Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * arch/arm/probes/decode.h
  3 *
  4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  5 *
  6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
  7 * Copyright (C) 2006, 2007 Motorola Inc.
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 16 * General Public License for more details.
 17 */
 18
 19#ifndef _ARM_KERNEL_PROBES_H
 20#define  _ARM_KERNEL_PROBES_H
 21
 22#include <linux/types.h>
 23#include <linux/stddef.h>
 24#include <asm/probes.h>
 
 25
 26void __init arm_probes_decode_init(void);
 27
 28extern probes_check_cc * const probes_condition_checks[16];
 29
 30#if __LINUX_ARM_ARCH__ >= 7
 31
 32/* str_pc_offset is architecturally defined from ARMv7 onwards */
 33#define str_pc_offset 8
 34#define find_str_pc_offset()
 35
 36#else /* __LINUX_ARM_ARCH__ < 7 */
 37
 38/* We need a run-time check to determine str_pc_offset */
 39extern int str_pc_offset;
 40void __init find_str_pc_offset(void);
 41
 42#endif
 43
 44
 45/*
 46 * Update ITSTATE after normal execution of an IT block instruction.
 47 *
 48 * The 8 IT state bits are split into two parts in CPSR:
 49 *	ITSTATE<1:0> are in CPSR<26:25>
 50 *	ITSTATE<7:2> are in CPSR<15:10>
 51 */
 52static inline unsigned long it_advance(unsigned long cpsr)
 53	{
 54	if ((cpsr & 0x06000400) == 0) {
 55		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
 56		cpsr &= ~PSR_IT_MASK;
 57	} else {
 58		/* We need to shift left ITSTATE<4:0> */
 59		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
 60		unsigned long it = cpsr & mask;
 61		it <<= 1;
 62		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
 63		it &= mask;
 64		cpsr &= ~mask;
 65		cpsr |= it;
 66	}
 67	return cpsr;
 68}
 69
 70static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
 71{
 72	long cpsr = regs->ARM_cpsr;
 73	if (pcv & 0x1) {
 74		cpsr |= PSR_T_BIT;
 75		pcv &= ~0x1;
 76	} else {
 77		cpsr &= ~PSR_T_BIT;
 78		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
 79	}
 80	regs->ARM_cpsr = cpsr;
 81	regs->ARM_pc = pcv;
 82}
 83
 84
 85#if __LINUX_ARM_ARCH__ >= 6
 86
 87/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
 88#define load_write_pc_interworks true
 89#define test_load_write_pc_interworking()
 90
 91#else /* __LINUX_ARM_ARCH__ < 6 */
 92
 93/* We need run-time testing to determine if load_write_pc() should interwork. */
 94extern bool load_write_pc_interworks;
 95void __init test_load_write_pc_interworking(void);
 96
 97#endif
 98
 99static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
100{
101	if (load_write_pc_interworks)
102		bx_write_pc(pcv, regs);
103	else
104		regs->ARM_pc = pcv;
105}
106
107
108#if __LINUX_ARM_ARCH__ >= 7
109
110#define alu_write_pc_interworks true
111#define test_alu_write_pc_interworking()
112
113#elif __LINUX_ARM_ARCH__ <= 5
114
115/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
116#define alu_write_pc_interworks false
117#define test_alu_write_pc_interworking()
118
119#else /* __LINUX_ARM_ARCH__ == 6 */
120
121/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
122extern bool alu_write_pc_interworks;
123void __init test_alu_write_pc_interworking(void);
124
125#endif /* __LINUX_ARM_ARCH__ == 6 */
126
127static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
128{
129	if (alu_write_pc_interworks)
130		bx_write_pc(pcv, regs);
131	else
132		regs->ARM_pc = pcv;
133}
134
135
136/*
137 * Test if load/store instructions writeback the address register.
138 * if P (bit 24) == 0 or W (bit 21) == 1
139 */
140#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
141
142/*
143 * The following definitions and macros are used to build instruction
144 * decoding tables for use by probes_decode_insn.
145 *
146 * These tables are a concatenation of entries each of which consist of one of
147 * the decode_* structs. All of the fields in every type of decode structure
148 * are of the union type decode_item, therefore the entire decode table can be
149 * viewed as an array of these and declared like:
150 *
151 *	static const union decode_item table_name[] = {};
152 *
153 * In order to construct each entry in the table, macros are used to
154 * initialise a number of sequential decode_item values in a layout which
155 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
156 * decode_simulate by initialising four decode_item objects like this...
157 *
158 *	{.bits = _type},
159 *	{.bits = _mask},
160 *	{.bits = _value},
161 *	{.action = _handler},
162 *
163 * Initialising a specified member of the union means that the compiler
164 * will produce a warning if the argument is of an incorrect type.
165 *
166 * Below is a list of each of the macros used to initialise entries and a
167 * description of the action performed when that entry is matched to an
168 * instruction. A match is found when (instruction & mask) == value.
169 *
170 * DECODE_TABLE(mask, value, table)
171 *	Instruction decoding jumps to parsing the new sub-table 'table'.
172 *
173 * DECODE_CUSTOM(mask, value, decoder)
174 *	The value of 'decoder' is used as an index into the array of
175 *	action functions, and the retrieved decoder function is invoked
176 *	to complete decoding of the instruction.
177 *
178 * DECODE_SIMULATE(mask, value, handler)
179 *	The probes instruction handler is set to the value found by
180 *	indexing into the action array using the value of 'handler'. This
181 *	will be used to simulate the instruction when the probe is hit.
182 *	Decoding returns with INSN_GOOD_NO_SLOT.
183 *
184 * DECODE_EMULATE(mask, value, handler)
185 *	The probes instruction handler is set to the value found by
186 *	indexing into the action array using the value of 'handler'. This
187 *	will be used to emulate the instruction when the probe is hit. The
188 *	modified instruction (see below) is placed in the probes instruction
189 *	slot so it may be called by the emulation code. Decoding returns
190 *	with INSN_GOOD.
191 *
192 * DECODE_REJECT(mask, value)
193 *	Instruction decoding fails with INSN_REJECTED
194 *
195 * DECODE_OR(mask, value)
196 *	This allows the mask/value test of multiple table entries to be
197 *	logically ORed. Once an 'or' entry is matched the decoding action to
198 *	be performed is that of the next entry which isn't an 'or'. E.g.
199 *
200 *		DECODE_OR	(mask1, value1)
201 *		DECODE_OR	(mask2, value2)
202 *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
203 *
204 *	This means that if any of the three mask/value pairs match the
205 *	instruction being decoded, then 'simulation_handler' will be used
206 *	for it.
207 *
208 * Both the SIMULATE and EMULATE macros have a second form which take an
209 * additional 'regs' argument.
210 *
211 *	DECODE_SIMULATEX(mask, value, handler, regs)
212 *	DECODE_EMULATEX	(mask, value, handler, regs)
213 *
214 * These are used to specify what kind of CPU register is encoded in each of the
215 * least significant 5 nibbles of the instruction being decoded. The regs value
216 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
217 * from enum decode_reg_type as arguments; only the '*' part of the name is
218 * given. E.g.
219 *
220 *	REGS(0, ANY, NOPC, 0, ANY)
221 *
222 * This indicates an instruction is encoded like:
223 *
224 *	bits 19..16	ignore
225 *	bits 15..12	any register allowed here
226 *	bits 11.. 8	any register except PC allowed here
227 *	bits  7.. 4	ignore
228 *	bits  3.. 0	any register allowed here
229 *
230 * This register specification is checked after a decode table entry is found to
231 * match an instruction (through the mask/value test). Any invalid register then
232 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
233 * the above example this would happen if bits 11..8 of the instruction were
234 * 1111, indicating R15 or PC.
235 *
236 * As well as checking for legal combinations of registers, this data is also
237 * used to modify the registers encoded in the instructions so that an
238 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
239 *
240 * Here is a real example which matches ARM instructions of the form
241 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
242 *
243 *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
244 *						 REGS(ANY, ANY, NOPC, 0, ANY)),
245 *						      ^    ^    ^        ^
246 *						      Rn   Rd   Rs       Rm
247 *
248 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
249 * Rs == R15
250 *
251 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
252 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
253 * the kprobes instruction slot. This can then be called later by the handler
254 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
255 * the indicated slot in the action array), in order to simulate the instruction.
256 */
257
258enum decode_type {
259	DECODE_TYPE_END,
260	DECODE_TYPE_TABLE,
261	DECODE_TYPE_CUSTOM,
262	DECODE_TYPE_SIMULATE,
263	DECODE_TYPE_EMULATE,
264	DECODE_TYPE_OR,
265	DECODE_TYPE_REJECT,
266	NUM_DECODE_TYPES /* Must be last enum */
267};
268
269#define DECODE_TYPE_BITS	4
270#define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
271
272enum decode_reg_type {
273	REG_TYPE_NONE = 0, /* Not a register, ignore */
274	REG_TYPE_ANY,	   /* Any register allowed */
275	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
276	REG_TYPE_SP,	   /* Register must be SP */
277	REG_TYPE_PC,	   /* Register must be PC */
278	REG_TYPE_NOSP,	   /* Register must not be SP */
279	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
280	REG_TYPE_NOPC,	   /* Register must not be PC */
281	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
282
283	/* The following types are used when the encoding for PC indicates
284	 * another instruction form. This distiction only matters for test
285	 * case coverage checks.
286	 */
287	REG_TYPE_NOPCX,	   /* Register must not be PC */
288	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
289
290	/* Alias to allow '0' arg to be used in REGS macro. */
291	REG_TYPE_0 = REG_TYPE_NONE
292};
293
294#define REGS(r16, r12, r8, r4, r0)	\
295	(((REG_TYPE_##r16) << 16) +	\
296	((REG_TYPE_##r12) << 12) +	\
297	((REG_TYPE_##r8) << 8) +	\
298	((REG_TYPE_##r4) << 4) +	\
299	(REG_TYPE_##r0))
300
301union decode_item {
302	u32			bits;
303	const union decode_item	*table;
304	int			action;
305};
306
307struct decode_header;
308typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
309						  struct arch_probes_insn *,
310						  const struct decode_header *);
311
312union decode_action {
313	probes_insn_handler_t	*handler;
314	probes_custom_decode_t	*decoder;
315};
316
317typedef enum probes_insn (probes_check_t)(probes_opcode_t,
318					   struct arch_probes_insn *,
319					   const struct decode_header *);
320
321struct decode_checker {
322	probes_check_t	*checker;
323};
324
325#define DECODE_END			\
326	{.bits = DECODE_TYPE_END}
327
328
329struct decode_header {
330	union decode_item	type_regs;
331	union decode_item	mask;
332	union decode_item	value;
333};
334
335#define DECODE_HEADER(_type, _mask, _value, _regs)		\
336	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
337	{.bits = (_mask)},					\
338	{.bits = (_value)}
339
340
341struct decode_table {
342	struct decode_header	header;
343	union decode_item	table;
344};
345
346#define DECODE_TABLE(_mask, _value, _table)			\
347	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
348	{.table = (_table)}
349
350
351struct decode_custom {
352	struct decode_header	header;
353	union decode_item	decoder;
354};
355
356#define DECODE_CUSTOM(_mask, _value, _decoder)			\
357	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
358	{.action = (_decoder)}
359
360
361struct decode_simulate {
362	struct decode_header	header;
363	union decode_item	handler;
364};
365
366#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
367	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
368	{.action = (_handler)}
369
370#define DECODE_SIMULATE(_mask, _value, _handler)	\
371	DECODE_SIMULATEX(_mask, _value, _handler, 0)
372
373
374struct decode_emulate {
375	struct decode_header	header;
376	union decode_item	handler;
377};
378
379#define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
380	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
381	{.action = (_handler)}
382
383#define DECODE_EMULATE(_mask, _value, _handler)		\
384	DECODE_EMULATEX(_mask, _value, _handler, 0)
385
386
387struct decode_or {
388	struct decode_header	header;
389};
390
391#define DECODE_OR(_mask, _value)				\
392	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
393
394enum probes_insn {
395	INSN_REJECTED,
396	INSN_GOOD,
397	INSN_GOOD_NO_SLOT
398};
399
400struct decode_reject {
401	struct decode_header	header;
402};
403
404#define DECODE_REJECT(_mask, _value)				\
405	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
406
407probes_insn_handler_t probes_simulate_nop;
408probes_insn_handler_t probes_emulate_none;
409
410int __kprobes
411probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
412		const union decode_item *table, bool thumb, bool emulate,
413		const union decode_action *actions,
414		const struct decode_checker **checkers);
415
416#endif
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * arch/arm/probes/decode.h
  4 *
  5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
  6 *
  7 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
  8 * Copyright (C) 2006, 2007 Motorola Inc.
 
 
 
 
 
 
 
 
 
  9 */
 10
 11#ifndef _ARM_KERNEL_PROBES_H
 12#define  _ARM_KERNEL_PROBES_H
 13
 14#include <linux/types.h>
 15#include <linux/stddef.h>
 16#include <asm/probes.h>
 17#include <asm/kprobes.h>
 18
 19void __init arm_probes_decode_init(void);
 20
 21extern probes_check_cc * const probes_condition_checks[16];
 22
 23#if __LINUX_ARM_ARCH__ >= 7
 24
 25/* str_pc_offset is architecturally defined from ARMv7 onwards */
 26#define str_pc_offset 8
 27#define find_str_pc_offset()
 28
 29#else /* __LINUX_ARM_ARCH__ < 7 */
 30
 31/* We need a run-time check to determine str_pc_offset */
 32extern int str_pc_offset;
 33void __init find_str_pc_offset(void);
 34
 35#endif
 36
 37
 38/*
 39 * Update ITSTATE after normal execution of an IT block instruction.
 40 *
 41 * The 8 IT state bits are split into two parts in CPSR:
 42 *	ITSTATE<1:0> are in CPSR<26:25>
 43 *	ITSTATE<7:2> are in CPSR<15:10>
 44 */
 45static inline unsigned long it_advance(unsigned long cpsr)
 46	{
 47	if ((cpsr & 0x06000400) == 0) {
 48		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
 49		cpsr &= ~PSR_IT_MASK;
 50	} else {
 51		/* We need to shift left ITSTATE<4:0> */
 52		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
 53		unsigned long it = cpsr & mask;
 54		it <<= 1;
 55		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
 56		it &= mask;
 57		cpsr &= ~mask;
 58		cpsr |= it;
 59	}
 60	return cpsr;
 61}
 62
 63static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
 64{
 65	long cpsr = regs->ARM_cpsr;
 66	if (pcv & 0x1) {
 67		cpsr |= PSR_T_BIT;
 68		pcv &= ~0x1;
 69	} else {
 70		cpsr &= ~PSR_T_BIT;
 71		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
 72	}
 73	regs->ARM_cpsr = cpsr;
 74	regs->ARM_pc = pcv;
 75}
 76
 77
 78#if __LINUX_ARM_ARCH__ >= 6
 79
 80/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
 81#define load_write_pc_interworks true
 82#define test_load_write_pc_interworking()
 83
 84#else /* __LINUX_ARM_ARCH__ < 6 */
 85
 86/* We need run-time testing to determine if load_write_pc() should interwork. */
 87extern bool load_write_pc_interworks;
 88void __init test_load_write_pc_interworking(void);
 89
 90#endif
 91
 92static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
 93{
 94	if (load_write_pc_interworks)
 95		bx_write_pc(pcv, regs);
 96	else
 97		regs->ARM_pc = pcv;
 98}
 99
100
101#if __LINUX_ARM_ARCH__ >= 7
102
103#define alu_write_pc_interworks true
104#define test_alu_write_pc_interworking()
105
106#elif __LINUX_ARM_ARCH__ <= 5
107
108/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
109#define alu_write_pc_interworks false
110#define test_alu_write_pc_interworking()
111
112#else /* __LINUX_ARM_ARCH__ == 6 */
113
114/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
115extern bool alu_write_pc_interworks;
116void __init test_alu_write_pc_interworking(void);
117
118#endif /* __LINUX_ARM_ARCH__ == 6 */
119
120static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
121{
122	if (alu_write_pc_interworks)
123		bx_write_pc(pcv, regs);
124	else
125		regs->ARM_pc = pcv;
126}
127
128
129/*
130 * Test if load/store instructions writeback the address register.
131 * if P (bit 24) == 0 or W (bit 21) == 1
132 */
133#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
134
135/*
136 * The following definitions and macros are used to build instruction
137 * decoding tables for use by probes_decode_insn.
138 *
139 * These tables are a concatenation of entries each of which consist of one of
140 * the decode_* structs. All of the fields in every type of decode structure
141 * are of the union type decode_item, therefore the entire decode table can be
142 * viewed as an array of these and declared like:
143 *
144 *	static const union decode_item table_name[] = {};
145 *
146 * In order to construct each entry in the table, macros are used to
147 * initialise a number of sequential decode_item values in a layout which
148 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
149 * decode_simulate by initialising four decode_item objects like this...
150 *
151 *	{.bits = _type},
152 *	{.bits = _mask},
153 *	{.bits = _value},
154 *	{.action = _handler},
155 *
156 * Initialising a specified member of the union means that the compiler
157 * will produce a warning if the argument is of an incorrect type.
158 *
159 * Below is a list of each of the macros used to initialise entries and a
160 * description of the action performed when that entry is matched to an
161 * instruction. A match is found when (instruction & mask) == value.
162 *
163 * DECODE_TABLE(mask, value, table)
164 *	Instruction decoding jumps to parsing the new sub-table 'table'.
165 *
166 * DECODE_CUSTOM(mask, value, decoder)
167 *	The value of 'decoder' is used as an index into the array of
168 *	action functions, and the retrieved decoder function is invoked
169 *	to complete decoding of the instruction.
170 *
171 * DECODE_SIMULATE(mask, value, handler)
172 *	The probes instruction handler is set to the value found by
173 *	indexing into the action array using the value of 'handler'. This
174 *	will be used to simulate the instruction when the probe is hit.
175 *	Decoding returns with INSN_GOOD_NO_SLOT.
176 *
177 * DECODE_EMULATE(mask, value, handler)
178 *	The probes instruction handler is set to the value found by
179 *	indexing into the action array using the value of 'handler'. This
180 *	will be used to emulate the instruction when the probe is hit. The
181 *	modified instruction (see below) is placed in the probes instruction
182 *	slot so it may be called by the emulation code. Decoding returns
183 *	with INSN_GOOD.
184 *
185 * DECODE_REJECT(mask, value)
186 *	Instruction decoding fails with INSN_REJECTED
187 *
188 * DECODE_OR(mask, value)
189 *	This allows the mask/value test of multiple table entries to be
190 *	logically ORed. Once an 'or' entry is matched the decoding action to
191 *	be performed is that of the next entry which isn't an 'or'. E.g.
192 *
193 *		DECODE_OR	(mask1, value1)
194 *		DECODE_OR	(mask2, value2)
195 *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
196 *
197 *	This means that if any of the three mask/value pairs match the
198 *	instruction being decoded, then 'simulation_handler' will be used
199 *	for it.
200 *
201 * Both the SIMULATE and EMULATE macros have a second form which take an
202 * additional 'regs' argument.
203 *
204 *	DECODE_SIMULATEX(mask, value, handler, regs)
205 *	DECODE_EMULATEX	(mask, value, handler, regs)
206 *
207 * These are used to specify what kind of CPU register is encoded in each of the
208 * least significant 5 nibbles of the instruction being decoded. The regs value
209 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
210 * from enum decode_reg_type as arguments; only the '*' part of the name is
211 * given. E.g.
212 *
213 *	REGS(0, ANY, NOPC, 0, ANY)
214 *
215 * This indicates an instruction is encoded like:
216 *
217 *	bits 19..16	ignore
218 *	bits 15..12	any register allowed here
219 *	bits 11.. 8	any register except PC allowed here
220 *	bits  7.. 4	ignore
221 *	bits  3.. 0	any register allowed here
222 *
223 * This register specification is checked after a decode table entry is found to
224 * match an instruction (through the mask/value test). Any invalid register then
225 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
226 * the above example this would happen if bits 11..8 of the instruction were
227 * 1111, indicating R15 or PC.
228 *
229 * As well as checking for legal combinations of registers, this data is also
230 * used to modify the registers encoded in the instructions so that an
231 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
232 *
233 * Here is a real example which matches ARM instructions of the form
234 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
235 *
236 *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
237 *						 REGS(ANY, ANY, NOPC, 0, ANY)),
238 *						      ^    ^    ^        ^
239 *						      Rn   Rd   Rs       Rm
240 *
241 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
242 * Rs == R15
243 *
244 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
245 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
246 * the kprobes instruction slot. This can then be called later by the handler
247 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
248 * the indicated slot in the action array), in order to simulate the instruction.
249 */
250
251enum decode_type {
252	DECODE_TYPE_END,
253	DECODE_TYPE_TABLE,
254	DECODE_TYPE_CUSTOM,
255	DECODE_TYPE_SIMULATE,
256	DECODE_TYPE_EMULATE,
257	DECODE_TYPE_OR,
258	DECODE_TYPE_REJECT,
259	NUM_DECODE_TYPES /* Must be last enum */
260};
261
262#define DECODE_TYPE_BITS	4
263#define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
264
265enum decode_reg_type {
266	REG_TYPE_NONE = 0, /* Not a register, ignore */
267	REG_TYPE_ANY,	   /* Any register allowed */
268	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
269	REG_TYPE_SP,	   /* Register must be SP */
270	REG_TYPE_PC,	   /* Register must be PC */
271	REG_TYPE_NOSP,	   /* Register must not be SP */
272	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
273	REG_TYPE_NOPC,	   /* Register must not be PC */
274	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
275
276	/* The following types are used when the encoding for PC indicates
277	 * another instruction form. This distiction only matters for test
278	 * case coverage checks.
279	 */
280	REG_TYPE_NOPCX,	   /* Register must not be PC */
281	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
282
283	/* Alias to allow '0' arg to be used in REGS macro. */
284	REG_TYPE_0 = REG_TYPE_NONE
285};
286
287#define REGS(r16, r12, r8, r4, r0)	\
288	(((REG_TYPE_##r16) << 16) +	\
289	((REG_TYPE_##r12) << 12) +	\
290	((REG_TYPE_##r8) << 8) +	\
291	((REG_TYPE_##r4) << 4) +	\
292	(REG_TYPE_##r0))
293
294union decode_item {
295	u32			bits;
296	const union decode_item	*table;
297	int			action;
298};
299
300struct decode_header;
301typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
302						  struct arch_probes_insn *,
303						  const struct decode_header *);
304
305union decode_action {
306	probes_insn_handler_t	*handler;
307	probes_custom_decode_t	*decoder;
308};
309
310typedef enum probes_insn (probes_check_t)(probes_opcode_t,
311					   struct arch_probes_insn *,
312					   const struct decode_header *);
313
314struct decode_checker {
315	probes_check_t	*checker;
316};
317
318#define DECODE_END			\
319	{.bits = DECODE_TYPE_END}
320
321
322struct decode_header {
323	union decode_item	type_regs;
324	union decode_item	mask;
325	union decode_item	value;
326};
327
328#define DECODE_HEADER(_type, _mask, _value, _regs)		\
329	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
330	{.bits = (_mask)},					\
331	{.bits = (_value)}
332
333
334struct decode_table {
335	struct decode_header	header;
336	union decode_item	table;
337};
338
339#define DECODE_TABLE(_mask, _value, _table)			\
340	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
341	{.table = (_table)}
342
343
344struct decode_custom {
345	struct decode_header	header;
346	union decode_item	decoder;
347};
348
349#define DECODE_CUSTOM(_mask, _value, _decoder)			\
350	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
351	{.action = (_decoder)}
352
353
354struct decode_simulate {
355	struct decode_header	header;
356	union decode_item	handler;
357};
358
359#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
360	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
361	{.action = (_handler)}
362
363#define DECODE_SIMULATE(_mask, _value, _handler)	\
364	DECODE_SIMULATEX(_mask, _value, _handler, 0)
365
366
367struct decode_emulate {
368	struct decode_header	header;
369	union decode_item	handler;
370};
371
372#define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
373	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
374	{.action = (_handler)}
375
376#define DECODE_EMULATE(_mask, _value, _handler)		\
377	DECODE_EMULATEX(_mask, _value, _handler, 0)
378
379
380struct decode_or {
381	struct decode_header	header;
382};
383
384#define DECODE_OR(_mask, _value)				\
385	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
386
387enum probes_insn {
388	INSN_REJECTED,
389	INSN_GOOD,
390	INSN_GOOD_NO_SLOT
391};
392
393struct decode_reject {
394	struct decode_header	header;
395};
396
397#define DECODE_REJECT(_mask, _value)				\
398	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
399
400probes_insn_handler_t probes_simulate_nop;
401probes_insn_handler_t probes_emulate_none;
402
403int __kprobes
404probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
405		const union decode_item *table, bool thumb, bool emulate,
406		const union decode_action *actions,
407		const struct decode_checker **checkers);
408
409#endif