Linux Audio

Check our new training course

Loading...
v4.6
  1/*******************************************************************************
  2 *
  3 * Intel Ethernet Controller XL710 Family Linux Driver
  4 * Copyright(c) 2013 - 2016 Intel Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms and conditions of the GNU General Public License,
  8 * version 2, as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along
 16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 17 *
 18 * The full GNU General Public License is included in this distribution in
 19 * the file called "COPYING".
 20 *
 21 * Contact Information:
 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 24 *
 25 ******************************************************************************/
 26
 27#ifndef _I40E_TXRX_H_
 28#define _I40E_TXRX_H_
 29
 30/* Interrupt Throttling and Rate Limiting Goodies */
 31
 32#define I40E_MAX_ITR               0x0FF0  /* reg uses 2 usec resolution */
 33#define I40E_MIN_ITR               0x0001  /* reg uses 2 usec resolution */
 34#define I40E_ITR_100K              0x0005
 35#define I40E_ITR_50K               0x000A
 36#define I40E_ITR_20K               0x0019
 37#define I40E_ITR_18K               0x001B
 38#define I40E_ITR_8K                0x003E
 39#define I40E_ITR_4K                0x007A
 40#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
 41#define I40E_ITR_RX_DEF            I40E_ITR_20K
 42#define I40E_ITR_TX_DEF            I40E_ITR_20K
 43#define I40E_ITR_DYNAMIC           0x8000  /* use top bit as a flag */
 44#define I40E_MIN_INT_RATE          250     /* ~= 1000000 / (I40E_MAX_ITR * 2) */
 45#define I40E_MAX_INT_RATE          500000  /* == 1000000 / (I40E_MIN_ITR * 2) */
 46#define I40E_DEFAULT_IRQ_WORK      256
 47#define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
 48#define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
 49#define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
 51 * the value of the rate limit is non-zero
 52 */
 53#define INTRL_ENA                  BIT(6)
 
 54#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
 55#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56#define I40E_INTRL_8K              125     /* 8000 ints/sec */
 57#define I40E_INTRL_62K             16      /* 62500 ints/sec */
 58#define I40E_INTRL_83K             12      /* 83333 ints/sec */
 59
 60#define I40E_QUEUE_END_OF_LIST 0x7FF
 61
 62/* this enum matches hardware bits and is meant to be used by DYN_CTLN
 63 * registers and QINT registers or more generally anywhere in the manual
 64 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
 65 * register but instead is a special value meaning "don't update" ITR0/1/2.
 66 */
 67enum i40e_dyn_idx_t {
 68	I40E_IDX_ITR0 = 0,
 69	I40E_IDX_ITR1 = 1,
 70	I40E_IDX_ITR2 = 2,
 71	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
 72};
 73
 74/* these are indexes into ITRN registers */
 75#define I40E_RX_ITR    I40E_IDX_ITR0
 76#define I40E_TX_ITR    I40E_IDX_ITR1
 77#define I40E_PE_ITR    I40E_IDX_ITR2
 78
 79/* Supported RSS offloads */
 80#define I40E_DEFAULT_RSS_HENA ( \
 81	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
 82	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
 83	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
 84	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
 85	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
 86	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
 87	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
 88	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
 89	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
 90	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
 91	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
 92
 93#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
 94	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
 95	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
 96	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
 97	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
 98	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
 99	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
100
101#define i40e_pf_get_default_rss_hena(pf) \
102	(((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
103	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
104
105/* Supported Rx Buffer Sizes */
106#define I40E_RXBUFFER_512   512    /* Used for packet split */
 
107#define I40E_RXBUFFER_2048  2048
108#define I40E_RXBUFFER_3072  3072   /* For FCoE MTU of 2158 */
109#define I40E_RXBUFFER_4096  4096
110#define I40E_RXBUFFER_8192  8192
111#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
112
113/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
114 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
115 * this adds up to 512 bytes of extra data meaning the smallest allocation
116 * we could have is 1K.
117 * i.e. RXBUFFER_512 --> size-1024 slab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118 */
119#define I40E_RX_HDR_SIZE  I40E_RXBUFFER_512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
121/* How many Rx Buffers do we bundle into one write to the hardware ? */
122#define I40E_RX_BUFFER_WRITE	16	/* Must be power of 2 */
123#define I40E_RX_INCREMENT(r, i) \
124	do {					\
125		(i)++;				\
126		if ((i) == (r)->count)		\
127			i = 0;			\
128		r->next_to_clean = i;		\
129	} while (0)
130
131#define I40E_RX_NEXT_DESC(r, i, n)		\
132	do {					\
133		(i)++;				\
134		if ((i) == (r)->count)		\
135			i = 0;			\
136		(n) = I40E_RX_DESC((r), (i));	\
137	} while (0)
138
139#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)		\
140	do {						\
141		I40E_RX_NEXT_DESC((r), (i), (n));	\
142		prefetch((n));				\
143	} while (0)
144
145#define i40e_rx_desc i40e_32byte_rx_desc
146
147#define I40E_MAX_BUFFER_TXD	8
148#define I40E_MIN_TX_LEN		17
149#define I40E_MAX_DATA_PER_TXD	8192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
151/* Tx Descriptors needed, worst case */
152#define TXD_USE_COUNT(S) DIV_ROUND_UP((S), I40E_MAX_DATA_PER_TXD)
153#define DESC_NEEDED (MAX_SKB_FRAGS + 4)
154#define I40E_MIN_DESC_PENDING	4
155
156#define I40E_TX_FLAGS_HW_VLAN		BIT(1)
157#define I40E_TX_FLAGS_SW_VLAN		BIT(2)
158#define I40E_TX_FLAGS_TSO		BIT(3)
159#define I40E_TX_FLAGS_IPV4		BIT(4)
160#define I40E_TX_FLAGS_IPV6		BIT(5)
161#define I40E_TX_FLAGS_FCCRC		BIT(6)
162#define I40E_TX_FLAGS_FSO		BIT(7)
163#define I40E_TX_FLAGS_TSYN		BIT(8)
164#define I40E_TX_FLAGS_FD_SB		BIT(9)
165#define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
166#define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
167#define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
168#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
169#define I40E_TX_FLAGS_VLAN_SHIFT	16
170
171struct i40e_tx_buffer {
172	struct i40e_tx_desc *next_to_watch;
173	union {
 
174		struct sk_buff *skb;
175		void *raw_buf;
176	};
177	unsigned int bytecount;
178	unsigned short gso_segs;
179
180	DEFINE_DMA_UNMAP_ADDR(dma);
181	DEFINE_DMA_UNMAP_LEN(len);
182	u32 tx_flags;
183};
184
185struct i40e_rx_buffer {
186	struct sk_buff *skb;
187	void *hdr_buf;
188	dma_addr_t dma;
189	struct page *page;
190	dma_addr_t page_dma;
191	unsigned int page_offset;
 
 
 
 
 
 
 
 
192};
193
194struct i40e_queue_stats {
195	u64 packets;
196	u64 bytes;
197};
198
199struct i40e_tx_queue_stats {
200	u64 restart_queue;
201	u64 tx_busy;
202	u64 tx_done_old;
203	u64 tx_linearize;
204	u64 tx_force_wb;
205	u64 tx_lost_interrupt;
206};
207
208struct i40e_rx_queue_stats {
209	u64 non_eop_descs;
210	u64 alloc_page_failed;
211	u64 alloc_buff_failed;
212	u64 page_reuse_count;
213	u64 realloc_count;
214};
215
216enum i40e_ring_state_t {
217	__I40E_TX_FDIR_INIT_DONE,
218	__I40E_TX_XPS_INIT_DONE,
219	__I40E_RX_PS_ENABLED,
220	__I40E_RX_16BYTE_DESC_ENABLED,
221};
222
223#define ring_is_ps_enabled(ring) \
224	test_bit(__I40E_RX_PS_ENABLED, &(ring)->state)
225#define set_ring_ps_enabled(ring) \
226	set_bit(__I40E_RX_PS_ENABLED, &(ring)->state)
227#define clear_ring_ps_enabled(ring) \
228	clear_bit(__I40E_RX_PS_ENABLED, &(ring)->state)
229#define ring_is_16byte_desc_enabled(ring) \
230	test_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
231#define set_ring_16byte_desc_enabled(ring) \
232	set_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
233#define clear_ring_16byte_desc_enabled(ring) \
234	clear_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
235
236/* struct that defines a descriptor ring, associated with a VSI */
237struct i40e_ring {
238	struct i40e_ring *next;		/* pointer to next ring in q_vector */
239	void *desc;			/* Descriptor ring memory */
240	struct device *dev;		/* Used for DMA mapping */
241	struct net_device *netdev;	/* netdev ring maps to */
 
242	union {
243		struct i40e_tx_buffer *tx_bi;
244		struct i40e_rx_buffer *rx_bi;
245	};
246	unsigned long state;
247	u16 queue_index;		/* Queue number of ring */
248	u8 dcb_tc;			/* Traffic class of ring */
249	u8 __iomem *tail;
250
251	/* high bit set means dynamic, use accessor routines to read/write.
252	 * hardware only supports 2us resolution for the ITR registers.
253	 * these values always store the USER setting, and must be converted
254	 * before programming to a register.
255	 */
256	u16 rx_itr_setting;
257	u16 tx_itr_setting;
258
259	u16 count;			/* Number of descriptors */
260	u16 reg_idx;			/* HW register index of the ring */
261	u16 rx_hdr_len;
262	u16 rx_buf_len;
263	u8  dtype;
264#define I40E_RX_DTYPE_NO_SPLIT      0
265#define I40E_RX_DTYPE_HEADER_SPLIT  1
266#define I40E_RX_DTYPE_SPLIT_ALWAYS  2
267#define I40E_RX_SPLIT_L2      0x1
268#define I40E_RX_SPLIT_IP      0x2
269#define I40E_RX_SPLIT_TCP_UDP 0x4
270#define I40E_RX_SPLIT_SCTP    0x8
271
272	/* used in interrupt processing */
273	u16 next_to_use;
274	u16 next_to_clean;
275
276	u8 atr_sample_rate;
277	u8 atr_count;
278
279	unsigned long last_rx_timestamp;
280
281	bool ring_active;		/* is ring online or not */
282	bool arm_wb;		/* do something to arm write back */
283	u8 packet_stride;
284
285	u16 flags;
286#define I40E_TXR_FLAGS_WB_ON_ITR	BIT(0)
287#define I40E_TXR_FLAGS_LAST_XMIT_MORE_SET BIT(2)
 
288
289	/* stats structs */
290	struct i40e_queue_stats	stats;
291	struct u64_stats_sync syncp;
292	union {
293		struct i40e_tx_queue_stats tx_stats;
294		struct i40e_rx_queue_stats rx_stats;
295	};
296
297	unsigned int size;		/* length of descriptor ring in bytes */
298	dma_addr_t dma;			/* physical address of ring */
299
300	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
301	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
302
303	struct rcu_head rcu;		/* to avoid race on free */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304} ____cacheline_internodealigned_in_smp;
305
306enum i40e_latency_range {
307	I40E_LOWEST_LATENCY = 0,
308	I40E_LOW_LATENCY = 1,
309	I40E_BULK_LATENCY = 2,
310	I40E_ULTRA_LATENCY = 3,
311};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
313struct i40e_ring_container {
314	/* array of pointers to rings */
315	struct i40e_ring *ring;
316	unsigned int total_bytes;	/* total bytes processed this int */
317	unsigned int total_packets;	/* total packets processed this int */
318	u16 count;
319	enum i40e_latency_range latency_range;
320	u16 itr;
321};
322
323/* iterator for handling rings in ring container */
324#define i40e_for_each_ring(pos, head) \
325	for (pos = (head).ring; pos != NULL; pos = pos->next)
326
327bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rxr, u16 cleaned_count);
328bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rxr, u16 cleaned_count);
329void i40e_alloc_rx_headers(struct i40e_ring *rxr);
 
 
 
 
 
 
 
 
 
330netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
331void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
332void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
333int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
334int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
335void i40e_free_tx_resources(struct i40e_ring *tx_ring);
336void i40e_free_rx_resources(struct i40e_ring *rx_ring);
337int i40e_napi_poll(struct napi_struct *napi, int budget);
338#ifdef I40E_FCOE
339void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
340		 struct i40e_tx_buffer *first, u32 tx_flags,
341		 const u8 hdr_len, u32 td_cmd, u32 td_offset);
342int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
343			       struct i40e_ring *tx_ring, u32 *flags);
344#endif
345void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
346u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
 
347int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
348bool __i40e_chk_linearize(struct sk_buff *skb);
 
 
349
350/**
351 * i40e_get_head - Retrieve head from head writeback
352 * @tx_ring:  tx ring to fetch head of
353 *
354 * Returns value of Tx ring head based on value stored
355 * in head write-back location
356 **/
357static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
358{
359	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
360
361	return le32_to_cpu(*(volatile __le32 *)head);
362}
363
364/**
365 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
366 * @skb:     send buffer
367 * @tx_ring: ring to send buffer on
368 *
369 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
370 * there is not enough descriptors available in this ring since we need at least
371 * one descriptor.
372 **/
373static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
374{
375	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
376	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
377	int count = 0, size = skb_headlen(skb);
378
379	for (;;) {
380		count += TXD_USE_COUNT(size);
381
382		if (!nr_frags--)
383			break;
384
385		size = skb_frag_size(frag++);
386	}
387
388	return count;
389}
390
391/**
392 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
393 * @tx_ring: the ring to be checked
394 * @size:    the size buffer we want to assure is available
395 *
396 * Returns 0 if stop is not needed
397 **/
398static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
399{
400	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
401		return 0;
402	return __i40e_maybe_stop_tx(tx_ring, size);
403}
404
405/**
406 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
407 * @skb:      send buffer
408 * @count:    number of buffers used
409 *
410 * Note: Our HW can't scatter-gather more than 8 fragments to build
411 * a packet on the wire and so we need to figure out the cases where we
412 * need to linearize the skb.
413 **/
414static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
415{
416	/* Both TSO and single send will work if count is less than 8 */
417	if (likely(count < I40E_MAX_BUFFER_TXD))
418		return false;
419
420	if (skb_is_gso(skb))
421		return __i40e_chk_linearize(skb);
422
423	/* we can support up to 8 data buffers for a single send */
424	return count != I40E_MAX_BUFFER_TXD;
 
 
 
 
 
 
 
 
 
425}
426#endif /* _I40E_TXRX_H_ */
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  3
  4#ifndef _I40E_TXRX_H_
  5#define _I40E_TXRX_H_
  6
  7#include <net/xdp.h>
  8
  9/* Interrupt Throttling and Rate Limiting Goodies */
 
 
 
 
 
 
 
 
 
 
 
 
 
 10#define I40E_DEFAULT_IRQ_WORK      256
 11
 12/* The datasheet for the X710 and XL710 indicate that the maximum value for
 13 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
 14 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
 15 * the register value which is divided by 2 lets use the actual values and
 16 * avoid an excessive amount of translation.
 17 */
 18#define I40E_ITR_DYNAMIC	0x8000	/* use top bit as a flag */
 19#define I40E_ITR_MASK		0x1FFE	/* mask for ITR register value */
 20#define I40E_MIN_ITR		     2	/* reg uses 2 usec resolution */
 21#define I40E_ITR_100K		    10	/* all values below must be even */
 22#define I40E_ITR_50K		    20
 23#define I40E_ITR_20K		    50
 24#define I40E_ITR_18K		    60
 25#define I40E_ITR_8K		   122
 26#define I40E_MAX_ITR		  8160	/* maximum value as per datasheet */
 27#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
 28#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
 29#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
 30
 31#define I40E_ITR_RX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
 32#define I40E_ITR_TX_DEF		(I40E_ITR_20K | I40E_ITR_DYNAMIC)
 33
 34/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
 35 * the value of the rate limit is non-zero
 36 */
 37#define INTRL_ENA                  BIT(6)
 38#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
 39#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
 40
 41/**
 42 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
 43 * @intrl: interrupt rate limit to convert
 44 *
 45 * This function converts a decimal interrupt rate limit to the appropriate
 46 * register format expected by the firmware when setting interrupt rate limit.
 47 */
 48static inline u16 i40e_intrl_usec_to_reg(int intrl)
 49{
 50	if (intrl >> 2)
 51		return ((intrl >> 2) | INTRL_ENA);
 52	else
 53		return 0;
 54}
 55#define I40E_INTRL_8K              125     /* 8000 ints/sec */
 56#define I40E_INTRL_62K             16      /* 62500 ints/sec */
 57#define I40E_INTRL_83K             12      /* 83333 ints/sec */
 58
 59#define I40E_QUEUE_END_OF_LIST 0x7FF
 60
 61/* this enum matches hardware bits and is meant to be used by DYN_CTLN
 62 * registers and QINT registers or more generally anywhere in the manual
 63 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
 64 * register but instead is a special value meaning "don't update" ITR0/1/2.
 65 */
 66enum i40e_dyn_idx_t {
 67	I40E_IDX_ITR0 = 0,
 68	I40E_IDX_ITR1 = 1,
 69	I40E_IDX_ITR2 = 2,
 70	I40E_ITR_NONE = 3	/* ITR_NONE must not be used as an index */
 71};
 72
 73/* these are indexes into ITRN registers */
 74#define I40E_RX_ITR    I40E_IDX_ITR0
 75#define I40E_TX_ITR    I40E_IDX_ITR1
 76#define I40E_PE_ITR    I40E_IDX_ITR2
 77
 78/* Supported RSS offloads */
 79#define I40E_DEFAULT_RSS_HENA ( \
 80	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
 81	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
 82	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
 83	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
 84	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
 85	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
 86	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
 87	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
 88	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
 89	BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
 90	BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
 91
 92#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
 93	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
 94	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
 95	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
 96	BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
 97	BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
 98	BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
 99
100#define i40e_pf_get_default_rss_hena(pf) \
101	(((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
102	  I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
103
104/* Supported Rx Buffer Sizes (a multiple of 128) */
105#define I40E_RXBUFFER_256   256
106#define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
107#define I40E_RXBUFFER_2048  2048
108#define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
 
 
109#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
110
111/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
112 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
113 * this adds up to 512 bytes of extra data meaning the smallest allocation
114 * we could have is 1K.
115 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
116 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
117 */
118#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
119#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
120#define i40e_rx_desc i40e_32byte_rx_desc
121
122#define I40E_RX_DMA_ATTR \
123	(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
124
125/* Attempt to maximize the headroom available for incoming frames.  We
126 * use a 2K buffer for receives and need 1536/1534 to store the data for
127 * the frame.  This leaves us with 512 bytes of room.  From that we need
128 * to deduct the space needed for the shared info and the padding needed
129 * to IP align the frame.
130 *
131 * Note: For cache line sizes 256 or larger this value is going to end
132 *	 up negative.  In these cases we should fall back to the legacy
133 *	 receive path.
134 */
135#if (PAGE_SIZE < 8192)
136#define I40E_2K_TOO_SMALL_WITH_PADDING \
137((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
138
139static inline int i40e_compute_pad(int rx_buf_len)
140{
141	int page_size, pad_size;
142
143	page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
144	pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
145
146	return pad_size;
147}
148
149static inline int i40e_skb_pad(void)
150{
151	int rx_buf_len;
152
153	/* If a 2K buffer cannot handle a standard Ethernet frame then
154	 * optimize padding for a 3K buffer instead of a 1.5K buffer.
155	 *
156	 * For a 3K buffer we need to add enough padding to allow for
157	 * tailroom due to NET_IP_ALIGN possibly shifting us out of
158	 * cache-line alignment.
159	 */
160	if (I40E_2K_TOO_SMALL_WITH_PADDING)
161		rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
162	else
163		rx_buf_len = I40E_RXBUFFER_1536;
164
165	/* if needed make room for NET_IP_ALIGN */
166	rx_buf_len -= NET_IP_ALIGN;
167
168	return i40e_compute_pad(rx_buf_len);
169}
170
171#define I40E_SKB_PAD i40e_skb_pad()
172#else
173#define I40E_2K_TOO_SMALL_WITH_PADDING false
174#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
175#endif
176
177/**
178 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
179 * @rx_desc: pointer to receive descriptor (in le64 format)
180 * @stat_err_bits: value to mask
181 *
182 * This function does some fast chicanery in order to return the
183 * value of the mask which is really only used for boolean tests.
184 * The status_error_len doesn't need to be shifted because it begins
185 * at offset zero.
186 */
187static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
188				     const u64 stat_err_bits)
189{
190	return !!(rx_desc->wb.qword1.status_error_len &
191		  cpu_to_le64(stat_err_bits));
192}
193
194/* How many Rx Buffers do we bundle into one write to the hardware ? */
195#define I40E_RX_BUFFER_WRITE	32	/* Must be power of 2 */
196#define I40E_RX_INCREMENT(r, i) \
197	do {					\
198		(i)++;				\
199		if ((i) == (r)->count)		\
200			i = 0;			\
201		r->next_to_clean = i;		\
202	} while (0)
203
204#define I40E_RX_NEXT_DESC(r, i, n)		\
205	do {					\
206		(i)++;				\
207		if ((i) == (r)->count)		\
208			i = 0;			\
209		(n) = I40E_RX_DESC((r), (i));	\
210	} while (0)
211
212#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)		\
213	do {						\
214		I40E_RX_NEXT_DESC((r), (i), (n));	\
215		prefetch((n));				\
216	} while (0)
217
 
 
218#define I40E_MAX_BUFFER_TXD	8
219#define I40E_MIN_TX_LEN		17
220
221/* The size limit for a transmit buffer in a descriptor is (16K - 1).
222 * In order to align with the read requests we will align the value to
223 * the nearest 4K which represents our maximum read request size.
224 */
225#define I40E_MAX_READ_REQ_SIZE		4096
226#define I40E_MAX_DATA_PER_TXD		(16 * 1024 - 1)
227#define I40E_MAX_DATA_PER_TXD_ALIGNED \
228	(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
229
230/**
231 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
232 * @size: transmit request size in bytes
233 *
234 * Due to hardware alignment restrictions (4K alignment), we need to
235 * assume that we can have no more than 12K of data per descriptor, even
236 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
237 * Thus, we need to divide by 12K. But division is slow! Instead,
238 * we decompose the operation into shifts and one relatively cheap
239 * multiply operation.
240 *
241 * To divide by 12K, we first divide by 4K, then divide by 3:
242 *     To divide by 4K, shift right by 12 bits
243 *     To divide by 3, multiply by 85, then divide by 256
244 *     (Divide by 256 is done by shifting right by 8 bits)
245 * Finally, we add one to round up. Because 256 isn't an exact multiple of
246 * 3, we'll underestimate near each multiple of 12K. This is actually more
247 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
248 * segment.  For our purposes this is accurate out to 1M which is orders of
249 * magnitude greater than our largest possible GSO size.
250 *
251 * This would then be implemented as:
252 *     return (((size >> 12) * 85) >> 8) + 1;
253 *
254 * Since multiplication and division are commutative, we can reorder
255 * operations into:
256 *     return ((size * 85) >> 20) + 1;
257 */
258static inline unsigned int i40e_txd_use_count(unsigned int size)
259{
260	return ((size * 85) >> 20) + 1;
261}
262
263/* Tx Descriptors needed, worst case */
264#define DESC_NEEDED (MAX_SKB_FRAGS + 6)
 
265#define I40E_MIN_DESC_PENDING	4
266
267#define I40E_TX_FLAGS_HW_VLAN		BIT(1)
268#define I40E_TX_FLAGS_SW_VLAN		BIT(2)
269#define I40E_TX_FLAGS_TSO		BIT(3)
270#define I40E_TX_FLAGS_IPV4		BIT(4)
271#define I40E_TX_FLAGS_IPV6		BIT(5)
272#define I40E_TX_FLAGS_FCCRC		BIT(6)
273#define I40E_TX_FLAGS_FSO		BIT(7)
274#define I40E_TX_FLAGS_TSYN		BIT(8)
275#define I40E_TX_FLAGS_FD_SB		BIT(9)
276#define I40E_TX_FLAGS_UDP_TUNNEL	BIT(10)
277#define I40E_TX_FLAGS_VLAN_MASK		0xffff0000
278#define I40E_TX_FLAGS_VLAN_PRIO_MASK	0xe0000000
279#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT	29
280#define I40E_TX_FLAGS_VLAN_SHIFT	16
281
282struct i40e_tx_buffer {
283	struct i40e_tx_desc *next_to_watch;
284	union {
285		struct xdp_frame *xdpf;
286		struct sk_buff *skb;
287		void *raw_buf;
288	};
289	unsigned int bytecount;
290	unsigned short gso_segs;
291
292	DEFINE_DMA_UNMAP_ADDR(dma);
293	DEFINE_DMA_UNMAP_LEN(len);
294	u32 tx_flags;
295};
296
297struct i40e_rx_buffer {
 
 
298	dma_addr_t dma;
299	union {
300		struct {
301			struct page *page;
302			__u32 page_offset;
303			__u16 pagecnt_bias;
304		};
305		struct {
306			void *addr;
307			u64 handle;
308		};
309	};
310};
311
312struct i40e_queue_stats {
313	u64 packets;
314	u64 bytes;
315};
316
317struct i40e_tx_queue_stats {
318	u64 restart_queue;
319	u64 tx_busy;
320	u64 tx_done_old;
321	u64 tx_linearize;
322	u64 tx_force_wb;
323	int prev_pkt_ctr;
324};
325
326struct i40e_rx_queue_stats {
327	u64 non_eop_descs;
328	u64 alloc_page_failed;
329	u64 alloc_buff_failed;
330	u64 page_reuse_count;
331	u64 realloc_count;
332};
333
334enum i40e_ring_state_t {
335	__I40E_TX_FDIR_INIT_DONE,
336	__I40E_TX_XPS_INIT_DONE,
337	__I40E_RING_STATE_NBITS /* must be last */
 
338};
339
340/* some useful defines for virtchannel interface, which
341 * is the only remaining user of header split
342 */
343#define I40E_RX_DTYPE_NO_SPLIT      0
344#define I40E_RX_DTYPE_HEADER_SPLIT  1
345#define I40E_RX_DTYPE_SPLIT_ALWAYS  2
346#define I40E_RX_SPLIT_L2      0x1
347#define I40E_RX_SPLIT_IP      0x2
348#define I40E_RX_SPLIT_TCP_UDP 0x4
349#define I40E_RX_SPLIT_SCTP    0x8
 
 
350
351/* struct that defines a descriptor ring, associated with a VSI */
352struct i40e_ring {
353	struct i40e_ring *next;		/* pointer to next ring in q_vector */
354	void *desc;			/* Descriptor ring memory */
355	struct device *dev;		/* Used for DMA mapping */
356	struct net_device *netdev;	/* netdev ring maps to */
357	struct bpf_prog *xdp_prog;
358	union {
359		struct i40e_tx_buffer *tx_bi;
360		struct i40e_rx_buffer *rx_bi;
361	};
362	DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
363	u16 queue_index;		/* Queue number of ring */
364	u8 dcb_tc;			/* Traffic class of ring */
365	u8 __iomem *tail;
366
367	/* high bit set means dynamic, use accessor routines to read/write.
368	 * hardware only supports 2us resolution for the ITR registers.
369	 * these values always store the USER setting, and must be converted
370	 * before programming to a register.
371	 */
372	u16 itr_setting;
 
373
374	u16 count;			/* Number of descriptors */
375	u16 reg_idx;			/* HW register index of the ring */
 
376	u16 rx_buf_len;
 
 
 
 
 
 
 
 
377
378	/* used in interrupt processing */
379	u16 next_to_use;
380	u16 next_to_clean;
381
382	u8 atr_sample_rate;
383	u8 atr_count;
384
 
 
385	bool ring_active;		/* is ring online or not */
386	bool arm_wb;		/* do something to arm write back */
387	u8 packet_stride;
388
389	u16 flags;
390#define I40E_TXR_FLAGS_WB_ON_ITR		BIT(0)
391#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED	BIT(1)
392#define I40E_TXR_FLAGS_XDP			BIT(2)
393
394	/* stats structs */
395	struct i40e_queue_stats	stats;
396	struct u64_stats_sync syncp;
397	union {
398		struct i40e_tx_queue_stats tx_stats;
399		struct i40e_rx_queue_stats rx_stats;
400	};
401
402	unsigned int size;		/* length of descriptor ring in bytes */
403	dma_addr_t dma;			/* physical address of ring */
404
405	struct i40e_vsi *vsi;		/* Backreference to associated VSI */
406	struct i40e_q_vector *q_vector;	/* Backreference to associated vector */
407
408	struct rcu_head rcu;		/* to avoid race on free */
409	u16 next_to_alloc;
410	struct sk_buff *skb;		/* When i40e_clean_rx_ring_irq() must
411					 * return before it sees the EOP for
412					 * the current packet, we save that skb
413					 * here and resume receiving this
414					 * packet the next time
415					 * i40e_clean_rx_ring_irq() is called
416					 * for this ring.
417					 */
418
419	struct i40e_channel *ch;
420	struct xdp_rxq_info xdp_rxq;
421	struct xdp_umem *xsk_umem;
422	struct zero_copy_allocator zca; /* ZC allocator anchor */
423} ____cacheline_internodealigned_in_smp;
424
425static inline bool ring_uses_build_skb(struct i40e_ring *ring)
426{
427	return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
428}
429
430static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
431{
432	ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
433}
434
435static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
436{
437	ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
438}
439
440static inline bool ring_is_xdp(struct i40e_ring *ring)
441{
442	return !!(ring->flags & I40E_TXR_FLAGS_XDP);
443}
444
445static inline void set_ring_xdp(struct i40e_ring *ring)
446{
447	ring->flags |= I40E_TXR_FLAGS_XDP;
448}
449
450#define I40E_ITR_ADAPTIVE_MIN_INC	0x0002
451#define I40E_ITR_ADAPTIVE_MIN_USECS	0x0002
452#define I40E_ITR_ADAPTIVE_MAX_USECS	0x007e
453#define I40E_ITR_ADAPTIVE_LATENCY	0x8000
454#define I40E_ITR_ADAPTIVE_BULK		0x0000
455#define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
456
457struct i40e_ring_container {
458	struct i40e_ring *ring;		/* pointer to linked list of ring(s) */
459	unsigned long next_update;	/* jiffies value of next update */
460	unsigned int total_bytes;	/* total bytes processed this int */
461	unsigned int total_packets;	/* total packets processed this int */
462	u16 count;
463	u16 target_itr;			/* target ITR setting for ring(s) */
464	u16 current_itr;		/* current ITR setting for ring(s) */
465};
466
467/* iterator for handling rings in ring container */
468#define i40e_for_each_ring(pos, head) \
469	for (pos = (head).ring; pos != NULL; pos = pos->next)
470
471static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
472{
473#if (PAGE_SIZE < 8192)
474	if (ring->rx_buf_len > (PAGE_SIZE / 2))
475		return 1;
476#endif
477	return 0;
478}
479
480#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
481
482bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
483netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
484void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
485void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
486int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
487int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
488void i40e_free_tx_resources(struct i40e_ring *tx_ring);
489void i40e_free_rx_resources(struct i40e_ring *rx_ring);
490int i40e_napi_poll(struct napi_struct *napi, int budget);
 
 
 
 
 
 
 
491void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
492u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
493void i40e_detect_recover_hung(struct i40e_vsi *vsi);
494int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
495bool __i40e_chk_linearize(struct sk_buff *skb);
496int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
497		  u32 flags);
498
499/**
500 * i40e_get_head - Retrieve head from head writeback
501 * @tx_ring:  tx ring to fetch head of
502 *
503 * Returns value of Tx ring head based on value stored
504 * in head write-back location
505 **/
506static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
507{
508	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
509
510	return le32_to_cpu(*(volatile __le32 *)head);
511}
512
513/**
514 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
515 * @skb:     send buffer
516 * @tx_ring: ring to send buffer on
517 *
518 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
519 * there is not enough descriptors available in this ring since we need at least
520 * one descriptor.
521 **/
522static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
523{
524	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
525	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
526	int count = 0, size = skb_headlen(skb);
527
528	for (;;) {
529		count += i40e_txd_use_count(size);
530
531		if (!nr_frags--)
532			break;
533
534		size = skb_frag_size(frag++);
535	}
536
537	return count;
538}
539
540/**
541 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
542 * @tx_ring: the ring to be checked
543 * @size:    the size buffer we want to assure is available
544 *
545 * Returns 0 if stop is not needed
546 **/
547static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
548{
549	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
550		return 0;
551	return __i40e_maybe_stop_tx(tx_ring, size);
552}
553
554/**
555 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
556 * @skb:      send buffer
557 * @count:    number of buffers used
558 *
559 * Note: Our HW can't scatter-gather more than 8 fragments to build
560 * a packet on the wire and so we need to figure out the cases where we
561 * need to linearize the skb.
562 **/
563static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
564{
565	/* Both TSO and single send will work if count is less than 8 */
566	if (likely(count < I40E_MAX_BUFFER_TXD))
567		return false;
568
569	if (skb_is_gso(skb))
570		return __i40e_chk_linearize(skb);
571
572	/* we can support up to 8 data buffers for a single send */
573	return count != I40E_MAX_BUFFER_TXD;
574}
575
576/**
577 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
578 * @ring: Tx ring to find the netdev equivalent of
579 **/
580static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
581{
582	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
583}
584#endif /* _I40E_TXRX_H_ */