Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * PTP 1588 clock support
  3 *
  4 * Copyright (C) 2010 OMICRON electronics GmbH
  5 *
  6 *  This program is free software; you can redistribute it and/or modify
  7 *  it under the terms of the GNU General Public License as published by
  8 *  the Free Software Foundation; either version 2 of the License, or
  9 *  (at your option) any later version.
 10 *
 11 *  This program is distributed in the hope that it will be useful,
 12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 *  GNU General Public License for more details.
 15 *
 16 *  You should have received a copy of the GNU General Public License
 17 *  along with this program; if not, write to the Free Software
 18 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 19 */
 20#include <linux/idr.h>
 21#include <linux/device.h>
 22#include <linux/err.h>
 23#include <linux/init.h>
 24#include <linux/kernel.h>
 25#include <linux/module.h>
 26#include <linux/posix-clock.h>
 27#include <linux/pps_kernel.h>
 28#include <linux/slab.h>
 29#include <linux/syscalls.h>
 30#include <linux/uaccess.h>
 
 31
 32#include "ptp_private.h"
 33
 34#define PTP_MAX_ALARMS 4
 35#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 36#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 37#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 38
 39/* private globals */
 40
 41static dev_t ptp_devt;
 42static struct class *ptp_class;
 43
 44static DEFINE_IDA(ptp_clocks_map);
 45
 46/* time stamp event queue operations */
 47
 48static inline int queue_free(struct timestamp_event_queue *q)
 49{
 50	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 51}
 52
 53static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 54				       struct ptp_clock_event *src)
 55{
 56	struct ptp_extts_event *dst;
 57	unsigned long flags;
 58	s64 seconds;
 59	u32 remainder;
 60
 61	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 62
 63	spin_lock_irqsave(&queue->lock, flags);
 64
 65	dst = &queue->buf[queue->tail];
 66	dst->index = src->index;
 67	dst->t.sec = seconds;
 68	dst->t.nsec = remainder;
 69
 70	if (!queue_free(queue))
 71		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 72
 73	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 74
 75	spin_unlock_irqrestore(&queue->lock, flags);
 76}
 77
 78static s32 scaled_ppm_to_ppb(long ppm)
 79{
 80	/*
 81	 * The 'freq' field in the 'struct timex' is in parts per
 82	 * million, but with a 16 bit binary fractional field.
 83	 *
 84	 * We want to calculate
 85	 *
 86	 *    ppb = scaled_ppm * 1000 / 2^16
 87	 *
 88	 * which simplifies to
 89	 *
 90	 *    ppb = scaled_ppm * 125 / 2^13
 91	 */
 92	s64 ppb = 1 + ppm;
 93	ppb *= 125;
 94	ppb >>= 13;
 95	return (s32) ppb;
 96}
 
 97
 98/* posix clock implementation */
 99
100static int ptp_clock_getres(struct posix_clock *pc, struct timespec *tp)
101{
102	tp->tv_sec = 0;
103	tp->tv_nsec = 1;
104	return 0;
105}
106
107static int ptp_clock_settime(struct posix_clock *pc, const struct timespec *tp)
108{
109	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
110	struct timespec64 ts = timespec_to_timespec64(*tp);
111
112	return  ptp->info->settime64(ptp->info, &ts);
113}
114
115static int ptp_clock_gettime(struct posix_clock *pc, struct timespec *tp)
116{
117	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118	struct timespec64 ts;
119	int err;
120
121	err = ptp->info->gettime64(ptp->info, &ts);
122	if (!err)
123		*tp = timespec64_to_timespec(ts);
 
124	return err;
125}
126
127static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
128{
129	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
130	struct ptp_clock_info *ops;
131	int err = -EOPNOTSUPP;
132
133	ops = ptp->info;
134
135	if (tx->modes & ADJ_SETOFFSET) {
136		struct timespec ts;
137		ktime_t kt;
138		s64 delta;
139
140		ts.tv_sec  = tx->time.tv_sec;
141		ts.tv_nsec = tx->time.tv_usec;
142
143		if (!(tx->modes & ADJ_NANO))
144			ts.tv_nsec *= 1000;
145
146		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
147			return -EINVAL;
148
149		kt = timespec_to_ktime(ts);
150		delta = ktime_to_ns(kt);
151		err = ops->adjtime(ops, delta);
152	} else if (tx->modes & ADJ_FREQUENCY) {
153		s32 ppb = scaled_ppm_to_ppb(tx->freq);
154		if (ppb > ops->max_adj || ppb < -ops->max_adj)
155			return -ERANGE;
156		err = ops->adjfreq(ops, ppb);
 
 
 
157		ptp->dialed_frequency = tx->freq;
158	} else if (tx->modes == 0) {
159		tx->freq = ptp->dialed_frequency;
160		err = 0;
161	}
162
163	return err;
164}
165
166static struct posix_clock_operations ptp_clock_ops = {
167	.owner		= THIS_MODULE,
168	.clock_adjtime	= ptp_clock_adjtime,
169	.clock_gettime	= ptp_clock_gettime,
170	.clock_getres	= ptp_clock_getres,
171	.clock_settime	= ptp_clock_settime,
172	.ioctl		= ptp_ioctl,
173	.open		= ptp_open,
174	.poll		= ptp_poll,
175	.read		= ptp_read,
176};
177
178static void delete_ptp_clock(struct posix_clock *pc)
179{
180	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
181
182	mutex_destroy(&ptp->tsevq_mux);
183	mutex_destroy(&ptp->pincfg_mux);
184	ida_simple_remove(&ptp_clocks_map, ptp->index);
185	kfree(ptp);
186}
187
 
 
 
 
 
 
 
 
 
 
 
 
 
188/* public interface */
189
190struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
191				     struct device *parent)
192{
193	struct ptp_clock *ptp;
194	int err = 0, index, major = MAJOR(ptp_devt);
195
196	if (info->n_alarm > PTP_MAX_ALARMS)
197		return ERR_PTR(-EINVAL);
198
199	/* Initialize a clock structure. */
200	err = -ENOMEM;
201	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
202	if (ptp == NULL)
203		goto no_memory;
204
205	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
206	if (index < 0) {
207		err = index;
208		goto no_slot;
209	}
210
211	ptp->clock.ops = ptp_clock_ops;
212	ptp->clock.release = delete_ptp_clock;
213	ptp->info = info;
214	ptp->devid = MKDEV(major, index);
215	ptp->index = index;
216	spin_lock_init(&ptp->tsevq.lock);
217	mutex_init(&ptp->tsevq_mux);
218	mutex_init(&ptp->pincfg_mux);
219	init_waitqueue_head(&ptp->tsev_wq);
220
221	/* Create a new device in our class. */
222	ptp->dev = device_create(ptp_class, parent, ptp->devid, ptp,
223				 "ptp%d", ptp->index);
224	if (IS_ERR(ptp->dev))
225		goto no_device;
226
227	dev_set_drvdata(ptp->dev, ptp);
 
 
228
229	err = ptp_populate_sysfs(ptp);
230	if (err)
231		goto no_sysfs;
 
 
 
 
 
 
 
 
 
232
233	/* Register a new PPS source. */
234	if (info->pps) {
235		struct pps_source_info pps;
236		memset(&pps, 0, sizeof(pps));
237		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
238		pps.mode = PTP_PPS_MODE;
239		pps.owner = info->owner;
240		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
241		if (!ptp->pps_source) {
 
242			pr_err("failed to register pps source\n");
243			goto no_pps;
244		}
245	}
246
247	/* Create a posix clock. */
248	err = posix_clock_register(&ptp->clock, ptp->devid);
249	if (err) {
250		pr_err("failed to create posix clock\n");
251		goto no_clock;
252	}
253
254	return ptp;
255
256no_clock:
257	if (ptp->pps_source)
258		pps_unregister_source(ptp->pps_source);
259no_pps:
260	ptp_cleanup_sysfs(ptp);
261no_sysfs:
262	device_destroy(ptp_class, ptp->devid);
263no_device:
 
 
 
 
 
264	mutex_destroy(&ptp->tsevq_mux);
265	mutex_destroy(&ptp->pincfg_mux);
 
266no_slot:
267	kfree(ptp);
268no_memory:
269	return ERR_PTR(err);
270}
271EXPORT_SYMBOL(ptp_clock_register);
272
273int ptp_clock_unregister(struct ptp_clock *ptp)
274{
275	ptp->defunct = 1;
276	wake_up_interruptible(&ptp->tsev_wq);
277
 
 
 
 
 
278	/* Release the clock's resources. */
279	if (ptp->pps_source)
280		pps_unregister_source(ptp->pps_source);
281	ptp_cleanup_sysfs(ptp);
282	device_destroy(ptp_class, ptp->devid);
 
283
284	posix_clock_unregister(&ptp->clock);
285	return 0;
286}
287EXPORT_SYMBOL(ptp_clock_unregister);
288
289void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
290{
291	struct pps_event_time evt;
292
293	switch (event->type) {
294
295	case PTP_CLOCK_ALARM:
296		break;
297
298	case PTP_CLOCK_EXTTS:
299		enqueue_external_timestamp(&ptp->tsevq, event);
300		wake_up_interruptible(&ptp->tsev_wq);
301		break;
302
303	case PTP_CLOCK_PPS:
304		pps_get_ts(&evt);
305		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
306		break;
307
308	case PTP_CLOCK_PPSUSR:
309		pps_event(ptp->pps_source, &event->pps_times,
310			  PTP_PPS_EVENT, NULL);
311		break;
312	}
313}
314EXPORT_SYMBOL(ptp_clock_event);
315
316int ptp_clock_index(struct ptp_clock *ptp)
317{
318	return ptp->index;
319}
320EXPORT_SYMBOL(ptp_clock_index);
321
322int ptp_find_pin(struct ptp_clock *ptp,
323		 enum ptp_pin_function func, unsigned int chan)
324{
325	struct ptp_pin_desc *pin = NULL;
326	int i;
327
328	mutex_lock(&ptp->pincfg_mux);
329	for (i = 0; i < ptp->info->n_pins; i++) {
330		if (ptp->info->pin_config[i].func == func &&
331		    ptp->info->pin_config[i].chan == chan) {
332			pin = &ptp->info->pin_config[i];
333			break;
334		}
335	}
336	mutex_unlock(&ptp->pincfg_mux);
337
338	return pin ? i : -1;
339}
340EXPORT_SYMBOL(ptp_find_pin);
 
 
 
 
 
 
341
342/* module operations */
343
344static void __exit ptp_exit(void)
345{
346	class_destroy(ptp_class);
347	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
348	ida_destroy(&ptp_clocks_map);
349}
350
351static int __init ptp_init(void)
352{
353	int err;
354
355	ptp_class = class_create(THIS_MODULE, "ptp");
356	if (IS_ERR(ptp_class)) {
357		pr_err("ptp: failed to allocate class\n");
358		return PTR_ERR(ptp_class);
359	}
360
361	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
362	if (err < 0) {
363		pr_err("ptp: failed to allocate device region\n");
364		goto no_region;
365	}
366
367	ptp_class->dev_groups = ptp_groups;
368	pr_info("PTP clock support registered\n");
369	return 0;
370
371no_region:
372	class_destroy(ptp_class);
373	return err;
374}
375
376subsys_initcall(ptp_init);
377module_exit(ptp_exit);
378
379MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
380MODULE_DESCRIPTION("PTP clocks support");
381MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PTP 1588 clock support
  4 *
  5 * Copyright (C) 2010 OMICRON electronics GmbH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7#include <linux/idr.h>
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/init.h>
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/posix-clock.h>
 14#include <linux/pps_kernel.h>
 15#include <linux/slab.h>
 16#include <linux/syscalls.h>
 17#include <linux/uaccess.h>
 18#include <uapi/linux/sched/types.h>
 19
 20#include "ptp_private.h"
 21
 22#define PTP_MAX_ALARMS 4
 23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 26
 27/* private globals */
 28
 29static dev_t ptp_devt;
 30static struct class *ptp_class;
 31
 32static DEFINE_IDA(ptp_clocks_map);
 33
 34/* time stamp event queue operations */
 35
 36static inline int queue_free(struct timestamp_event_queue *q)
 37{
 38	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 39}
 40
 41static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 42				       struct ptp_clock_event *src)
 43{
 44	struct ptp_extts_event *dst;
 45	unsigned long flags;
 46	s64 seconds;
 47	u32 remainder;
 48
 49	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 50
 51	spin_lock_irqsave(&queue->lock, flags);
 52
 53	dst = &queue->buf[queue->tail];
 54	dst->index = src->index;
 55	dst->t.sec = seconds;
 56	dst->t.nsec = remainder;
 57
 58	if (!queue_free(queue))
 59		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 60
 61	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 62
 63	spin_unlock_irqrestore(&queue->lock, flags);
 64}
 65
 66s32 scaled_ppm_to_ppb(long ppm)
 67{
 68	/*
 69	 * The 'freq' field in the 'struct timex' is in parts per
 70	 * million, but with a 16 bit binary fractional field.
 71	 *
 72	 * We want to calculate
 73	 *
 74	 *    ppb = scaled_ppm * 1000 / 2^16
 75	 *
 76	 * which simplifies to
 77	 *
 78	 *    ppb = scaled_ppm * 125 / 2^13
 79	 */
 80	s64 ppb = 1 + ppm;
 81	ppb *= 125;
 82	ppb >>= 13;
 83	return (s32) ppb;
 84}
 85EXPORT_SYMBOL(scaled_ppm_to_ppb);
 86
 87/* posix clock implementation */
 88
 89static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
 90{
 91	tp->tv_sec = 0;
 92	tp->tv_nsec = 1;
 93	return 0;
 94}
 95
 96static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
 97{
 98	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 
 99
100	return  ptp->info->settime64(ptp->info, tp);
101}
102
103static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
104{
105	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 
106	int err;
107
108	if (ptp->info->gettimex64)
109		err = ptp->info->gettimex64(ptp->info, tp, NULL);
110	else
111		err = ptp->info->gettime64(ptp->info, tp);
112	return err;
113}
114
115static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
116{
117	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118	struct ptp_clock_info *ops;
119	int err = -EOPNOTSUPP;
120
121	ops = ptp->info;
122
123	if (tx->modes & ADJ_SETOFFSET) {
124		struct timespec64 ts;
125		ktime_t kt;
126		s64 delta;
127
128		ts.tv_sec  = tx->time.tv_sec;
129		ts.tv_nsec = tx->time.tv_usec;
130
131		if (!(tx->modes & ADJ_NANO))
132			ts.tv_nsec *= 1000;
133
134		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
135			return -EINVAL;
136
137		kt = timespec64_to_ktime(ts);
138		delta = ktime_to_ns(kt);
139		err = ops->adjtime(ops, delta);
140	} else if (tx->modes & ADJ_FREQUENCY) {
141		s32 ppb = scaled_ppm_to_ppb(tx->freq);
142		if (ppb > ops->max_adj || ppb < -ops->max_adj)
143			return -ERANGE;
144		if (ops->adjfine)
145			err = ops->adjfine(ops, tx->freq);
146		else
147			err = ops->adjfreq(ops, ppb);
148		ptp->dialed_frequency = tx->freq;
149	} else if (tx->modes == 0) {
150		tx->freq = ptp->dialed_frequency;
151		err = 0;
152	}
153
154	return err;
155}
156
157static struct posix_clock_operations ptp_clock_ops = {
158	.owner		= THIS_MODULE,
159	.clock_adjtime	= ptp_clock_adjtime,
160	.clock_gettime	= ptp_clock_gettime,
161	.clock_getres	= ptp_clock_getres,
162	.clock_settime	= ptp_clock_settime,
163	.ioctl		= ptp_ioctl,
164	.open		= ptp_open,
165	.poll		= ptp_poll,
166	.read		= ptp_read,
167};
168
169static void delete_ptp_clock(struct posix_clock *pc)
170{
171	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
172
173	mutex_destroy(&ptp->tsevq_mux);
174	mutex_destroy(&ptp->pincfg_mux);
175	ida_simple_remove(&ptp_clocks_map, ptp->index);
176	kfree(ptp);
177}
178
179static void ptp_aux_kworker(struct kthread_work *work)
180{
181	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
182					     aux_work.work);
183	struct ptp_clock_info *info = ptp->info;
184	long delay;
185
186	delay = info->do_aux_work(info);
187
188	if (delay >= 0)
189		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
190}
191
192/* public interface */
193
194struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
195				     struct device *parent)
196{
197	struct ptp_clock *ptp;
198	int err = 0, index, major = MAJOR(ptp_devt);
199
200	if (info->n_alarm > PTP_MAX_ALARMS)
201		return ERR_PTR(-EINVAL);
202
203	/* Initialize a clock structure. */
204	err = -ENOMEM;
205	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
206	if (ptp == NULL)
207		goto no_memory;
208
209	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
210	if (index < 0) {
211		err = index;
212		goto no_slot;
213	}
214
215	ptp->clock.ops = ptp_clock_ops;
216	ptp->clock.release = delete_ptp_clock;
217	ptp->info = info;
218	ptp->devid = MKDEV(major, index);
219	ptp->index = index;
220	spin_lock_init(&ptp->tsevq.lock);
221	mutex_init(&ptp->tsevq_mux);
222	mutex_init(&ptp->pincfg_mux);
223	init_waitqueue_head(&ptp->tsev_wq);
224
225	if (ptp->info->do_aux_work) {
226		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
227		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
228		if (IS_ERR(ptp->kworker)) {
229			err = PTR_ERR(ptp->kworker);
230			pr_err("failed to create ptp aux_worker %d\n", err);
231			goto kworker_err;
232		}
233	}
234
235	err = ptp_populate_pin_groups(ptp);
236	if (err)
237		goto no_pin_groups;
238
239	/* Create a new device in our class. */
240	ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
241					     ptp, ptp->pin_attr_groups,
242					     "ptp%d", ptp->index);
243	if (IS_ERR(ptp->dev)) {
244		err = PTR_ERR(ptp->dev);
245		goto no_device;
246	}
247
248	/* Register a new PPS source. */
249	if (info->pps) {
250		struct pps_source_info pps;
251		memset(&pps, 0, sizeof(pps));
252		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
253		pps.mode = PTP_PPS_MODE;
254		pps.owner = info->owner;
255		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
256		if (IS_ERR(ptp->pps_source)) {
257			err = PTR_ERR(ptp->pps_source);
258			pr_err("failed to register pps source\n");
259			goto no_pps;
260		}
261	}
262
263	/* Create a posix clock. */
264	err = posix_clock_register(&ptp->clock, ptp->devid);
265	if (err) {
266		pr_err("failed to create posix clock\n");
267		goto no_clock;
268	}
269
270	return ptp;
271
272no_clock:
273	if (ptp->pps_source)
274		pps_unregister_source(ptp->pps_source);
275no_pps:
 
 
276	device_destroy(ptp_class, ptp->devid);
277no_device:
278	ptp_cleanup_pin_groups(ptp);
279no_pin_groups:
280	if (ptp->kworker)
281		kthread_destroy_worker(ptp->kworker);
282kworker_err:
283	mutex_destroy(&ptp->tsevq_mux);
284	mutex_destroy(&ptp->pincfg_mux);
285	ida_simple_remove(&ptp_clocks_map, index);
286no_slot:
287	kfree(ptp);
288no_memory:
289	return ERR_PTR(err);
290}
291EXPORT_SYMBOL(ptp_clock_register);
292
293int ptp_clock_unregister(struct ptp_clock *ptp)
294{
295	ptp->defunct = 1;
296	wake_up_interruptible(&ptp->tsev_wq);
297
298	if (ptp->kworker) {
299		kthread_cancel_delayed_work_sync(&ptp->aux_work);
300		kthread_destroy_worker(ptp->kworker);
301	}
302
303	/* Release the clock's resources. */
304	if (ptp->pps_source)
305		pps_unregister_source(ptp->pps_source);
306
307	device_destroy(ptp_class, ptp->devid);
308	ptp_cleanup_pin_groups(ptp);
309
310	posix_clock_unregister(&ptp->clock);
311	return 0;
312}
313EXPORT_SYMBOL(ptp_clock_unregister);
314
315void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
316{
317	struct pps_event_time evt;
318
319	switch (event->type) {
320
321	case PTP_CLOCK_ALARM:
322		break;
323
324	case PTP_CLOCK_EXTTS:
325		enqueue_external_timestamp(&ptp->tsevq, event);
326		wake_up_interruptible(&ptp->tsev_wq);
327		break;
328
329	case PTP_CLOCK_PPS:
330		pps_get_ts(&evt);
331		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
332		break;
333
334	case PTP_CLOCK_PPSUSR:
335		pps_event(ptp->pps_source, &event->pps_times,
336			  PTP_PPS_EVENT, NULL);
337		break;
338	}
339}
340EXPORT_SYMBOL(ptp_clock_event);
341
342int ptp_clock_index(struct ptp_clock *ptp)
343{
344	return ptp->index;
345}
346EXPORT_SYMBOL(ptp_clock_index);
347
348int ptp_find_pin(struct ptp_clock *ptp,
349		 enum ptp_pin_function func, unsigned int chan)
350{
351	struct ptp_pin_desc *pin = NULL;
352	int i;
353
354	mutex_lock(&ptp->pincfg_mux);
355	for (i = 0; i < ptp->info->n_pins; i++) {
356		if (ptp->info->pin_config[i].func == func &&
357		    ptp->info->pin_config[i].chan == chan) {
358			pin = &ptp->info->pin_config[i];
359			break;
360		}
361	}
362	mutex_unlock(&ptp->pincfg_mux);
363
364	return pin ? i : -1;
365}
366EXPORT_SYMBOL(ptp_find_pin);
367
368int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
369{
370	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
371}
372EXPORT_SYMBOL(ptp_schedule_worker);
373
374/* module operations */
375
376static void __exit ptp_exit(void)
377{
378	class_destroy(ptp_class);
379	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
380	ida_destroy(&ptp_clocks_map);
381}
382
383static int __init ptp_init(void)
384{
385	int err;
386
387	ptp_class = class_create(THIS_MODULE, "ptp");
388	if (IS_ERR(ptp_class)) {
389		pr_err("ptp: failed to allocate class\n");
390		return PTR_ERR(ptp_class);
391	}
392
393	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
394	if (err < 0) {
395		pr_err("ptp: failed to allocate device region\n");
396		goto no_region;
397	}
398
399	ptp_class->dev_groups = ptp_groups;
400	pr_info("PTP clock support registered\n");
401	return 0;
402
403no_region:
404	class_destroy(ptp_class);
405	return err;
406}
407
408subsys_initcall(ptp_init);
409module_exit(ptp_exit);
410
411MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
412MODULE_DESCRIPTION("PTP clocks support");
413MODULE_LICENSE("GPL");