Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  3 * Copyright 2010 Orex Computed Radiography
  4 */
  5
  6/*
  7 * The code contained herein is licensed under the GNU General Public
  8 * License. You may obtain a copy of the GNU General Public License
  9 * Version 2 or later at the following locations:
 10 *
 11 * http://www.opensource.org/licenses/gpl-license.html
 12 * http://www.gnu.org/copyleft/gpl.html
 13 */
 14
 15/* based on rtc-mc13892.c */
 16
 17/*
 18 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
 19 * to implement a Linux RTC. Times and alarms are truncated to seconds.
 20 * Since the RTC framework performs API locking via rtc->ops_lock the
 21 * only simultaneous accesses we need to deal with is updating DryIce
 22 * registers while servicing an alarm.
 23 *
 24 * Note that reading the DSR (DryIce Status Register) automatically clears
 25 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
 26 * LP (Low Power) domain and set the WCF upon completion. Writes to the
 27 * DIER (DryIce Interrupt Enable Register) are the only exception. These
 28 * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
 29 * not supported by the hardware.
 30 */
 31
 32#include <linux/io.h>
 33#include <linux/clk.h>
 34#include <linux/delay.h>
 35#include <linux/module.h>
 36#include <linux/platform_device.h>
 37#include <linux/rtc.h>
 38#include <linux/sched.h>
 39#include <linux/spinlock.h>
 40#include <linux/workqueue.h>
 41#include <linux/of.h>
 42
 43/* DryIce Register Definitions */
 44
 45#define DTCMR     0x00           /* Time Counter MSB Reg */
 46#define DTCLR     0x04           /* Time Counter LSB Reg */
 47
 48#define DCAMR     0x08           /* Clock Alarm MSB Reg */
 49#define DCALR     0x0c           /* Clock Alarm LSB Reg */
 50#define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
 51
 52#define DCR       0x10           /* Control Reg */
 53#define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
 54#define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
 55#define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
 56#define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
 57#define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
 58#define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
 59#define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
 60#define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
 61#define DCR_TCE   (1 << 3)       /* Time Counter Enable */
 62#define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
 63
 64#define DSR       0x14           /* Status Reg */
 65#define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
 66#define DSR_ETBD  (1 << 22)      /* External tamper B detected */
 67#define DSR_ETAD  (1 << 21)      /* External tamper A detected */
 68#define DSR_EBD   (1 << 20)      /* External boot detected */
 69#define DSR_SAD   (1 << 19)      /* SCC alarm detected */
 70#define DSR_TTD   (1 << 18)      /* Temperatur tamper detected */
 71#define DSR_CTD   (1 << 17)      /* Clock tamper detected */
 72#define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
 73#define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
 74#define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
 75#define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
 76#define DSR_WEF   (1 << 7)       /* Write Error Flag */
 77#define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
 78#define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
 79#define DSR_TCO   (1 << 2)       /* time counter overflow */
 80#define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
 81#define DSR_SVF   (1 << 0)       /* Security Violation Flag */
 82
 83#define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
 84#define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
 85#define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
 86#define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
 87#define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
 88#define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
 89
 90#define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
 91
 92#define DTCR      0x28           /* DryIce Tamper Configuration Reg */
 93#define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
 94#define DTCR_TOE  (1 << 8)       /* time overflow enabled */
 95#define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
 96#define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
 97#define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
 98#define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
 99#define DTCR_SAIE (1 << 3)       /* SCC enabled */
100#define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
101#define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
102#define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
103
104#define DGPR      0x3c           /* DryIce General Purpose Reg */
105
106/**
107 * struct imxdi_dev - private imxdi rtc data
108 * @pdev: pionter to platform dev
109 * @rtc: pointer to rtc struct
110 * @ioaddr: IO registers pointer
111 * @irq: dryice normal interrupt
112 * @clk: input reference clock
113 * @dsr: copy of the DSR register
114 * @irq_lock: interrupt enable register (DIER) lock
115 * @write_wait: registers write complete queue
116 * @write_mutex: serialize registers write
117 * @work: schedule alarm work
118 */
119struct imxdi_dev {
120	struct platform_device *pdev;
121	struct rtc_device *rtc;
122	void __iomem *ioaddr;
123	int irq;
124	struct clk *clk;
125	u32 dsr;
126	spinlock_t irq_lock;
127	wait_queue_head_t write_wait;
128	struct mutex write_mutex;
129	struct work_struct work;
130};
131
132/* Some background:
133 *
134 * The DryIce unit is a complex security/tamper monitor device. To be able do
135 * its job in a useful manner it runs a bigger statemachine to bring it into
136 * security/tamper failure state and once again to bring it out of this state.
137 *
138 * This unit can be in one of three states:
139 *
140 * - "NON-VALID STATE"
141 *   always after the battery power was removed
142 * - "FAILURE STATE"
143 *   if one of the enabled security events has happened
144 * - "VALID STATE"
145 *   if the unit works as expected
146 *
147 * Everything stops when the unit enters the failure state including the RTC
148 * counter (to be able to detect the time the security event happened).
149 *
150 * The following events (when enabled) let the DryIce unit enter the failure
151 * state:
152 *
153 * - wire-mesh-tamper detect
154 * - external tamper B detect
155 * - external tamper A detect
156 * - temperature tamper detect
157 * - clock tamper detect
158 * - voltage tamper detect
159 * - RTC counter overflow
160 * - monotonic counter overflow
161 * - external boot
162 *
163 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
164 * can only detect this state. In this case the unit is completely locked and
165 * must force a second "SYSTEM POR" to bring the DryIce into the
166 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
167 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
168 * a battery power cycle is required.
169 *
170 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
171 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
172 * task, we bring back this unit into life.
173 */
174
175/*
176 * Do a write into the unit without interrupt support.
177 * We do not need to check the WEF here, because the only reason this kind of
178 * write error can happen is if we write to the unit twice within the 122 us
179 * interval. This cannot happen, since we are using this function only while
180 * setting up the unit.
181 */
182static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
183			       unsigned reg)
184{
185	/* do the register write */
186	writel(val, imxdi->ioaddr + reg);
187
188	/*
189	 * now it takes four 32,768 kHz clock cycles to take
190	 * the change into effect = 122 us
191	 */
192	usleep_range(130, 200);
193}
194
195static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
196{
197	u32 dtcr;
198
199	dtcr = readl(imxdi->ioaddr + DTCR);
200
201	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
202	/* the following flags force a transition into the "FAILURE STATE" */
203	if (dsr & DSR_VTD)
204		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
205			  dtcr & DTCR_VTE ? "" : "Spurious ");
206
207	if (dsr & DSR_CTD)
208		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
209			  dtcr & DTCR_CTE ? "" : "Spurious ");
210
211	if (dsr & DSR_TTD)
212		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
213			  dtcr & DTCR_TTE ? "" : "Spurious ");
214
215	if (dsr & DSR_SAD)
216		dev_emerg(&imxdi->pdev->dev,
217			  "%sSecure Controller Alarm Event\n",
218			  dtcr & DTCR_SAIE ? "" : "Spurious ");
219
220	if (dsr & DSR_EBD)
221		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
222			  dtcr & DTCR_EBE ? "" : "Spurious ");
223
224	if (dsr & DSR_ETAD)
225		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
226			  dtcr & DTCR_ETAE ? "" : "Spurious ");
227
228	if (dsr & DSR_ETBD)
229		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
230			  dtcr & DTCR_ETBE ? "" : "Spurious ");
231
232	if (dsr & DSR_WTD)
233		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
234			  dtcr & DTCR_WTE ? "" : "Spurious ");
235
236	if (dsr & DSR_MCO)
237		dev_emerg(&imxdi->pdev->dev,
238			  "%sMonotonic-counter Overflow Event\n",
239			  dtcr & DTCR_MOE ? "" : "Spurious ");
240
241	if (dsr & DSR_TCO)
242		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
243			  dtcr & DTCR_TOE ? "" : "Spurious ");
244}
245
246static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
247				  const char *power_supply)
248{
249	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
250		  power_supply);
251}
252
253static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
254{
255	u32 dcr;
256
257	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
258
259	/* report the cause */
260	di_report_tamper_info(imxdi, dsr);
261
262	dcr = readl(imxdi->ioaddr + DCR);
263
264	if (dcr & DCR_FSHL) {
265		/* we are out of luck */
266		di_what_is_to_be_done(imxdi, "battery");
267		return -ENODEV;
268	}
269	/*
270	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
271	 * into the "NON-VALID STATE" + "FAILURE STATE"
272	 */
273	di_what_is_to_be_done(imxdi, "main");
274
275	return -ENODEV;
276}
277
278static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
279{
280	/* initialize alarm */
281	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
282	di_write_busy_wait(imxdi, 0, DCALR);
283
284	/* clear alarm flag */
285	if (dsr & DSR_CAF)
286		di_write_busy_wait(imxdi, DSR_CAF, DSR);
287
288	return 0;
289}
290
291static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
292{
293	u32 dcr, sec;
294
295	/*
296	 * lets disable all sources which can force the DryIce unit into
297	 * the "FAILURE STATE" for now
298	 */
299	di_write_busy_wait(imxdi, 0x00000000, DTCR);
300	/* and lets protect them at runtime from any change */
301	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
302
303	sec = readl(imxdi->ioaddr + DTCMR);
304	if (sec != 0)
305		dev_warn(&imxdi->pdev->dev,
306			 "The security violation has happened at %u seconds\n",
307			 sec);
308	/*
309	 * the timer cannot be set/modified if
310	 * - the TCHL or TCSL bit is set in DCR
311	 */
312	dcr = readl(imxdi->ioaddr + DCR);
313	if (!(dcr & DCR_TCE)) {
314		if (dcr & DCR_TCHL) {
315			/* we are out of luck */
316			di_what_is_to_be_done(imxdi, "battery");
317			return -ENODEV;
318		}
319		if (dcr & DCR_TCSL) {
320			di_what_is_to_be_done(imxdi, "main");
321			return -ENODEV;
322		}
323	}
324	/*
325	 * - the timer counter stops/is stopped if
326	 *   - its overflow flag is set (TCO in DSR)
327	 *      -> clear overflow bit to make it count again
328	 *   - NVF is set in DSR
329	 *      -> clear non-valid bit to make it count again
330	 *   - its TCE (DCR) is cleared
331	 *      -> set TCE to make it count
332	 *   - it was never set before
333	 *      -> write a time into it (required again if the NVF was set)
334	 */
335	/* state handled */
336	di_write_busy_wait(imxdi, DSR_NVF, DSR);
337	/* clear overflow flag */
338	di_write_busy_wait(imxdi, DSR_TCO, DSR);
339	/* enable the counter */
340	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
341	/* set and trigger it to make it count */
342	di_write_busy_wait(imxdi, sec, DTCMR);
343
344	/* now prepare for the valid state */
345	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
346}
347
348static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
349{
350	u32 dcr;
351
352	/*
353	 * now we must first remove the tamper sources in order to get the
354	 * device out of the "FAILURE STATE"
355	 * To disable any of the following sources we need to modify the DTCR
356	 */
357	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
358			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
359		dcr = __raw_readl(imxdi->ioaddr + DCR);
360		if (dcr & DCR_TDCHL) {
361			/*
362			 * the tamper register is locked. We cannot disable the
363			 * tamper detection. The TDCHL can only be reset by a
364			 * DRYICE POR, but we cannot force a DRYICE POR in
365			 * softwere because we are still in "FAILURE STATE".
366			 * We need a DRYICE POR via battery power cycling....
367			 */
368			/*
369			 * out of luck!
370			 * we cannot disable them without a DRYICE POR
371			 */
372			di_what_is_to_be_done(imxdi, "battery");
373			return -ENODEV;
374		}
375		if (dcr & DCR_TDCSL) {
376			/* a soft lock can be removed by a SYSTEM POR */
377			di_what_is_to_be_done(imxdi, "main");
378			return -ENODEV;
379		}
380	}
381
382	/* disable all sources */
383	di_write_busy_wait(imxdi, 0x00000000, DTCR);
384
385	/* clear the status bits now */
386	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
387			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
388			DSR_MCO | DSR_TCO), DSR);
389
390	dsr = readl(imxdi->ioaddr + DSR);
391	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
392			DSR_WCF | DSR_WEF)) != 0)
393		dev_warn(&imxdi->pdev->dev,
394			 "There are still some sources of pain in DSR: %08x!\n",
395			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
396				 DSR_WCF | DSR_WEF));
397
398	/*
399	 * now we are trying to clear the "Security-violation flag" to
400	 * get the DryIce out of this state
401	 */
402	di_write_busy_wait(imxdi, DSR_SVF, DSR);
403
404	/* success? */
405	dsr = readl(imxdi->ioaddr + DSR);
406	if (dsr & DSR_SVF) {
407		dev_crit(&imxdi->pdev->dev,
408			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
409		/* last resort */
410		di_what_is_to_be_done(imxdi, "battery");
411		return -ENODEV;
412	}
413
414	/*
415	 * now we have left the "FAILURE STATE" and ending up in the
416	 * "NON-VALID STATE" time to recover everything
417	 */
418	return di_handle_invalid_state(imxdi, dsr);
419}
420
421static int di_handle_state(struct imxdi_dev *imxdi)
422{
423	int rc;
424	u32 dsr;
425
426	dsr = readl(imxdi->ioaddr + DSR);
427
428	switch (dsr & (DSR_NVF | DSR_SVF)) {
429	case DSR_NVF:
430		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
431		rc = di_handle_invalid_state(imxdi, dsr);
432		break;
433	case DSR_SVF:
434		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
435		rc = di_handle_failure_state(imxdi, dsr);
436		break;
437	case DSR_NVF | DSR_SVF:
438		dev_warn(&imxdi->pdev->dev,
439			 "Failure+Invalid stated unit detected\n");
440		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
441		break;
442	default:
443		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
444		rc = di_handle_valid_state(imxdi, dsr);
445	}
446
447	return rc;
448}
449
450/*
451 * enable a dryice interrupt
452 */
453static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
454{
455	unsigned long flags;
456
457	spin_lock_irqsave(&imxdi->irq_lock, flags);
458	writel(readl(imxdi->ioaddr + DIER) | intr,
459	       imxdi->ioaddr + DIER);
460	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
461}
462
463/*
464 * disable a dryice interrupt
465 */
466static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
467{
468	unsigned long flags;
469
470	spin_lock_irqsave(&imxdi->irq_lock, flags);
471	writel(readl(imxdi->ioaddr + DIER) & ~intr,
472	       imxdi->ioaddr + DIER);
473	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
474}
475
476/*
477 * This function attempts to clear the dryice write-error flag.
478 *
479 * A dryice write error is similar to a bus fault and should not occur in
480 * normal operation.  Clearing the flag requires another write, so the root
481 * cause of the problem may need to be fixed before the flag can be cleared.
482 */
483static void clear_write_error(struct imxdi_dev *imxdi)
484{
485	int cnt;
486
487	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
488
489	/* clear the write error flag */
490	writel(DSR_WEF, imxdi->ioaddr + DSR);
491
492	/* wait for it to take effect */
493	for (cnt = 0; cnt < 1000; cnt++) {
494		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
495			return;
496		udelay(10);
497	}
498	dev_err(&imxdi->pdev->dev,
499			"ERROR: Cannot clear write-error flag!\n");
500}
501
502/*
503 * Write a dryice register and wait until it completes.
504 *
505 * This function uses interrupts to determine when the
506 * write has completed.
507 */
508static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
509{
510	int ret;
511	int rc = 0;
512
513	/* serialize register writes */
514	mutex_lock(&imxdi->write_mutex);
515
516	/* enable the write-complete interrupt */
517	di_int_enable(imxdi, DIER_WCIE);
518
519	imxdi->dsr = 0;
520
521	/* do the register write */
522	writel(val, imxdi->ioaddr + reg);
523
524	/* wait for the write to finish */
525	ret = wait_event_interruptible_timeout(imxdi->write_wait,
526			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
527	if (ret < 0) {
528		rc = ret;
529		goto out;
530	} else if (ret == 0) {
531		dev_warn(&imxdi->pdev->dev,
532				"Write-wait timeout "
533				"val = 0x%08x reg = 0x%08x\n", val, reg);
534	}
535
536	/* check for write error */
537	if (imxdi->dsr & DSR_WEF) {
538		clear_write_error(imxdi);
539		rc = -EIO;
540	}
541
542out:
543	mutex_unlock(&imxdi->write_mutex);
544
545	return rc;
546}
547
548/*
549 * read the seconds portion of the current time from the dryice time counter
550 */
551static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
552{
553	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
554	unsigned long now;
555
556	now = readl(imxdi->ioaddr + DTCMR);
557	rtc_time_to_tm(now, tm);
558
559	return 0;
560}
561
562/*
563 * set the seconds portion of dryice time counter and clear the
564 * fractional part.
565 */
566static int dryice_rtc_set_mmss(struct device *dev, unsigned long secs)
567{
568	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
569	u32 dcr, dsr;
570	int rc;
571
572	dcr = readl(imxdi->ioaddr + DCR);
573	dsr = readl(imxdi->ioaddr + DSR);
574
575	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
576		if (dcr & DCR_TCHL) {
577			/* we are even more out of luck */
578			di_what_is_to_be_done(imxdi, "battery");
579			return -EPERM;
580		}
581		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
582			/* we are out of luck for now */
583			di_what_is_to_be_done(imxdi, "main");
584			return -EPERM;
585		}
586	}
587
588	/* zero the fractional part first */
589	rc = di_write_wait(imxdi, 0, DTCLR);
590	if (rc != 0)
591		return rc;
592
593	rc = di_write_wait(imxdi, secs, DTCMR);
594	if (rc != 0)
595		return rc;
596
597	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
598}
599
600static int dryice_rtc_alarm_irq_enable(struct device *dev,
601		unsigned int enabled)
602{
603	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
604
605	if (enabled)
606		di_int_enable(imxdi, DIER_CAIE);
607	else
608		di_int_disable(imxdi, DIER_CAIE);
609
610	return 0;
611}
612
613/*
614 * read the seconds portion of the alarm register.
615 * the fractional part of the alarm register is always zero.
616 */
617static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
618{
619	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
620	u32 dcamr;
621
622	dcamr = readl(imxdi->ioaddr + DCAMR);
623	rtc_time_to_tm(dcamr, &alarm->time);
624
625	/* alarm is enabled if the interrupt is enabled */
626	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
627
628	/* don't allow the DSR read to mess up DSR_WCF */
629	mutex_lock(&imxdi->write_mutex);
630
631	/* alarm is pending if the alarm flag is set */
632	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
633
634	mutex_unlock(&imxdi->write_mutex);
635
636	return 0;
637}
638
639/*
640 * set the seconds portion of dryice alarm register
641 */
642static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
643{
644	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
645	unsigned long now;
646	unsigned long alarm_time;
647	int rc;
648
649	rc = rtc_tm_to_time(&alarm->time, &alarm_time);
650	if (rc)
651		return rc;
652
653	/* don't allow setting alarm in the past */
654	now = readl(imxdi->ioaddr + DTCMR);
655	if (alarm_time < now)
656		return -EINVAL;
657
658	/* write the new alarm time */
659	rc = di_write_wait(imxdi, (u32)alarm_time, DCAMR);
660	if (rc)
661		return rc;
662
663	if (alarm->enabled)
664		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
665	else
666		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
667
668	return 0;
669}
670
671static struct rtc_class_ops dryice_rtc_ops = {
672	.read_time		= dryice_rtc_read_time,
673	.set_mmss		= dryice_rtc_set_mmss,
674	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
675	.read_alarm		= dryice_rtc_read_alarm,
676	.set_alarm		= dryice_rtc_set_alarm,
677};
678
679/*
680 * dryice "normal" interrupt handler
681 */
682static irqreturn_t dryice_norm_irq(int irq, void *dev_id)
683{
684	struct imxdi_dev *imxdi = dev_id;
685	u32 dsr, dier;
686	irqreturn_t rc = IRQ_NONE;
687
688	dier = readl(imxdi->ioaddr + DIER);
689	dsr = readl(imxdi->ioaddr + DSR);
690
691	/* handle the security violation event */
692	if (dier & DIER_SVIE) {
693		if (dsr & DSR_SVF) {
694			/*
695			 * Disable the interrupt when this kind of event has
696			 * happened.
697			 * There cannot be more than one event of this type,
698			 * because it needs a complex state change
699			 * including a main power cycle to get again out of
700			 * this state.
701			 */
702			di_int_disable(imxdi, DIER_SVIE);
703			/* report the violation */
704			di_report_tamper_info(imxdi, dsr);
705			rc = IRQ_HANDLED;
706		}
707	}
708
709	/* handle write complete and write error cases */
710	if (dier & DIER_WCIE) {
711		/*If the write wait queue is empty then there is no pending
712		  operations. It means the interrupt is for DryIce -Security.
713		  IRQ must be returned as none.*/
714		if (list_empty_careful(&imxdi->write_wait.task_list))
715			return rc;
716
717		/* DSR_WCF clears itself on DSR read */
718		if (dsr & (DSR_WCF | DSR_WEF)) {
719			/* mask the interrupt */
720			di_int_disable(imxdi, DIER_WCIE);
721
722			/* save the dsr value for the wait queue */
723			imxdi->dsr |= dsr;
724
725			wake_up_interruptible(&imxdi->write_wait);
726			rc = IRQ_HANDLED;
727		}
728	}
729
730	/* handle the alarm case */
731	if (dier & DIER_CAIE) {
732		/* DSR_WCF clears itself on DSR read */
733		if (dsr & DSR_CAF) {
734			/* mask the interrupt */
735			di_int_disable(imxdi, DIER_CAIE);
736
737			/* finish alarm in user context */
738			schedule_work(&imxdi->work);
739			rc = IRQ_HANDLED;
740		}
741	}
742	return rc;
743}
744
745/*
746 * post the alarm event from user context so it can sleep
747 * on the write completion.
748 */
749static void dryice_work(struct work_struct *work)
750{
751	struct imxdi_dev *imxdi = container_of(work,
752			struct imxdi_dev, work);
753
754	/* dismiss the interrupt (ignore error) */
755	di_write_wait(imxdi, DSR_CAF, DSR);
756
757	/* pass the alarm event to the rtc framework. */
758	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
759}
760
761/*
762 * probe for dryice rtc device
763 */
764static int __init dryice_rtc_probe(struct platform_device *pdev)
765{
766	struct resource *res;
767	struct imxdi_dev *imxdi;
 
768	int rc;
769
770	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
771	if (!imxdi)
772		return -ENOMEM;
773
774	imxdi->pdev = pdev;
775
776	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
777	imxdi->ioaddr = devm_ioremap_resource(&pdev->dev, res);
778	if (IS_ERR(imxdi->ioaddr))
779		return PTR_ERR(imxdi->ioaddr);
780
781	spin_lock_init(&imxdi->irq_lock);
782
783	imxdi->irq = platform_get_irq(pdev, 0);
784	if (imxdi->irq < 0)
785		return imxdi->irq;
 
 
 
 
 
 
 
786
787	init_waitqueue_head(&imxdi->write_wait);
788
789	INIT_WORK(&imxdi->work, dryice_work);
790
791	mutex_init(&imxdi->write_mutex);
792
 
 
 
 
793	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
794	if (IS_ERR(imxdi->clk))
795		return PTR_ERR(imxdi->clk);
796	rc = clk_prepare_enable(imxdi->clk);
797	if (rc)
798		return rc;
799
800	/*
801	 * Initialize dryice hardware
802	 */
803
804	/* mask all interrupts */
805	writel(0, imxdi->ioaddr + DIER);
806
807	rc = di_handle_state(imxdi);
808	if (rc != 0)
809		goto err;
810
811	rc = devm_request_irq(&pdev->dev, imxdi->irq, dryice_norm_irq,
812			IRQF_SHARED, pdev->name, imxdi);
813	if (rc) {
814		dev_warn(&pdev->dev, "interrupt not available.\n");
815		goto err;
816	}
817
 
 
 
 
 
 
 
818	platform_set_drvdata(pdev, imxdi);
819	imxdi->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
820				  &dryice_rtc_ops, THIS_MODULE);
821	if (IS_ERR(imxdi->rtc)) {
822		rc = PTR_ERR(imxdi->rtc);
 
 
823		goto err;
824	}
825
826	return 0;
827
828err:
829	clk_disable_unprepare(imxdi->clk);
830
831	return rc;
832}
833
834static int __exit dryice_rtc_remove(struct platform_device *pdev)
835{
836	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
837
838	flush_work(&imxdi->work);
839
840	/* mask all interrupts */
841	writel(0, imxdi->ioaddr + DIER);
842
843	clk_disable_unprepare(imxdi->clk);
844
845	return 0;
846}
847
848#ifdef CONFIG_OF
849static const struct of_device_id dryice_dt_ids[] = {
850	{ .compatible = "fsl,imx25-rtc" },
851	{ /* sentinel */ }
852};
853
854MODULE_DEVICE_TABLE(of, dryice_dt_ids);
855#endif
856
857static struct platform_driver dryice_rtc_driver = {
858	.driver = {
859		   .name = "imxdi_rtc",
860		   .of_match_table = of_match_ptr(dryice_dt_ids),
861		   },
862	.remove = __exit_p(dryice_rtc_remove),
863};
864
865module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
866
867MODULE_AUTHOR("Freescale Semiconductor, Inc.");
868MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
869MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
870MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  4 * Copyright 2010 Orex Computed Radiography
  5 */
  6
  7/*
 
 
 
 
 
 
 
 
 
 
 
  8 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
  9 * to implement a Linux RTC. Times and alarms are truncated to seconds.
 10 * Since the RTC framework performs API locking via rtc->ops_lock the
 11 * only simultaneous accesses we need to deal with is updating DryIce
 12 * registers while servicing an alarm.
 13 *
 14 * Note that reading the DSR (DryIce Status Register) automatically clears
 15 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
 16 * LP (Low Power) domain and set the WCF upon completion. Writes to the
 17 * DIER (DryIce Interrupt Enable Register) are the only exception. These
 18 * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
 19 * not supported by the hardware.
 20 */
 21
 22#include <linux/io.h>
 23#include <linux/clk.h>
 24#include <linux/delay.h>
 25#include <linux/module.h>
 26#include <linux/platform_device.h>
 27#include <linux/rtc.h>
 28#include <linux/sched.h>
 29#include <linux/spinlock.h>
 30#include <linux/workqueue.h>
 31#include <linux/of.h>
 32
 33/* DryIce Register Definitions */
 34
 35#define DTCMR     0x00           /* Time Counter MSB Reg */
 36#define DTCLR     0x04           /* Time Counter LSB Reg */
 37
 38#define DCAMR     0x08           /* Clock Alarm MSB Reg */
 39#define DCALR     0x0c           /* Clock Alarm LSB Reg */
 40#define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
 41
 42#define DCR       0x10           /* Control Reg */
 43#define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
 44#define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
 45#define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
 46#define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
 47#define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
 48#define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
 49#define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
 50#define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
 51#define DCR_TCE   (1 << 3)       /* Time Counter Enable */
 52#define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
 53
 54#define DSR       0x14           /* Status Reg */
 55#define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
 56#define DSR_ETBD  (1 << 22)      /* External tamper B detected */
 57#define DSR_ETAD  (1 << 21)      /* External tamper A detected */
 58#define DSR_EBD   (1 << 20)      /* External boot detected */
 59#define DSR_SAD   (1 << 19)      /* SCC alarm detected */
 60#define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
 61#define DSR_CTD   (1 << 17)      /* Clock tamper detected */
 62#define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
 63#define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
 64#define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
 65#define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
 66#define DSR_WEF   (1 << 7)       /* Write Error Flag */
 67#define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
 68#define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
 69#define DSR_TCO   (1 << 2)       /* time counter overflow */
 70#define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
 71#define DSR_SVF   (1 << 0)       /* Security Violation Flag */
 72
 73#define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
 74#define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
 75#define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
 76#define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
 77#define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
 78#define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
 79
 80#define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
 81
 82#define DTCR      0x28           /* DryIce Tamper Configuration Reg */
 83#define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
 84#define DTCR_TOE  (1 << 8)       /* time overflow enabled */
 85#define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
 86#define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
 87#define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
 88#define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
 89#define DTCR_SAIE (1 << 3)       /* SCC enabled */
 90#define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
 91#define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
 92#define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
 93
 94#define DGPR      0x3c           /* DryIce General Purpose Reg */
 95
 96/**
 97 * struct imxdi_dev - private imxdi rtc data
 98 * @pdev: pionter to platform dev
 99 * @rtc: pointer to rtc struct
100 * @ioaddr: IO registers pointer
 
101 * @clk: input reference clock
102 * @dsr: copy of the DSR register
103 * @irq_lock: interrupt enable register (DIER) lock
104 * @write_wait: registers write complete queue
105 * @write_mutex: serialize registers write
106 * @work: schedule alarm work
107 */
108struct imxdi_dev {
109	struct platform_device *pdev;
110	struct rtc_device *rtc;
111	void __iomem *ioaddr;
 
112	struct clk *clk;
113	u32 dsr;
114	spinlock_t irq_lock;
115	wait_queue_head_t write_wait;
116	struct mutex write_mutex;
117	struct work_struct work;
118};
119
120/* Some background:
121 *
122 * The DryIce unit is a complex security/tamper monitor device. To be able do
123 * its job in a useful manner it runs a bigger statemachine to bring it into
124 * security/tamper failure state and once again to bring it out of this state.
125 *
126 * This unit can be in one of three states:
127 *
128 * - "NON-VALID STATE"
129 *   always after the battery power was removed
130 * - "FAILURE STATE"
131 *   if one of the enabled security events has happened
132 * - "VALID STATE"
133 *   if the unit works as expected
134 *
135 * Everything stops when the unit enters the failure state including the RTC
136 * counter (to be able to detect the time the security event happened).
137 *
138 * The following events (when enabled) let the DryIce unit enter the failure
139 * state:
140 *
141 * - wire-mesh-tamper detect
142 * - external tamper B detect
143 * - external tamper A detect
144 * - temperature tamper detect
145 * - clock tamper detect
146 * - voltage tamper detect
147 * - RTC counter overflow
148 * - monotonic counter overflow
149 * - external boot
150 *
151 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
152 * can only detect this state. In this case the unit is completely locked and
153 * must force a second "SYSTEM POR" to bring the DryIce into the
154 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
155 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
156 * a battery power cycle is required.
157 *
158 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
159 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
160 * task, we bring back this unit into life.
161 */
162
163/*
164 * Do a write into the unit without interrupt support.
165 * We do not need to check the WEF here, because the only reason this kind of
166 * write error can happen is if we write to the unit twice within the 122 us
167 * interval. This cannot happen, since we are using this function only while
168 * setting up the unit.
169 */
170static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
171			       unsigned reg)
172{
173	/* do the register write */
174	writel(val, imxdi->ioaddr + reg);
175
176	/*
177	 * now it takes four 32,768 kHz clock cycles to take
178	 * the change into effect = 122 us
179	 */
180	usleep_range(130, 200);
181}
182
183static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
184{
185	u32 dtcr;
186
187	dtcr = readl(imxdi->ioaddr + DTCR);
188
189	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
190	/* the following flags force a transition into the "FAILURE STATE" */
191	if (dsr & DSR_VTD)
192		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
193			  dtcr & DTCR_VTE ? "" : "Spurious ");
194
195	if (dsr & DSR_CTD)
196		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
197			  dtcr & DTCR_CTE ? "" : "Spurious ");
198
199	if (dsr & DSR_TTD)
200		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
201			  dtcr & DTCR_TTE ? "" : "Spurious ");
202
203	if (dsr & DSR_SAD)
204		dev_emerg(&imxdi->pdev->dev,
205			  "%sSecure Controller Alarm Event\n",
206			  dtcr & DTCR_SAIE ? "" : "Spurious ");
207
208	if (dsr & DSR_EBD)
209		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
210			  dtcr & DTCR_EBE ? "" : "Spurious ");
211
212	if (dsr & DSR_ETAD)
213		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
214			  dtcr & DTCR_ETAE ? "" : "Spurious ");
215
216	if (dsr & DSR_ETBD)
217		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
218			  dtcr & DTCR_ETBE ? "" : "Spurious ");
219
220	if (dsr & DSR_WTD)
221		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
222			  dtcr & DTCR_WTE ? "" : "Spurious ");
223
224	if (dsr & DSR_MCO)
225		dev_emerg(&imxdi->pdev->dev,
226			  "%sMonotonic-counter Overflow Event\n",
227			  dtcr & DTCR_MOE ? "" : "Spurious ");
228
229	if (dsr & DSR_TCO)
230		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
231			  dtcr & DTCR_TOE ? "" : "Spurious ");
232}
233
234static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
235				  const char *power_supply)
236{
237	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
238		  power_supply);
239}
240
241static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
242{
243	u32 dcr;
244
245	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
246
247	/* report the cause */
248	di_report_tamper_info(imxdi, dsr);
249
250	dcr = readl(imxdi->ioaddr + DCR);
251
252	if (dcr & DCR_FSHL) {
253		/* we are out of luck */
254		di_what_is_to_be_done(imxdi, "battery");
255		return -ENODEV;
256	}
257	/*
258	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
259	 * into the "NON-VALID STATE" + "FAILURE STATE"
260	 */
261	di_what_is_to_be_done(imxdi, "main");
262
263	return -ENODEV;
264}
265
266static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
267{
268	/* initialize alarm */
269	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
270	di_write_busy_wait(imxdi, 0, DCALR);
271
272	/* clear alarm flag */
273	if (dsr & DSR_CAF)
274		di_write_busy_wait(imxdi, DSR_CAF, DSR);
275
276	return 0;
277}
278
279static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
280{
281	u32 dcr, sec;
282
283	/*
284	 * lets disable all sources which can force the DryIce unit into
285	 * the "FAILURE STATE" for now
286	 */
287	di_write_busy_wait(imxdi, 0x00000000, DTCR);
288	/* and lets protect them at runtime from any change */
289	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
290
291	sec = readl(imxdi->ioaddr + DTCMR);
292	if (sec != 0)
293		dev_warn(&imxdi->pdev->dev,
294			 "The security violation has happened at %u seconds\n",
295			 sec);
296	/*
297	 * the timer cannot be set/modified if
298	 * - the TCHL or TCSL bit is set in DCR
299	 */
300	dcr = readl(imxdi->ioaddr + DCR);
301	if (!(dcr & DCR_TCE)) {
302		if (dcr & DCR_TCHL) {
303			/* we are out of luck */
304			di_what_is_to_be_done(imxdi, "battery");
305			return -ENODEV;
306		}
307		if (dcr & DCR_TCSL) {
308			di_what_is_to_be_done(imxdi, "main");
309			return -ENODEV;
310		}
311	}
312	/*
313	 * - the timer counter stops/is stopped if
314	 *   - its overflow flag is set (TCO in DSR)
315	 *      -> clear overflow bit to make it count again
316	 *   - NVF is set in DSR
317	 *      -> clear non-valid bit to make it count again
318	 *   - its TCE (DCR) is cleared
319	 *      -> set TCE to make it count
320	 *   - it was never set before
321	 *      -> write a time into it (required again if the NVF was set)
322	 */
323	/* state handled */
324	di_write_busy_wait(imxdi, DSR_NVF, DSR);
325	/* clear overflow flag */
326	di_write_busy_wait(imxdi, DSR_TCO, DSR);
327	/* enable the counter */
328	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
329	/* set and trigger it to make it count */
330	di_write_busy_wait(imxdi, sec, DTCMR);
331
332	/* now prepare for the valid state */
333	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
334}
335
336static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
337{
338	u32 dcr;
339
340	/*
341	 * now we must first remove the tamper sources in order to get the
342	 * device out of the "FAILURE STATE"
343	 * To disable any of the following sources we need to modify the DTCR
344	 */
345	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
346			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
347		dcr = __raw_readl(imxdi->ioaddr + DCR);
348		if (dcr & DCR_TDCHL) {
349			/*
350			 * the tamper register is locked. We cannot disable the
351			 * tamper detection. The TDCHL can only be reset by a
352			 * DRYICE POR, but we cannot force a DRYICE POR in
353			 * softwere because we are still in "FAILURE STATE".
354			 * We need a DRYICE POR via battery power cycling....
355			 */
356			/*
357			 * out of luck!
358			 * we cannot disable them without a DRYICE POR
359			 */
360			di_what_is_to_be_done(imxdi, "battery");
361			return -ENODEV;
362		}
363		if (dcr & DCR_TDCSL) {
364			/* a soft lock can be removed by a SYSTEM POR */
365			di_what_is_to_be_done(imxdi, "main");
366			return -ENODEV;
367		}
368	}
369
370	/* disable all sources */
371	di_write_busy_wait(imxdi, 0x00000000, DTCR);
372
373	/* clear the status bits now */
374	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
375			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
376			DSR_MCO | DSR_TCO), DSR);
377
378	dsr = readl(imxdi->ioaddr + DSR);
379	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
380			DSR_WCF | DSR_WEF)) != 0)
381		dev_warn(&imxdi->pdev->dev,
382			 "There are still some sources of pain in DSR: %08x!\n",
383			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
384				 DSR_WCF | DSR_WEF));
385
386	/*
387	 * now we are trying to clear the "Security-violation flag" to
388	 * get the DryIce out of this state
389	 */
390	di_write_busy_wait(imxdi, DSR_SVF, DSR);
391
392	/* success? */
393	dsr = readl(imxdi->ioaddr + DSR);
394	if (dsr & DSR_SVF) {
395		dev_crit(&imxdi->pdev->dev,
396			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
397		/* last resort */
398		di_what_is_to_be_done(imxdi, "battery");
399		return -ENODEV;
400	}
401
402	/*
403	 * now we have left the "FAILURE STATE" and ending up in the
404	 * "NON-VALID STATE" time to recover everything
405	 */
406	return di_handle_invalid_state(imxdi, dsr);
407}
408
409static int di_handle_state(struct imxdi_dev *imxdi)
410{
411	int rc;
412	u32 dsr;
413
414	dsr = readl(imxdi->ioaddr + DSR);
415
416	switch (dsr & (DSR_NVF | DSR_SVF)) {
417	case DSR_NVF:
418		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
419		rc = di_handle_invalid_state(imxdi, dsr);
420		break;
421	case DSR_SVF:
422		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
423		rc = di_handle_failure_state(imxdi, dsr);
424		break;
425	case DSR_NVF | DSR_SVF:
426		dev_warn(&imxdi->pdev->dev,
427			 "Failure+Invalid stated unit detected\n");
428		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
429		break;
430	default:
431		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
432		rc = di_handle_valid_state(imxdi, dsr);
433	}
434
435	return rc;
436}
437
438/*
439 * enable a dryice interrupt
440 */
441static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
442{
443	unsigned long flags;
444
445	spin_lock_irqsave(&imxdi->irq_lock, flags);
446	writel(readl(imxdi->ioaddr + DIER) | intr,
447	       imxdi->ioaddr + DIER);
448	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
449}
450
451/*
452 * disable a dryice interrupt
453 */
454static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
455{
456	unsigned long flags;
457
458	spin_lock_irqsave(&imxdi->irq_lock, flags);
459	writel(readl(imxdi->ioaddr + DIER) & ~intr,
460	       imxdi->ioaddr + DIER);
461	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
462}
463
464/*
465 * This function attempts to clear the dryice write-error flag.
466 *
467 * A dryice write error is similar to a bus fault and should not occur in
468 * normal operation.  Clearing the flag requires another write, so the root
469 * cause of the problem may need to be fixed before the flag can be cleared.
470 */
471static void clear_write_error(struct imxdi_dev *imxdi)
472{
473	int cnt;
474
475	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
476
477	/* clear the write error flag */
478	writel(DSR_WEF, imxdi->ioaddr + DSR);
479
480	/* wait for it to take effect */
481	for (cnt = 0; cnt < 1000; cnt++) {
482		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
483			return;
484		udelay(10);
485	}
486	dev_err(&imxdi->pdev->dev,
487			"ERROR: Cannot clear write-error flag!\n");
488}
489
490/*
491 * Write a dryice register and wait until it completes.
492 *
493 * This function uses interrupts to determine when the
494 * write has completed.
495 */
496static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
497{
498	int ret;
499	int rc = 0;
500
501	/* serialize register writes */
502	mutex_lock(&imxdi->write_mutex);
503
504	/* enable the write-complete interrupt */
505	di_int_enable(imxdi, DIER_WCIE);
506
507	imxdi->dsr = 0;
508
509	/* do the register write */
510	writel(val, imxdi->ioaddr + reg);
511
512	/* wait for the write to finish */
513	ret = wait_event_interruptible_timeout(imxdi->write_wait,
514			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
515	if (ret < 0) {
516		rc = ret;
517		goto out;
518	} else if (ret == 0) {
519		dev_warn(&imxdi->pdev->dev,
520				"Write-wait timeout "
521				"val = 0x%08x reg = 0x%08x\n", val, reg);
522	}
523
524	/* check for write error */
525	if (imxdi->dsr & DSR_WEF) {
526		clear_write_error(imxdi);
527		rc = -EIO;
528	}
529
530out:
531	mutex_unlock(&imxdi->write_mutex);
532
533	return rc;
534}
535
536/*
537 * read the seconds portion of the current time from the dryice time counter
538 */
539static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
540{
541	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
542	unsigned long now;
543
544	now = readl(imxdi->ioaddr + DTCMR);
545	rtc_time64_to_tm(now, tm);
546
547	return 0;
548}
549
550/*
551 * set the seconds portion of dryice time counter and clear the
552 * fractional part.
553 */
554static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
555{
556	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
557	u32 dcr, dsr;
558	int rc;
559
560	dcr = readl(imxdi->ioaddr + DCR);
561	dsr = readl(imxdi->ioaddr + DSR);
562
563	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
564		if (dcr & DCR_TCHL) {
565			/* we are even more out of luck */
566			di_what_is_to_be_done(imxdi, "battery");
567			return -EPERM;
568		}
569		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
570			/* we are out of luck for now */
571			di_what_is_to_be_done(imxdi, "main");
572			return -EPERM;
573		}
574	}
575
576	/* zero the fractional part first */
577	rc = di_write_wait(imxdi, 0, DTCLR);
578	if (rc != 0)
579		return rc;
580
581	rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
582	if (rc != 0)
583		return rc;
584
585	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
586}
587
588static int dryice_rtc_alarm_irq_enable(struct device *dev,
589		unsigned int enabled)
590{
591	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
592
593	if (enabled)
594		di_int_enable(imxdi, DIER_CAIE);
595	else
596		di_int_disable(imxdi, DIER_CAIE);
597
598	return 0;
599}
600
601/*
602 * read the seconds portion of the alarm register.
603 * the fractional part of the alarm register is always zero.
604 */
605static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
606{
607	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
608	u32 dcamr;
609
610	dcamr = readl(imxdi->ioaddr + DCAMR);
611	rtc_time64_to_tm(dcamr, &alarm->time);
612
613	/* alarm is enabled if the interrupt is enabled */
614	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
615
616	/* don't allow the DSR read to mess up DSR_WCF */
617	mutex_lock(&imxdi->write_mutex);
618
619	/* alarm is pending if the alarm flag is set */
620	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
621
622	mutex_unlock(&imxdi->write_mutex);
623
624	return 0;
625}
626
627/*
628 * set the seconds portion of dryice alarm register
629 */
630static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
631{
632	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
 
 
633	int rc;
634
 
 
 
 
 
 
 
 
 
635	/* write the new alarm time */
636	rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
637	if (rc)
638		return rc;
639
640	if (alarm->enabled)
641		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
642	else
643		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
644
645	return 0;
646}
647
648static const struct rtc_class_ops dryice_rtc_ops = {
649	.read_time		= dryice_rtc_read_time,
650	.set_time		= dryice_rtc_set_time,
651	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
652	.read_alarm		= dryice_rtc_read_alarm,
653	.set_alarm		= dryice_rtc_set_alarm,
654};
655
656/*
657 * interrupt handler for dryice "normal" and security violation interrupt
658 */
659static irqreturn_t dryice_irq(int irq, void *dev_id)
660{
661	struct imxdi_dev *imxdi = dev_id;
662	u32 dsr, dier;
663	irqreturn_t rc = IRQ_NONE;
664
665	dier = readl(imxdi->ioaddr + DIER);
666	dsr = readl(imxdi->ioaddr + DSR);
667
668	/* handle the security violation event */
669	if (dier & DIER_SVIE) {
670		if (dsr & DSR_SVF) {
671			/*
672			 * Disable the interrupt when this kind of event has
673			 * happened.
674			 * There cannot be more than one event of this type,
675			 * because it needs a complex state change
676			 * including a main power cycle to get again out of
677			 * this state.
678			 */
679			di_int_disable(imxdi, DIER_SVIE);
680			/* report the violation */
681			di_report_tamper_info(imxdi, dsr);
682			rc = IRQ_HANDLED;
683		}
684	}
685
686	/* handle write complete and write error cases */
687	if (dier & DIER_WCIE) {
688		/*If the write wait queue is empty then there is no pending
689		  operations. It means the interrupt is for DryIce -Security.
690		  IRQ must be returned as none.*/
691		if (list_empty_careful(&imxdi->write_wait.head))
692			return rc;
693
694		/* DSR_WCF clears itself on DSR read */
695		if (dsr & (DSR_WCF | DSR_WEF)) {
696			/* mask the interrupt */
697			di_int_disable(imxdi, DIER_WCIE);
698
699			/* save the dsr value for the wait queue */
700			imxdi->dsr |= dsr;
701
702			wake_up_interruptible(&imxdi->write_wait);
703			rc = IRQ_HANDLED;
704		}
705	}
706
707	/* handle the alarm case */
708	if (dier & DIER_CAIE) {
709		/* DSR_WCF clears itself on DSR read */
710		if (dsr & DSR_CAF) {
711			/* mask the interrupt */
712			di_int_disable(imxdi, DIER_CAIE);
713
714			/* finish alarm in user context */
715			schedule_work(&imxdi->work);
716			rc = IRQ_HANDLED;
717		}
718	}
719	return rc;
720}
721
722/*
723 * post the alarm event from user context so it can sleep
724 * on the write completion.
725 */
726static void dryice_work(struct work_struct *work)
727{
728	struct imxdi_dev *imxdi = container_of(work,
729			struct imxdi_dev, work);
730
731	/* dismiss the interrupt (ignore error) */
732	di_write_wait(imxdi, DSR_CAF, DSR);
733
734	/* pass the alarm event to the rtc framework. */
735	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
736}
737
738/*
739 * probe for dryice rtc device
740 */
741static int __init dryice_rtc_probe(struct platform_device *pdev)
742{
 
743	struct imxdi_dev *imxdi;
744	int norm_irq, sec_irq;
745	int rc;
746
747	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
748	if (!imxdi)
749		return -ENOMEM;
750
751	imxdi->pdev = pdev;
752
753	imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
 
754	if (IS_ERR(imxdi->ioaddr))
755		return PTR_ERR(imxdi->ioaddr);
756
757	spin_lock_init(&imxdi->irq_lock);
758
759	norm_irq = platform_get_irq(pdev, 0);
760	if (norm_irq < 0)
761		return norm_irq;
762
763	/* the 2nd irq is the security violation irq
764	 * make this optional, don't break the device tree ABI
765	 */
766	sec_irq = platform_get_irq(pdev, 1);
767	if (sec_irq <= 0)
768		sec_irq = IRQ_NOTCONNECTED;
769
770	init_waitqueue_head(&imxdi->write_wait);
771
772	INIT_WORK(&imxdi->work, dryice_work);
773
774	mutex_init(&imxdi->write_mutex);
775
776	imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
777	if (IS_ERR(imxdi->rtc))
778		return PTR_ERR(imxdi->rtc);
779
780	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
781	if (IS_ERR(imxdi->clk))
782		return PTR_ERR(imxdi->clk);
783	rc = clk_prepare_enable(imxdi->clk);
784	if (rc)
785		return rc;
786
787	/*
788	 * Initialize dryice hardware
789	 */
790
791	/* mask all interrupts */
792	writel(0, imxdi->ioaddr + DIER);
793
794	rc = di_handle_state(imxdi);
795	if (rc != 0)
796		goto err;
797
798	rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
799			      IRQF_SHARED, pdev->name, imxdi);
800	if (rc) {
801		dev_warn(&pdev->dev, "interrupt not available.\n");
802		goto err;
803	}
804
805	rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
806			      IRQF_SHARED, pdev->name, imxdi);
807	if (rc) {
808		dev_warn(&pdev->dev, "security violation interrupt not available.\n");
809		/* this is not an error, see above */
810	}
811
812	platform_set_drvdata(pdev, imxdi);
813
814	imxdi->rtc->ops = &dryice_rtc_ops;
815	imxdi->rtc->range_max = U32_MAX;
816
817	rc = rtc_register_device(imxdi->rtc);
818	if (rc)
819		goto err;
 
820
821	return 0;
822
823err:
824	clk_disable_unprepare(imxdi->clk);
825
826	return rc;
827}
828
829static int __exit dryice_rtc_remove(struct platform_device *pdev)
830{
831	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
832
833	flush_work(&imxdi->work);
834
835	/* mask all interrupts */
836	writel(0, imxdi->ioaddr + DIER);
837
838	clk_disable_unprepare(imxdi->clk);
839
840	return 0;
841}
842
843#ifdef CONFIG_OF
844static const struct of_device_id dryice_dt_ids[] = {
845	{ .compatible = "fsl,imx25-rtc" },
846	{ /* sentinel */ }
847};
848
849MODULE_DEVICE_TABLE(of, dryice_dt_ids);
850#endif
851
852static struct platform_driver dryice_rtc_driver = {
853	.driver = {
854		   .name = "imxdi_rtc",
855		   .of_match_table = of_match_ptr(dryice_dt_ids),
856		   },
857	.remove = __exit_p(dryice_rtc_remove),
858};
859
860module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
861
862MODULE_AUTHOR("Freescale Semiconductor, Inc.");
863MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
864MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
865MODULE_LICENSE("GPL");