *sspi = dev_id;
350	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
351
352	/* Transfer complete */
353	if (status & SUN6I_INT_CTL_TC) {
354		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
355		sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
356		complete(&sspi->done);
357		return IRQ_HANDLED;
358	}
359
360	/* Receive FIFO 3/4 full */
361	if (status & SUN6I_INT_CTL_RF_RDY) {
362		sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
363		/* Only clear the interrupt _after_ draining the FIFO */
364		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
365		return IRQ_HANDLED;
366	}
367
368	/* Transmit FIFO 3/4 empty */
369	if (status & SUN6I_INT_CTL_TF_ERQ) {
370		sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
371
372		if (!sspi->len)
373			/* nothing left to transmit */
374			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
375
376		/* Only clear the interrupt _after_ re-seeding the FIFO */
377		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
378
379		return IRQ_HANDLED;
380	}
381
382	return IRQ_NONE;
383}
384
385static int sun6i_spi_runtime_resume(struct device *dev)
386{
387	struct spi_master *master = dev_get_drvdata(dev);
388	struct sun6i_spi *sspi = spi_master_get_devdata(master);
389	int ret;
390
391	ret = clk_prepare_enable(sspi->hclk);
392	if (ret) {
393		dev_err(dev, "Couldn't enable AHB clock\n");
394		goto out;
395	}
396
397	ret = clk_prepare_enable(sspi->mclk);
398	if (ret) {
399		dev_err(dev, "Couldn't enable module clock\n");
400		goto err;
401	}
402
403	ret = reset_control_deassert(sspi->rstc);
404	if (ret) {
405		dev_err(dev, "Couldn't deassert the device from reset\n");
406		goto err2;
407	}
408
409	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
410			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
411
412	return 0;
413
414err2:
415	clk_disable_unprepare(sspi->mclk);
416err:
417	clk_disable_unprepare(sspi->hclk);
418out:
419	return ret;
420}
421
422static int sun6i_spi_runtime_suspend(struct device *dev)
423{
424	struct spi_master *master = dev_get_drvdata(dev);
425	struct sun6i_spi *sspi = spi_master_get_devdata(master);
426
427	reset_control_assert(sspi->rstc);
428	clk_disable_unprepare(sspi->mclk);
429	clk_disable_unprepare(sspi->hclk);
430
431	return 0;
432}
433
434static int sun6i_spi_probe(struct platform_device *pdev)
435{
436	struct spi_master *master;
437	struct sun6i_spi *sspi;
 
438	int ret = 0, irq;
439
440	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
441	if (!master) {
442		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
443		return -ENOMEM;
444	}
445
446	platform_set_drvdata(pdev, master);
447	sspi = spi_master_get_devdata(master);
448
449	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
 
450	if (IS_ERR(sspi->base_addr)) {
451		ret = PTR_ERR(sspi->base_addr);
452		goto err_free_master;
453	}
454
455	irq = platform_get_irq(pdev, 0);
456	if (irq < 0) {
 
457		ret = -ENXIO;
458		goto err_free_master;
459	}
460
461	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
462			       0, "sun6i-spi", sspi);
463	if (ret) {
464		dev_err(&pdev->dev, "Cannot request IRQ\n");
465		goto err_free_master;
466	}
467
468	sspi->master = master;
469	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
470
471	master->max_speed_hz = 100 * 1000 * 1000;
472	master->min_speed_hz = 3 * 1000;
473	master->set_cs = sun6i_spi_set_cs;
474	master->transfer_one = sun6i_spi_transfer_one;
475	master->num_chipselect = 4;
476	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
477	master->bits_per_word_mask = SPI_BPW_MASK(8);
478	master->dev.of_node = pdev->dev.of_node;
479	master->auto_runtime_pm = true;
480	master->max_transfer_size = sun6i_spi_max_transfer_size;
481
482	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
483	if (IS_ERR(sspi->hclk)) {
484		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
485		ret = PTR_ERR(sspi->hclk);
486		goto err_free_master;
487	}
488
489	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
490	if (IS_ERR(sspi->mclk)) {
491		dev_err(&pdev->dev, "Unable to acquire module clock\n");
492		ret = PTR_ERR(sspi->mclk);
493		goto err_free_master;
494	}
495
496	init_completion(&sspi->done);
497
498	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
499	if (IS_ERR(sspi->rstc)) {
500		dev_err(&pdev->dev, "Couldn't get reset controller\n");
501		ret = PTR_ERR(sspi->rstc);
502		goto err_free_master;
503	}
504
505	/*
506	 * This wake-up/shutdown pattern is to be able to have the
507	 * device woken up, even if runtime_pm is disabled
508	 */
509	ret = sun6i_spi_runtime_resume(&pdev->dev);
510	if (ret) {
511		dev_err(&pdev->dev, "Couldn't resume the device\n");
512		goto err_free_master;
513	}
514
515	pm_runtime_set_active(&pdev->dev);
516	pm_runtime_enable(&pdev->dev);
517	pm_runtime_idle(&pdev->dev);
518
519	ret = devm_spi_register_master(&pdev->dev, master);
520	if (ret) {
521		dev_err(&pdev->dev, "cannot register SPI master\n");
522		goto err_pm_disable;
523	}
524
525	return 0;
526
527err_pm_disable:
528	pm_runtime_disable(&pdev->dev);
529	sun6i_spi_runtime_suspend(&pdev->dev);
530err_free_master:
531	spi_master_put(master);
532	return ret;
533}
534
535static int sun6i_spi_remove(struct platform_device *pdev)
536{
537	pm_runtime_force_suspend(&pdev->dev);
538
539	return 0;
540}
541
542static const struct of_device_id sun6i_spi_match[] = {
543	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
544	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
545	{}
546};
547MODULE_DEVICE_TABLE(of, sun6i_spi_match);
548
549static const struct dev_pm_ops sun6i_spi_pm_ops = {
550	.runtime_resume		= sun6i_spi_runtime_resume,
551	.runtime_suspend	= sun6i_spi_runtime_suspend,
552};
553
554static struct platform_driver sun6i_spi_driver = {
555	.probe	= sun6i_spi_probe,
556	.remove	= sun6i_spi_remove,
557	.driver	= {
558		.name		= "sun6i-spi",
559		.of_match_table	= sun6i_spi_match,
560		.pm		= &sun6i_spi_pm_ops,
561	},
562};
563module_platform_driver(sun6i_spi_driver);
564
565MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
566MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
567MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
568MODULE_LICENSE("GPL");