Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * AMD Cryptographic Coprocessor (CCP) driver
   4 *
   5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
   6 *
   7 * Author: Gary R Hook <gary.hook@amd.com>
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/kthread.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/interrupt.h>
  14#include <linux/compiler.h>
  15#include <linux/ccp.h>
  16
  17#include "ccp-dev.h"
  18
  19/* Allocate the requested number of contiguous LSB slots
  20 * from the LSB bitmap. Look in the private range for this
  21 * queue first; failing that, check the public area.
  22 * If no space is available, wait around.
  23 * Return: first slot number
  24 */
  25static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
  26{
  27	struct ccp_device *ccp;
  28	int start;
  29
  30	/* First look at the map for the queue */
  31	if (cmd_q->lsb >= 0) {
  32		start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
  33							LSB_SIZE,
  34							0, count, 0);
  35		if (start < LSB_SIZE) {
  36			bitmap_set(cmd_q->lsbmap, start, count);
  37			return start + cmd_q->lsb * LSB_SIZE;
  38		}
  39	}
  40
  41	/* No joy; try to get an entry from the shared blocks */
  42	ccp = cmd_q->ccp;
  43	for (;;) {
  44		mutex_lock(&ccp->sb_mutex);
  45
  46		start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
  47							MAX_LSB_CNT * LSB_SIZE,
  48							0,
  49							count, 0);
  50		if (start <= MAX_LSB_CNT * LSB_SIZE) {
  51			bitmap_set(ccp->lsbmap, start, count);
  52
  53			mutex_unlock(&ccp->sb_mutex);
  54			return start;
  55		}
  56
  57		ccp->sb_avail = 0;
  58
  59		mutex_unlock(&ccp->sb_mutex);
  60
  61		/* Wait for KSB entries to become available */
  62		if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
  63			return 0;
  64	}
  65}
  66
  67/* Free a number of LSB slots from the bitmap, starting at
  68 * the indicated starting slot number.
  69 */
  70static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
  71			 unsigned int count)
  72{
  73	if (!start)
  74		return;
  75
  76	if (cmd_q->lsb == start) {
  77		/* An entry from the private LSB */
  78		bitmap_clear(cmd_q->lsbmap, start, count);
  79	} else {
  80		/* From the shared LSBs */
  81		struct ccp_device *ccp = cmd_q->ccp;
  82
  83		mutex_lock(&ccp->sb_mutex);
  84		bitmap_clear(ccp->lsbmap, start, count);
  85		ccp->sb_avail = 1;
  86		mutex_unlock(&ccp->sb_mutex);
  87		wake_up_interruptible_all(&ccp->sb_queue);
  88	}
  89}
  90
  91/* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
  92union ccp_function {
  93	struct {
  94		u16 size:7;
  95		u16 encrypt:1;
  96		u16 mode:5;
  97		u16 type:2;
  98	} aes;
  99	struct {
 100		u16 size:7;
 101		u16 encrypt:1;
 102		u16 rsvd:5;
 103		u16 type:2;
 104	} aes_xts;
 105	struct {
 106		u16 size:7;
 107		u16 encrypt:1;
 108		u16 mode:5;
 109		u16 type:2;
 110	} des3;
 111	struct {
 112		u16 rsvd1:10;
 113		u16 type:4;
 114		u16 rsvd2:1;
 115	} sha;
 116	struct {
 117		u16 mode:3;
 118		u16 size:12;
 119	} rsa;
 120	struct {
 121		u16 byteswap:2;
 122		u16 bitwise:3;
 123		u16 reflect:2;
 124		u16 rsvd:8;
 125	} pt;
 126	struct  {
 127		u16 rsvd:13;
 128	} zlib;
 129	struct {
 130		u16 size:10;
 131		u16 type:2;
 132		u16 mode:3;
 133	} ecc;
 134	u16 raw;
 135};
 136
 137#define	CCP_AES_SIZE(p)		((p)->aes.size)
 138#define	CCP_AES_ENCRYPT(p)	((p)->aes.encrypt)
 139#define	CCP_AES_MODE(p)		((p)->aes.mode)
 140#define	CCP_AES_TYPE(p)		((p)->aes.type)
 141#define	CCP_XTS_SIZE(p)		((p)->aes_xts.size)
 142#define	CCP_XTS_TYPE(p)		((p)->aes_xts.type)
 143#define	CCP_XTS_ENCRYPT(p)	((p)->aes_xts.encrypt)
 144#define	CCP_DES3_SIZE(p)	((p)->des3.size)
 145#define	CCP_DES3_ENCRYPT(p)	((p)->des3.encrypt)
 146#define	CCP_DES3_MODE(p)	((p)->des3.mode)
 147#define	CCP_DES3_TYPE(p)	((p)->des3.type)
 148#define	CCP_SHA_TYPE(p)		((p)->sha.type)
 149#define	CCP_RSA_SIZE(p)		((p)->rsa.size)
 150#define	CCP_PT_BYTESWAP(p)	((p)->pt.byteswap)
 151#define	CCP_PT_BITWISE(p)	((p)->pt.bitwise)
 152#define	CCP_ECC_MODE(p)		((p)->ecc.mode)
 153#define	CCP_ECC_AFFINE(p)	((p)->ecc.one)
 154
 155/* Word 0 */
 156#define CCP5_CMD_DW0(p)		((p)->dw0)
 157#define CCP5_CMD_SOC(p)		(CCP5_CMD_DW0(p).soc)
 158#define CCP5_CMD_IOC(p)		(CCP5_CMD_DW0(p).ioc)
 159#define CCP5_CMD_INIT(p)	(CCP5_CMD_DW0(p).init)
 160#define CCP5_CMD_EOM(p)		(CCP5_CMD_DW0(p).eom)
 161#define CCP5_CMD_FUNCTION(p)	(CCP5_CMD_DW0(p).function)
 162#define CCP5_CMD_ENGINE(p)	(CCP5_CMD_DW0(p).engine)
 163#define CCP5_CMD_PROT(p)	(CCP5_CMD_DW0(p).prot)
 164
 165/* Word 1 */
 166#define CCP5_CMD_DW1(p)		((p)->length)
 167#define CCP5_CMD_LEN(p)		(CCP5_CMD_DW1(p))
 168
 169/* Word 2 */
 170#define CCP5_CMD_DW2(p)		((p)->src_lo)
 171#define CCP5_CMD_SRC_LO(p)	(CCP5_CMD_DW2(p))
 172
 173/* Word 3 */
 174#define CCP5_CMD_DW3(p)		((p)->dw3)
 175#define CCP5_CMD_SRC_MEM(p)	((p)->dw3.src_mem)
 176#define CCP5_CMD_SRC_HI(p)	((p)->dw3.src_hi)
 177#define CCP5_CMD_LSB_ID(p)	((p)->dw3.lsb_cxt_id)
 178#define CCP5_CMD_FIX_SRC(p)	((p)->dw3.fixed)
 179
 180/* Words 4/5 */
 181#define CCP5_CMD_DW4(p)		((p)->dw4)
 182#define CCP5_CMD_DST_LO(p)	(CCP5_CMD_DW4(p).dst_lo)
 183#define CCP5_CMD_DW5(p)		((p)->dw5.fields.dst_hi)
 184#define CCP5_CMD_DST_HI(p)	(CCP5_CMD_DW5(p))
 185#define CCP5_CMD_DST_MEM(p)	((p)->dw5.fields.dst_mem)
 186#define CCP5_CMD_FIX_DST(p)	((p)->dw5.fields.fixed)
 187#define CCP5_CMD_SHA_LO(p)	((p)->dw4.sha_len_lo)
 188#define CCP5_CMD_SHA_HI(p)	((p)->dw5.sha_len_hi)
 189
 190/* Word 6/7 */
 191#define CCP5_CMD_DW6(p)		((p)->key_lo)
 192#define CCP5_CMD_KEY_LO(p)	(CCP5_CMD_DW6(p))
 193#define CCP5_CMD_DW7(p)		((p)->dw7)
 194#define CCP5_CMD_KEY_HI(p)	((p)->dw7.key_hi)
 195#define CCP5_CMD_KEY_MEM(p)	((p)->dw7.key_mem)
 196
 197static inline u32 low_address(unsigned long addr)
 198{
 199	return (u64)addr & 0x0ffffffff;
 200}
 201
 202static inline u32 high_address(unsigned long addr)
 203{
 204	return ((u64)addr >> 32) & 0x00000ffff;
 205}
 206
 207static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
 208{
 209	unsigned int head_idx, n;
 210	u32 head_lo, queue_start;
 211
 212	queue_start = low_address(cmd_q->qdma_tail);
 213	head_lo = ioread32(cmd_q->reg_head_lo);
 214	head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
 215
 216	n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
 217
 218	return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
 219}
 220
 221static int ccp5_do_cmd(struct ccp5_desc *desc,
 222		       struct ccp_cmd_queue *cmd_q)
 223{
 224	u32 *mP;
 225	__le32 *dP;
 226	u32 tail;
 227	int	i;
 228	int ret = 0;
 229
 230	cmd_q->total_ops++;
 231
 232	if (CCP5_CMD_SOC(desc)) {
 233		CCP5_CMD_IOC(desc) = 1;
 234		CCP5_CMD_SOC(desc) = 0;
 235	}
 236	mutex_lock(&cmd_q->q_mutex);
 237
 238	mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
 239	dP = (__le32 *) desc;
 240	for (i = 0; i < 8; i++)
 241		mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
 242
 243	cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
 244
 245	/* The data used by this command must be flushed to memory */
 246	wmb();
 247
 248	/* Write the new tail address back to the queue register */
 249	tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
 250	iowrite32(tail, cmd_q->reg_tail_lo);
 251
 252	/* Turn the queue back on using our cached control register */
 253	iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
 254	mutex_unlock(&cmd_q->q_mutex);
 255
 256	if (CCP5_CMD_IOC(desc)) {
 257		/* Wait for the job to complete */
 258		ret = wait_event_interruptible(cmd_q->int_queue,
 259					       cmd_q->int_rcvd);
 260		if (ret || cmd_q->cmd_error) {
 261			/* Log the error and flush the queue by
 262			 * moving the head pointer
 263			 */
 264			if (cmd_q->cmd_error)
 265				ccp_log_error(cmd_q->ccp,
 266					      cmd_q->cmd_error);
 267			iowrite32(tail, cmd_q->reg_head_lo);
 268			if (!ret)
 269				ret = -EIO;
 270		}
 271		cmd_q->int_rcvd = 0;
 272	}
 273
 274	return ret;
 275}
 276
 277static int ccp5_perform_aes(struct ccp_op *op)
 278{
 279	struct ccp5_desc desc;
 280	union ccp_function function;
 281	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
 282
 283	op->cmd_q->total_aes_ops++;
 284
 285	/* Zero out all the fields of the command desc */
 286	memset(&desc, 0, Q_DESC_SIZE);
 287
 288	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
 289
 290	CCP5_CMD_SOC(&desc) = op->soc;
 291	CCP5_CMD_IOC(&desc) = 1;
 292	CCP5_CMD_INIT(&desc) = op->init;
 293	CCP5_CMD_EOM(&desc) = op->eom;
 294	CCP5_CMD_PROT(&desc) = 0;
 295
 296	function.raw = 0;
 297	CCP_AES_ENCRYPT(&function) = op->u.aes.action;
 298	CCP_AES_MODE(&function) = op->u.aes.mode;
 299	CCP_AES_TYPE(&function) = op->u.aes.type;
 300	CCP_AES_SIZE(&function) = op->u.aes.size;
 301
 302	CCP5_CMD_FUNCTION(&desc) = function.raw;
 303
 304	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
 305
 306	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
 307	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
 308	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 309
 310	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
 311	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
 312	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 313
 314	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
 315	CCP5_CMD_KEY_HI(&desc) = 0;
 316	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
 317	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
 318
 319	return ccp5_do_cmd(&desc, op->cmd_q);
 320}
 321
 322static int ccp5_perform_xts_aes(struct ccp_op *op)
 323{
 324	struct ccp5_desc desc;
 325	union ccp_function function;
 326	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
 327
 328	op->cmd_q->total_xts_aes_ops++;
 329
 330	/* Zero out all the fields of the command desc */
 331	memset(&desc, 0, Q_DESC_SIZE);
 332
 333	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
 334
 335	CCP5_CMD_SOC(&desc) = op->soc;
 336	CCP5_CMD_IOC(&desc) = 1;
 337	CCP5_CMD_INIT(&desc) = op->init;
 338	CCP5_CMD_EOM(&desc) = op->eom;
 339	CCP5_CMD_PROT(&desc) = 0;
 340
 341	function.raw = 0;
 342	CCP_XTS_TYPE(&function) = op->u.xts.type;
 343	CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
 344	CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
 345	CCP5_CMD_FUNCTION(&desc) = function.raw;
 346
 347	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
 348
 349	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
 350	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
 351	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 352
 353	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
 354	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
 355	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 356
 357	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
 358	CCP5_CMD_KEY_HI(&desc) =  0;
 359	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
 360	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
 361
 362	return ccp5_do_cmd(&desc, op->cmd_q);
 363}
 364
 365static int ccp5_perform_sha(struct ccp_op *op)
 366{
 367	struct ccp5_desc desc;
 368	union ccp_function function;
 369
 370	op->cmd_q->total_sha_ops++;
 371
 372	/* Zero out all the fields of the command desc */
 373	memset(&desc, 0, Q_DESC_SIZE);
 374
 375	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
 376
 377	CCP5_CMD_SOC(&desc) = op->soc;
 378	CCP5_CMD_IOC(&desc) = 1;
 379	CCP5_CMD_INIT(&desc) = 1;
 380	CCP5_CMD_EOM(&desc) = op->eom;
 381	CCP5_CMD_PROT(&desc) = 0;
 382
 383	function.raw = 0;
 384	CCP_SHA_TYPE(&function) = op->u.sha.type;
 385	CCP5_CMD_FUNCTION(&desc) = function.raw;
 386
 387	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
 388
 389	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
 390	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
 391	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 392
 393	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
 394
 395	if (op->eom) {
 396		CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
 397		CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
 398	} else {
 399		CCP5_CMD_SHA_LO(&desc) = 0;
 400		CCP5_CMD_SHA_HI(&desc) = 0;
 401	}
 402
 403	return ccp5_do_cmd(&desc, op->cmd_q);
 404}
 405
 406static int ccp5_perform_des3(struct ccp_op *op)
 407{
 408	struct ccp5_desc desc;
 409	union ccp_function function;
 410	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
 411
 412	op->cmd_q->total_3des_ops++;
 413
 414	/* Zero out all the fields of the command desc */
 415	memset(&desc, 0, sizeof(struct ccp5_desc));
 416
 417	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
 418
 419	CCP5_CMD_SOC(&desc) = op->soc;
 420	CCP5_CMD_IOC(&desc) = 1;
 421	CCP5_CMD_INIT(&desc) = op->init;
 422	CCP5_CMD_EOM(&desc) = op->eom;
 423	CCP5_CMD_PROT(&desc) = 0;
 424
 425	function.raw = 0;
 426	CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
 427	CCP_DES3_MODE(&function) = op->u.des3.mode;
 428	CCP_DES3_TYPE(&function) = op->u.des3.type;
 429	CCP5_CMD_FUNCTION(&desc) = function.raw;
 430
 431	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
 432
 433	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
 434	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
 435	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 436
 437	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
 438	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
 439	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 440
 441	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
 442	CCP5_CMD_KEY_HI(&desc) = 0;
 443	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
 444	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
 445
 446	return ccp5_do_cmd(&desc, op->cmd_q);
 447}
 448
 449static int ccp5_perform_rsa(struct ccp_op *op)
 450{
 451	struct ccp5_desc desc;
 452	union ccp_function function;
 453
 454	op->cmd_q->total_rsa_ops++;
 455
 456	/* Zero out all the fields of the command desc */
 457	memset(&desc, 0, Q_DESC_SIZE);
 458
 459	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
 460
 461	CCP5_CMD_SOC(&desc) = op->soc;
 462	CCP5_CMD_IOC(&desc) = 1;
 463	CCP5_CMD_INIT(&desc) = 0;
 464	CCP5_CMD_EOM(&desc) = 1;
 465	CCP5_CMD_PROT(&desc) = 0;
 466
 467	function.raw = 0;
 468	CCP_RSA_SIZE(&function) = (op->u.rsa.mod_size + 7) >> 3;
 469	CCP5_CMD_FUNCTION(&desc) = function.raw;
 470
 471	CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
 472
 473	/* Source is from external memory */
 474	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
 475	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
 476	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 477
 478	/* Destination is in external memory */
 479	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
 480	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
 481	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 482
 483	/* Key (Exponent) is in external memory */
 484	CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
 485	CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
 486	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 487
 488	return ccp5_do_cmd(&desc, op->cmd_q);
 489}
 490
 491static int ccp5_perform_passthru(struct ccp_op *op)
 492{
 493	struct ccp5_desc desc;
 494	union ccp_function function;
 495	struct ccp_dma_info *saddr = &op->src.u.dma;
 496	struct ccp_dma_info *daddr = &op->dst.u.dma;
 497
 498
 499	op->cmd_q->total_pt_ops++;
 500
 501	memset(&desc, 0, Q_DESC_SIZE);
 502
 503	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
 504
 505	CCP5_CMD_SOC(&desc) = 0;
 506	CCP5_CMD_IOC(&desc) = 1;
 507	CCP5_CMD_INIT(&desc) = 0;
 508	CCP5_CMD_EOM(&desc) = op->eom;
 509	CCP5_CMD_PROT(&desc) = 0;
 510
 511	function.raw = 0;
 512	CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
 513	CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
 514	CCP5_CMD_FUNCTION(&desc) = function.raw;
 515
 516	/* Length of source data is always 256 bytes */
 517	if (op->src.type == CCP_MEMTYPE_SYSTEM)
 518		CCP5_CMD_LEN(&desc) = saddr->length;
 519	else
 520		CCP5_CMD_LEN(&desc) = daddr->length;
 521
 522	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
 523		CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
 524		CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
 525		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 526
 527		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
 528			CCP5_CMD_LSB_ID(&desc) = op->sb_key;
 529	} else {
 530		u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
 531
 532		CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
 533		CCP5_CMD_SRC_HI(&desc) = 0;
 534		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
 535	}
 536
 537	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
 538		CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
 539		CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
 540		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 541	} else {
 542		u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
 543
 544		CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
 545		CCP5_CMD_DST_HI(&desc) = 0;
 546		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
 547	}
 548
 549	return ccp5_do_cmd(&desc, op->cmd_q);
 550}
 551
 552static int ccp5_perform_ecc(struct ccp_op *op)
 553{
 554	struct ccp5_desc desc;
 555	union ccp_function function;
 556
 557	op->cmd_q->total_ecc_ops++;
 558
 559	/* Zero out all the fields of the command desc */
 560	memset(&desc, 0, Q_DESC_SIZE);
 561
 562	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
 563
 564	CCP5_CMD_SOC(&desc) = 0;
 565	CCP5_CMD_IOC(&desc) = 1;
 566	CCP5_CMD_INIT(&desc) = 0;
 567	CCP5_CMD_EOM(&desc) = 1;
 568	CCP5_CMD_PROT(&desc) = 0;
 569
 570	function.raw = 0;
 571	function.ecc.mode = op->u.ecc.function;
 572	CCP5_CMD_FUNCTION(&desc) = function.raw;
 573
 574	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
 575
 576	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
 577	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
 578	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 579
 580	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
 581	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
 582	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
 583
 584	return ccp5_do_cmd(&desc, op->cmd_q);
 585}
 586
 587static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
 588{
 589	int q_mask = 1 << cmd_q->id;
 590	int queues = 0;
 591	int j;
 592
 593	/* Build a bit mask to know which LSBs this queue has access to.
 594	 * Don't bother with segment 0 as it has special privileges.
 595	 */
 596	for (j = 1; j < MAX_LSB_CNT; j++) {
 597		if (status & q_mask)
 598			bitmap_set(cmd_q->lsbmask, j, 1);
 599		status >>= LSB_REGION_WIDTH;
 600	}
 601	queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
 602	dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
 603		 cmd_q->id, queues);
 604
 605	return queues ? 0 : -EINVAL;
 606}
 607
 608static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
 609					int lsb_cnt, int n_lsbs,
 610					unsigned long *lsb_pub)
 611{
 612	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
 613	int bitno;
 614	int qlsb_wgt;
 615	int i;
 616
 617	/* For each queue:
 618	 * If the count of potential LSBs available to a queue matches the
 619	 * ordinal given to us in lsb_cnt:
 620	 * Copy the mask of possible LSBs for this queue into "qlsb";
 621	 * For each bit in qlsb, see if the corresponding bit in the
 622	 * aggregation mask is set; if so, we have a match.
 623	 *     If we have a match, clear the bit in the aggregation to
 624	 *     mark it as no longer available.
 625	 *     If there is no match, clear the bit in qlsb and keep looking.
 626	 */
 627	for (i = 0; i < ccp->cmd_q_count; i++) {
 628		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
 629
 630		qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
 631
 632		if (qlsb_wgt == lsb_cnt) {
 633			bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
 634
 635			bitno = find_first_bit(qlsb, MAX_LSB_CNT);
 636			while (bitno < MAX_LSB_CNT) {
 637				if (test_bit(bitno, lsb_pub)) {
 638					/* We found an available LSB
 639					 * that this queue can access
 640					 */
 641					cmd_q->lsb = bitno;
 642					bitmap_clear(lsb_pub, bitno, 1);
 643					dev_dbg(ccp->dev,
 644						 "Queue %d gets LSB %d\n",
 645						 i, bitno);
 646					break;
 647				}
 648				bitmap_clear(qlsb, bitno, 1);
 649				bitno = find_first_bit(qlsb, MAX_LSB_CNT);
 650			}
 651			if (bitno >= MAX_LSB_CNT)
 652				return -EINVAL;
 653			n_lsbs--;
 654		}
 655	}
 656	return n_lsbs;
 657}
 658
 659/* For each queue, from the most- to least-constrained:
 660 * find an LSB that can be assigned to the queue. If there are N queues that
 661 * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
 662 * dedicated LSB. Remaining LSB regions become a shared resource.
 663 * If we have fewer LSBs than queues, all LSB regions become shared resources.
 664 */
 665static int ccp_assign_lsbs(struct ccp_device *ccp)
 666{
 667	DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
 668	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
 669	int n_lsbs = 0;
 670	int bitno;
 671	int i, lsb_cnt;
 672	int rc = 0;
 673
 674	bitmap_zero(lsb_pub, MAX_LSB_CNT);
 675
 676	/* Create an aggregate bitmap to get a total count of available LSBs */
 677	for (i = 0; i < ccp->cmd_q_count; i++)
 678		bitmap_or(lsb_pub,
 679			  lsb_pub, ccp->cmd_q[i].lsbmask,
 680			  MAX_LSB_CNT);
 681
 682	n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
 683
 684	if (n_lsbs >= ccp->cmd_q_count) {
 685		/* We have enough LSBS to give every queue a private LSB.
 686		 * Brute force search to start with the queues that are more
 687		 * constrained in LSB choice. When an LSB is privately
 688		 * assigned, it is removed from the public mask.
 689		 * This is an ugly N squared algorithm with some optimization.
 690		 */
 691		for (lsb_cnt = 1;
 692		     n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
 693		     lsb_cnt++) {
 694			rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
 695							  lsb_pub);
 696			if (rc < 0)
 697				return -EINVAL;
 698			n_lsbs = rc;
 699		}
 700	}
 701
 702	rc = 0;
 703	/* What's left of the LSBs, according to the public mask, now become
 704	 * shared. Any zero bits in the lsb_pub mask represent an LSB region
 705	 * that can't be used as a shared resource, so mark the LSB slots for
 706	 * them as "in use".
 707	 */
 708	bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
 709
 710	bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
 711	while (bitno < MAX_LSB_CNT) {
 712		bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
 713		bitmap_set(qlsb, bitno, 1);
 714		bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
 715	}
 716
 717	return rc;
 718}
 719
 720static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
 721{
 722	unsigned int i;
 723
 724	for (i = 0; i < ccp->cmd_q_count; i++)
 725		iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
 726}
 727
 728static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
 729{
 730	unsigned int i;
 731
 732	for (i = 0; i < ccp->cmd_q_count; i++)
 733		iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
 734}
 735
 736static void ccp5_irq_bh(unsigned long data)
 737{
 738	struct ccp_device *ccp = (struct ccp_device *)data;
 739	u32 status;
 740	unsigned int i;
 741
 742	for (i = 0; i < ccp->cmd_q_count; i++) {
 743		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
 744
 745		status = ioread32(cmd_q->reg_interrupt_status);
 746
 747		if (status) {
 748			cmd_q->int_status = status;
 749			cmd_q->q_status = ioread32(cmd_q->reg_status);
 750			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
 751
 752			/* On error, only save the first error value */
 753			if ((status & INT_ERROR) && !cmd_q->cmd_error)
 754				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
 755
 756			cmd_q->int_rcvd = 1;
 757
 758			/* Acknowledge the interrupt and wake the kthread */
 759			iowrite32(status, cmd_q->reg_interrupt_status);
 760			wake_up_interruptible(&cmd_q->int_queue);
 761		}
 762	}
 763	ccp5_enable_queue_interrupts(ccp);
 764}
 765
 766static irqreturn_t ccp5_irq_handler(int irq, void *data)
 767{
 768	struct ccp_device *ccp = (struct ccp_device *)data;
 769
 770	ccp5_disable_queue_interrupts(ccp);
 771	ccp->total_interrupts++;
 772	if (ccp->use_tasklet)
 773		tasklet_schedule(&ccp->irq_tasklet);
 774	else
 775		ccp5_irq_bh((unsigned long)ccp);
 776	return IRQ_HANDLED;
 777}
 778
 779static int ccp5_init(struct ccp_device *ccp)
 780{
 781	struct device *dev = ccp->dev;
 782	struct ccp_cmd_queue *cmd_q;
 783	struct dma_pool *dma_pool;
 784	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
 785	unsigned int qmr, i;
 786	u64 status;
 787	u32 status_lo, status_hi;
 788	int ret;
 789
 790	/* Find available queues */
 791	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
 792	for (i = 0; (i < MAX_HW_QUEUES) && (ccp->cmd_q_count < ccp->max_q_count); i++) {
 793		if (!(qmr & (1 << i)))
 794			continue;
 795
 796		/* Allocate a dma pool for this queue */
 797		snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
 798			 ccp->name, i);
 799		dma_pool = dma_pool_create(dma_pool_name, dev,
 800					   CCP_DMAPOOL_MAX_SIZE,
 801					   CCP_DMAPOOL_ALIGN, 0);
 802		if (!dma_pool) {
 803			dev_err(dev, "unable to allocate dma pool\n");
 804			ret = -ENOMEM;
 805			goto e_pool;
 806		}
 807
 808		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
 809		ccp->cmd_q_count++;
 810
 811		cmd_q->ccp = ccp;
 812		cmd_q->id = i;
 813		cmd_q->dma_pool = dma_pool;
 814		mutex_init(&cmd_q->q_mutex);
 815
 816		/* Page alignment satisfies our needs for N <= 128 */
 817		BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
 818		cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
 819		cmd_q->qbase = dmam_alloc_coherent(dev, cmd_q->qsize,
 820						   &cmd_q->qbase_dma,
 821						   GFP_KERNEL);
 822		if (!cmd_q->qbase) {
 823			dev_err(dev, "unable to allocate command queue\n");
 824			ret = -ENOMEM;
 825			goto e_pool;
 826		}
 827
 828		cmd_q->qidx = 0;
 829		/* Preset some register values and masks that are queue
 830		 * number dependent
 831		 */
 832		cmd_q->reg_control = ccp->io_regs +
 833				     CMD5_Q_STATUS_INCR * (i + 1);
 834		cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
 835		cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
 836		cmd_q->reg_int_enable = cmd_q->reg_control +
 837					CMD5_Q_INT_ENABLE_BASE;
 838		cmd_q->reg_interrupt_status = cmd_q->reg_control +
 839					      CMD5_Q_INTERRUPT_STATUS_BASE;
 840		cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
 841		cmd_q->reg_int_status = cmd_q->reg_control +
 842					CMD5_Q_INT_STATUS_BASE;
 843		cmd_q->reg_dma_status = cmd_q->reg_control +
 844					CMD5_Q_DMA_STATUS_BASE;
 845		cmd_q->reg_dma_read_status = cmd_q->reg_control +
 846					     CMD5_Q_DMA_READ_STATUS_BASE;
 847		cmd_q->reg_dma_write_status = cmd_q->reg_control +
 848					      CMD5_Q_DMA_WRITE_STATUS_BASE;
 849
 850		init_waitqueue_head(&cmd_q->int_queue);
 851
 852		dev_dbg(dev, "queue #%u available\n", i);
 853	}
 854
 855	if (ccp->cmd_q_count == 0) {
 856		dev_notice(dev, "no command queues available\n");
 857		ret = -EIO;
 858		goto e_pool;
 859	}
 860
 861	/* Turn off the queues and disable interrupts until ready */
 862	ccp5_disable_queue_interrupts(ccp);
 863	for (i = 0; i < ccp->cmd_q_count; i++) {
 864		cmd_q = &ccp->cmd_q[i];
 865
 866		cmd_q->qcontrol = 0; /* Start with nothing */
 867		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
 868
 869		ioread32(cmd_q->reg_int_status);
 870		ioread32(cmd_q->reg_status);
 871
 872		/* Clear the interrupt status */
 873		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
 874	}
 875
 876	dev_dbg(dev, "Requesting an IRQ...\n");
 877	/* Request an irq */
 878	ret = sp_request_ccp_irq(ccp->sp, ccp5_irq_handler, ccp->name, ccp);
 879	if (ret) {
 880		dev_err(dev, "unable to allocate an IRQ\n");
 881		goto e_pool;
 882	}
 883	/* Initialize the ISR tasklet */
 884	if (ccp->use_tasklet)
 885		tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
 886			     (unsigned long)ccp);
 887
 888	dev_dbg(dev, "Loading LSB map...\n");
 889	/* Copy the private LSB mask to the public registers */
 890	status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
 891	status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
 892	iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
 893	iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
 894	status = ((u64)status_hi<<30) | (u64)status_lo;
 895
 896	dev_dbg(dev, "Configuring virtual queues...\n");
 897	/* Configure size of each virtual queue accessible to host */
 898	for (i = 0; i < ccp->cmd_q_count; i++) {
 899		u32 dma_addr_lo;
 900		u32 dma_addr_hi;
 901
 902		cmd_q = &ccp->cmd_q[i];
 903
 904		cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
 905		cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
 906
 907		cmd_q->qdma_tail = cmd_q->qbase_dma;
 908		dma_addr_lo = low_address(cmd_q->qdma_tail);
 909		iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
 910		iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
 911
 912		dma_addr_hi = high_address(cmd_q->qdma_tail);
 913		cmd_q->qcontrol |= (dma_addr_hi << 16);
 914		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
 915
 916		/* Find the LSB regions accessible to the queue */
 917		ccp_find_lsb_regions(cmd_q, status);
 918		cmd_q->lsb = -1; /* Unassigned value */
 919	}
 920
 921	dev_dbg(dev, "Assigning LSBs...\n");
 922	ret = ccp_assign_lsbs(ccp);
 923	if (ret) {
 924		dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
 925		goto e_irq;
 926	}
 927
 928	/* Optimization: pre-allocate LSB slots for each queue */
 929	for (i = 0; i < ccp->cmd_q_count; i++) {
 930		ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
 931		ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
 932	}
 933
 934	dev_dbg(dev, "Starting threads...\n");
 935	/* Create a kthread for each queue */
 936	for (i = 0; i < ccp->cmd_q_count; i++) {
 937		struct task_struct *kthread;
 938
 939		cmd_q = &ccp->cmd_q[i];
 940
 941		kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
 942					 "%s-q%u", ccp->name, cmd_q->id);
 943		if (IS_ERR(kthread)) {
 944			dev_err(dev, "error creating queue thread (%ld)\n",
 945				PTR_ERR(kthread));
 946			ret = PTR_ERR(kthread);
 947			goto e_kthread;
 948		}
 949
 950		cmd_q->kthread = kthread;
 951		wake_up_process(kthread);
 952	}
 953
 954	dev_dbg(dev, "Enabling interrupts...\n");
 955	ccp5_enable_queue_interrupts(ccp);
 956
 957	dev_dbg(dev, "Registering device...\n");
 958	/* Put this on the unit list to make it available */
 959	ccp_add_device(ccp);
 960
 961	ret = ccp_register_rng(ccp);
 962	if (ret)
 963		goto e_kthread;
 964
 965	/* Register the DMA engine support */
 966	ret = ccp_dmaengine_register(ccp);
 967	if (ret)
 968		goto e_hwrng;
 969
 970#ifdef CONFIG_CRYPTO_DEV_CCP_DEBUGFS
 971	/* Set up debugfs entries */
 972	ccp5_debugfs_setup(ccp);
 973#endif
 974
 975	return 0;
 976
 977e_hwrng:
 978	ccp_unregister_rng(ccp);
 979
 980e_kthread:
 981	for (i = 0; i < ccp->cmd_q_count; i++)
 982		if (ccp->cmd_q[i].kthread)
 983			kthread_stop(ccp->cmd_q[i].kthread);
 984
 985e_irq:
 986	sp_free_ccp_irq(ccp->sp, ccp);
 987
 988e_pool:
 989	for (i = 0; i < ccp->cmd_q_count; i++)
 990		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
 991
 992	return ret;
 993}
 994
 995static void ccp5_destroy(struct ccp_device *ccp)
 996{
 997	struct ccp_cmd_queue *cmd_q;
 998	struct ccp_cmd *cmd;
 999	unsigned int i;
1000
1001	/* Unregister the DMA engine */
1002	ccp_dmaengine_unregister(ccp);
1003
1004	/* Unregister the RNG */
1005	ccp_unregister_rng(ccp);
1006
1007	/* Remove this device from the list of available units first */
1008	ccp_del_device(ccp);
1009
1010#ifdef CONFIG_CRYPTO_DEV_CCP_DEBUGFS
1011	/* We're in the process of tearing down the entire driver;
1012	 * when all the devices are gone clean up debugfs
1013	 */
1014	if (ccp_present())
1015		ccp5_debugfs_destroy();
1016#endif
1017
1018	/* Disable and clear interrupts */
1019	ccp5_disable_queue_interrupts(ccp);
1020	for (i = 0; i < ccp->cmd_q_count; i++) {
1021		cmd_q = &ccp->cmd_q[i];
1022
1023		/* Turn off the run bit */
1024		iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
1025
1026		/* Clear the interrupt status */
1027		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
1028		ioread32(cmd_q->reg_int_status);
1029		ioread32(cmd_q->reg_status);
1030	}
1031
1032	/* Stop the queue kthreads */
1033	for (i = 0; i < ccp->cmd_q_count; i++)
1034		if (ccp->cmd_q[i].kthread)
1035			kthread_stop(ccp->cmd_q[i].kthread);
1036
1037	sp_free_ccp_irq(ccp->sp, ccp);
1038
1039	/* Flush the cmd and backlog queue */
1040	while (!list_empty(&ccp->cmd)) {
1041		/* Invoke the callback directly with an error code */
1042		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
1043		list_del(&cmd->entry);
1044		cmd->callback(cmd->data, -ENODEV);
1045	}
1046	while (!list_empty(&ccp->backlog)) {
1047		/* Invoke the callback directly with an error code */
1048		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
1049		list_del(&cmd->entry);
1050		cmd->callback(cmd->data, -ENODEV);
1051	}
1052}
1053
1054static void ccp5_config(struct ccp_device *ccp)
1055{
1056	/* Public side */
1057	iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
1058}
1059
1060static void ccp5other_config(struct ccp_device *ccp)
1061{
1062	int i;
1063	u32 rnd;
1064
1065	/* We own all of the queues on the NTB CCP */
1066
1067	iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
1068	iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
1069	for (i = 0; i < 12; i++) {
1070		rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
1071		iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
1072	}
1073
1074	iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
1075	iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
1076	iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
1077
1078	iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
1079	iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
1080
1081	iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
1082
1083	ccp5_config(ccp);
1084}
1085
1086/* Version 5 adds some function, but is essentially the same as v5 */
1087static const struct ccp_actions ccp5_actions = {
1088	.aes = ccp5_perform_aes,
1089	.xts_aes = ccp5_perform_xts_aes,
1090	.sha = ccp5_perform_sha,
1091	.des3 = ccp5_perform_des3,
1092	.rsa = ccp5_perform_rsa,
1093	.passthru = ccp5_perform_passthru,
1094	.ecc = ccp5_perform_ecc,
1095	.sballoc = ccp_lsb_alloc,
1096	.sbfree = ccp_lsb_free,
1097	.init = ccp5_init,
1098	.destroy = ccp5_destroy,
1099	.get_free_slots = ccp5_get_free_slots,
1100};
1101
1102const struct ccp_vdata ccpv5a = {
1103	.version = CCP_VERSION(5, 0),
1104	.setup = ccp5_config,
1105	.perform = &ccp5_actions,
1106	.offset = 0x0,
1107	.rsamax = CCP5_RSA_MAX_WIDTH,
1108};
1109
1110const struct ccp_vdata ccpv5b = {
1111	.version = CCP_VERSION(5, 0),
1112	.dma_chan_attr = DMA_PRIVATE,
1113	.setup = ccp5other_config,
1114	.perform = &ccp5_actions,
1115	.offset = 0x0,
1116	.rsamax = CCP5_RSA_MAX_WIDTH,
1117};