Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Generic pwmlib implementation
  3 *
  4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
  5 * Copyright (C) 2011-2012 Avionic Design GmbH
  6 *
  7 *  This program is free software; you can redistribute it and/or modify
  8 *  it under the terms of the GNU General Public License as published by
  9 *  the Free Software Foundation; either version 2, or (at your option)
 10 *  any later version.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 *
 17 *  You should have received a copy of the GNU General Public License
 18 *  along with this program; see the file COPYING.  If not, write to
 19 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 20 */
 21
 
 22#include <linux/module.h>
 23#include <linux/pwm.h>
 24#include <linux/radix-tree.h>
 25#include <linux/list.h>
 26#include <linux/mutex.h>
 27#include <linux/err.h>
 28#include <linux/slab.h>
 29#include <linux/device.h>
 30#include <linux/debugfs.h>
 31#include <linux/seq_file.h>
 32
 33#include <dt-bindings/pwm/pwm.h>
 34
 35#define MAX_PWMS 1024
 36
 37static DEFINE_MUTEX(pwm_lookup_lock);
 38static LIST_HEAD(pwm_lookup_list);
 39static DEFINE_MUTEX(pwm_lock);
 40static LIST_HEAD(pwm_chips);
 41static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
 42static RADIX_TREE(pwm_tree, GFP_KERNEL);
 43
 44static struct pwm_device *pwm_to_device(unsigned int pwm)
 45{
 46	return radix_tree_lookup(&pwm_tree, pwm);
 47}
 48
 49static int alloc_pwms(int pwm, unsigned int count)
 50{
 51	unsigned int from = 0;
 52	unsigned int start;
 53
 54	if (pwm >= MAX_PWMS)
 55		return -EINVAL;
 56
 57	if (pwm >= 0)
 58		from = pwm;
 59
 60	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
 61					   count, 0);
 62
 63	if (pwm >= 0 && start != pwm)
 64		return -EEXIST;
 65
 66	if (start + count > MAX_PWMS)
 67		return -ENOSPC;
 68
 69	return start;
 70}
 71
 72static void free_pwms(struct pwm_chip *chip)
 73{
 74	unsigned int i;
 75
 76	for (i = 0; i < chip->npwm; i++) {
 77		struct pwm_device *pwm = &chip->pwms[i];
 
 78		radix_tree_delete(&pwm_tree, pwm->pwm);
 79	}
 80
 81	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
 82
 83	kfree(chip->pwms);
 84	chip->pwms = NULL;
 85}
 86
 87static struct pwm_chip *pwmchip_find_by_name(const char *name)
 88{
 89	struct pwm_chip *chip;
 90
 91	if (!name)
 92		return NULL;
 93
 94	mutex_lock(&pwm_lock);
 95
 96	list_for_each_entry(chip, &pwm_chips, list) {
 97		const char *chip_name = dev_name(chip->dev);
 98
 99		if (chip_name && strcmp(chip_name, name) == 0) {
100			mutex_unlock(&pwm_lock);
101			return chip;
102		}
103	}
104
105	mutex_unlock(&pwm_lock);
106
107	return NULL;
108}
109
110static int pwm_device_request(struct pwm_device *pwm, const char *label)
111{
112	int err;
113
114	if (test_bit(PWMF_REQUESTED, &pwm->flags))
115		return -EBUSY;
116
117	if (!try_module_get(pwm->chip->ops->owner))
118		return -ENODEV;
119
120	if (pwm->chip->ops->request) {
121		err = pwm->chip->ops->request(pwm->chip, pwm);
122		if (err) {
123			module_put(pwm->chip->ops->owner);
124			return err;
125		}
126	}
127
128	set_bit(PWMF_REQUESTED, &pwm->flags);
129	pwm->label = label;
130
131	return 0;
132}
133
134struct pwm_device *
135of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
136{
137	struct pwm_device *pwm;
138
 
139	if (pc->of_pwm_n_cells < 3)
140		return ERR_PTR(-EINVAL);
141
 
 
 
 
142	if (args->args[0] >= pc->npwm)
143		return ERR_PTR(-EINVAL);
144
145	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
146	if (IS_ERR(pwm))
147		return pwm;
148
149	pwm_set_period(pwm, args->args[1]);
 
150
151	if (args->args[2] & PWM_POLARITY_INVERTED)
152		pwm_set_polarity(pwm, PWM_POLARITY_INVERSED);
153	else
154		pwm_set_polarity(pwm, PWM_POLARITY_NORMAL);
155
156	return pwm;
157}
158EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
159
160static struct pwm_device *
161of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
162{
163	struct pwm_device *pwm;
164
 
165	if (pc->of_pwm_n_cells < 2)
166		return ERR_PTR(-EINVAL);
167
 
 
 
 
168	if (args->args[0] >= pc->npwm)
169		return ERR_PTR(-EINVAL);
170
171	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
172	if (IS_ERR(pwm))
173		return pwm;
174
175	pwm_set_period(pwm, args->args[1]);
176
177	return pwm;
178}
179
180static void of_pwmchip_add(struct pwm_chip *chip)
181{
182	if (!chip->dev || !chip->dev->of_node)
183		return;
184
185	if (!chip->of_xlate) {
186		chip->of_xlate = of_pwm_simple_xlate;
187		chip->of_pwm_n_cells = 2;
188	}
189
190	of_node_get(chip->dev->of_node);
191}
192
193static void of_pwmchip_remove(struct pwm_chip *chip)
194{
195	if (chip->dev)
196		of_node_put(chip->dev->of_node);
197}
198
199/**
200 * pwm_set_chip_data() - set private chip data for a PWM
201 * @pwm: PWM device
202 * @data: pointer to chip-specific data
203 *
204 * Returns: 0 on success or a negative error code on failure.
205 */
206int pwm_set_chip_data(struct pwm_device *pwm, void *data)
207{
208	if (!pwm)
209		return -EINVAL;
210
211	pwm->chip_data = data;
212
213	return 0;
214}
215EXPORT_SYMBOL_GPL(pwm_set_chip_data);
216
217/**
218 * pwm_get_chip_data() - get private chip data for a PWM
219 * @pwm: PWM device
220 *
221 * Returns: A pointer to the chip-private data for the PWM device.
222 */
223void *pwm_get_chip_data(struct pwm_device *pwm)
224{
225	return pwm ? pwm->chip_data : NULL;
226}
227EXPORT_SYMBOL_GPL(pwm_get_chip_data);
228
 
 
 
 
 
 
 
 
 
 
 
 
 
229/**
230 * pwmchip_add_with_polarity() - register a new PWM chip
231 * @chip: the PWM chip to add
232 * @polarity: initial polarity of PWM channels
233 *
234 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
235 * will be used. The initial polarity for all channels is specified by the
236 * @polarity parameter.
237 *
238 * Returns: 0 on success or a negative error code on failure.
239 */
240int pwmchip_add_with_polarity(struct pwm_chip *chip,
241			      enum pwm_polarity polarity)
242{
243	struct pwm_device *pwm;
244	unsigned int i;
245	int ret;
246
247	if (!chip || !chip->dev || !chip->ops || !chip->ops->config ||
248	    !chip->ops->enable || !chip->ops->disable || !chip->npwm)
 
 
249		return -EINVAL;
250
251	mutex_lock(&pwm_lock);
252
253	ret = alloc_pwms(chip->base, chip->npwm);
254	if (ret < 0)
255		goto out;
256
257	chip->pwms = kzalloc(chip->npwm * sizeof(*pwm), GFP_KERNEL);
258	if (!chip->pwms) {
259		ret = -ENOMEM;
260		goto out;
261	}
262
263	chip->base = ret;
264
265	for (i = 0; i < chip->npwm; i++) {
266		pwm = &chip->pwms[i];
267
268		pwm->chip = chip;
269		pwm->pwm = chip->base + i;
270		pwm->hwpwm = i;
271		pwm->polarity = polarity;
272		mutex_init(&pwm->lock);
 
 
273
274		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
275	}
276
277	bitmap_set(allocated_pwms, chip->base, chip->npwm);
278
279	INIT_LIST_HEAD(&chip->list);
280	list_add(&chip->list, &pwm_chips);
281
282	ret = 0;
283
284	if (IS_ENABLED(CONFIG_OF))
285		of_pwmchip_add(chip);
286
287	pwmchip_sysfs_export(chip);
288
289out:
290	mutex_unlock(&pwm_lock);
 
 
 
 
291	return ret;
292}
293EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
294
295/**
296 * pwmchip_add() - register a new PWM chip
297 * @chip: the PWM chip to add
298 *
299 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
300 * will be used. The initial polarity for all channels is normal.
301 *
302 * Returns: 0 on success or a negative error code on failure.
303 */
304int pwmchip_add(struct pwm_chip *chip)
305{
306	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
307}
308EXPORT_SYMBOL_GPL(pwmchip_add);
309
310/**
311 * pwmchip_remove() - remove a PWM chip
312 * @chip: the PWM chip to remove
313 *
314 * Removes a PWM chip. This function may return busy if the PWM chip provides
315 * a PWM device that is still requested.
316 *
317 * Returns: 0 on success or a negative error code on failure.
318 */
319int pwmchip_remove(struct pwm_chip *chip)
320{
321	unsigned int i;
322	int ret = 0;
323
 
 
324	mutex_lock(&pwm_lock);
325
326	for (i = 0; i < chip->npwm; i++) {
327		struct pwm_device *pwm = &chip->pwms[i];
328
329		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
330			ret = -EBUSY;
331			goto out;
332		}
333	}
334
335	list_del_init(&chip->list);
336
337	if (IS_ENABLED(CONFIG_OF))
338		of_pwmchip_remove(chip);
339
340	free_pwms(chip);
341
342	pwmchip_sysfs_unexport(chip);
343
344out:
345	mutex_unlock(&pwm_lock);
346	return ret;
347}
348EXPORT_SYMBOL_GPL(pwmchip_remove);
349
350/**
351 * pwm_request() - request a PWM device
352 * @pwm: global PWM device index
353 * @label: PWM device label
354 *
355 * This function is deprecated, use pwm_get() instead.
356 *
357 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
358 * failure.
359 */
360struct pwm_device *pwm_request(int pwm, const char *label)
361{
362	struct pwm_device *dev;
363	int err;
364
365	if (pwm < 0 || pwm >= MAX_PWMS)
366		return ERR_PTR(-EINVAL);
367
368	mutex_lock(&pwm_lock);
369
370	dev = pwm_to_device(pwm);
371	if (!dev) {
372		dev = ERR_PTR(-EPROBE_DEFER);
373		goto out;
374	}
375
376	err = pwm_device_request(dev, label);
377	if (err < 0)
378		dev = ERR_PTR(err);
379
380out:
381	mutex_unlock(&pwm_lock);
382
383	return dev;
384}
385EXPORT_SYMBOL_GPL(pwm_request);
386
387/**
388 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
389 * @chip: PWM chip
390 * @index: per-chip index of the PWM to request
391 * @label: a literal description string of this PWM
392 *
393 * Returns: A pointer to the PWM device at the given index of the given PWM
394 * chip. A negative error code is returned if the index is not valid for the
395 * specified PWM chip or if the PWM device cannot be requested.
396 */
397struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
398					 unsigned int index,
399					 const char *label)
400{
401	struct pwm_device *pwm;
402	int err;
403
404	if (!chip || index >= chip->npwm)
405		return ERR_PTR(-EINVAL);
406
407	mutex_lock(&pwm_lock);
408	pwm = &chip->pwms[index];
409
410	err = pwm_device_request(pwm, label);
411	if (err < 0)
412		pwm = ERR_PTR(err);
413
414	mutex_unlock(&pwm_lock);
415	return pwm;
416}
417EXPORT_SYMBOL_GPL(pwm_request_from_chip);
418
419/**
420 * pwm_free() - free a PWM device
421 * @pwm: PWM device
422 *
423 * This function is deprecated, use pwm_put() instead.
424 */
425void pwm_free(struct pwm_device *pwm)
426{
427	pwm_put(pwm);
428}
429EXPORT_SYMBOL_GPL(pwm_free);
430
431/**
432 * pwm_config() - change a PWM device configuration
433 * @pwm: PWM device
434 * @duty_ns: "on" time (in nanoseconds)
435 * @period_ns: duration (in nanoseconds) of one cycle
436 *
437 * Returns: 0 on success or a negative error code on failure.
438 */
439int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns)
440{
 
441	int err;
442
443	if (!pwm || duty_ns < 0 || period_ns <= 0 || duty_ns > period_ns)
 
444		return -EINVAL;
445
446	err = pwm->chip->ops->config(pwm->chip, pwm, duty_ns, period_ns);
447	if (err)
448		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449
450	pwm->duty_cycle = duty_ns;
451	pwm->period = period_ns;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452
453	return 0;
454}
455EXPORT_SYMBOL_GPL(pwm_config);
456
457/**
458 * pwm_set_polarity() - configure the polarity of a PWM signal
459 * @pwm: PWM device
460 * @polarity: new polarity of the PWM signal
461 *
462 * Note that the polarity cannot be configured while the PWM device is
463 * enabled.
464 *
465 * Returns: 0 on success or a negative error code on failure.
466 */
467int pwm_set_polarity(struct pwm_device *pwm, enum pwm_polarity polarity)
 
468{
469	int err;
470
471	if (!pwm || !pwm->chip->ops)
472		return -EINVAL;
473
474	if (!pwm->chip->ops->set_polarity)
475		return -ENOSYS;
476
477	mutex_lock(&pwm->lock);
478
479	if (pwm_is_enabled(pwm)) {
480		err = -EBUSY;
481		goto unlock;
482	}
483
484	err = pwm->chip->ops->set_polarity(pwm->chip, pwm, polarity);
485	if (err)
486		goto unlock;
487
488	pwm->polarity = polarity;
489
490unlock:
491	mutex_unlock(&pwm->lock);
492	return err;
493}
494EXPORT_SYMBOL_GPL(pwm_set_polarity);
495
496/**
497 * pwm_enable() - start a PWM output toggling
498 * @pwm: PWM device
499 *
500 * Returns: 0 on success or a negative error code on failure.
 
 
501 */
502int pwm_enable(struct pwm_device *pwm)
503{
504	int err = 0;
 
505
506	if (!pwm)
507		return -EINVAL;
508
509	mutex_lock(&pwm->lock);
 
 
 
 
 
 
 
 
 
 
 
510
511	if (!test_and_set_bit(PWMF_ENABLED, &pwm->flags)) {
512		err = pwm->chip->ops->enable(pwm->chip, pwm);
513		if (err)
514			clear_bit(PWMF_ENABLED, &pwm->flags);
515	}
516
517	mutex_unlock(&pwm->lock);
 
 
 
 
 
518
519	return err;
520}
521EXPORT_SYMBOL_GPL(pwm_enable);
 
522
523/**
524 * pwm_disable() - stop a PWM output toggling
525 * @pwm: PWM device
526 */
527void pwm_disable(struct pwm_device *pwm)
528{
529	if (pwm && test_and_clear_bit(PWMF_ENABLED, &pwm->flags))
530		pwm->chip->ops->disable(pwm->chip, pwm);
 
531}
532EXPORT_SYMBOL_GPL(pwm_disable);
533
534static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
535{
536	struct pwm_chip *chip;
537
538	mutex_lock(&pwm_lock);
539
540	list_for_each_entry(chip, &pwm_chips, list)
541		if (chip->dev && chip->dev->of_node == np) {
542			mutex_unlock(&pwm_lock);
543			return chip;
544		}
545
546	mutex_unlock(&pwm_lock);
547
548	return ERR_PTR(-EPROBE_DEFER);
549}
550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551/**
552 * of_pwm_get() - request a PWM via the PWM framework
 
553 * @np: device node to get the PWM from
554 * @con_id: consumer name
555 *
556 * Returns the PWM device parsed from the phandle and index specified in the
557 * "pwms" property of a device tree node or a negative error-code on failure.
558 * Values parsed from the device tree are stored in the returned PWM device
559 * object.
560 *
561 * If con_id is NULL, the first PWM device listed in the "pwms" property will
562 * be requested. Otherwise the "pwm-names" property is used to do a reverse
563 * lookup of the PWM index. This also means that the "pwm-names" property
564 * becomes mandatory for devices that look up the PWM device via the con_id
565 * parameter.
566 *
567 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
568 * error code on failure.
569 */
570struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
 
571{
572	struct pwm_device *pwm = NULL;
573	struct of_phandle_args args;
 
574	struct pwm_chip *pc;
575	int index = 0;
576	int err;
577
578	if (con_id) {
579		index = of_property_match_string(np, "pwm-names", con_id);
580		if (index < 0)
581			return ERR_PTR(index);
582	}
583
584	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
585					 &args);
586	if (err) {
587		pr_debug("%s(): can't parse \"pwms\" property\n", __func__);
588		return ERR_PTR(err);
589	}
590
591	pc = of_node_to_pwmchip(args.np);
592	if (IS_ERR(pc)) {
593		pr_debug("%s(): PWM chip not found\n", __func__);
594		pwm = ERR_CAST(pc);
595		goto put;
596	}
597
598	if (args.args_count != pc->of_pwm_n_cells) {
599		pr_debug("%s: wrong #pwm-cells for %s\n", np->full_name,
600			 args.np->full_name);
601		pwm = ERR_PTR(-EINVAL);
602		goto put;
603	}
604
605	pwm = pc->of_xlate(pc, &args);
606	if (IS_ERR(pwm))
607		goto put;
608
 
 
 
 
 
 
 
 
609	/*
610	 * If a consumer name was not given, try to look it up from the
611	 * "pwm-names" property if it exists. Otherwise use the name of
612	 * the user device node.
613	 */
614	if (!con_id) {
615		err = of_property_read_string_index(np, "pwm-names", index,
616						    &con_id);
617		if (err < 0)
618			con_id = np->name;
619	}
620
621	pwm->label = con_id;
622
623put:
624	of_node_put(args.np);
625
626	return pwm;
627}
628EXPORT_SYMBOL_GPL(of_pwm_get);
629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630/**
631 * pwm_add_table() - register PWM device consumers
632 * @table: array of consumers to register
633 * @num: number of consumers in table
634 */
635void pwm_add_table(struct pwm_lookup *table, size_t num)
636{
637	mutex_lock(&pwm_lookup_lock);
638
639	while (num--) {
640		list_add_tail(&table->list, &pwm_lookup_list);
641		table++;
642	}
643
644	mutex_unlock(&pwm_lookup_lock);
645}
646
647/**
648 * pwm_remove_table() - unregister PWM device consumers
649 * @table: array of consumers to unregister
650 * @num: number of consumers in table
651 */
652void pwm_remove_table(struct pwm_lookup *table, size_t num)
653{
654	mutex_lock(&pwm_lookup_lock);
655
656	while (num--) {
657		list_del(&table->list);
658		table++;
659	}
660
661	mutex_unlock(&pwm_lookup_lock);
662}
663
664/**
665 * pwm_get() - look up and request a PWM device
666 * @dev: device for PWM consumer
667 * @con_id: consumer name
668 *
669 * Lookup is first attempted using DT. If the device was not instantiated from
670 * a device tree, a PWM chip and a relative index is looked up via a table
671 * supplied by board setup code (see pwm_add_table()).
672 *
673 * Once a PWM chip has been found the specified PWM device will be requested
674 * and is ready to be used.
675 *
676 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
677 * error code on failure.
678 */
679struct pwm_device *pwm_get(struct device *dev, const char *con_id)
680{
681	struct pwm_device *pwm = ERR_PTR(-EPROBE_DEFER);
682	const char *dev_id = dev ? dev_name(dev) : NULL;
683	struct pwm_chip *chip = NULL;
 
 
684	unsigned int best = 0;
685	struct pwm_lookup *p, *chosen = NULL;
686	unsigned int match;
 
687
688	/* look up via DT first */
689	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
690		return of_pwm_get(dev->of_node, con_id);
 
 
 
 
 
 
 
691
692	/*
693	 * We look up the provider in the static table typically provided by
694	 * board setup code. We first try to lookup the consumer device by
695	 * name. If the consumer device was passed in as NULL or if no match
696	 * was found, we try to find the consumer by directly looking it up
697	 * by name.
698	 *
699	 * If a match is found, the provider PWM chip is looked up by name
700	 * and a PWM device is requested using the PWM device per-chip index.
701	 *
702	 * The lookup algorithm was shamelessly taken from the clock
703	 * framework:
704	 *
705	 * We do slightly fuzzy matching here:
706	 *  An entry with a NULL ID is assumed to be a wildcard.
707	 *  If an entry has a device ID, it must match
708	 *  If an entry has a connection ID, it must match
709	 * Then we take the most specific entry - with the following order
710	 * of precedence: dev+con > dev only > con only.
711	 */
712	mutex_lock(&pwm_lookup_lock);
713
714	list_for_each_entry(p, &pwm_lookup_list, list) {
715		match = 0;
716
717		if (p->dev_id) {
718			if (!dev_id || strcmp(p->dev_id, dev_id))
719				continue;
720
721			match += 2;
722		}
723
724		if (p->con_id) {
725			if (!con_id || strcmp(p->con_id, con_id))
726				continue;
727
728			match += 1;
729		}
730
731		if (match > best) {
732			chosen = p;
733
734			if (match != 3)
735				best = match;
736			else
737				break;
738		}
739	}
740
741	if (!chosen) {
742		pwm = ERR_PTR(-ENODEV);
743		goto out;
744	}
745
746	chip = pwmchip_find_by_name(chosen->provider);
 
 
 
 
 
 
 
 
 
 
 
 
 
747	if (!chip)
748		goto out;
749
750	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
751	if (IS_ERR(pwm))
752		goto out;
753
754	pwm_set_period(pwm, chosen->period);
755	pwm_set_polarity(pwm, chosen->polarity);
 
 
 
 
 
 
756
757out:
758	mutex_unlock(&pwm_lookup_lock);
759	return pwm;
760}
761EXPORT_SYMBOL_GPL(pwm_get);
762
763/**
764 * pwm_put() - release a PWM device
765 * @pwm: PWM device
766 */
767void pwm_put(struct pwm_device *pwm)
768{
769	if (!pwm)
770		return;
771
772	mutex_lock(&pwm_lock);
773
774	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
775		pr_warn("PWM device already freed\n");
776		goto out;
777	}
778
779	if (pwm->chip->ops->free)
780		pwm->chip->ops->free(pwm->chip, pwm);
781
 
782	pwm->label = NULL;
783
784	module_put(pwm->chip->ops->owner);
785out:
786	mutex_unlock(&pwm_lock);
787}
788EXPORT_SYMBOL_GPL(pwm_put);
789
790static void devm_pwm_release(struct device *dev, void *res)
791{
792	pwm_put(*(struct pwm_device **)res);
793}
794
795/**
796 * devm_pwm_get() - resource managed pwm_get()
797 * @dev: device for PWM consumer
798 * @con_id: consumer name
799 *
800 * This function performs like pwm_get() but the acquired PWM device will
801 * automatically be released on driver detach.
802 *
803 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
804 * error code on failure.
805 */
806struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
807{
808	struct pwm_device **ptr, *pwm;
809
810	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
811	if (!ptr)
812		return ERR_PTR(-ENOMEM);
813
814	pwm = pwm_get(dev, con_id);
815	if (!IS_ERR(pwm)) {
816		*ptr = pwm;
817		devres_add(dev, ptr);
818	} else {
819		devres_free(ptr);
820	}
821
822	return pwm;
823}
824EXPORT_SYMBOL_GPL(devm_pwm_get);
825
826/**
827 * devm_of_pwm_get() - resource managed of_pwm_get()
828 * @dev: device for PWM consumer
829 * @np: device node to get the PWM from
830 * @con_id: consumer name
831 *
832 * This function performs like of_pwm_get() but the acquired PWM device will
833 * automatically be released on driver detach.
834 *
835 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
836 * error code on failure.
837 */
838struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
839				   const char *con_id)
840{
841	struct pwm_device **ptr, *pwm;
842
843	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
844	if (!ptr)
845		return ERR_PTR(-ENOMEM);
846
847	pwm = of_pwm_get(np, con_id);
848	if (!IS_ERR(pwm)) {
849		*ptr = pwm;
850		devres_add(dev, ptr);
851	} else {
852		devres_free(ptr);
853	}
854
855	return pwm;
856}
857EXPORT_SYMBOL_GPL(devm_of_pwm_get);
858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
859static int devm_pwm_match(struct device *dev, void *res, void *data)
860{
861	struct pwm_device **p = res;
862
863	if (WARN_ON(!p || !*p))
864		return 0;
865
866	return *p == data;
867}
868
869/**
870 * devm_pwm_put() - resource managed pwm_put()
871 * @dev: device for PWM consumer
872 * @pwm: PWM device
873 *
874 * Release a PWM previously allocated using devm_pwm_get(). Calling this
875 * function is usually not needed because devm-allocated resources are
876 * automatically released on driver detach.
877 */
878void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
879{
880	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
881}
882EXPORT_SYMBOL_GPL(devm_pwm_put);
883
884/**
885  * pwm_can_sleep() - report whether PWM access will sleep
886  * @pwm: PWM device
887  *
888  * Returns: True if accessing the PWM can sleep, false otherwise.
889  */
890bool pwm_can_sleep(struct pwm_device *pwm)
891{
892	return true;
893}
894EXPORT_SYMBOL_GPL(pwm_can_sleep);
895
896#ifdef CONFIG_DEBUG_FS
897static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
898{
899	unsigned int i;
900
901	for (i = 0; i < chip->npwm; i++) {
902		struct pwm_device *pwm = &chip->pwms[i];
 
 
 
903
904		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
905
906		if (test_bit(PWMF_REQUESTED, &pwm->flags))
907			seq_puts(s, " requested");
908
909		if (pwm_is_enabled(pwm))
910			seq_puts(s, " enabled");
911
 
 
 
 
 
912		seq_puts(s, "\n");
913	}
914}
915
916static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
917{
918	mutex_lock(&pwm_lock);
919	s->private = "";
920
921	return seq_list_start(&pwm_chips, *pos);
922}
923
924static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
925{
926	s->private = "\n";
927
928	return seq_list_next(v, &pwm_chips, pos);
929}
930
931static void pwm_seq_stop(struct seq_file *s, void *v)
932{
933	mutex_unlock(&pwm_lock);
934}
935
936static int pwm_seq_show(struct seq_file *s, void *v)
937{
938	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
939
940	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
941		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
942		   dev_name(chip->dev), chip->npwm,
943		   (chip->npwm != 1) ? "s" : "");
944
945	if (chip->ops->dbg_show)
946		chip->ops->dbg_show(chip, s);
947	else
948		pwm_dbg_show(chip, s);
949
950	return 0;
951}
952
953static const struct seq_operations pwm_seq_ops = {
954	.start = pwm_seq_start,
955	.next = pwm_seq_next,
956	.stop = pwm_seq_stop,
957	.show = pwm_seq_show,
958};
959
960static int pwm_seq_open(struct inode *inode, struct file *file)
961{
962	return seq_open(file, &pwm_seq_ops);
963}
964
965static const struct file_operations pwm_debugfs_ops = {
966	.owner = THIS_MODULE,
967	.open = pwm_seq_open,
968	.read = seq_read,
969	.llseek = seq_lseek,
970	.release = seq_release,
971};
972
973static int __init pwm_debugfs_init(void)
974{
975	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
976			    &pwm_debugfs_ops);
977
978	return 0;
979}
980subsys_initcall(pwm_debugfs_init);
981#endif /* CONFIG_DEBUG_FS */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define MAX_PWMS 1024
  24
  25static DEFINE_MUTEX(pwm_lookup_lock);
  26static LIST_HEAD(pwm_lookup_list);
  27static DEFINE_MUTEX(pwm_lock);
  28static LIST_HEAD(pwm_chips);
  29static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  30static RADIX_TREE(pwm_tree, GFP_KERNEL);
  31
  32static struct pwm_device *pwm_to_device(unsigned int pwm)
  33{
  34	return radix_tree_lookup(&pwm_tree, pwm);
  35}
  36
  37static int alloc_pwms(int pwm, unsigned int count)
  38{
  39	unsigned int from = 0;
  40	unsigned int start;
  41
  42	if (pwm >= MAX_PWMS)
  43		return -EINVAL;
  44
  45	if (pwm >= 0)
  46		from = pwm;
  47
  48	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  49					   count, 0);
  50
  51	if (pwm >= 0 && start != pwm)
  52		return -EEXIST;
  53
  54	if (start + count > MAX_PWMS)
  55		return -ENOSPC;
  56
  57	return start;
  58}
  59
  60static void free_pwms(struct pwm_chip *chip)
  61{
  62	unsigned int i;
  63
  64	for (i = 0; i < chip->npwm; i++) {
  65		struct pwm_device *pwm = &chip->pwms[i];
  66
  67		radix_tree_delete(&pwm_tree, pwm->pwm);
  68	}
  69
  70	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  71
  72	kfree(chip->pwms);
  73	chip->pwms = NULL;
  74}
  75
  76static struct pwm_chip *pwmchip_find_by_name(const char *name)
  77{
  78	struct pwm_chip *chip;
  79
  80	if (!name)
  81		return NULL;
  82
  83	mutex_lock(&pwm_lock);
  84
  85	list_for_each_entry(chip, &pwm_chips, list) {
  86		const char *chip_name = dev_name(chip->dev);
  87
  88		if (chip_name && strcmp(chip_name, name) == 0) {
  89			mutex_unlock(&pwm_lock);
  90			return chip;
  91		}
  92	}
  93
  94	mutex_unlock(&pwm_lock);
  95
  96	return NULL;
  97}
  98
  99static int pwm_device_request(struct pwm_device *pwm, const char *label)
 100{
 101	int err;
 102
 103	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 104		return -EBUSY;
 105
 106	if (!try_module_get(pwm->chip->ops->owner))
 107		return -ENODEV;
 108
 109	if (pwm->chip->ops->request) {
 110		err = pwm->chip->ops->request(pwm->chip, pwm);
 111		if (err) {
 112			module_put(pwm->chip->ops->owner);
 113			return err;
 114		}
 115	}
 116
 117	set_bit(PWMF_REQUESTED, &pwm->flags);
 118	pwm->label = label;
 119
 120	return 0;
 121}
 122
 123struct pwm_device *
 124of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 125{
 126	struct pwm_device *pwm;
 127
 128	/* check, whether the driver supports a third cell for flags */
 129	if (pc->of_pwm_n_cells < 3)
 130		return ERR_PTR(-EINVAL);
 131
 132	/* flags in the third cell are optional */
 133	if (args->args_count < 2)
 134		return ERR_PTR(-EINVAL);
 135
 136	if (args->args[0] >= pc->npwm)
 137		return ERR_PTR(-EINVAL);
 138
 139	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140	if (IS_ERR(pwm))
 141		return pwm;
 142
 143	pwm->args.period = args->args[1];
 144	pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 147		pwm->args.polarity = PWM_POLARITY_INVERSED;
 
 
 148
 149	return pwm;
 150}
 151EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 152
 153static struct pwm_device *
 154of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 155{
 156	struct pwm_device *pwm;
 157
 158	/* sanity check driver support */
 159	if (pc->of_pwm_n_cells < 2)
 160		return ERR_PTR(-EINVAL);
 161
 162	/* all cells are required */
 163	if (args->args_count != pc->of_pwm_n_cells)
 164		return ERR_PTR(-EINVAL);
 165
 166	if (args->args[0] >= pc->npwm)
 167		return ERR_PTR(-EINVAL);
 168
 169	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 170	if (IS_ERR(pwm))
 171		return pwm;
 172
 173	pwm->args.period = args->args[1];
 174
 175	return pwm;
 176}
 177
 178static void of_pwmchip_add(struct pwm_chip *chip)
 179{
 180	if (!chip->dev || !chip->dev->of_node)
 181		return;
 182
 183	if (!chip->of_xlate) {
 184		chip->of_xlate = of_pwm_simple_xlate;
 185		chip->of_pwm_n_cells = 2;
 186	}
 187
 188	of_node_get(chip->dev->of_node);
 189}
 190
 191static void of_pwmchip_remove(struct pwm_chip *chip)
 192{
 193	if (chip->dev)
 194		of_node_put(chip->dev->of_node);
 195}
 196
 197/**
 198 * pwm_set_chip_data() - set private chip data for a PWM
 199 * @pwm: PWM device
 200 * @data: pointer to chip-specific data
 201 *
 202 * Returns: 0 on success or a negative error code on failure.
 203 */
 204int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 205{
 206	if (!pwm)
 207		return -EINVAL;
 208
 209	pwm->chip_data = data;
 210
 211	return 0;
 212}
 213EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 214
 215/**
 216 * pwm_get_chip_data() - get private chip data for a PWM
 217 * @pwm: PWM device
 218 *
 219 * Returns: A pointer to the chip-private data for the PWM device.
 220 */
 221void *pwm_get_chip_data(struct pwm_device *pwm)
 222{
 223	return pwm ? pwm->chip_data : NULL;
 224}
 225EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 226
 227static bool pwm_ops_check(const struct pwm_ops *ops)
 228{
 229	/* driver supports legacy, non-atomic operation */
 230	if (ops->config && ops->enable && ops->disable)
 231		return true;
 232
 233	/* driver supports atomic operation */
 234	if (ops->apply)
 235		return true;
 236
 237	return false;
 238}
 239
 240/**
 241 * pwmchip_add_with_polarity() - register a new PWM chip
 242 * @chip: the PWM chip to add
 243 * @polarity: initial polarity of PWM channels
 244 *
 245 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 246 * will be used. The initial polarity for all channels is specified by the
 247 * @polarity parameter.
 248 *
 249 * Returns: 0 on success or a negative error code on failure.
 250 */
 251int pwmchip_add_with_polarity(struct pwm_chip *chip,
 252			      enum pwm_polarity polarity)
 253{
 254	struct pwm_device *pwm;
 255	unsigned int i;
 256	int ret;
 257
 258	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 259		return -EINVAL;
 260
 261	if (!pwm_ops_check(chip->ops))
 262		return -EINVAL;
 263
 264	mutex_lock(&pwm_lock);
 265
 266	ret = alloc_pwms(chip->base, chip->npwm);
 267	if (ret < 0)
 268		goto out;
 269
 270	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 271	if (!chip->pwms) {
 272		ret = -ENOMEM;
 273		goto out;
 274	}
 275
 276	chip->base = ret;
 277
 278	for (i = 0; i < chip->npwm; i++) {
 279		pwm = &chip->pwms[i];
 280
 281		pwm->chip = chip;
 282		pwm->pwm = chip->base + i;
 283		pwm->hwpwm = i;
 284		pwm->state.polarity = polarity;
 285
 286		if (chip->ops->get_state)
 287			chip->ops->get_state(chip, pwm, &pwm->state);
 288
 289		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 290	}
 291
 292	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 293
 294	INIT_LIST_HEAD(&chip->list);
 295	list_add(&chip->list, &pwm_chips);
 296
 297	ret = 0;
 298
 299	if (IS_ENABLED(CONFIG_OF))
 300		of_pwmchip_add(chip);
 301
 
 
 302out:
 303	mutex_unlock(&pwm_lock);
 304
 305	if (!ret)
 306		pwmchip_sysfs_export(chip);
 307
 308	return ret;
 309}
 310EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 311
 312/**
 313 * pwmchip_add() - register a new PWM chip
 314 * @chip: the PWM chip to add
 315 *
 316 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 317 * will be used. The initial polarity for all channels is normal.
 318 *
 319 * Returns: 0 on success or a negative error code on failure.
 320 */
 321int pwmchip_add(struct pwm_chip *chip)
 322{
 323	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 324}
 325EXPORT_SYMBOL_GPL(pwmchip_add);
 326
 327/**
 328 * pwmchip_remove() - remove a PWM chip
 329 * @chip: the PWM chip to remove
 330 *
 331 * Removes a PWM chip. This function may return busy if the PWM chip provides
 332 * a PWM device that is still requested.
 333 *
 334 * Returns: 0 on success or a negative error code on failure.
 335 */
 336int pwmchip_remove(struct pwm_chip *chip)
 337{
 338	unsigned int i;
 339	int ret = 0;
 340
 341	pwmchip_sysfs_unexport(chip);
 342
 343	mutex_lock(&pwm_lock);
 344
 345	for (i = 0; i < chip->npwm; i++) {
 346		struct pwm_device *pwm = &chip->pwms[i];
 347
 348		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 349			ret = -EBUSY;
 350			goto out;
 351		}
 352	}
 353
 354	list_del_init(&chip->list);
 355
 356	if (IS_ENABLED(CONFIG_OF))
 357		of_pwmchip_remove(chip);
 358
 359	free_pwms(chip);
 360
 
 
 361out:
 362	mutex_unlock(&pwm_lock);
 363	return ret;
 364}
 365EXPORT_SYMBOL_GPL(pwmchip_remove);
 366
 367/**
 368 * pwm_request() - request a PWM device
 369 * @pwm: global PWM device index
 370 * @label: PWM device label
 371 *
 372 * This function is deprecated, use pwm_get() instead.
 373 *
 374 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 375 * failure.
 376 */
 377struct pwm_device *pwm_request(int pwm, const char *label)
 378{
 379	struct pwm_device *dev;
 380	int err;
 381
 382	if (pwm < 0 || pwm >= MAX_PWMS)
 383		return ERR_PTR(-EINVAL);
 384
 385	mutex_lock(&pwm_lock);
 386
 387	dev = pwm_to_device(pwm);
 388	if (!dev) {
 389		dev = ERR_PTR(-EPROBE_DEFER);
 390		goto out;
 391	}
 392
 393	err = pwm_device_request(dev, label);
 394	if (err < 0)
 395		dev = ERR_PTR(err);
 396
 397out:
 398	mutex_unlock(&pwm_lock);
 399
 400	return dev;
 401}
 402EXPORT_SYMBOL_GPL(pwm_request);
 403
 404/**
 405 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 406 * @chip: PWM chip
 407 * @index: per-chip index of the PWM to request
 408 * @label: a literal description string of this PWM
 409 *
 410 * Returns: A pointer to the PWM device at the given index of the given PWM
 411 * chip. A negative error code is returned if the index is not valid for the
 412 * specified PWM chip or if the PWM device cannot be requested.
 413 */
 414struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 415					 unsigned int index,
 416					 const char *label)
 417{
 418	struct pwm_device *pwm;
 419	int err;
 420
 421	if (!chip || index >= chip->npwm)
 422		return ERR_PTR(-EINVAL);
 423
 424	mutex_lock(&pwm_lock);
 425	pwm = &chip->pwms[index];
 426
 427	err = pwm_device_request(pwm, label);
 428	if (err < 0)
 429		pwm = ERR_PTR(err);
 430
 431	mutex_unlock(&pwm_lock);
 432	return pwm;
 433}
 434EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 435
 436/**
 437 * pwm_free() - free a PWM device
 438 * @pwm: PWM device
 439 *
 440 * This function is deprecated, use pwm_put() instead.
 441 */
 442void pwm_free(struct pwm_device *pwm)
 443{
 444	pwm_put(pwm);
 445}
 446EXPORT_SYMBOL_GPL(pwm_free);
 447
 448/**
 449 * pwm_apply_state() - atomically apply a new state to a PWM device
 450 * @pwm: PWM device
 451 * @state: new state to apply
 
 
 
 452 */
 453int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 454{
 455	struct pwm_chip *chip;
 456	int err;
 457
 458	if (!pwm || !state || !state->period ||
 459	    state->duty_cycle > state->period)
 460		return -EINVAL;
 461
 462	chip = pwm->chip;
 463
 464	if (state->period == pwm->state.period &&
 465	    state->duty_cycle == pwm->state.duty_cycle &&
 466	    state->polarity == pwm->state.polarity &&
 467	    state->enabled == pwm->state.enabled)
 468		return 0;
 469
 470	if (chip->ops->apply) {
 471		err = chip->ops->apply(chip, pwm, state);
 472		if (err)
 473			return err;
 474
 475		pwm->state = *state;
 476	} else {
 477		/*
 478		 * FIXME: restore the initial state in case of error.
 479		 */
 480		if (state->polarity != pwm->state.polarity) {
 481			if (!chip->ops->set_polarity)
 482				return -ENOTSUPP;
 483
 484			/*
 485			 * Changing the polarity of a running PWM is
 486			 * only allowed when the PWM driver implements
 487			 * ->apply().
 488			 */
 489			if (pwm->state.enabled) {
 490				chip->ops->disable(chip, pwm);
 491				pwm->state.enabled = false;
 492			}
 493
 494			err = chip->ops->set_polarity(chip, pwm,
 495						      state->polarity);
 496			if (err)
 497				return err;
 498
 499			pwm->state.polarity = state->polarity;
 500		}
 501
 502		if (state->period != pwm->state.period ||
 503		    state->duty_cycle != pwm->state.duty_cycle) {
 504			err = chip->ops->config(pwm->chip, pwm,
 505						state->duty_cycle,
 506						state->period);
 507			if (err)
 508				return err;
 509
 510			pwm->state.duty_cycle = state->duty_cycle;
 511			pwm->state.period = state->period;
 512		}
 513
 514		if (state->enabled != pwm->state.enabled) {
 515			if (state->enabled) {
 516				err = chip->ops->enable(chip, pwm);
 517				if (err)
 518					return err;
 519			} else {
 520				chip->ops->disable(chip, pwm);
 521			}
 522
 523			pwm->state.enabled = state->enabled;
 524		}
 525	}
 526
 527	return 0;
 528}
 529EXPORT_SYMBOL_GPL(pwm_apply_state);
 530
 531/**
 532 * pwm_capture() - capture and report a PWM signal
 533 * @pwm: PWM device
 534 * @result: structure to fill with capture result
 535 * @timeout: time to wait, in milliseconds, before giving up on capture
 
 
 536 *
 537 * Returns: 0 on success or a negative error code on failure.
 538 */
 539int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 540		unsigned long timeout)
 541{
 542	int err;
 543
 544	if (!pwm || !pwm->chip->ops)
 545		return -EINVAL;
 546
 547	if (!pwm->chip->ops->capture)
 548		return -ENOSYS;
 549
 550	mutex_lock(&pwm_lock);
 551	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 552	mutex_unlock(&pwm_lock);
 
 
 
 
 
 
 
 
 
 553
 
 
 554	return err;
 555}
 556EXPORT_SYMBOL_GPL(pwm_capture);
 557
 558/**
 559 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 560 * @pwm: PWM device
 561 *
 562 * This function will adjust the PWM config to the PWM arguments provided
 563 * by the DT or PWM lookup table. This is particularly useful to adapt
 564 * the bootloader config to the Linux one.
 565 */
 566int pwm_adjust_config(struct pwm_device *pwm)
 567{
 568	struct pwm_state state;
 569	struct pwm_args pargs;
 570
 571	pwm_get_args(pwm, &pargs);
 572	pwm_get_state(pwm, &state);
 573
 574	/*
 575	 * If the current period is zero it means that either the PWM driver
 576	 * does not support initial state retrieval or the PWM has not yet
 577	 * been configured.
 578	 *
 579	 * In either case, we setup the new period and polarity, and assign a
 580	 * duty cycle of 0.
 581	 */
 582	if (!state.period) {
 583		state.duty_cycle = 0;
 584		state.period = pargs.period;
 585		state.polarity = pargs.polarity;
 586
 587		return pwm_apply_state(pwm, &state);
 
 
 
 588	}
 589
 590	/*
 591	 * Adjust the PWM duty cycle/period based on the period value provided
 592	 * in PWM args.
 593	 */
 594	if (pargs.period != state.period) {
 595		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 596
 597		do_div(dutycycle, state.period);
 598		state.duty_cycle = dutycycle;
 599		state.period = pargs.period;
 600	}
 601
 602	/*
 603	 * If the polarity changed, we should also change the duty cycle.
 604	 */
 605	if (pargs.polarity != state.polarity) {
 606		state.polarity = pargs.polarity;
 607		state.duty_cycle = state.period - state.duty_cycle;
 608	}
 609
 610	return pwm_apply_state(pwm, &state);
 611}
 612EXPORT_SYMBOL_GPL(pwm_adjust_config);
 613
 614static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 615{
 616	struct pwm_chip *chip;
 617
 618	mutex_lock(&pwm_lock);
 619
 620	list_for_each_entry(chip, &pwm_chips, list)
 621		if (chip->dev && chip->dev->of_node == np) {
 622			mutex_unlock(&pwm_lock);
 623			return chip;
 624		}
 625
 626	mutex_unlock(&pwm_lock);
 627
 628	return ERR_PTR(-EPROBE_DEFER);
 629}
 630
 631static struct device_link *pwm_device_link_add(struct device *dev,
 632					       struct pwm_device *pwm)
 633{
 634	struct device_link *dl;
 635
 636	if (!dev) {
 637		/*
 638		 * No device for the PWM consumer has been provided. It may
 639		 * impact the PM sequence ordering: the PWM supplier may get
 640		 * suspended before the consumer.
 641		 */
 642		dev_warn(pwm->chip->dev,
 643			 "No consumer device specified to create a link to\n");
 644		return NULL;
 645	}
 646
 647	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 648	if (!dl) {
 649		dev_err(dev, "failed to create device link to %s\n",
 650			dev_name(pwm->chip->dev));
 651		return ERR_PTR(-EINVAL);
 652	}
 653
 654	return dl;
 655}
 656
 657/**
 658 * of_pwm_get() - request a PWM via the PWM framework
 659 * @dev: device for PWM consumer
 660 * @np: device node to get the PWM from
 661 * @con_id: consumer name
 662 *
 663 * Returns the PWM device parsed from the phandle and index specified in the
 664 * "pwms" property of a device tree node or a negative error-code on failure.
 665 * Values parsed from the device tree are stored in the returned PWM device
 666 * object.
 667 *
 668 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 669 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 670 * lookup of the PWM index. This also means that the "pwm-names" property
 671 * becomes mandatory for devices that look up the PWM device via the con_id
 672 * parameter.
 673 *
 674 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 675 * error code on failure.
 676 */
 677struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 678			      const char *con_id)
 679{
 680	struct pwm_device *pwm = NULL;
 681	struct of_phandle_args args;
 682	struct device_link *dl;
 683	struct pwm_chip *pc;
 684	int index = 0;
 685	int err;
 686
 687	if (con_id) {
 688		index = of_property_match_string(np, "pwm-names", con_id);
 689		if (index < 0)
 690			return ERR_PTR(index);
 691	}
 692
 693	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 694					 &args);
 695	if (err) {
 696		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 697		return ERR_PTR(err);
 698	}
 699
 700	pc = of_node_to_pwmchip(args.np);
 701	if (IS_ERR(pc)) {
 702		if (PTR_ERR(pc) != -EPROBE_DEFER)
 703			pr_err("%s(): PWM chip not found\n", __func__);
 
 
 704
 705		pwm = ERR_CAST(pc);
 
 
 
 706		goto put;
 707	}
 708
 709	pwm = pc->of_xlate(pc, &args);
 710	if (IS_ERR(pwm))
 711		goto put;
 712
 713	dl = pwm_device_link_add(dev, pwm);
 714	if (IS_ERR(dl)) {
 715		/* of_xlate ended up calling pwm_request_from_chip() */
 716		pwm_free(pwm);
 717		pwm = ERR_CAST(dl);
 718		goto put;
 719	}
 720
 721	/*
 722	 * If a consumer name was not given, try to look it up from the
 723	 * "pwm-names" property if it exists. Otherwise use the name of
 724	 * the user device node.
 725	 */
 726	if (!con_id) {
 727		err = of_property_read_string_index(np, "pwm-names", index,
 728						    &con_id);
 729		if (err < 0)
 730			con_id = np->name;
 731	}
 732
 733	pwm->label = con_id;
 734
 735put:
 736	of_node_put(args.np);
 737
 738	return pwm;
 739}
 740EXPORT_SYMBOL_GPL(of_pwm_get);
 741
 742#if IS_ENABLED(CONFIG_ACPI)
 743static struct pwm_chip *device_to_pwmchip(struct device *dev)
 744{
 745	struct pwm_chip *chip;
 746
 747	mutex_lock(&pwm_lock);
 748
 749	list_for_each_entry(chip, &pwm_chips, list) {
 750		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
 751
 752		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
 753			mutex_unlock(&pwm_lock);
 754			return chip;
 755		}
 756	}
 757
 758	mutex_unlock(&pwm_lock);
 759
 760	return ERR_PTR(-EPROBE_DEFER);
 761}
 762#endif
 763
 764/**
 765 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 766 * @fwnode: firmware node to get the "pwm" property from
 767 *
 768 * Returns the PWM device parsed from the fwnode and index specified in the
 769 * "pwms" property or a negative error-code on failure.
 770 * Values parsed from the device tree are stored in the returned PWM device
 771 * object.
 772 *
 773 * This is analogous to of_pwm_get() except con_id is not yet supported.
 774 * ACPI entries must look like
 775 * Package () {"pwms", Package ()
 776 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 777 *
 778 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 779 * error code on failure.
 780 */
 781static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
 782{
 783	struct pwm_device *pwm = ERR_PTR(-ENODEV);
 784#if IS_ENABLED(CONFIG_ACPI)
 785	struct fwnode_reference_args args;
 786	struct acpi_device *acpi;
 787	struct pwm_chip *chip;
 788	int ret;
 789
 790	memset(&args, 0, sizeof(args));
 791
 792	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 793	if (ret < 0)
 794		return ERR_PTR(ret);
 795
 796	acpi = to_acpi_device_node(args.fwnode);
 797	if (!acpi)
 798		return ERR_PTR(-EINVAL);
 799
 800	if (args.nargs < 2)
 801		return ERR_PTR(-EPROTO);
 802
 803	chip = device_to_pwmchip(&acpi->dev);
 804	if (IS_ERR(chip))
 805		return ERR_CAST(chip);
 806
 807	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 808	if (IS_ERR(pwm))
 809		return pwm;
 810
 811	pwm->args.period = args.args[1];
 812	pwm->args.polarity = PWM_POLARITY_NORMAL;
 813
 814	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 815		pwm->args.polarity = PWM_POLARITY_INVERSED;
 816#endif
 817
 818	return pwm;
 819}
 820
 821/**
 822 * pwm_add_table() - register PWM device consumers
 823 * @table: array of consumers to register
 824 * @num: number of consumers in table
 825 */
 826void pwm_add_table(struct pwm_lookup *table, size_t num)
 827{
 828	mutex_lock(&pwm_lookup_lock);
 829
 830	while (num--) {
 831		list_add_tail(&table->list, &pwm_lookup_list);
 832		table++;
 833	}
 834
 835	mutex_unlock(&pwm_lookup_lock);
 836}
 837
 838/**
 839 * pwm_remove_table() - unregister PWM device consumers
 840 * @table: array of consumers to unregister
 841 * @num: number of consumers in table
 842 */
 843void pwm_remove_table(struct pwm_lookup *table, size_t num)
 844{
 845	mutex_lock(&pwm_lookup_lock);
 846
 847	while (num--) {
 848		list_del(&table->list);
 849		table++;
 850	}
 851
 852	mutex_unlock(&pwm_lookup_lock);
 853}
 854
 855/**
 856 * pwm_get() - look up and request a PWM device
 857 * @dev: device for PWM consumer
 858 * @con_id: consumer name
 859 *
 860 * Lookup is first attempted using DT. If the device was not instantiated from
 861 * a device tree, a PWM chip and a relative index is looked up via a table
 862 * supplied by board setup code (see pwm_add_table()).
 863 *
 864 * Once a PWM chip has been found the specified PWM device will be requested
 865 * and is ready to be used.
 866 *
 867 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 868 * error code on failure.
 869 */
 870struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 871{
 
 872	const char *dev_id = dev ? dev_name(dev) : NULL;
 873	struct pwm_device *pwm;
 874	struct pwm_chip *chip;
 875	struct device_link *dl;
 876	unsigned int best = 0;
 877	struct pwm_lookup *p, *chosen = NULL;
 878	unsigned int match;
 879	int err;
 880
 881	/* look up via DT first */
 882	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 883		return of_pwm_get(dev, dev->of_node, con_id);
 884
 885	/* then lookup via ACPI */
 886	if (dev && is_acpi_node(dev->fwnode)) {
 887		pwm = acpi_pwm_get(dev->fwnode);
 888		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 889			return pwm;
 890	}
 891
 892	/*
 893	 * We look up the provider in the static table typically provided by
 894	 * board setup code. We first try to lookup the consumer device by
 895	 * name. If the consumer device was passed in as NULL or if no match
 896	 * was found, we try to find the consumer by directly looking it up
 897	 * by name.
 898	 *
 899	 * If a match is found, the provider PWM chip is looked up by name
 900	 * and a PWM device is requested using the PWM device per-chip index.
 901	 *
 902	 * The lookup algorithm was shamelessly taken from the clock
 903	 * framework:
 904	 *
 905	 * We do slightly fuzzy matching here:
 906	 *  An entry with a NULL ID is assumed to be a wildcard.
 907	 *  If an entry has a device ID, it must match
 908	 *  If an entry has a connection ID, it must match
 909	 * Then we take the most specific entry - with the following order
 910	 * of precedence: dev+con > dev only > con only.
 911	 */
 912	mutex_lock(&pwm_lookup_lock);
 913
 914	list_for_each_entry(p, &pwm_lookup_list, list) {
 915		match = 0;
 916
 917		if (p->dev_id) {
 918			if (!dev_id || strcmp(p->dev_id, dev_id))
 919				continue;
 920
 921			match += 2;
 922		}
 923
 924		if (p->con_id) {
 925			if (!con_id || strcmp(p->con_id, con_id))
 926				continue;
 927
 928			match += 1;
 929		}
 930
 931		if (match > best) {
 932			chosen = p;
 933
 934			if (match != 3)
 935				best = match;
 936			else
 937				break;
 938		}
 939	}
 940
 941	mutex_unlock(&pwm_lookup_lock);
 942
 943	if (!chosen)
 944		return ERR_PTR(-ENODEV);
 945
 946	chip = pwmchip_find_by_name(chosen->provider);
 947
 948	/*
 949	 * If the lookup entry specifies a module, load the module and retry
 950	 * the PWM chip lookup. This can be used to work around driver load
 951	 * ordering issues if driver's can't be made to properly support the
 952	 * deferred probe mechanism.
 953	 */
 954	if (!chip && chosen->module) {
 955		err = request_module(chosen->module);
 956		if (err == 0)
 957			chip = pwmchip_find_by_name(chosen->provider);
 958	}
 959
 960	if (!chip)
 961		return ERR_PTR(-EPROBE_DEFER);
 962
 963	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 964	if (IS_ERR(pwm))
 965		return pwm;
 966
 967	dl = pwm_device_link_add(dev, pwm);
 968	if (IS_ERR(dl)) {
 969		pwm_free(pwm);
 970		return ERR_CAST(dl);
 971	}
 972
 973	pwm->args.period = chosen->period;
 974	pwm->args.polarity = chosen->polarity;
 975
 
 
 976	return pwm;
 977}
 978EXPORT_SYMBOL_GPL(pwm_get);
 979
 980/**
 981 * pwm_put() - release a PWM device
 982 * @pwm: PWM device
 983 */
 984void pwm_put(struct pwm_device *pwm)
 985{
 986	if (!pwm)
 987		return;
 988
 989	mutex_lock(&pwm_lock);
 990
 991	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 992		pr_warn("PWM device already freed\n");
 993		goto out;
 994	}
 995
 996	if (pwm->chip->ops->free)
 997		pwm->chip->ops->free(pwm->chip, pwm);
 998
 999	pwm_set_chip_data(pwm, NULL);
1000	pwm->label = NULL;
1001
1002	module_put(pwm->chip->ops->owner);
1003out:
1004	mutex_unlock(&pwm_lock);
1005}
1006EXPORT_SYMBOL_GPL(pwm_put);
1007
1008static void devm_pwm_release(struct device *dev, void *res)
1009{
1010	pwm_put(*(struct pwm_device **)res);
1011}
1012
1013/**
1014 * devm_pwm_get() - resource managed pwm_get()
1015 * @dev: device for PWM consumer
1016 * @con_id: consumer name
1017 *
1018 * This function performs like pwm_get() but the acquired PWM device will
1019 * automatically be released on driver detach.
1020 *
1021 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1022 * error code on failure.
1023 */
1024struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1025{
1026	struct pwm_device **ptr, *pwm;
1027
1028	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1029	if (!ptr)
1030		return ERR_PTR(-ENOMEM);
1031
1032	pwm = pwm_get(dev, con_id);
1033	if (!IS_ERR(pwm)) {
1034		*ptr = pwm;
1035		devres_add(dev, ptr);
1036	} else {
1037		devres_free(ptr);
1038	}
1039
1040	return pwm;
1041}
1042EXPORT_SYMBOL_GPL(devm_pwm_get);
1043
1044/**
1045 * devm_of_pwm_get() - resource managed of_pwm_get()
1046 * @dev: device for PWM consumer
1047 * @np: device node to get the PWM from
1048 * @con_id: consumer name
1049 *
1050 * This function performs like of_pwm_get() but the acquired PWM device will
1051 * automatically be released on driver detach.
1052 *
1053 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1054 * error code on failure.
1055 */
1056struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1057				   const char *con_id)
1058{
1059	struct pwm_device **ptr, *pwm;
1060
1061	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1062	if (!ptr)
1063		return ERR_PTR(-ENOMEM);
1064
1065	pwm = of_pwm_get(dev, np, con_id);
1066	if (!IS_ERR(pwm)) {
1067		*ptr = pwm;
1068		devres_add(dev, ptr);
1069	} else {
1070		devres_free(ptr);
1071	}
1072
1073	return pwm;
1074}
1075EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1076
1077/**
1078 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1079 * @dev: device for PWM consumer
1080 * @fwnode: firmware node to get the PWM from
1081 * @con_id: consumer name
1082 *
1083 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1084 * acpi_pwm_get() for a detailed description.
1085 *
1086 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1087 * error code on failure.
1088 */
1089struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1090				       struct fwnode_handle *fwnode,
1091				       const char *con_id)
1092{
1093	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1094
1095	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1096	if (!ptr)
1097		return ERR_PTR(-ENOMEM);
1098
1099	if (is_of_node(fwnode))
1100		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1101	else if (is_acpi_node(fwnode))
1102		pwm = acpi_pwm_get(fwnode);
1103
1104	if (!IS_ERR(pwm)) {
1105		*ptr = pwm;
1106		devres_add(dev, ptr);
1107	} else {
1108		devres_free(ptr);
1109	}
1110
1111	return pwm;
1112}
1113EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1114
1115static int devm_pwm_match(struct device *dev, void *res, void *data)
1116{
1117	struct pwm_device **p = res;
1118
1119	if (WARN_ON(!p || !*p))
1120		return 0;
1121
1122	return *p == data;
1123}
1124
1125/**
1126 * devm_pwm_put() - resource managed pwm_put()
1127 * @dev: device for PWM consumer
1128 * @pwm: PWM device
1129 *
1130 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1131 * function is usually not needed because devm-allocated resources are
1132 * automatically released on driver detach.
1133 */
1134void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1135{
1136	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1137}
1138EXPORT_SYMBOL_GPL(devm_pwm_put);
1139
 
 
 
 
 
 
 
 
 
 
 
 
1140#ifdef CONFIG_DEBUG_FS
1141static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1142{
1143	unsigned int i;
1144
1145	for (i = 0; i < chip->npwm; i++) {
1146		struct pwm_device *pwm = &chip->pwms[i];
1147		struct pwm_state state;
1148
1149		pwm_get_state(pwm, &state);
1150
1151		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1152
1153		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1154			seq_puts(s, " requested");
1155
1156		if (state.enabled)
1157			seq_puts(s, " enabled");
1158
1159		seq_printf(s, " period: %u ns", state.period);
1160		seq_printf(s, " duty: %u ns", state.duty_cycle);
1161		seq_printf(s, " polarity: %s",
1162			   state.polarity ? "inverse" : "normal");
1163
1164		seq_puts(s, "\n");
1165	}
1166}
1167
1168static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1169{
1170	mutex_lock(&pwm_lock);
1171	s->private = "";
1172
1173	return seq_list_start(&pwm_chips, *pos);
1174}
1175
1176static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1177{
1178	s->private = "\n";
1179
1180	return seq_list_next(v, &pwm_chips, pos);
1181}
1182
1183static void pwm_seq_stop(struct seq_file *s, void *v)
1184{
1185	mutex_unlock(&pwm_lock);
1186}
1187
1188static int pwm_seq_show(struct seq_file *s, void *v)
1189{
1190	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1191
1192	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1193		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1194		   dev_name(chip->dev), chip->npwm,
1195		   (chip->npwm != 1) ? "s" : "");
1196
1197	pwm_dbg_show(chip, s);
 
 
 
1198
1199	return 0;
1200}
1201
1202static const struct seq_operations pwm_seq_ops = {
1203	.start = pwm_seq_start,
1204	.next = pwm_seq_next,
1205	.stop = pwm_seq_stop,
1206	.show = pwm_seq_show,
1207};
1208
1209static int pwm_seq_open(struct inode *inode, struct file *file)
1210{
1211	return seq_open(file, &pwm_seq_ops);
1212}
1213
1214static const struct file_operations pwm_debugfs_ops = {
1215	.owner = THIS_MODULE,
1216	.open = pwm_seq_open,
1217	.read = seq_read,
1218	.llseek = seq_lseek,
1219	.release = seq_release,
1220};
1221
1222static int __init pwm_debugfs_init(void)
1223{
1224	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1225			    &pwm_debugfs_ops);
1226
1227	return 0;
1228}
1229subsys_initcall(pwm_debugfs_init);
1230#endif /* CONFIG_DEBUG_FS */