Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
 
 
 
 
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
 
 
 
 
 
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
 
 
  96	 */
  97	return !t->ptrace;
 
 
 
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		sig->flags = SIGNAL_STOP_STOPPED;
 350		return true;
 351	}
 352	return false;
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 
 
 
 
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 
 
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 
 
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 
 429
 
 430static void __flush_itimer_signals(struct sigpending *pending)
 431{
 432	sigset_t signal, retain;
 433	struct sigqueue *q, *n;
 434
 435	signal = pending->signal;
 436	sigemptyset(&retain);
 437
 438	list_for_each_entry_safe(q, n, &pending->list, list) {
 439		int sig = q->info.si_signo;
 440
 441		if (likely(q->info.si_code != SI_TIMER)) {
 442			sigaddset(&retain, sig);
 443		} else {
 444			sigdelset(&signal, sig);
 445			list_del_init(&q->list);
 446			__sigqueue_free(q);
 447		}
 448	}
 449
 450	sigorsets(&pending->signal, &signal, &retain);
 451}
 452
 453void flush_itimer_signals(void)
 454{
 455	struct task_struct *tsk = current;
 456	unsigned long flags;
 457
 458	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 459	__flush_itimer_signals(&tsk->pending);
 460	__flush_itimer_signals(&tsk->signal->shared_pending);
 461	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 462}
 
 463
 464void ignore_signals(struct task_struct *t)
 465{
 466	int i;
 467
 468	for (i = 0; i < _NSIG; ++i)
 469		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 470
 471	flush_signals(t);
 472}
 473
 474/*
 475 * Flush all handlers for a task.
 476 */
 477
 478void
 479flush_signal_handlers(struct task_struct *t, int force_default)
 480{
 481	int i;
 482	struct k_sigaction *ka = &t->sighand->action[0];
 483	for (i = _NSIG ; i != 0 ; i--) {
 484		if (force_default || ka->sa.sa_handler != SIG_IGN)
 485			ka->sa.sa_handler = SIG_DFL;
 486		ka->sa.sa_flags = 0;
 487#ifdef __ARCH_HAS_SA_RESTORER
 488		ka->sa.sa_restorer = NULL;
 489#endif
 490		sigemptyset(&ka->sa.sa_mask);
 491		ka++;
 492	}
 493}
 494
 495int unhandled_signal(struct task_struct *tsk, int sig)
 496{
 497	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 498	if (is_global_init(tsk))
 499		return 1;
 
 500	if (handler != SIG_IGN && handler != SIG_DFL)
 501		return 0;
 
 502	/* if ptraced, let the tracer determine */
 503	return !tsk->ptrace;
 504}
 505
 506static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 
 507{
 508	struct sigqueue *q, *first = NULL;
 509
 510	/*
 511	 * Collect the siginfo appropriate to this signal.  Check if
 512	 * there is another siginfo for the same signal.
 513	*/
 514	list_for_each_entry(q, &list->list, list) {
 515		if (q->info.si_signo == sig) {
 516			if (first)
 517				goto still_pending;
 518			first = q;
 519		}
 520	}
 521
 522	sigdelset(&list->signal, sig);
 523
 524	if (first) {
 525still_pending:
 526		list_del_init(&first->list);
 527		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 528		__sigqueue_free(first);
 529	} else {
 530		/*
 531		 * Ok, it wasn't in the queue.  This must be
 532		 * a fast-pathed signal or we must have been
 533		 * out of queue space.  So zero out the info.
 534		 */
 
 535		info->si_signo = sig;
 536		info->si_errno = 0;
 537		info->si_code = SI_USER;
 538		info->si_pid = 0;
 539		info->si_uid = 0;
 540	}
 541}
 542
 543static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 544			siginfo_t *info)
 545{
 546	int sig = next_signal(pending, mask);
 547
 548	if (sig)
 549		collect_signal(sig, pending, info);
 550	return sig;
 551}
 552
 553/*
 554 * Dequeue a signal and return the element to the caller, which is
 555 * expected to free it.
 556 *
 557 * All callers have to hold the siglock.
 558 */
 559int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 560{
 
 561	int signr;
 562
 563	/* We only dequeue private signals from ourselves, we don't let
 564	 * signalfd steal them
 565	 */
 566	signr = __dequeue_signal(&tsk->pending, mask, info);
 567	if (!signr) {
 568		signr = __dequeue_signal(&tsk->signal->shared_pending,
 569					 mask, info);
 
 570		/*
 571		 * itimer signal ?
 572		 *
 573		 * itimers are process shared and we restart periodic
 574		 * itimers in the signal delivery path to prevent DoS
 575		 * attacks in the high resolution timer case. This is
 576		 * compliant with the old way of self-restarting
 577		 * itimers, as the SIGALRM is a legacy signal and only
 578		 * queued once. Changing the restart behaviour to
 579		 * restart the timer in the signal dequeue path is
 580		 * reducing the timer noise on heavy loaded !highres
 581		 * systems too.
 582		 */
 583		if (unlikely(signr == SIGALRM)) {
 584			struct hrtimer *tmr = &tsk->signal->real_timer;
 585
 586			if (!hrtimer_is_queued(tmr) &&
 587			    tsk->signal->it_real_incr.tv64 != 0) {
 588				hrtimer_forward(tmr, tmr->base->get_time(),
 589						tsk->signal->it_real_incr);
 590				hrtimer_restart(tmr);
 591			}
 592		}
 
 593	}
 594
 595	recalc_sigpending();
 596	if (!signr)
 597		return 0;
 598
 599	if (unlikely(sig_kernel_stop(signr))) {
 600		/*
 601		 * Set a marker that we have dequeued a stop signal.  Our
 602		 * caller might release the siglock and then the pending
 603		 * stop signal it is about to process is no longer in the
 604		 * pending bitmasks, but must still be cleared by a SIGCONT
 605		 * (and overruled by a SIGKILL).  So those cases clear this
 606		 * shared flag after we've set it.  Note that this flag may
 607		 * remain set after the signal we return is ignored or
 608		 * handled.  That doesn't matter because its only purpose
 609		 * is to alert stop-signal processing code when another
 610		 * processor has come along and cleared the flag.
 611		 */
 612		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 613	}
 614	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 
 615		/*
 616		 * Release the siglock to ensure proper locking order
 617		 * of timer locks outside of siglocks.  Note, we leave
 618		 * irqs disabled here, since the posix-timers code is
 619		 * about to disable them again anyway.
 620		 */
 621		spin_unlock(&tsk->sighand->siglock);
 622		do_schedule_next_timer(info);
 623		spin_lock(&tsk->sighand->siglock);
 
 
 
 624	}
 
 625	return signr;
 626}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627
 628/*
 629 * Tell a process that it has a new active signal..
 630 *
 631 * NOTE! we rely on the previous spin_lock to
 632 * lock interrupts for us! We can only be called with
 633 * "siglock" held, and the local interrupt must
 634 * have been disabled when that got acquired!
 635 *
 636 * No need to set need_resched since signal event passing
 637 * goes through ->blocked
 638 */
 639void signal_wake_up_state(struct task_struct *t, unsigned int state)
 640{
 641	set_tsk_thread_flag(t, TIF_SIGPENDING);
 642	/*
 643	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 644	 * case. We don't check t->state here because there is a race with it
 645	 * executing another processor and just now entering stopped state.
 646	 * By using wake_up_state, we ensure the process will wake up and
 647	 * handle its death signal.
 648	 */
 649	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 650		kick_process(t);
 651}
 652
 653/*
 654 * Remove signals in mask from the pending set and queue.
 655 * Returns 1 if any signals were found.
 656 *
 657 * All callers must be holding the siglock.
 658 */
 659static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 660{
 661	struct sigqueue *q, *n;
 662	sigset_t m;
 663
 664	sigandsets(&m, mask, &s->signal);
 665	if (sigisemptyset(&m))
 666		return 0;
 667
 668	sigandnsets(&s->signal, &s->signal, mask);
 669	list_for_each_entry_safe(q, n, &s->list, list) {
 670		if (sigismember(mask, q->info.si_signo)) {
 671			list_del_init(&q->list);
 672			__sigqueue_free(q);
 673		}
 674	}
 675	return 1;
 676}
 677
 678static inline int is_si_special(const struct siginfo *info)
 679{
 680	return info <= SEND_SIG_FORCED;
 681}
 682
 683static inline bool si_fromuser(const struct siginfo *info)
 684{
 685	return info == SEND_SIG_NOINFO ||
 686		(!is_si_special(info) && SI_FROMUSER(info));
 687}
 688
 689/*
 690 * called with RCU read lock from check_kill_permission()
 691 */
 692static int kill_ok_by_cred(struct task_struct *t)
 693{
 694	const struct cred *cred = current_cred();
 695	const struct cred *tcred = __task_cred(t);
 696
 697	if (uid_eq(cred->euid, tcred->suid) ||
 698	    uid_eq(cred->euid, tcred->uid)  ||
 699	    uid_eq(cred->uid,  tcred->suid) ||
 700	    uid_eq(cred->uid,  tcred->uid))
 701		return 1;
 702
 703	if (ns_capable(tcred->user_ns, CAP_KILL))
 704		return 1;
 705
 706	return 0;
 707}
 708
 709/*
 710 * Bad permissions for sending the signal
 711 * - the caller must hold the RCU read lock
 712 */
 713static int check_kill_permission(int sig, struct siginfo *info,
 714				 struct task_struct *t)
 715{
 716	struct pid *sid;
 717	int error;
 718
 719	if (!valid_signal(sig))
 720		return -EINVAL;
 721
 722	if (!si_fromuser(info))
 723		return 0;
 724
 725	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 726	if (error)
 727		return error;
 728
 729	if (!same_thread_group(current, t) &&
 730	    !kill_ok_by_cred(t)) {
 731		switch (sig) {
 732		case SIGCONT:
 733			sid = task_session(t);
 734			/*
 735			 * We don't return the error if sid == NULL. The
 736			 * task was unhashed, the caller must notice this.
 737			 */
 738			if (!sid || sid == task_session(current))
 739				break;
 
 740		default:
 741			return -EPERM;
 742		}
 743	}
 744
 745	return security_task_kill(t, info, sig, 0);
 746}
 747
 748/**
 749 * ptrace_trap_notify - schedule trap to notify ptracer
 750 * @t: tracee wanting to notify tracer
 751 *
 752 * This function schedules sticky ptrace trap which is cleared on the next
 753 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 754 * ptracer.
 755 *
 756 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 757 * ptracer is listening for events, tracee is woken up so that it can
 758 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 759 * eventually taken without returning to userland after the existing traps
 760 * are finished by PTRACE_CONT.
 761 *
 762 * CONTEXT:
 763 * Must be called with @task->sighand->siglock held.
 764 */
 765static void ptrace_trap_notify(struct task_struct *t)
 766{
 767	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 768	assert_spin_locked(&t->sighand->siglock);
 769
 770	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 771	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 772}
 773
 774/*
 775 * Handle magic process-wide effects of stop/continue signals. Unlike
 776 * the signal actions, these happen immediately at signal-generation
 777 * time regardless of blocking, ignoring, or handling.  This does the
 778 * actual continuing for SIGCONT, but not the actual stopping for stop
 779 * signals. The process stop is done as a signal action for SIG_DFL.
 780 *
 781 * Returns true if the signal should be actually delivered, otherwise
 782 * it should be dropped.
 783 */
 784static bool prepare_signal(int sig, struct task_struct *p, bool force)
 785{
 786	struct signal_struct *signal = p->signal;
 787	struct task_struct *t;
 788	sigset_t flush;
 789
 790	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 791		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 792			return sig == SIGKILL;
 793		/*
 794		 * The process is in the middle of dying, nothing to do.
 795		 */
 796	} else if (sig_kernel_stop(sig)) {
 797		/*
 798		 * This is a stop signal.  Remove SIGCONT from all queues.
 799		 */
 800		siginitset(&flush, sigmask(SIGCONT));
 801		flush_sigqueue_mask(&flush, &signal->shared_pending);
 802		for_each_thread(p, t)
 803			flush_sigqueue_mask(&flush, &t->pending);
 804	} else if (sig == SIGCONT) {
 805		unsigned int why;
 806		/*
 807		 * Remove all stop signals from all queues, wake all threads.
 808		 */
 809		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 810		flush_sigqueue_mask(&flush, &signal->shared_pending);
 811		for_each_thread(p, t) {
 812			flush_sigqueue_mask(&flush, &t->pending);
 813			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 814			if (likely(!(t->ptrace & PT_SEIZED)))
 815				wake_up_state(t, __TASK_STOPPED);
 816			else
 817				ptrace_trap_notify(t);
 818		}
 819
 820		/*
 821		 * Notify the parent with CLD_CONTINUED if we were stopped.
 822		 *
 823		 * If we were in the middle of a group stop, we pretend it
 824		 * was already finished, and then continued. Since SIGCHLD
 825		 * doesn't queue we report only CLD_STOPPED, as if the next
 826		 * CLD_CONTINUED was dropped.
 827		 */
 828		why = 0;
 829		if (signal->flags & SIGNAL_STOP_STOPPED)
 830			why |= SIGNAL_CLD_CONTINUED;
 831		else if (signal->group_stop_count)
 832			why |= SIGNAL_CLD_STOPPED;
 833
 834		if (why) {
 835			/*
 836			 * The first thread which returns from do_signal_stop()
 837			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 838			 * notify its parent. See get_signal_to_deliver().
 839			 */
 840			signal->flags = why | SIGNAL_STOP_CONTINUED;
 841			signal->group_stop_count = 0;
 842			signal->group_exit_code = 0;
 843		}
 844	}
 845
 846	return !sig_ignored(p, sig, force);
 847}
 848
 849/*
 850 * Test if P wants to take SIG.  After we've checked all threads with this,
 851 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 852 * blocking SIG were ruled out because they are not running and already
 853 * have pending signals.  Such threads will dequeue from the shared queue
 854 * as soon as they're available, so putting the signal on the shared queue
 855 * will be equivalent to sending it to one such thread.
 856 */
 857static inline int wants_signal(int sig, struct task_struct *p)
 858{
 859	if (sigismember(&p->blocked, sig))
 860		return 0;
 
 861	if (p->flags & PF_EXITING)
 862		return 0;
 
 863	if (sig == SIGKILL)
 864		return 1;
 
 865	if (task_is_stopped_or_traced(p))
 866		return 0;
 867	return task_curr(p) || !signal_pending(p);
 
 868}
 869
 870static void complete_signal(int sig, struct task_struct *p, int group)
 871{
 872	struct signal_struct *signal = p->signal;
 873	struct task_struct *t;
 874
 875	/*
 876	 * Now find a thread we can wake up to take the signal off the queue.
 877	 *
 878	 * If the main thread wants the signal, it gets first crack.
 879	 * Probably the least surprising to the average bear.
 880	 */
 881	if (wants_signal(sig, p))
 882		t = p;
 883	else if (!group || thread_group_empty(p))
 884		/*
 885		 * There is just one thread and it does not need to be woken.
 886		 * It will dequeue unblocked signals before it runs again.
 887		 */
 888		return;
 889	else {
 890		/*
 891		 * Otherwise try to find a suitable thread.
 892		 */
 893		t = signal->curr_target;
 894		while (!wants_signal(sig, t)) {
 895			t = next_thread(t);
 896			if (t == signal->curr_target)
 897				/*
 898				 * No thread needs to be woken.
 899				 * Any eligible threads will see
 900				 * the signal in the queue soon.
 901				 */
 902				return;
 903		}
 904		signal->curr_target = t;
 905	}
 906
 907	/*
 908	 * Found a killable thread.  If the signal will be fatal,
 909	 * then start taking the whole group down immediately.
 910	 */
 911	if (sig_fatal(p, sig) &&
 912	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 913	    !sigismember(&t->real_blocked, sig) &&
 914	    (sig == SIGKILL || !t->ptrace)) {
 915		/*
 916		 * This signal will be fatal to the whole group.
 917		 */
 918		if (!sig_kernel_coredump(sig)) {
 919			/*
 920			 * Start a group exit and wake everybody up.
 921			 * This way we don't have other threads
 922			 * running and doing things after a slower
 923			 * thread has the fatal signal pending.
 924			 */
 925			signal->flags = SIGNAL_GROUP_EXIT;
 926			signal->group_exit_code = sig;
 927			signal->group_stop_count = 0;
 928			t = p;
 929			do {
 930				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 931				sigaddset(&t->pending.signal, SIGKILL);
 932				signal_wake_up(t, 1);
 933			} while_each_thread(p, t);
 934			return;
 935		}
 936	}
 937
 938	/*
 939	 * The signal is already in the shared-pending queue.
 940	 * Tell the chosen thread to wake up and dequeue it.
 941	 */
 942	signal_wake_up(t, sig == SIGKILL);
 943	return;
 944}
 945
 946static inline int legacy_queue(struct sigpending *signals, int sig)
 947{
 948	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 949}
 950
 951#ifdef CONFIG_USER_NS
 952static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 953{
 954	if (current_user_ns() == task_cred_xxx(t, user_ns))
 955		return;
 956
 957	if (SI_FROMKERNEL(info))
 958		return;
 959
 960	rcu_read_lock();
 961	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 962					make_kuid(current_user_ns(), info->si_uid));
 963	rcu_read_unlock();
 964}
 965#else
 966static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 967{
 968	return;
 969}
 970#endif
 971
 972static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 973			int group, int from_ancestor_ns)
 974{
 975	struct sigpending *pending;
 976	struct sigqueue *q;
 977	int override_rlimit;
 978	int ret = 0, result;
 979
 980	assert_spin_locked(&t->sighand->siglock);
 981
 982	result = TRACE_SIGNAL_IGNORED;
 983	if (!prepare_signal(sig, t,
 984			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 985		goto ret;
 986
 987	pending = group ? &t->signal->shared_pending : &t->pending;
 988	/*
 989	 * Short-circuit ignored signals and support queuing
 990	 * exactly one non-rt signal, so that we can get more
 991	 * detailed information about the cause of the signal.
 992	 */
 993	result = TRACE_SIGNAL_ALREADY_PENDING;
 994	if (legacy_queue(pending, sig))
 995		goto ret;
 996
 997	result = TRACE_SIGNAL_DELIVERED;
 998	/*
 999	 * fast-pathed signals for kernel-internal things like SIGSTOP
1000	 * or SIGKILL.
1001	 */
1002	if (info == SEND_SIG_FORCED)
1003		goto out_set;
1004
1005	/*
1006	 * Real-time signals must be queued if sent by sigqueue, or
1007	 * some other real-time mechanism.  It is implementation
1008	 * defined whether kill() does so.  We attempt to do so, on
1009	 * the principle of least surprise, but since kill is not
1010	 * allowed to fail with EAGAIN when low on memory we just
1011	 * make sure at least one signal gets delivered and don't
1012	 * pass on the info struct.
1013	 */
1014	if (sig < SIGRTMIN)
1015		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1016	else
1017		override_rlimit = 0;
1018
1019	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1020		override_rlimit);
1021	if (q) {
1022		list_add_tail(&q->list, &pending->list);
1023		switch ((unsigned long) info) {
1024		case (unsigned long) SEND_SIG_NOINFO:
 
1025			q->info.si_signo = sig;
1026			q->info.si_errno = 0;
1027			q->info.si_code = SI_USER;
1028			q->info.si_pid = task_tgid_nr_ns(current,
1029							task_active_pid_ns(t));
1030			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1031			break;
1032		case (unsigned long) SEND_SIG_PRIV:
 
1033			q->info.si_signo = sig;
1034			q->info.si_errno = 0;
1035			q->info.si_code = SI_KERNEL;
1036			q->info.si_pid = 0;
1037			q->info.si_uid = 0;
1038			break;
1039		default:
1040			copy_siginfo(&q->info, info);
1041			if (from_ancestor_ns)
1042				q->info.si_pid = 0;
1043			break;
1044		}
1045
1046		userns_fixup_signal_uid(&q->info, t);
1047
1048	} else if (!is_si_special(info)) {
1049		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1050			/*
1051			 * Queue overflow, abort.  We may abort if the
1052			 * signal was rt and sent by user using something
1053			 * other than kill().
1054			 */
1055			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1056			ret = -EAGAIN;
1057			goto ret;
1058		} else {
1059			/*
1060			 * This is a silent loss of information.  We still
1061			 * send the signal, but the *info bits are lost.
1062			 */
1063			result = TRACE_SIGNAL_LOSE_INFO;
1064		}
1065	}
1066
1067out_set:
1068	signalfd_notify(t, sig);
1069	sigaddset(&pending->signal, sig);
1070	complete_signal(sig, t, group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071ret:
1072	trace_signal_generate(sig, info, t, group, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073	return ret;
1074}
1075
1076static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1077			int group)
1078{
1079	int from_ancestor_ns = 0;
 
1080
1081#ifdef CONFIG_PID_NS
1082	from_ancestor_ns = si_fromuser(info) &&
1083			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1084#endif
 
 
 
 
 
1085
1086	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087}
1088
1089static void print_fatal_signal(int signr)
1090{
1091	struct pt_regs *regs = signal_pt_regs();
1092	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1093
1094#if defined(__i386__) && !defined(__arch_um__)
1095	printk(KERN_INFO "code at %08lx: ", regs->ip);
1096	{
1097		int i;
1098		for (i = 0; i < 16; i++) {
1099			unsigned char insn;
1100
1101			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1102				break;
1103			printk(KERN_CONT "%02x ", insn);
1104		}
1105	}
1106	printk(KERN_CONT "\n");
1107#endif
1108	preempt_disable();
1109	show_regs(regs);
1110	preempt_enable();
1111}
1112
1113static int __init setup_print_fatal_signals(char *str)
1114{
1115	get_option (&str, &print_fatal_signals);
1116
1117	return 1;
1118}
1119
1120__setup("print-fatal-signals=", setup_print_fatal_signals);
1121
1122int
1123__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124{
1125	return send_signal(sig, info, p, 1);
1126}
1127
1128static int
1129specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1130{
1131	return send_signal(sig, info, t, 0);
1132}
1133
1134int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1135			bool group)
1136{
1137	unsigned long flags;
1138	int ret = -ESRCH;
1139
1140	if (lock_task_sighand(p, &flags)) {
1141		ret = send_signal(sig, info, p, group);
1142		unlock_task_sighand(p, &flags);
1143	}
1144
1145	return ret;
1146}
1147
1148/*
1149 * Force a signal that the process can't ignore: if necessary
1150 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1151 *
1152 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1153 * since we do not want to have a signal handler that was blocked
1154 * be invoked when user space had explicitly blocked it.
1155 *
1156 * We don't want to have recursive SIGSEGV's etc, for example,
1157 * that is why we also clear SIGNAL_UNKILLABLE.
1158 */
1159int
1160force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1161{
1162	unsigned long int flags;
1163	int ret, blocked, ignored;
1164	struct k_sigaction *action;
 
1165
1166	spin_lock_irqsave(&t->sighand->siglock, flags);
1167	action = &t->sighand->action[sig-1];
1168	ignored = action->sa.sa_handler == SIG_IGN;
1169	blocked = sigismember(&t->blocked, sig);
1170	if (blocked || ignored) {
1171		action->sa.sa_handler = SIG_DFL;
1172		if (blocked) {
1173			sigdelset(&t->blocked, sig);
1174			recalc_sigpending_and_wake(t);
1175		}
1176	}
1177	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
1178		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1179	ret = specific_send_sig_info(sig, info, t);
1180	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1181
1182	return ret;
1183}
1184
 
 
 
 
 
1185/*
1186 * Nuke all other threads in the group.
1187 */
1188int zap_other_threads(struct task_struct *p)
1189{
1190	struct task_struct *t = p;
1191	int count = 0;
1192
1193	p->signal->group_stop_count = 0;
1194
1195	while_each_thread(p, t) {
1196		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1197		count++;
1198
1199		/* Don't bother with already dead threads */
1200		if (t->exit_state)
1201			continue;
1202		sigaddset(&t->pending.signal, SIGKILL);
1203		signal_wake_up(t, 1);
1204	}
1205
1206	return count;
1207}
1208
1209struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1210					   unsigned long *flags)
1211{
1212	struct sighand_struct *sighand;
1213
 
1214	for (;;) {
1215		/*
1216		 * Disable interrupts early to avoid deadlocks.
1217		 * See rcu_read_unlock() comment header for details.
1218		 */
1219		local_irq_save(*flags);
1220		rcu_read_lock();
1221		sighand = rcu_dereference(tsk->sighand);
1222		if (unlikely(sighand == NULL)) {
1223			rcu_read_unlock();
1224			local_irq_restore(*flags);
1225			break;
1226		}
1227		/*
1228		 * This sighand can be already freed and even reused, but
1229		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1230		 * initializes ->siglock: this slab can't go away, it has
1231		 * the same object type, ->siglock can't be reinitialized.
1232		 *
1233		 * We need to ensure that tsk->sighand is still the same
1234		 * after we take the lock, we can race with de_thread() or
1235		 * __exit_signal(). In the latter case the next iteration
1236		 * must see ->sighand == NULL.
1237		 */
1238		spin_lock(&sighand->siglock);
1239		if (likely(sighand == tsk->sighand)) {
1240			rcu_read_unlock();
1241			break;
1242		}
1243		spin_unlock(&sighand->siglock);
1244		rcu_read_unlock();
1245		local_irq_restore(*flags);
1246	}
 
1247
1248	return sighand;
1249}
1250
1251/*
1252 * send signal info to all the members of a group
1253 */
1254int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1255{
1256	int ret;
1257
1258	rcu_read_lock();
1259	ret = check_kill_permission(sig, info, p);
1260	rcu_read_unlock();
1261
1262	if (!ret && sig)
1263		ret = do_send_sig_info(sig, info, p, true);
1264
1265	return ret;
1266}
1267
1268/*
1269 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1270 * control characters do (^C, ^Z etc)
1271 * - the caller must hold at least a readlock on tasklist_lock
1272 */
1273int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1274{
1275	struct task_struct *p = NULL;
1276	int retval, success;
1277
1278	success = 0;
1279	retval = -ESRCH;
1280	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1281		int err = group_send_sig_info(sig, info, p);
1282		success |= !err;
1283		retval = err;
1284	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1285	return success ? 0 : retval;
1286}
1287
1288int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1289{
1290	int error = -ESRCH;
1291	struct task_struct *p;
1292
1293	for (;;) {
1294		rcu_read_lock();
1295		p = pid_task(pid, PIDTYPE_PID);
1296		if (p)
1297			error = group_send_sig_info(sig, info, p);
1298		rcu_read_unlock();
1299		if (likely(!p || error != -ESRCH))
1300			return error;
1301
1302		/*
1303		 * The task was unhashed in between, try again.  If it
1304		 * is dead, pid_task() will return NULL, if we race with
1305		 * de_thread() it will find the new leader.
1306		 */
1307	}
1308}
1309
1310int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1311{
1312	int error;
1313	rcu_read_lock();
1314	error = kill_pid_info(sig, info, find_vpid(pid));
1315	rcu_read_unlock();
1316	return error;
1317}
1318
1319static int kill_as_cred_perm(const struct cred *cred,
1320			     struct task_struct *target)
1321{
1322	const struct cred *pcred = __task_cred(target);
1323	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1324	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1325		return 0;
1326	return 1;
 
1327}
1328
1329/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1330int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1331			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332{
1333	int ret = -EINVAL;
1334	struct task_struct *p;
1335	unsigned long flags;
 
1336
1337	if (!valid_signal(sig))
1338		return ret;
1339
 
 
 
 
 
 
1340	rcu_read_lock();
1341	p = pid_task(pid, PIDTYPE_PID);
1342	if (!p) {
1343		ret = -ESRCH;
1344		goto out_unlock;
1345	}
1346	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1347		ret = -EPERM;
1348		goto out_unlock;
1349	}
1350	ret = security_task_kill(p, info, sig, secid);
1351	if (ret)
1352		goto out_unlock;
1353
1354	if (sig) {
1355		if (lock_task_sighand(p, &flags)) {
1356			ret = __send_signal(sig, info, p, 1, 0);
1357			unlock_task_sighand(p, &flags);
1358		} else
1359			ret = -ESRCH;
1360	}
1361out_unlock:
1362	rcu_read_unlock();
1363	return ret;
1364}
1365EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1366
1367/*
1368 * kill_something_info() interprets pid in interesting ways just like kill(2).
1369 *
1370 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1371 * is probably wrong.  Should make it like BSD or SYSV.
1372 */
1373
1374static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int ret;
1377
1378	if (pid > 0) {
1379		rcu_read_lock();
1380		ret = kill_pid_info(sig, info, find_vpid(pid));
1381		rcu_read_unlock();
1382		return ret;
1383	}
1384
1385	read_lock(&tasklist_lock);
1386	if (pid != -1) {
1387		ret = __kill_pgrp_info(sig, info,
1388				pid ? find_vpid(-pid) : task_pgrp(current));
1389	} else {
1390		int retval = 0, count = 0;
1391		struct task_struct * p;
1392
1393		for_each_process(p) {
1394			if (task_pid_vnr(p) > 1 &&
1395					!same_thread_group(p, current)) {
1396				int err = group_send_sig_info(sig, info, p);
 
1397				++count;
1398				if (err != -EPERM)
1399					retval = err;
1400			}
1401		}
1402		ret = count ? retval : -ESRCH;
1403	}
1404	read_unlock(&tasklist_lock);
1405
1406	return ret;
1407}
1408
1409/*
1410 * These are for backward compatibility with the rest of the kernel source.
1411 */
1412
1413int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1414{
1415	/*
1416	 * Make sure legacy kernel users don't send in bad values
1417	 * (normal paths check this in check_kill_permission).
1418	 */
1419	if (!valid_signal(sig))
1420		return -EINVAL;
1421
1422	return do_send_sig_info(sig, info, p, false);
1423}
 
1424
1425#define __si_special(priv) \
1426	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1427
1428int
1429send_sig(int sig, struct task_struct *p, int priv)
1430{
1431	return send_sig_info(sig, __si_special(priv), p);
1432}
 
1433
1434void
1435force_sig(int sig, struct task_struct *p)
1436{
1437	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1438}
 
1439
1440/*
1441 * When things go south during signal handling, we
1442 * will force a SIGSEGV. And if the signal that caused
1443 * the problem was already a SIGSEGV, we'll want to
1444 * make sure we don't even try to deliver the signal..
1445 */
1446int
1447force_sigsegv(int sig, struct task_struct *p)
1448{
 
 
1449	if (sig == SIGSEGV) {
1450		unsigned long flags;
1451		spin_lock_irqsave(&p->sighand->siglock, flags);
1452		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1453		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1454	}
1455	force_sig(SIGSEGV, p);
1456	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457}
1458
1459int kill_pgrp(struct pid *pid, int sig, int priv)
1460{
1461	int ret;
1462
1463	read_lock(&tasklist_lock);
1464	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1465	read_unlock(&tasklist_lock);
1466
1467	return ret;
1468}
1469EXPORT_SYMBOL(kill_pgrp);
1470
1471int kill_pid(struct pid *pid, int sig, int priv)
1472{
1473	return kill_pid_info(sig, __si_special(priv), pid);
1474}
1475EXPORT_SYMBOL(kill_pid);
1476
1477/*
1478 * These functions support sending signals using preallocated sigqueue
1479 * structures.  This is needed "because realtime applications cannot
1480 * afford to lose notifications of asynchronous events, like timer
1481 * expirations or I/O completions".  In the case of POSIX Timers
1482 * we allocate the sigqueue structure from the timer_create.  If this
1483 * allocation fails we are able to report the failure to the application
1484 * with an EAGAIN error.
1485 */
1486struct sigqueue *sigqueue_alloc(void)
1487{
1488	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1489
1490	if (q)
1491		q->flags |= SIGQUEUE_PREALLOC;
1492
1493	return q;
1494}
1495
1496void sigqueue_free(struct sigqueue *q)
1497{
1498	unsigned long flags;
1499	spinlock_t *lock = &current->sighand->siglock;
1500
1501	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1502	/*
1503	 * We must hold ->siglock while testing q->list
1504	 * to serialize with collect_signal() or with
1505	 * __exit_signal()->flush_sigqueue().
1506	 */
1507	spin_lock_irqsave(lock, flags);
1508	q->flags &= ~SIGQUEUE_PREALLOC;
1509	/*
1510	 * If it is queued it will be freed when dequeued,
1511	 * like the "regular" sigqueue.
1512	 */
1513	if (!list_empty(&q->list))
1514		q = NULL;
1515	spin_unlock_irqrestore(lock, flags);
1516
1517	if (q)
1518		__sigqueue_free(q);
1519}
1520
1521int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1522{
1523	int sig = q->info.si_signo;
1524	struct sigpending *pending;
 
1525	unsigned long flags;
1526	int ret, result;
1527
1528	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1529
1530	ret = -1;
1531	if (!likely(lock_task_sighand(t, &flags)))
 
 
1532		goto ret;
1533
1534	ret = 1; /* the signal is ignored */
1535	result = TRACE_SIGNAL_IGNORED;
1536	if (!prepare_signal(sig, t, false))
1537		goto out;
1538
1539	ret = 0;
1540	if (unlikely(!list_empty(&q->list))) {
1541		/*
1542		 * If an SI_TIMER entry is already queue just increment
1543		 * the overrun count.
1544		 */
1545		BUG_ON(q->info.si_code != SI_TIMER);
1546		q->info.si_overrun++;
1547		result = TRACE_SIGNAL_ALREADY_PENDING;
1548		goto out;
1549	}
1550	q->info.si_overrun = 0;
1551
1552	signalfd_notify(t, sig);
1553	pending = group ? &t->signal->shared_pending : &t->pending;
1554	list_add_tail(&q->list, &pending->list);
1555	sigaddset(&pending->signal, sig);
1556	complete_signal(sig, t, group);
1557	result = TRACE_SIGNAL_DELIVERED;
1558out:
1559	trace_signal_generate(sig, &q->info, t, group, result);
1560	unlock_task_sighand(t, &flags);
1561ret:
 
1562	return ret;
1563}
1564
 
 
 
 
 
 
 
 
 
1565/*
1566 * Let a parent know about the death of a child.
1567 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1568 *
1569 * Returns true if our parent ignored us and so we've switched to
1570 * self-reaping.
1571 */
1572bool do_notify_parent(struct task_struct *tsk, int sig)
1573{
1574	struct siginfo info;
1575	unsigned long flags;
1576	struct sighand_struct *psig;
1577	bool autoreap = false;
1578	cputime_t utime, stime;
1579
1580	BUG_ON(sig == -1);
1581
1582 	/* do_notify_parent_cldstop should have been called instead.  */
1583 	BUG_ON(task_is_stopped_or_traced(tsk));
1584
1585	BUG_ON(!tsk->ptrace &&
1586	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1587
 
 
 
1588	if (sig != SIGCHLD) {
1589		/*
1590		 * This is only possible if parent == real_parent.
1591		 * Check if it has changed security domain.
1592		 */
1593		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1594			sig = SIGCHLD;
1595	}
1596
 
1597	info.si_signo = sig;
1598	info.si_errno = 0;
1599	/*
1600	 * We are under tasklist_lock here so our parent is tied to
1601	 * us and cannot change.
1602	 *
1603	 * task_active_pid_ns will always return the same pid namespace
1604	 * until a task passes through release_task.
1605	 *
1606	 * write_lock() currently calls preempt_disable() which is the
1607	 * same as rcu_read_lock(), but according to Oleg, this is not
1608	 * correct to rely on this
1609	 */
1610	rcu_read_lock();
1611	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1612	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1613				       task_uid(tsk));
1614	rcu_read_unlock();
1615
1616	task_cputime(tsk, &utime, &stime);
1617	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1618	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1619
1620	info.si_status = tsk->exit_code & 0x7f;
1621	if (tsk->exit_code & 0x80)
1622		info.si_code = CLD_DUMPED;
1623	else if (tsk->exit_code & 0x7f)
1624		info.si_code = CLD_KILLED;
1625	else {
1626		info.si_code = CLD_EXITED;
1627		info.si_status = tsk->exit_code >> 8;
1628	}
1629
1630	psig = tsk->parent->sighand;
1631	spin_lock_irqsave(&psig->siglock, flags);
1632	if (!tsk->ptrace && sig == SIGCHLD &&
1633	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1634	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1635		/*
1636		 * We are exiting and our parent doesn't care.  POSIX.1
1637		 * defines special semantics for setting SIGCHLD to SIG_IGN
1638		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1639		 * automatically and not left for our parent's wait4 call.
1640		 * Rather than having the parent do it as a magic kind of
1641		 * signal handler, we just set this to tell do_exit that we
1642		 * can be cleaned up without becoming a zombie.  Note that
1643		 * we still call __wake_up_parent in this case, because a
1644		 * blocked sys_wait4 might now return -ECHILD.
1645		 *
1646		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1647		 * is implementation-defined: we do (if you don't want
1648		 * it, just use SIG_IGN instead).
1649		 */
1650		autoreap = true;
1651		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1652			sig = 0;
1653	}
 
 
 
 
1654	if (valid_signal(sig) && sig)
1655		__group_send_sig_info(sig, &info, tsk->parent);
1656	__wake_up_parent(tsk, tsk->parent);
1657	spin_unlock_irqrestore(&psig->siglock, flags);
1658
1659	return autoreap;
1660}
1661
1662/**
1663 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1664 * @tsk: task reporting the state change
1665 * @for_ptracer: the notification is for ptracer
1666 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1667 *
1668 * Notify @tsk's parent that the stopped/continued state has changed.  If
1669 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1670 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1671 *
1672 * CONTEXT:
1673 * Must be called with tasklist_lock at least read locked.
1674 */
1675static void do_notify_parent_cldstop(struct task_struct *tsk,
1676				     bool for_ptracer, int why)
1677{
1678	struct siginfo info;
1679	unsigned long flags;
1680	struct task_struct *parent;
1681	struct sighand_struct *sighand;
1682	cputime_t utime, stime;
1683
1684	if (for_ptracer) {
1685		parent = tsk->parent;
1686	} else {
1687		tsk = tsk->group_leader;
1688		parent = tsk->real_parent;
1689	}
1690
 
1691	info.si_signo = SIGCHLD;
1692	info.si_errno = 0;
1693	/*
1694	 * see comment in do_notify_parent() about the following 4 lines
1695	 */
1696	rcu_read_lock();
1697	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1698	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1699	rcu_read_unlock();
1700
1701	task_cputime(tsk, &utime, &stime);
1702	info.si_utime = cputime_to_clock_t(utime);
1703	info.si_stime = cputime_to_clock_t(stime);
1704
1705 	info.si_code = why;
1706 	switch (why) {
1707 	case CLD_CONTINUED:
1708 		info.si_status = SIGCONT;
1709 		break;
1710 	case CLD_STOPPED:
1711 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1712 		break;
1713 	case CLD_TRAPPED:
1714 		info.si_status = tsk->exit_code & 0x7f;
1715 		break;
1716 	default:
1717 		BUG();
1718 	}
1719
1720	sighand = parent->sighand;
1721	spin_lock_irqsave(&sighand->siglock, flags);
1722	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1723	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1724		__group_send_sig_info(SIGCHLD, &info, parent);
1725	/*
1726	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1727	 */
1728	__wake_up_parent(tsk, parent);
1729	spin_unlock_irqrestore(&sighand->siglock, flags);
1730}
1731
1732static inline int may_ptrace_stop(void)
1733{
1734	if (!likely(current->ptrace))
1735		return 0;
1736	/*
1737	 * Are we in the middle of do_coredump?
1738	 * If so and our tracer is also part of the coredump stopping
1739	 * is a deadlock situation, and pointless because our tracer
1740	 * is dead so don't allow us to stop.
1741	 * If SIGKILL was already sent before the caller unlocked
1742	 * ->siglock we must see ->core_state != NULL. Otherwise it
1743	 * is safe to enter schedule().
1744	 *
1745	 * This is almost outdated, a task with the pending SIGKILL can't
1746	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1747	 * after SIGKILL was already dequeued.
1748	 */
1749	if (unlikely(current->mm->core_state) &&
1750	    unlikely(current->mm == current->parent->mm))
1751		return 0;
1752
1753	return 1;
1754}
1755
1756/*
1757 * Return non-zero if there is a SIGKILL that should be waking us up.
1758 * Called with the siglock held.
1759 */
1760static int sigkill_pending(struct task_struct *tsk)
1761{
1762	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1763		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1764}
1765
1766/*
1767 * This must be called with current->sighand->siglock held.
1768 *
1769 * This should be the path for all ptrace stops.
1770 * We always set current->last_siginfo while stopped here.
1771 * That makes it a way to test a stopped process for
1772 * being ptrace-stopped vs being job-control-stopped.
1773 *
1774 * If we actually decide not to stop at all because the tracer
1775 * is gone, we keep current->exit_code unless clear_code.
1776 */
1777static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1778	__releases(&current->sighand->siglock)
1779	__acquires(&current->sighand->siglock)
1780{
1781	bool gstop_done = false;
1782
1783	if (arch_ptrace_stop_needed(exit_code, info)) {
1784		/*
1785		 * The arch code has something special to do before a
1786		 * ptrace stop.  This is allowed to block, e.g. for faults
1787		 * on user stack pages.  We can't keep the siglock while
1788		 * calling arch_ptrace_stop, so we must release it now.
1789		 * To preserve proper semantics, we must do this before
1790		 * any signal bookkeeping like checking group_stop_count.
1791		 * Meanwhile, a SIGKILL could come in before we retake the
1792		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1793		 * So after regaining the lock, we must check for SIGKILL.
1794		 */
1795		spin_unlock_irq(&current->sighand->siglock);
1796		arch_ptrace_stop(exit_code, info);
1797		spin_lock_irq(&current->sighand->siglock);
1798		if (sigkill_pending(current))
1799			return;
1800	}
1801
 
 
1802	/*
1803	 * We're committing to trapping.  TRACED should be visible before
1804	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1805	 * Also, transition to TRACED and updates to ->jobctl should be
1806	 * atomic with respect to siglock and should be done after the arch
1807	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1808	 */
1809	set_current_state(TASK_TRACED);
1810
1811	current->last_siginfo = info;
1812	current->exit_code = exit_code;
1813
1814	/*
1815	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1816	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1817	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1818	 * could be clear now.  We act as if SIGCONT is received after
1819	 * TASK_TRACED is entered - ignore it.
1820	 */
1821	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1822		gstop_done = task_participate_group_stop(current);
1823
1824	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1825	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1826	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1827		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1828
1829	/* entering a trap, clear TRAPPING */
1830	task_clear_jobctl_trapping(current);
1831
1832	spin_unlock_irq(&current->sighand->siglock);
1833	read_lock(&tasklist_lock);
1834	if (may_ptrace_stop()) {
1835		/*
1836		 * Notify parents of the stop.
1837		 *
1838		 * While ptraced, there are two parents - the ptracer and
1839		 * the real_parent of the group_leader.  The ptracer should
1840		 * know about every stop while the real parent is only
1841		 * interested in the completion of group stop.  The states
1842		 * for the two don't interact with each other.  Notify
1843		 * separately unless they're gonna be duplicates.
1844		 */
1845		do_notify_parent_cldstop(current, true, why);
1846		if (gstop_done && ptrace_reparented(current))
1847			do_notify_parent_cldstop(current, false, why);
1848
1849		/*
1850		 * Don't want to allow preemption here, because
1851		 * sys_ptrace() needs this task to be inactive.
1852		 *
1853		 * XXX: implement read_unlock_no_resched().
1854		 */
1855		preempt_disable();
1856		read_unlock(&tasklist_lock);
 
1857		preempt_enable_no_resched();
1858		freezable_schedule();
 
1859	} else {
1860		/*
1861		 * By the time we got the lock, our tracer went away.
1862		 * Don't drop the lock yet, another tracer may come.
1863		 *
1864		 * If @gstop_done, the ptracer went away between group stop
1865		 * completion and here.  During detach, it would have set
1866		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1867		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1868		 * the real parent of the group stop completion is enough.
1869		 */
1870		if (gstop_done)
1871			do_notify_parent_cldstop(current, false, why);
1872
1873		/* tasklist protects us from ptrace_freeze_traced() */
1874		__set_current_state(TASK_RUNNING);
1875		if (clear_code)
1876			current->exit_code = 0;
1877		read_unlock(&tasklist_lock);
1878	}
1879
1880	/*
1881	 * We are back.  Now reacquire the siglock before touching
1882	 * last_siginfo, so that we are sure to have synchronized with
1883	 * any signal-sending on another CPU that wants to examine it.
1884	 */
1885	spin_lock_irq(&current->sighand->siglock);
1886	current->last_siginfo = NULL;
1887
1888	/* LISTENING can be set only during STOP traps, clear it */
1889	current->jobctl &= ~JOBCTL_LISTENING;
1890
1891	/*
1892	 * Queued signals ignored us while we were stopped for tracing.
1893	 * So check for any that we should take before resuming user mode.
1894	 * This sets TIF_SIGPENDING, but never clears it.
1895	 */
1896	recalc_sigpending_tsk(current);
1897}
1898
1899static void ptrace_do_notify(int signr, int exit_code, int why)
1900{
1901	siginfo_t info;
1902
1903	memset(&info, 0, sizeof info);
1904	info.si_signo = signr;
1905	info.si_code = exit_code;
1906	info.si_pid = task_pid_vnr(current);
1907	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1908
1909	/* Let the debugger run.  */
1910	ptrace_stop(exit_code, why, 1, &info);
1911}
1912
1913void ptrace_notify(int exit_code)
1914{
1915	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1916	if (unlikely(current->task_works))
1917		task_work_run();
1918
1919	spin_lock_irq(&current->sighand->siglock);
1920	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1921	spin_unlock_irq(&current->sighand->siglock);
1922}
1923
1924/**
1925 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1926 * @signr: signr causing group stop if initiating
1927 *
1928 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1929 * and participate in it.  If already set, participate in the existing
1930 * group stop.  If participated in a group stop (and thus slept), %true is
1931 * returned with siglock released.
1932 *
1933 * If ptraced, this function doesn't handle stop itself.  Instead,
1934 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1935 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1936 * places afterwards.
1937 *
1938 * CONTEXT:
1939 * Must be called with @current->sighand->siglock held, which is released
1940 * on %true return.
1941 *
1942 * RETURNS:
1943 * %false if group stop is already cancelled or ptrace trap is scheduled.
1944 * %true if participated in group stop.
1945 */
1946static bool do_signal_stop(int signr)
1947	__releases(&current->sighand->siglock)
1948{
1949	struct signal_struct *sig = current->signal;
1950
1951	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1952		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1953		struct task_struct *t;
1954
1955		/* signr will be recorded in task->jobctl for retries */
1956		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1957
1958		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1959		    unlikely(signal_group_exit(sig)))
1960			return false;
1961		/*
1962		 * There is no group stop already in progress.  We must
1963		 * initiate one now.
1964		 *
1965		 * While ptraced, a task may be resumed while group stop is
1966		 * still in effect and then receive a stop signal and
1967		 * initiate another group stop.  This deviates from the
1968		 * usual behavior as two consecutive stop signals can't
1969		 * cause two group stops when !ptraced.  That is why we
1970		 * also check !task_is_stopped(t) below.
1971		 *
1972		 * The condition can be distinguished by testing whether
1973		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1974		 * group_exit_code in such case.
1975		 *
1976		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1977		 * an intervening stop signal is required to cause two
1978		 * continued events regardless of ptrace.
1979		 */
1980		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1981			sig->group_exit_code = signr;
1982
1983		sig->group_stop_count = 0;
1984
1985		if (task_set_jobctl_pending(current, signr | gstop))
1986			sig->group_stop_count++;
1987
1988		t = current;
1989		while_each_thread(current, t) {
1990			/*
1991			 * Setting state to TASK_STOPPED for a group
1992			 * stop is always done with the siglock held,
1993			 * so this check has no races.
1994			 */
1995			if (!task_is_stopped(t) &&
1996			    task_set_jobctl_pending(t, signr | gstop)) {
1997				sig->group_stop_count++;
1998				if (likely(!(t->ptrace & PT_SEIZED)))
1999					signal_wake_up(t, 0);
2000				else
2001					ptrace_trap_notify(t);
2002			}
2003		}
2004	}
2005
2006	if (likely(!current->ptrace)) {
2007		int notify = 0;
2008
2009		/*
2010		 * If there are no other threads in the group, or if there
2011		 * is a group stop in progress and we are the last to stop,
2012		 * report to the parent.
2013		 */
2014		if (task_participate_group_stop(current))
2015			notify = CLD_STOPPED;
2016
2017		__set_current_state(TASK_STOPPED);
2018		spin_unlock_irq(&current->sighand->siglock);
2019
2020		/*
2021		 * Notify the parent of the group stop completion.  Because
2022		 * we're not holding either the siglock or tasklist_lock
2023		 * here, ptracer may attach inbetween; however, this is for
2024		 * group stop and should always be delivered to the real
2025		 * parent of the group leader.  The new ptracer will get
2026		 * its notification when this task transitions into
2027		 * TASK_TRACED.
2028		 */
2029		if (notify) {
2030			read_lock(&tasklist_lock);
2031			do_notify_parent_cldstop(current, false, notify);
2032			read_unlock(&tasklist_lock);
2033		}
2034
2035		/* Now we don't run again until woken by SIGCONT or SIGKILL */
 
2036		freezable_schedule();
2037		return true;
2038	} else {
2039		/*
2040		 * While ptraced, group stop is handled by STOP trap.
2041		 * Schedule it and let the caller deal with it.
2042		 */
2043		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2044		return false;
2045	}
2046}
2047
2048/**
2049 * do_jobctl_trap - take care of ptrace jobctl traps
2050 *
2051 * When PT_SEIZED, it's used for both group stop and explicit
2052 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2053 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2054 * the stop signal; otherwise, %SIGTRAP.
2055 *
2056 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2057 * number as exit_code and no siginfo.
2058 *
2059 * CONTEXT:
2060 * Must be called with @current->sighand->siglock held, which may be
2061 * released and re-acquired before returning with intervening sleep.
2062 */
2063static void do_jobctl_trap(void)
2064{
2065	struct signal_struct *signal = current->signal;
2066	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2067
2068	if (current->ptrace & PT_SEIZED) {
2069		if (!signal->group_stop_count &&
2070		    !(signal->flags & SIGNAL_STOP_STOPPED))
2071			signr = SIGTRAP;
2072		WARN_ON_ONCE(!signr);
2073		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2074				 CLD_STOPPED);
2075	} else {
2076		WARN_ON_ONCE(!signr);
2077		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2078		current->exit_code = 0;
2079	}
2080}
2081
2082static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2083{
2084	ptrace_signal_deliver();
2085	/*
2086	 * We do not check sig_kernel_stop(signr) but set this marker
2087	 * unconditionally because we do not know whether debugger will
2088	 * change signr. This flag has no meaning unless we are going
2089	 * to stop after return from ptrace_stop(). In this case it will
2090	 * be checked in do_signal_stop(), we should only stop if it was
2091	 * not cleared by SIGCONT while we were sleeping. See also the
2092	 * comment in dequeue_signal().
2093	 */
2094	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2095	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2096
2097	/* We're back.  Did the debugger cancel the sig?  */
2098	signr = current->exit_code;
2099	if (signr == 0)
2100		return signr;
2101
2102	current->exit_code = 0;
2103
2104	/*
2105	 * Update the siginfo structure if the signal has
2106	 * changed.  If the debugger wanted something
2107	 * specific in the siginfo structure then it should
2108	 * have updated *info via PTRACE_SETSIGINFO.
2109	 */
2110	if (signr != info->si_signo) {
 
2111		info->si_signo = signr;
2112		info->si_errno = 0;
2113		info->si_code = SI_USER;
2114		rcu_read_lock();
2115		info->si_pid = task_pid_vnr(current->parent);
2116		info->si_uid = from_kuid_munged(current_user_ns(),
2117						task_uid(current->parent));
2118		rcu_read_unlock();
2119	}
2120
2121	/* If the (new) signal is now blocked, requeue it.  */
2122	if (sigismember(&current->blocked, signr)) {
2123		specific_send_sig_info(signr, info, current);
2124		signr = 0;
2125	}
2126
2127	return signr;
2128}
2129
2130int get_signal(struct ksignal *ksig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131{
2132	struct sighand_struct *sighand = current->sighand;
2133	struct signal_struct *signal = current->signal;
2134	int signr;
2135
2136	if (unlikely(current->task_works))
2137		task_work_run();
2138
 
 
 
 
 
 
 
 
 
 
 
 
2139	if (unlikely(uprobe_deny_signal()))
2140		return 0;
2141
2142	/*
2143	 * Do this once, we can't return to user-mode if freezing() == T.
2144	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2145	 * thus do not need another check after return.
2146	 */
2147	try_to_freeze();
2148
2149relock:
2150	spin_lock_irq(&sighand->siglock);
 
2151	/*
2152	 * Every stopped thread goes here after wakeup. Check to see if
2153	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2154	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2155	 */
2156	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2157		int why;
2158
2159		if (signal->flags & SIGNAL_CLD_CONTINUED)
2160			why = CLD_CONTINUED;
2161		else
2162			why = CLD_STOPPED;
2163
2164		signal->flags &= ~SIGNAL_CLD_MASK;
2165
2166		spin_unlock_irq(&sighand->siglock);
2167
2168		/*
2169		 * Notify the parent that we're continuing.  This event is
2170		 * always per-process and doesn't make whole lot of sense
2171		 * for ptracers, who shouldn't consume the state via
2172		 * wait(2) either, but, for backward compatibility, notify
2173		 * the ptracer of the group leader too unless it's gonna be
2174		 * a duplicate.
2175		 */
2176		read_lock(&tasklist_lock);
2177		do_notify_parent_cldstop(current, false, why);
2178
2179		if (ptrace_reparented(current->group_leader))
2180			do_notify_parent_cldstop(current->group_leader,
2181						true, why);
2182		read_unlock(&tasklist_lock);
2183
2184		goto relock;
2185	}
2186
 
 
 
 
 
 
 
 
 
 
2187	for (;;) {
2188		struct k_sigaction *ka;
2189
2190		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2191		    do_signal_stop(0))
2192			goto relock;
2193
2194		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2195			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196			spin_unlock_irq(&sighand->siglock);
 
2197			goto relock;
2198		}
2199
2200		signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
 
 
 
 
 
 
 
2201
2202		if (!signr)
2203			break; /* will return 0 */
2204
2205		if (unlikely(current->ptrace) && signr != SIGKILL) {
2206			signr = ptrace_signal(signr, &ksig->info);
2207			if (!signr)
2208				continue;
2209		}
2210
2211		ka = &sighand->action[signr-1];
2212
2213		/* Trace actually delivered signals. */
2214		trace_signal_deliver(signr, &ksig->info, ka);
2215
2216		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2217			continue;
2218		if (ka->sa.sa_handler != SIG_DFL) {
2219			/* Run the handler.  */
2220			ksig->ka = *ka;
2221
2222			if (ka->sa.sa_flags & SA_ONESHOT)
2223				ka->sa.sa_handler = SIG_DFL;
2224
2225			break; /* will return non-zero "signr" value */
2226		}
2227
2228		/*
2229		 * Now we are doing the default action for this signal.
2230		 */
2231		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2232			continue;
2233
2234		/*
2235		 * Global init gets no signals it doesn't want.
2236		 * Container-init gets no signals it doesn't want from same
2237		 * container.
2238		 *
2239		 * Note that if global/container-init sees a sig_kernel_only()
2240		 * signal here, the signal must have been generated internally
2241		 * or must have come from an ancestor namespace. In either
2242		 * case, the signal cannot be dropped.
2243		 */
2244		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2245				!sig_kernel_only(signr))
2246			continue;
2247
2248		if (sig_kernel_stop(signr)) {
2249			/*
2250			 * The default action is to stop all threads in
2251			 * the thread group.  The job control signals
2252			 * do nothing in an orphaned pgrp, but SIGSTOP
2253			 * always works.  Note that siglock needs to be
2254			 * dropped during the call to is_orphaned_pgrp()
2255			 * because of lock ordering with tasklist_lock.
2256			 * This allows an intervening SIGCONT to be posted.
2257			 * We need to check for that and bail out if necessary.
2258			 */
2259			if (signr != SIGSTOP) {
2260				spin_unlock_irq(&sighand->siglock);
2261
2262				/* signals can be posted during this window */
2263
2264				if (is_current_pgrp_orphaned())
2265					goto relock;
2266
2267				spin_lock_irq(&sighand->siglock);
2268			}
2269
2270			if (likely(do_signal_stop(ksig->info.si_signo))) {
2271				/* It released the siglock.  */
2272				goto relock;
2273			}
2274
2275			/*
2276			 * We didn't actually stop, due to a race
2277			 * with SIGCONT or something like that.
2278			 */
2279			continue;
2280		}
2281
 
2282		spin_unlock_irq(&sighand->siglock);
 
 
2283
2284		/*
2285		 * Anything else is fatal, maybe with a core dump.
2286		 */
2287		current->flags |= PF_SIGNALED;
2288
2289		if (sig_kernel_coredump(signr)) {
2290			if (print_fatal_signals)
2291				print_fatal_signal(ksig->info.si_signo);
2292			proc_coredump_connector(current);
2293			/*
2294			 * If it was able to dump core, this kills all
2295			 * other threads in the group and synchronizes with
2296			 * their demise.  If we lost the race with another
2297			 * thread getting here, it set group_exit_code
2298			 * first and our do_group_exit call below will use
2299			 * that value and ignore the one we pass it.
2300			 */
2301			do_coredump(&ksig->info);
2302		}
2303
2304		/*
 
 
 
 
 
 
 
 
2305		 * Death signals, no core dump.
2306		 */
2307		do_group_exit(ksig->info.si_signo);
2308		/* NOTREACHED */
2309	}
2310	spin_unlock_irq(&sighand->siglock);
2311
2312	ksig->sig = signr;
 
 
 
 
2313	return ksig->sig > 0;
2314}
2315
2316/**
2317 * signal_delivered - 
2318 * @ksig:		kernel signal struct
2319 * @stepping:		nonzero if debugger single-step or block-step in use
2320 *
2321 * This function should be called when a signal has successfully been
2322 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2323 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2324 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2325 */
2326static void signal_delivered(struct ksignal *ksig, int stepping)
2327{
2328	sigset_t blocked;
2329
2330	/* A signal was successfully delivered, and the
2331	   saved sigmask was stored on the signal frame,
2332	   and will be restored by sigreturn.  So we can
2333	   simply clear the restore sigmask flag.  */
2334	clear_restore_sigmask();
2335
2336	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2337	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2338		sigaddset(&blocked, ksig->sig);
2339	set_current_blocked(&blocked);
 
 
2340	tracehook_signal_handler(stepping);
2341}
2342
2343void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2344{
2345	if (failed)
2346		force_sigsegv(ksig->sig, current);
2347	else
2348		signal_delivered(ksig, stepping);
2349}
2350
2351/*
2352 * It could be that complete_signal() picked us to notify about the
2353 * group-wide signal. Other threads should be notified now to take
2354 * the shared signals in @which since we will not.
2355 */
2356static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2357{
2358	sigset_t retarget;
2359	struct task_struct *t;
2360
2361	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2362	if (sigisemptyset(&retarget))
2363		return;
2364
2365	t = tsk;
2366	while_each_thread(tsk, t) {
2367		if (t->flags & PF_EXITING)
2368			continue;
2369
2370		if (!has_pending_signals(&retarget, &t->blocked))
2371			continue;
2372		/* Remove the signals this thread can handle. */
2373		sigandsets(&retarget, &retarget, &t->blocked);
2374
2375		if (!signal_pending(t))
2376			signal_wake_up(t, 0);
2377
2378		if (sigisemptyset(&retarget))
2379			break;
2380	}
2381}
2382
2383void exit_signals(struct task_struct *tsk)
2384{
2385	int group_stop = 0;
2386	sigset_t unblocked;
2387
2388	/*
2389	 * @tsk is about to have PF_EXITING set - lock out users which
2390	 * expect stable threadgroup.
2391	 */
2392	threadgroup_change_begin(tsk);
2393
2394	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2395		tsk->flags |= PF_EXITING;
2396		threadgroup_change_end(tsk);
2397		return;
2398	}
2399
2400	spin_lock_irq(&tsk->sighand->siglock);
2401	/*
2402	 * From now this task is not visible for group-wide signals,
2403	 * see wants_signal(), do_signal_stop().
2404	 */
2405	tsk->flags |= PF_EXITING;
2406
2407	threadgroup_change_end(tsk);
2408
2409	if (!signal_pending(tsk))
2410		goto out;
2411
2412	unblocked = tsk->blocked;
2413	signotset(&unblocked);
2414	retarget_shared_pending(tsk, &unblocked);
2415
2416	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2417	    task_participate_group_stop(tsk))
2418		group_stop = CLD_STOPPED;
2419out:
2420	spin_unlock_irq(&tsk->sighand->siglock);
2421
2422	/*
2423	 * If group stop has completed, deliver the notification.  This
2424	 * should always go to the real parent of the group leader.
2425	 */
2426	if (unlikely(group_stop)) {
2427		read_lock(&tasklist_lock);
2428		do_notify_parent_cldstop(tsk, false, group_stop);
2429		read_unlock(&tasklist_lock);
2430	}
2431}
2432
2433EXPORT_SYMBOL(recalc_sigpending);
2434EXPORT_SYMBOL_GPL(dequeue_signal);
2435EXPORT_SYMBOL(flush_signals);
2436EXPORT_SYMBOL(force_sig);
2437EXPORT_SYMBOL(send_sig);
2438EXPORT_SYMBOL(send_sig_info);
2439EXPORT_SYMBOL(sigprocmask);
2440
2441/*
2442 * System call entry points.
2443 */
2444
2445/**
2446 *  sys_restart_syscall - restart a system call
2447 */
2448SYSCALL_DEFINE0(restart_syscall)
2449{
2450	struct restart_block *restart = &current->restart_block;
2451	return restart->fn(restart);
2452}
2453
2454long do_no_restart_syscall(struct restart_block *param)
2455{
2456	return -EINTR;
2457}
2458
2459static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2460{
2461	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2462		sigset_t newblocked;
2463		/* A set of now blocked but previously unblocked signals. */
2464		sigandnsets(&newblocked, newset, &current->blocked);
2465		retarget_shared_pending(tsk, &newblocked);
2466	}
2467	tsk->blocked = *newset;
2468	recalc_sigpending();
2469}
2470
2471/**
2472 * set_current_blocked - change current->blocked mask
2473 * @newset: new mask
2474 *
2475 * It is wrong to change ->blocked directly, this helper should be used
2476 * to ensure the process can't miss a shared signal we are going to block.
2477 */
2478void set_current_blocked(sigset_t *newset)
2479{
2480	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2481	__set_current_blocked(newset);
2482}
2483
2484void __set_current_blocked(const sigset_t *newset)
2485{
2486	struct task_struct *tsk = current;
2487
 
 
 
 
 
 
 
2488	spin_lock_irq(&tsk->sighand->siglock);
2489	__set_task_blocked(tsk, newset);
2490	spin_unlock_irq(&tsk->sighand->siglock);
2491}
2492
2493/*
2494 * This is also useful for kernel threads that want to temporarily
2495 * (or permanently) block certain signals.
2496 *
2497 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2498 * interface happily blocks "unblockable" signals like SIGKILL
2499 * and friends.
2500 */
2501int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2502{
2503	struct task_struct *tsk = current;
2504	sigset_t newset;
2505
2506	/* Lockless, only current can change ->blocked, never from irq */
2507	if (oldset)
2508		*oldset = tsk->blocked;
2509
2510	switch (how) {
2511	case SIG_BLOCK:
2512		sigorsets(&newset, &tsk->blocked, set);
2513		break;
2514	case SIG_UNBLOCK:
2515		sigandnsets(&newset, &tsk->blocked, set);
2516		break;
2517	case SIG_SETMASK:
2518		newset = *set;
2519		break;
2520	default:
2521		return -EINVAL;
2522	}
2523
2524	__set_current_blocked(&newset);
2525	return 0;
2526}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527
2528/**
2529 *  sys_rt_sigprocmask - change the list of currently blocked signals
2530 *  @how: whether to add, remove, or set signals
2531 *  @nset: stores pending signals
2532 *  @oset: previous value of signal mask if non-null
2533 *  @sigsetsize: size of sigset_t type
2534 */
2535SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2536		sigset_t __user *, oset, size_t, sigsetsize)
2537{
2538	sigset_t old_set, new_set;
2539	int error;
2540
2541	/* XXX: Don't preclude handling different sized sigset_t's.  */
2542	if (sigsetsize != sizeof(sigset_t))
2543		return -EINVAL;
2544
2545	old_set = current->blocked;
2546
2547	if (nset) {
2548		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2549			return -EFAULT;
2550		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2551
2552		error = sigprocmask(how, &new_set, NULL);
2553		if (error)
2554			return error;
2555	}
2556
2557	if (oset) {
2558		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2559			return -EFAULT;
2560	}
2561
2562	return 0;
2563}
2564
2565#ifdef CONFIG_COMPAT
2566COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2567		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2568{
2569#ifdef __BIG_ENDIAN
2570	sigset_t old_set = current->blocked;
2571
2572	/* XXX: Don't preclude handling different sized sigset_t's.  */
2573	if (sigsetsize != sizeof(sigset_t))
2574		return -EINVAL;
2575
2576	if (nset) {
2577		compat_sigset_t new32;
2578		sigset_t new_set;
2579		int error;
2580		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2581			return -EFAULT;
2582
2583		sigset_from_compat(&new_set, &new32);
2584		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2585
2586		error = sigprocmask(how, &new_set, NULL);
2587		if (error)
2588			return error;
2589	}
2590	if (oset) {
2591		compat_sigset_t old32;
2592		sigset_to_compat(&old32, &old_set);
2593		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595	}
2596	return 0;
2597#else
2598	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2599				  (sigset_t __user *)oset, sigsetsize);
2600#endif
2601}
2602#endif
2603
2604static int do_sigpending(void *set, unsigned long sigsetsize)
2605{
2606	if (sigsetsize > sizeof(sigset_t))
2607		return -EINVAL;
2608
2609	spin_lock_irq(&current->sighand->siglock);
2610	sigorsets(set, &current->pending.signal,
2611		  &current->signal->shared_pending.signal);
2612	spin_unlock_irq(&current->sighand->siglock);
2613
2614	/* Outside the lock because only this thread touches it.  */
2615	sigandsets(set, &current->blocked, set);
2616	return 0;
2617}
2618
2619/**
2620 *  sys_rt_sigpending - examine a pending signal that has been raised
2621 *			while blocked
2622 *  @uset: stores pending signals
2623 *  @sigsetsize: size of sigset_t type or larger
2624 */
2625SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2626{
2627	sigset_t set;
2628	int err = do_sigpending(&set, sigsetsize);
2629	if (!err && copy_to_user(uset, &set, sigsetsize))
2630		err = -EFAULT;
2631	return err;
 
 
 
 
 
 
2632}
2633
2634#ifdef CONFIG_COMPAT
2635COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2636		compat_size_t, sigsetsize)
2637{
2638#ifdef __BIG_ENDIAN
2639	sigset_t set;
2640	int err = do_sigpending(&set, sigsetsize);
2641	if (!err) {
2642		compat_sigset_t set32;
2643		sigset_to_compat(&set32, &set);
2644		/* we can get here only if sigsetsize <= sizeof(set) */
2645		if (copy_to_user(uset, &set32, sigsetsize))
2646			err = -EFAULT;
2647	}
2648	return err;
2649#else
2650	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2651#endif
2652}
2653#endif
2654
2655#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2656
2657int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2658{
2659	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660
2661	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2662		return -EFAULT;
2663	if (from->si_code < 0)
2664		return __copy_to_user(to, from, sizeof(siginfo_t))
2665			? -EFAULT : 0;
2666	/*
2667	 * If you change siginfo_t structure, please be sure
2668	 * this code is fixed accordingly.
2669	 * Please remember to update the signalfd_copyinfo() function
2670	 * inside fs/signalfd.c too, in case siginfo_t changes.
2671	 * It should never copy any pad contained in the structure
2672	 * to avoid security leaks, but must copy the generic
2673	 * 3 ints plus the relevant union member.
2674	 */
2675	err = __put_user(from->si_signo, &to->si_signo);
2676	err |= __put_user(from->si_errno, &to->si_errno);
2677	err |= __put_user((short)from->si_code, &to->si_code);
2678	switch (from->si_code & __SI_MASK) {
2679	case __SI_KILL:
2680		err |= __put_user(from->si_pid, &to->si_pid);
2681		err |= __put_user(from->si_uid, &to->si_uid);
2682		break;
2683	case __SI_TIMER:
2684		 err |= __put_user(from->si_tid, &to->si_tid);
2685		 err |= __put_user(from->si_overrun, &to->si_overrun);
2686		 err |= __put_user(from->si_ptr, &to->si_ptr);
2687		break;
2688	case __SI_POLL:
2689		err |= __put_user(from->si_band, &to->si_band);
2690		err |= __put_user(from->si_fd, &to->si_fd);
2691		break;
2692	case __SI_FAULT:
2693		err |= __put_user(from->si_addr, &to->si_addr);
2694#ifdef __ARCH_SI_TRAPNO
2695		err |= __put_user(from->si_trapno, &to->si_trapno);
 
2696#endif
2697#ifdef BUS_MCEERR_AO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698		/*
2699		 * Other callers might not initialize the si_lsb field,
2700		 * so check explicitly for the right codes here.
 
 
2701		 */
2702		if (from->si_signo == SIGBUS &&
2703		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
2706#ifdef SEGV_BNDERR
2707		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2708			err |= __put_user(from->si_lower, &to->si_lower);
2709			err |= __put_user(from->si_upper, &to->si_upper);
2710		}
2711#endif
2712#ifdef SEGV_PKUERR
2713		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2714			err |= __put_user(from->si_pkey, &to->si_pkey);
2715#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2716		break;
2717	case __SI_CHLD:
2718		err |= __put_user(from->si_pid, &to->si_pid);
2719		err |= __put_user(from->si_uid, &to->si_uid);
2720		err |= __put_user(from->si_status, &to->si_status);
2721		err |= __put_user(from->si_utime, &to->si_utime);
2722		err |= __put_user(from->si_stime, &to->si_stime);
2723		break;
2724	case __SI_RT: /* This is not generated by the kernel as of now. */
2725	case __SI_MESGQ: /* But this is */
2726		err |= __put_user(from->si_pid, &to->si_pid);
2727		err |= __put_user(from->si_uid, &to->si_uid);
2728		err |= __put_user(from->si_ptr, &to->si_ptr);
2729		break;
2730#ifdef __ARCH_SIGSYS
2731	case __SI_SYS:
2732		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2733		err |= __put_user(from->si_syscall, &to->si_syscall);
2734		err |= __put_user(from->si_arch, &to->si_arch);
2735		break;
2736#endif
2737	default: /* this is just in case for now ... */
2738		err |= __put_user(from->si_pid, &to->si_pid);
2739		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
2740		break;
2741	}
2742	return err;
2743}
2744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2745#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2746
2747/**
2748 *  do_sigtimedwait - wait for queued signals specified in @which
2749 *  @which: queued signals to wait for
2750 *  @info: if non-null, the signal's siginfo is returned here
2751 *  @ts: upper bound on process time suspension
2752 */
2753int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2754			const struct timespec *ts)
2755{
 
2756	struct task_struct *tsk = current;
2757	long timeout = MAX_SCHEDULE_TIMEOUT;
2758	sigset_t mask = *which;
2759	int sig;
2760
2761	if (ts) {
2762		if (!timespec_valid(ts))
2763			return -EINVAL;
2764		timeout = timespec_to_jiffies(ts);
2765		/*
2766		 * We can be close to the next tick, add another one
2767		 * to ensure we will wait at least the time asked for.
2768		 */
2769		if (ts->tv_sec || ts->tv_nsec)
2770			timeout++;
2771	}
2772
2773	/*
2774	 * Invert the set of allowed signals to get those we want to block.
2775	 */
2776	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2777	signotset(&mask);
2778
2779	spin_lock_irq(&tsk->sighand->siglock);
2780	sig = dequeue_signal(tsk, &mask, info);
2781	if (!sig && timeout) {
2782		/*
2783		 * None ready, temporarily unblock those we're interested
2784		 * while we are sleeping in so that we'll be awakened when
2785		 * they arrive. Unblocking is always fine, we can avoid
2786		 * set_current_blocked().
2787		 */
2788		tsk->real_blocked = tsk->blocked;
2789		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2790		recalc_sigpending();
2791		spin_unlock_irq(&tsk->sighand->siglock);
2792
2793		timeout = freezable_schedule_timeout_interruptible(timeout);
2794
 
2795		spin_lock_irq(&tsk->sighand->siglock);
2796		__set_task_blocked(tsk, &tsk->real_blocked);
2797		sigemptyset(&tsk->real_blocked);
2798		sig = dequeue_signal(tsk, &mask, info);
2799	}
2800	spin_unlock_irq(&tsk->sighand->siglock);
2801
2802	if (sig)
2803		return sig;
2804	return timeout ? -EINTR : -EAGAIN;
2805}
2806
2807/**
2808 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2809 *			in @uthese
2810 *  @uthese: queued signals to wait for
2811 *  @uinfo: if non-null, the signal's siginfo is returned here
2812 *  @uts: upper bound on process time suspension
2813 *  @sigsetsize: size of sigset_t type
2814 */
2815SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2816		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2817		size_t, sigsetsize)
2818{
2819	sigset_t these;
2820	struct timespec ts;
2821	siginfo_t info;
2822	int ret;
2823
2824	/* XXX: Don't preclude handling different sized sigset_t's.  */
2825	if (sigsetsize != sizeof(sigset_t))
2826		return -EINVAL;
2827
2828	if (copy_from_user(&these, uthese, sizeof(these)))
2829		return -EFAULT;
2830
2831	if (uts) {
2832		if (copy_from_user(&ts, uts, sizeof(ts)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833			return -EFAULT;
2834	}
2835
2836	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2837
2838	if (ret > 0 && uinfo) {
2839		if (copy_siginfo_to_user(uinfo, &info))
2840			ret = -EFAULT;
2841	}
2842
2843	return ret;
2844}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2845
2846/**
2847 *  sys_kill - send a signal to a process
2848 *  @pid: the PID of the process
2849 *  @sig: signal to be sent
2850 */
2851SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2852{
2853	struct siginfo info;
2854
2855	info.si_signo = sig;
2856	info.si_errno = 0;
2857	info.si_code = SI_USER;
2858	info.si_pid = task_tgid_vnr(current);
2859	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2860
2861	return kill_something_info(sig, &info, pid);
2862}
2863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864static int
2865do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2866{
2867	struct task_struct *p;
2868	int error = -ESRCH;
2869
2870	rcu_read_lock();
2871	p = find_task_by_vpid(pid);
2872	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2873		error = check_kill_permission(sig, info, p);
2874		/*
2875		 * The null signal is a permissions and process existence
2876		 * probe.  No signal is actually delivered.
2877		 */
2878		if (!error && sig) {
2879			error = do_send_sig_info(sig, info, p, false);
2880			/*
2881			 * If lock_task_sighand() failed we pretend the task
2882			 * dies after receiving the signal. The window is tiny,
2883			 * and the signal is private anyway.
2884			 */
2885			if (unlikely(error == -ESRCH))
2886				error = 0;
2887		}
2888	}
2889	rcu_read_unlock();
2890
2891	return error;
2892}
2893
2894static int do_tkill(pid_t tgid, pid_t pid, int sig)
2895{
2896	struct siginfo info = {};
2897
 
2898	info.si_signo = sig;
2899	info.si_errno = 0;
2900	info.si_code = SI_TKILL;
2901	info.si_pid = task_tgid_vnr(current);
2902	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2903
2904	return do_send_specific(tgid, pid, sig, &info);
2905}
2906
2907/**
2908 *  sys_tgkill - send signal to one specific thread
2909 *  @tgid: the thread group ID of the thread
2910 *  @pid: the PID of the thread
2911 *  @sig: signal to be sent
2912 *
2913 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2914 *  exists but it's not belonging to the target process anymore. This
2915 *  method solves the problem of threads exiting and PIDs getting reused.
2916 */
2917SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2918{
2919	/* This is only valid for single tasks */
2920	if (pid <= 0 || tgid <= 0)
2921		return -EINVAL;
2922
2923	return do_tkill(tgid, pid, sig);
2924}
2925
2926/**
2927 *  sys_tkill - send signal to one specific task
2928 *  @pid: the PID of the task
2929 *  @sig: signal to be sent
2930 *
2931 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2932 */
2933SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2934{
2935	/* This is only valid for single tasks */
2936	if (pid <= 0)
2937		return -EINVAL;
2938
2939	return do_tkill(0, pid, sig);
2940}
2941
2942static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2943{
2944	/* Not even root can pretend to send signals from the kernel.
2945	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2946	 */
2947	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2948	    (task_pid_vnr(current) != pid))
2949		return -EPERM;
2950
2951	info->si_signo = sig;
2952
2953	/* POSIX.1b doesn't mention process groups.  */
2954	return kill_proc_info(sig, info, pid);
2955}
2956
2957/**
2958 *  sys_rt_sigqueueinfo - send signal information to a signal
2959 *  @pid: the PID of the thread
2960 *  @sig: signal to be sent
2961 *  @uinfo: signal info to be sent
2962 */
2963SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2964		siginfo_t __user *, uinfo)
2965{
2966	siginfo_t info;
2967	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2968		return -EFAULT;
 
2969	return do_rt_sigqueueinfo(pid, sig, &info);
2970}
2971
2972#ifdef CONFIG_COMPAT
2973COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2974			compat_pid_t, pid,
2975			int, sig,
2976			struct compat_siginfo __user *, uinfo)
2977{
2978	siginfo_t info = {};
2979	int ret = copy_siginfo_from_user32(&info, uinfo);
2980	if (unlikely(ret))
2981		return ret;
2982	return do_rt_sigqueueinfo(pid, sig, &info);
2983}
2984#endif
2985
2986static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2987{
2988	/* This is only valid for single tasks */
2989	if (pid <= 0 || tgid <= 0)
2990		return -EINVAL;
2991
2992	/* Not even root can pretend to send signals from the kernel.
2993	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2994	 */
2995	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2996	    (task_pid_vnr(current) != pid))
2997		return -EPERM;
2998
2999	info->si_signo = sig;
3000
3001	return do_send_specific(tgid, pid, sig, info);
3002}
3003
3004SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3005		siginfo_t __user *, uinfo)
3006{
3007	siginfo_t info;
3008
3009	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3010		return -EFAULT;
3011
3012	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3013}
3014
3015#ifdef CONFIG_COMPAT
3016COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3017			compat_pid_t, tgid,
3018			compat_pid_t, pid,
3019			int, sig,
3020			struct compat_siginfo __user *, uinfo)
3021{
3022	siginfo_t info = {};
3023
3024	if (copy_siginfo_from_user32(&info, uinfo))
3025		return -EFAULT;
3026	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3027}
3028#endif
3029
3030/*
3031 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3032 */
3033void kernel_sigaction(int sig, __sighandler_t action)
3034{
3035	spin_lock_irq(&current->sighand->siglock);
3036	current->sighand->action[sig - 1].sa.sa_handler = action;
3037	if (action == SIG_IGN) {
3038		sigset_t mask;
3039
3040		sigemptyset(&mask);
3041		sigaddset(&mask, sig);
3042
3043		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3044		flush_sigqueue_mask(&mask, &current->pending);
3045		recalc_sigpending();
3046	}
3047	spin_unlock_irq(&current->sighand->siglock);
3048}
3049EXPORT_SYMBOL(kernel_sigaction);
3050
 
 
 
 
 
3051int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3052{
3053	struct task_struct *p = current, *t;
3054	struct k_sigaction *k;
3055	sigset_t mask;
3056
3057	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3058		return -EINVAL;
3059
3060	k = &p->sighand->action[sig-1];
3061
3062	spin_lock_irq(&p->sighand->siglock);
3063	if (oact)
3064		*oact = *k;
3065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066	if (act) {
3067		sigdelsetmask(&act->sa.sa_mask,
3068			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3069		*k = *act;
3070		/*
3071		 * POSIX 3.3.1.3:
3072		 *  "Setting a signal action to SIG_IGN for a signal that is
3073		 *   pending shall cause the pending signal to be discarded,
3074		 *   whether or not it is blocked."
3075		 *
3076		 *  "Setting a signal action to SIG_DFL for a signal that is
3077		 *   pending and whose default action is to ignore the signal
3078		 *   (for example, SIGCHLD), shall cause the pending signal to
3079		 *   be discarded, whether or not it is blocked"
3080		 */
3081		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3082			sigemptyset(&mask);
3083			sigaddset(&mask, sig);
3084			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3085			for_each_thread(p, t)
3086				flush_sigqueue_mask(&mask, &t->pending);
3087		}
3088	}
3089
3090	spin_unlock_irq(&p->sighand->siglock);
3091	return 0;
3092}
3093
3094static int
3095do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3096{
3097	stack_t oss;
3098	int error;
3099
3100	oss.ss_sp = (void __user *) current->sas_ss_sp;
3101	oss.ss_size = current->sas_ss_size;
3102	oss.ss_flags = sas_ss_flags(sp);
3103
3104	if (uss) {
3105		void __user *ss_sp;
3106		size_t ss_size;
3107		int ss_flags;
3108
3109		error = -EFAULT;
3110		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3111			goto out;
3112		error = __get_user(ss_sp, &uss->ss_sp) |
3113			__get_user(ss_flags, &uss->ss_flags) |
3114			__get_user(ss_size, &uss->ss_size);
3115		if (error)
3116			goto out;
3117
3118		error = -EPERM;
3119		if (on_sig_stack(sp))
3120			goto out;
3121
3122		error = -EINVAL;
3123		/*
3124		 * Note - this code used to test ss_flags incorrectly:
3125		 *  	  old code may have been written using ss_flags==0
3126		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3127		 *	  way that worked) - this fix preserves that older
3128		 *	  mechanism.
3129		 */
3130		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3131			goto out;
3132
3133		if (ss_flags == SS_DISABLE) {
3134			ss_size = 0;
3135			ss_sp = NULL;
3136		} else {
3137			error = -ENOMEM;
3138			if (ss_size < MINSIGSTKSZ)
3139				goto out;
3140		}
3141
3142		current->sas_ss_sp = (unsigned long) ss_sp;
3143		current->sas_ss_size = ss_size;
3144	}
3145
3146	error = 0;
3147	if (uoss) {
3148		error = -EFAULT;
3149		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3150			goto out;
3151		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3152			__put_user(oss.ss_size, &uoss->ss_size) |
3153			__put_user(oss.ss_flags, &uoss->ss_flags);
3154	}
3155
3156out:
3157	return error;
3158}
 
3159SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3160{
3161	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
 
 
 
 
 
 
 
 
 
3162}
3163
3164int restore_altstack(const stack_t __user *uss)
3165{
3166	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
 
 
 
 
3167	/* squash all but EFAULT for now */
3168	return err == -EFAULT ? err : 0;
3169}
3170
3171int __save_altstack(stack_t __user *uss, unsigned long sp)
3172{
3173	struct task_struct *t = current;
3174	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3175		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3176		__put_user(t->sas_ss_size, &uss->ss_size);
 
3177}
3178
3179#ifdef CONFIG_COMPAT
3180COMPAT_SYSCALL_DEFINE2(sigaltstack,
3181			const compat_stack_t __user *, uss_ptr,
3182			compat_stack_t __user *, uoss_ptr)
3183{
3184	stack_t uss, uoss;
3185	int ret;
3186	mm_segment_t seg;
3187
3188	if (uss_ptr) {
3189		compat_stack_t uss32;
3190
3191		memset(&uss, 0, sizeof(stack_t));
3192		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3193			return -EFAULT;
3194		uss.ss_sp = compat_ptr(uss32.ss_sp);
3195		uss.ss_flags = uss32.ss_flags;
3196		uss.ss_size = uss32.ss_size;
3197	}
3198	seg = get_fs();
3199	set_fs(KERNEL_DS);
3200	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3201			     (stack_t __force __user *) &uoss,
3202			     compat_user_stack_pointer());
3203	set_fs(seg);
3204	if (ret >= 0 && uoss_ptr)  {
3205		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3206		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3207		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3208		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
 
 
3209			ret = -EFAULT;
3210	}
3211	return ret;
3212}
3213
 
 
 
 
 
 
 
3214int compat_restore_altstack(const compat_stack_t __user *uss)
3215{
3216	int err = compat_sys_sigaltstack(uss, NULL);
3217	/* squash all but -EFAULT for now */
3218	return err == -EFAULT ? err : 0;
3219}
3220
3221int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3222{
 
3223	struct task_struct *t = current;
3224	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3225		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
 
3226		__put_user(t->sas_ss_size, &uss->ss_size);
 
3227}
3228#endif
3229
3230#ifdef __ARCH_WANT_SYS_SIGPENDING
3231
3232/**
3233 *  sys_sigpending - examine pending signals
3234 *  @set: where mask of pending signal is returned
3235 */
3236SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3237{
3238	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
 
 
 
 
3239}
 
3240
3241#endif
3242
3243#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3244/**
3245 *  sys_sigprocmask - examine and change blocked signals
3246 *  @how: whether to add, remove, or set signals
3247 *  @nset: signals to add or remove (if non-null)
3248 *  @oset: previous value of signal mask if non-null
3249 *
3250 * Some platforms have their own version with special arguments;
3251 * others support only sys_rt_sigprocmask.
3252 */
3253
3254SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3255		old_sigset_t __user *, oset)
3256{
3257	old_sigset_t old_set, new_set;
3258	sigset_t new_blocked;
3259
3260	old_set = current->blocked.sig[0];
3261
3262	if (nset) {
3263		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3264			return -EFAULT;
3265
3266		new_blocked = current->blocked;
3267
3268		switch (how) {
3269		case SIG_BLOCK:
3270			sigaddsetmask(&new_blocked, new_set);
3271			break;
3272		case SIG_UNBLOCK:
3273			sigdelsetmask(&new_blocked, new_set);
3274			break;
3275		case SIG_SETMASK:
3276			new_blocked.sig[0] = new_set;
3277			break;
3278		default:
3279			return -EINVAL;
3280		}
3281
3282		set_current_blocked(&new_blocked);
3283	}
3284
3285	if (oset) {
3286		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3287			return -EFAULT;
3288	}
3289
3290	return 0;
3291}
3292#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3293
3294#ifndef CONFIG_ODD_RT_SIGACTION
3295/**
3296 *  sys_rt_sigaction - alter an action taken by a process
3297 *  @sig: signal to be sent
3298 *  @act: new sigaction
3299 *  @oact: used to save the previous sigaction
3300 *  @sigsetsize: size of sigset_t type
3301 */
3302SYSCALL_DEFINE4(rt_sigaction, int, sig,
3303		const struct sigaction __user *, act,
3304		struct sigaction __user *, oact,
3305		size_t, sigsetsize)
3306{
3307	struct k_sigaction new_sa, old_sa;
3308	int ret = -EINVAL;
3309
3310	/* XXX: Don't preclude handling different sized sigset_t's.  */
3311	if (sigsetsize != sizeof(sigset_t))
3312		goto out;
3313
3314	if (act) {
3315		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3316			return -EFAULT;
3317	}
3318
3319	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
3320
3321	if (!ret && oact) {
3322		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3323			return -EFAULT;
3324	}
3325out:
3326	return ret;
3327}
3328#ifdef CONFIG_COMPAT
3329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3330		const struct compat_sigaction __user *, act,
3331		struct compat_sigaction __user *, oact,
3332		compat_size_t, sigsetsize)
3333{
3334	struct k_sigaction new_ka, old_ka;
3335	compat_sigset_t mask;
3336#ifdef __ARCH_HAS_SA_RESTORER
3337	compat_uptr_t restorer;
3338#endif
3339	int ret;
3340
3341	/* XXX: Don't preclude handling different sized sigset_t's.  */
3342	if (sigsetsize != sizeof(compat_sigset_t))
3343		return -EINVAL;
3344
3345	if (act) {
3346		compat_uptr_t handler;
3347		ret = get_user(handler, &act->sa_handler);
3348		new_ka.sa.sa_handler = compat_ptr(handler);
3349#ifdef __ARCH_HAS_SA_RESTORER
3350		ret |= get_user(restorer, &act->sa_restorer);
3351		new_ka.sa.sa_restorer = compat_ptr(restorer);
3352#endif
3353		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3354		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3355		if (ret)
3356			return -EFAULT;
3357		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3358	}
3359
3360	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3361	if (!ret && oact) {
3362		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3363		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3364			       &oact->sa_handler);
3365		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
 
3366		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3367#ifdef __ARCH_HAS_SA_RESTORER
3368		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3369				&oact->sa_restorer);
3370#endif
3371	}
3372	return ret;
3373}
3374#endif
3375#endif /* !CONFIG_ODD_RT_SIGACTION */
3376
3377#ifdef CONFIG_OLD_SIGACTION
3378SYSCALL_DEFINE3(sigaction, int, sig,
3379		const struct old_sigaction __user *, act,
3380	        struct old_sigaction __user *, oact)
3381{
3382	struct k_sigaction new_ka, old_ka;
3383	int ret;
3384
3385	if (act) {
3386		old_sigset_t mask;
3387		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3388		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3389		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3390		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3391		    __get_user(mask, &act->sa_mask))
3392			return -EFAULT;
3393#ifdef __ARCH_HAS_KA_RESTORER
3394		new_ka.ka_restorer = NULL;
3395#endif
3396		siginitset(&new_ka.sa.sa_mask, mask);
3397	}
3398
3399	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400
3401	if (!ret && oact) {
3402		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3403		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3404		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3405		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3406		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3407			return -EFAULT;
3408	}
3409
3410	return ret;
3411}
3412#endif
3413#ifdef CONFIG_COMPAT_OLD_SIGACTION
3414COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3415		const struct compat_old_sigaction __user *, act,
3416	        struct compat_old_sigaction __user *, oact)
3417{
3418	struct k_sigaction new_ka, old_ka;
3419	int ret;
3420	compat_old_sigset_t mask;
3421	compat_uptr_t handler, restorer;
3422
3423	if (act) {
3424		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3425		    __get_user(handler, &act->sa_handler) ||
3426		    __get_user(restorer, &act->sa_restorer) ||
3427		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3428		    __get_user(mask, &act->sa_mask))
3429			return -EFAULT;
3430
3431#ifdef __ARCH_HAS_KA_RESTORER
3432		new_ka.ka_restorer = NULL;
3433#endif
3434		new_ka.sa.sa_handler = compat_ptr(handler);
3435		new_ka.sa.sa_restorer = compat_ptr(restorer);
3436		siginitset(&new_ka.sa.sa_mask, mask);
3437	}
3438
3439	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3440
3441	if (!ret && oact) {
3442		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3443		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3444			       &oact->sa_handler) ||
3445		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3446			       &oact->sa_restorer) ||
3447		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3448		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3449			return -EFAULT;
3450	}
3451	return ret;
3452}
3453#endif
3454
3455#ifdef CONFIG_SGETMASK_SYSCALL
3456
3457/*
3458 * For backwards compatibility.  Functionality superseded by sigprocmask.
3459 */
3460SYSCALL_DEFINE0(sgetmask)
3461{
3462	/* SMP safe */
3463	return current->blocked.sig[0];
3464}
3465
3466SYSCALL_DEFINE1(ssetmask, int, newmask)
3467{
3468	int old = current->blocked.sig[0];
3469	sigset_t newset;
3470
3471	siginitset(&newset, newmask);
3472	set_current_blocked(&newset);
3473
3474	return old;
3475}
3476#endif /* CONFIG_SGETMASK_SYSCALL */
3477
3478#ifdef __ARCH_WANT_SYS_SIGNAL
3479/*
3480 * For backwards compatibility.  Functionality superseded by sigaction.
3481 */
3482SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3483{
3484	struct k_sigaction new_sa, old_sa;
3485	int ret;
3486
3487	new_sa.sa.sa_handler = handler;
3488	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3489	sigemptyset(&new_sa.sa.sa_mask);
3490
3491	ret = do_sigaction(sig, &new_sa, &old_sa);
3492
3493	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3494}
3495#endif /* __ARCH_WANT_SYS_SIGNAL */
3496
3497#ifdef __ARCH_WANT_SYS_PAUSE
3498
3499SYSCALL_DEFINE0(pause)
3500{
3501	while (!signal_pending(current)) {
3502		__set_current_state(TASK_INTERRUPTIBLE);
3503		schedule();
3504	}
3505	return -ERESTARTNOHAND;
3506}
3507
3508#endif
3509
3510static int sigsuspend(sigset_t *set)
3511{
3512	current->saved_sigmask = current->blocked;
3513	set_current_blocked(set);
3514
3515	while (!signal_pending(current)) {
3516		__set_current_state(TASK_INTERRUPTIBLE);
3517		schedule();
3518	}
3519	set_restore_sigmask();
3520	return -ERESTARTNOHAND;
3521}
3522
3523/**
3524 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3525 *	@unewset value until a signal is received
3526 *  @unewset: new signal mask value
3527 *  @sigsetsize: size of sigset_t type
3528 */
3529SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3530{
3531	sigset_t newset;
3532
3533	/* XXX: Don't preclude handling different sized sigset_t's.  */
3534	if (sigsetsize != sizeof(sigset_t))
3535		return -EINVAL;
3536
3537	if (copy_from_user(&newset, unewset, sizeof(newset)))
3538		return -EFAULT;
3539	return sigsuspend(&newset);
3540}
3541 
3542#ifdef CONFIG_COMPAT
3543COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3544{
3545#ifdef __BIG_ENDIAN
3546	sigset_t newset;
3547	compat_sigset_t newset32;
3548
3549	/* XXX: Don't preclude handling different sized sigset_t's.  */
3550	if (sigsetsize != sizeof(sigset_t))
3551		return -EINVAL;
3552
3553	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3554		return -EFAULT;
3555	sigset_from_compat(&newset, &newset32);
3556	return sigsuspend(&newset);
3557#else
3558	/* on little-endian bitmaps don't care about granularity */
3559	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3560#endif
3561}
3562#endif
3563
3564#ifdef CONFIG_OLD_SIGSUSPEND
3565SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3566{
3567	sigset_t blocked;
3568	siginitset(&blocked, mask);
3569	return sigsuspend(&blocked);
3570}
3571#endif
3572#ifdef CONFIG_OLD_SIGSUSPEND3
3573SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3574{
3575	sigset_t blocked;
3576	siginitset(&blocked, mask);
3577	return sigsuspend(&blocked);
3578}
3579#endif
3580
3581__weak const char *arch_vma_name(struct vm_area_struct *vma)
3582{
3583	return NULL;
3584}
3585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3586void __init signals_init(void)
3587{
3588	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3589	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3590		!= offsetof(struct siginfo, _sifields._pad));
3591
3592	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3593}
3594
3595#ifdef CONFIG_KGDB_KDB
3596#include <linux/kdb.h>
3597/*
3598 * kdb_send_sig_info - Allows kdb to send signals without exposing
3599 * signal internals.  This function checks if the required locks are
3600 * available before calling the main signal code, to avoid kdb
3601 * deadlocks.
3602 */
3603void
3604kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3605{
3606	static struct task_struct *kdb_prev_t;
3607	int sig, new_t;
3608	if (!spin_trylock(&t->sighand->siglock)) {
3609		kdb_printf("Can't do kill command now.\n"
3610			   "The sigmask lock is held somewhere else in "
3611			   "kernel, try again later\n");
3612		return;
3613	}
3614	spin_unlock(&t->sighand->siglock);
3615	new_t = kdb_prev_t != t;
3616	kdb_prev_t = t;
3617	if (t->state != TASK_RUNNING && new_t) {
 
3618		kdb_printf("Process is not RUNNING, sending a signal from "
3619			   "kdb risks deadlock\n"
3620			   "on the run queue locks. "
3621			   "The signal has _not_ been sent.\n"
3622			   "Reissue the kill command if you want to risk "
3623			   "the deadlock.\n");
3624		return;
3625	}
3626	sig = info->si_signo;
3627	if (send_sig_info(sig, info, t))
 
3628		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3629			   sig, t->pid);
3630	else
3631		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3632}
3633#endif	/* CONFIG_KGDB_KDB */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
 
  57
  58/*
  59 * SLAB caches for signal bits.
  60 */
  61
  62static struct kmem_cache *sigqueue_cachep;
  63
  64int print_fatal_signals __read_mostly;
  65
  66static void __user *sig_handler(struct task_struct *t, int sig)
  67{
  68	return t->sighand->action[sig - 1].sa.sa_handler;
  69}
  70
  71static inline bool sig_handler_ignored(void __user *handler, int sig)
  72{
  73	/* Is it explicitly or implicitly ignored? */
  74	return handler == SIG_IGN ||
  75	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  76}
  77
  78static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  79{
  80	void __user *handler;
  81
  82	handler = sig_handler(t, sig);
  83
  84	/* SIGKILL and SIGSTOP may not be sent to the global init */
  85	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  86		return true;
  87
  88	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  89	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  90		return true;
  91
  92	/* Only allow kernel generated signals to this kthread */
  93	if (unlikely((t->flags & PF_KTHREAD) &&
  94		     (handler == SIG_KTHREAD_KERNEL) && !force))
  95		return true;
  96
  97	return sig_handler_ignored(handler, sig);
  98}
  99
 100static bool sig_ignored(struct task_struct *t, int sig, bool force)
 101{
 102	/*
 103	 * Blocked signals are never ignored, since the
 104	 * signal handler may change by the time it is
 105	 * unblocked.
 106	 */
 107	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 108		return false;
 
 
 
 109
 110	/*
 111	 * Tracers may want to know about even ignored signal unless it
 112	 * is SIGKILL which can't be reported anyway but can be ignored
 113	 * by SIGNAL_UNKILLABLE task.
 114	 */
 115	if (t->ptrace && sig != SIGKILL)
 116		return false;
 117
 118	return sig_task_ignored(t, sig, force);
 119}
 120
 121/*
 122 * Re-calculate pending state from the set of locally pending
 123 * signals, globally pending signals, and blocked signals.
 124 */
 125static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 126{
 127	unsigned long ready;
 128	long i;
 129
 130	switch (_NSIG_WORDS) {
 131	default:
 132		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 133			ready |= signal->sig[i] &~ blocked->sig[i];
 134		break;
 135
 136	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 137		ready |= signal->sig[2] &~ blocked->sig[2];
 138		ready |= signal->sig[1] &~ blocked->sig[1];
 139		ready |= signal->sig[0] &~ blocked->sig[0];
 140		break;
 141
 142	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 143		ready |= signal->sig[0] &~ blocked->sig[0];
 144		break;
 145
 146	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 147	}
 148	return ready !=	0;
 149}
 150
 151#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 152
 153static bool recalc_sigpending_tsk(struct task_struct *t)
 154{
 155	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 156	    PENDING(&t->pending, &t->blocked) ||
 157	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 158	    cgroup_task_frozen(t)) {
 159		set_tsk_thread_flag(t, TIF_SIGPENDING);
 160		return true;
 161	}
 162
 163	/*
 164	 * We must never clear the flag in another thread, or in current
 165	 * when it's possible the current syscall is returning -ERESTART*.
 166	 * So we don't clear it here, and only callers who know they should do.
 167	 */
 168	return false;
 169}
 170
 171/*
 172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 173 * This is superfluous when called on current, the wakeup is a harmless no-op.
 174 */
 175void recalc_sigpending_and_wake(struct task_struct *t)
 176{
 177	if (recalc_sigpending_tsk(t))
 178		signal_wake_up(t, 0);
 179}
 180
 181void recalc_sigpending(void)
 182{
 183	if (!recalc_sigpending_tsk(current) && !freezing(current))
 184		clear_thread_flag(TIF_SIGPENDING);
 185
 186}
 187EXPORT_SYMBOL(recalc_sigpending);
 188
 189void calculate_sigpending(void)
 190{
 191	/* Have any signals or users of TIF_SIGPENDING been delayed
 192	 * until after fork?
 193	 */
 194	spin_lock_irq(&current->sighand->siglock);
 195	set_tsk_thread_flag(current, TIF_SIGPENDING);
 196	recalc_sigpending();
 197	spin_unlock_irq(&current->sighand->siglock);
 198}
 199
 200/* Given the mask, find the first available signal that should be serviced. */
 201
 202#define SYNCHRONOUS_MASK \
 203	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 204	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 205
 206int next_signal(struct sigpending *pending, sigset_t *mask)
 207{
 208	unsigned long i, *s, *m, x;
 209	int sig = 0;
 210
 211	s = pending->signal.sig;
 212	m = mask->sig;
 213
 214	/*
 215	 * Handle the first word specially: it contains the
 216	 * synchronous signals that need to be dequeued first.
 217	 */
 218	x = *s &~ *m;
 219	if (x) {
 220		if (x & SYNCHRONOUS_MASK)
 221			x &= SYNCHRONOUS_MASK;
 222		sig = ffz(~x) + 1;
 223		return sig;
 224	}
 225
 226	switch (_NSIG_WORDS) {
 227	default:
 228		for (i = 1; i < _NSIG_WORDS; ++i) {
 229			x = *++s &~ *++m;
 230			if (!x)
 231				continue;
 232			sig = ffz(~x) + i*_NSIG_BPW + 1;
 233			break;
 234		}
 235		break;
 236
 237	case 2:
 238		x = s[1] &~ m[1];
 239		if (!x)
 240			break;
 241		sig = ffz(~x) + _NSIG_BPW + 1;
 242		break;
 243
 244	case 1:
 245		/* Nothing to do */
 246		break;
 247	}
 248
 249	return sig;
 250}
 251
 252static inline void print_dropped_signal(int sig)
 253{
 254	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 255
 256	if (!print_fatal_signals)
 257		return;
 258
 259	if (!__ratelimit(&ratelimit_state))
 260		return;
 261
 262	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 263				current->comm, current->pid, sig);
 264}
 265
 266/**
 267 * task_set_jobctl_pending - set jobctl pending bits
 268 * @task: target task
 269 * @mask: pending bits to set
 270 *
 271 * Clear @mask from @task->jobctl.  @mask must be subset of
 272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 273 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 274 * cleared.  If @task is already being killed or exiting, this function
 275 * becomes noop.
 276 *
 277 * CONTEXT:
 278 * Must be called with @task->sighand->siglock held.
 279 *
 280 * RETURNS:
 281 * %true if @mask is set, %false if made noop because @task was dying.
 282 */
 283bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 284{
 285	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 286			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 287	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 288
 289	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 290		return false;
 291
 292	if (mask & JOBCTL_STOP_SIGMASK)
 293		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 294
 295	task->jobctl |= mask;
 296	return true;
 297}
 298
 299/**
 300 * task_clear_jobctl_trapping - clear jobctl trapping bit
 301 * @task: target task
 302 *
 303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 304 * Clear it and wake up the ptracer.  Note that we don't need any further
 305 * locking.  @task->siglock guarantees that @task->parent points to the
 306 * ptracer.
 307 *
 308 * CONTEXT:
 309 * Must be called with @task->sighand->siglock held.
 310 */
 311void task_clear_jobctl_trapping(struct task_struct *task)
 312{
 313	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 314		task->jobctl &= ~JOBCTL_TRAPPING;
 315		smp_mb();	/* advised by wake_up_bit() */
 316		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 317	}
 318}
 319
 320/**
 321 * task_clear_jobctl_pending - clear jobctl pending bits
 322 * @task: target task
 323 * @mask: pending bits to clear
 324 *
 325 * Clear @mask from @task->jobctl.  @mask must be subset of
 326 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 327 * STOP bits are cleared together.
 328 *
 329 * If clearing of @mask leaves no stop or trap pending, this function calls
 330 * task_clear_jobctl_trapping().
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 */
 335void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 336{
 337	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 338
 339	if (mask & JOBCTL_STOP_PENDING)
 340		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 341
 342	task->jobctl &= ~mask;
 343
 344	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 345		task_clear_jobctl_trapping(task);
 346}
 347
 348/**
 349 * task_participate_group_stop - participate in a group stop
 350 * @task: task participating in a group stop
 351 *
 352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 353 * Group stop states are cleared and the group stop count is consumed if
 354 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 355 * stop, the appropriate `SIGNAL_*` flags are set.
 356 *
 357 * CONTEXT:
 358 * Must be called with @task->sighand->siglock held.
 359 *
 360 * RETURNS:
 361 * %true if group stop completion should be notified to the parent, %false
 362 * otherwise.
 363 */
 364static bool task_participate_group_stop(struct task_struct *task)
 365{
 366	struct signal_struct *sig = task->signal;
 367	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 368
 369	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 370
 371	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 372
 373	if (!consume)
 374		return false;
 375
 376	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 377		sig->group_stop_count--;
 378
 379	/*
 380	 * Tell the caller to notify completion iff we are entering into a
 381	 * fresh group stop.  Read comment in do_signal_stop() for details.
 382	 */
 383	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 384		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 385		return true;
 386	}
 387	return false;
 388}
 389
 390void task_join_group_stop(struct task_struct *task)
 391{
 392	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 393	struct signal_struct *sig = current->signal;
 394
 395	if (sig->group_stop_count) {
 396		sig->group_stop_count++;
 397		mask |= JOBCTL_STOP_CONSUME;
 398	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 399		return;
 400
 401	/* Have the new thread join an on-going signal group stop */
 402	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 403}
 404
 405/*
 406 * allocate a new signal queue record
 407 * - this may be called without locks if and only if t == current, otherwise an
 408 *   appropriate lock must be held to stop the target task from exiting
 409 */
 410static struct sigqueue *
 411__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 412		 int override_rlimit, const unsigned int sigqueue_flags)
 413{
 414	struct sigqueue *q = NULL;
 415	struct ucounts *ucounts = NULL;
 416	long sigpending;
 417
 418	/*
 419	 * Protect access to @t credentials. This can go away when all
 420	 * callers hold rcu read lock.
 421	 *
 422	 * NOTE! A pending signal will hold on to the user refcount,
 423	 * and we get/put the refcount only when the sigpending count
 424	 * changes from/to zero.
 425	 */
 426	rcu_read_lock();
 427	ucounts = task_ucounts(t);
 428	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 429	rcu_read_unlock();
 430	if (!sigpending)
 431		return NULL;
 432
 433	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 434		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 435	} else {
 436		print_dropped_signal(sig);
 437	}
 438
 439	if (unlikely(q == NULL)) {
 440		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 441	} else {
 442		INIT_LIST_HEAD(&q->list);
 443		q->flags = sigqueue_flags;
 444		q->ucounts = ucounts;
 445	}
 
 446	return q;
 447}
 448
 449static void __sigqueue_free(struct sigqueue *q)
 450{
 451	if (q->flags & SIGQUEUE_PREALLOC)
 452		return;
 453	if (q->ucounts) {
 454		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 455		q->ucounts = NULL;
 456	}
 457	kmem_cache_free(sigqueue_cachep, q);
 458}
 459
 460void flush_sigqueue(struct sigpending *queue)
 461{
 462	struct sigqueue *q;
 463
 464	sigemptyset(&queue->signal);
 465	while (!list_empty(&queue->list)) {
 466		q = list_entry(queue->list.next, struct sigqueue , list);
 467		list_del_init(&q->list);
 468		__sigqueue_free(q);
 469	}
 470}
 471
 472/*
 473 * Flush all pending signals for this kthread.
 474 */
 475void flush_signals(struct task_struct *t)
 476{
 477	unsigned long flags;
 478
 479	spin_lock_irqsave(&t->sighand->siglock, flags);
 480	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 481	flush_sigqueue(&t->pending);
 482	flush_sigqueue(&t->signal->shared_pending);
 483	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 484}
 485EXPORT_SYMBOL(flush_signals);
 486
 487#ifdef CONFIG_POSIX_TIMERS
 488static void __flush_itimer_signals(struct sigpending *pending)
 489{
 490	sigset_t signal, retain;
 491	struct sigqueue *q, *n;
 492
 493	signal = pending->signal;
 494	sigemptyset(&retain);
 495
 496	list_for_each_entry_safe(q, n, &pending->list, list) {
 497		int sig = q->info.si_signo;
 498
 499		if (likely(q->info.si_code != SI_TIMER)) {
 500			sigaddset(&retain, sig);
 501		} else {
 502			sigdelset(&signal, sig);
 503			list_del_init(&q->list);
 504			__sigqueue_free(q);
 505		}
 506	}
 507
 508	sigorsets(&pending->signal, &signal, &retain);
 509}
 510
 511void flush_itimer_signals(void)
 512{
 513	struct task_struct *tsk = current;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 517	__flush_itimer_signals(&tsk->pending);
 518	__flush_itimer_signals(&tsk->signal->shared_pending);
 519	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 520}
 521#endif
 522
 523void ignore_signals(struct task_struct *t)
 524{
 525	int i;
 526
 527	for (i = 0; i < _NSIG; ++i)
 528		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 529
 530	flush_signals(t);
 531}
 532
 533/*
 534 * Flush all handlers for a task.
 535 */
 536
 537void
 538flush_signal_handlers(struct task_struct *t, int force_default)
 539{
 540	int i;
 541	struct k_sigaction *ka = &t->sighand->action[0];
 542	for (i = _NSIG ; i != 0 ; i--) {
 543		if (force_default || ka->sa.sa_handler != SIG_IGN)
 544			ka->sa.sa_handler = SIG_DFL;
 545		ka->sa.sa_flags = 0;
 546#ifdef __ARCH_HAS_SA_RESTORER
 547		ka->sa.sa_restorer = NULL;
 548#endif
 549		sigemptyset(&ka->sa.sa_mask);
 550		ka++;
 551	}
 552}
 553
 554bool unhandled_signal(struct task_struct *tsk, int sig)
 555{
 556	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 557	if (is_global_init(tsk))
 558		return true;
 559
 560	if (handler != SIG_IGN && handler != SIG_DFL)
 561		return false;
 562
 563	/* if ptraced, let the tracer determine */
 564	return !tsk->ptrace;
 565}
 566
 567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 568			   bool *resched_timer)
 569{
 570	struct sigqueue *q, *first = NULL;
 571
 572	/*
 573	 * Collect the siginfo appropriate to this signal.  Check if
 574	 * there is another siginfo for the same signal.
 575	*/
 576	list_for_each_entry(q, &list->list, list) {
 577		if (q->info.si_signo == sig) {
 578			if (first)
 579				goto still_pending;
 580			first = q;
 581		}
 582	}
 583
 584	sigdelset(&list->signal, sig);
 585
 586	if (first) {
 587still_pending:
 588		list_del_init(&first->list);
 589		copy_siginfo(info, &first->info);
 590
 591		*resched_timer =
 592			(first->flags & SIGQUEUE_PREALLOC) &&
 593			(info->si_code == SI_TIMER) &&
 594			(info->si_sys_private);
 595
 596		__sigqueue_free(first);
 597	} else {
 598		/*
 599		 * Ok, it wasn't in the queue.  This must be
 600		 * a fast-pathed signal or we must have been
 601		 * out of queue space.  So zero out the info.
 602		 */
 603		clear_siginfo(info);
 604		info->si_signo = sig;
 605		info->si_errno = 0;
 606		info->si_code = SI_USER;
 607		info->si_pid = 0;
 608		info->si_uid = 0;
 609	}
 610}
 611
 612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 613			kernel_siginfo_t *info, bool *resched_timer)
 614{
 615	int sig = next_signal(pending, mask);
 616
 617	if (sig)
 618		collect_signal(sig, pending, info, resched_timer);
 619	return sig;
 620}
 621
 622/*
 623 * Dequeue a signal and return the element to the caller, which is
 624 * expected to free it.
 625 *
 626 * All callers have to hold the siglock.
 627 */
 628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 629{
 630	bool resched_timer = false;
 631	int signr;
 632
 633	/* We only dequeue private signals from ourselves, we don't let
 634	 * signalfd steal them
 635	 */
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 761	set_tsk_thread_flag(t, TIF_SIGPENDING);
 762	/*
 763	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 764	 * case. We don't check t->state here because there is a race with it
 765	 * executing another processor and just now entering stopped state.
 766	 * By using wake_up_state, we ensure the process will wake up and
 767	 * handle its death signal.
 768	 */
 769	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 770		kick_process(t);
 771}
 772
 773/*
 774 * Remove signals in mask from the pending set and queue.
 775 * Returns 1 if any signals were found.
 776 *
 777 * All callers must be holding the siglock.
 778 */
 779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 780{
 781	struct sigqueue *q, *n;
 782	sigset_t m;
 783
 784	sigandsets(&m, mask, &s->signal);
 785	if (sigisemptyset(&m))
 786		return;
 787
 788	sigandnsets(&s->signal, &s->signal, mask);
 789	list_for_each_entry_safe(q, n, &s->list, list) {
 790		if (sigismember(mask, q->info.si_signo)) {
 791			list_del_init(&q->list);
 792			__sigqueue_free(q);
 793		}
 794	}
 
 795}
 796
 797static inline int is_si_special(const struct kernel_siginfo *info)
 798{
 799	return info <= SEND_SIG_PRIV;
 800}
 801
 802static inline bool si_fromuser(const struct kernel_siginfo *info)
 803{
 804	return info == SEND_SIG_NOINFO ||
 805		(!is_si_special(info) && SI_FROMUSER(info));
 806}
 807
 808/*
 809 * called with RCU read lock from check_kill_permission()
 810 */
 811static bool kill_ok_by_cred(struct task_struct *t)
 812{
 813	const struct cred *cred = current_cred();
 814	const struct cred *tcred = __task_cred(t);
 815
 816	return uid_eq(cred->euid, tcred->suid) ||
 817	       uid_eq(cred->euid, tcred->uid) ||
 818	       uid_eq(cred->uid, tcred->suid) ||
 819	       uid_eq(cred->uid, tcred->uid) ||
 820	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 821}
 822
 823/*
 824 * Bad permissions for sending the signal
 825 * - the caller must hold the RCU read lock
 826 */
 827static int check_kill_permission(int sig, struct kernel_siginfo *info,
 828				 struct task_struct *t)
 829{
 830	struct pid *sid;
 831	int error;
 832
 833	if (!valid_signal(sig))
 834		return -EINVAL;
 835
 836	if (!si_fromuser(info))
 837		return 0;
 838
 839	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 840	if (error)
 841		return error;
 842
 843	if (!same_thread_group(current, t) &&
 844	    !kill_ok_by_cred(t)) {
 845		switch (sig) {
 846		case SIGCONT:
 847			sid = task_session(t);
 848			/*
 849			 * We don't return the error if sid == NULL. The
 850			 * task was unhashed, the caller must notice this.
 851			 */
 852			if (!sid || sid == task_session(current))
 853				break;
 854			fallthrough;
 855		default:
 856			return -EPERM;
 857		}
 858	}
 859
 860	return security_task_kill(t, info, sig, NULL);
 861}
 862
 863/**
 864 * ptrace_trap_notify - schedule trap to notify ptracer
 865 * @t: tracee wanting to notify tracer
 866 *
 867 * This function schedules sticky ptrace trap which is cleared on the next
 868 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 869 * ptracer.
 870 *
 871 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 872 * ptracer is listening for events, tracee is woken up so that it can
 873 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 874 * eventually taken without returning to userland after the existing traps
 875 * are finished by PTRACE_CONT.
 876 *
 877 * CONTEXT:
 878 * Must be called with @task->sighand->siglock held.
 879 */
 880static void ptrace_trap_notify(struct task_struct *t)
 881{
 882	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 883	assert_spin_locked(&t->sighand->siglock);
 884
 885	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 886	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 887}
 888
 889/*
 890 * Handle magic process-wide effects of stop/continue signals. Unlike
 891 * the signal actions, these happen immediately at signal-generation
 892 * time regardless of blocking, ignoring, or handling.  This does the
 893 * actual continuing for SIGCONT, but not the actual stopping for stop
 894 * signals. The process stop is done as a signal action for SIG_DFL.
 895 *
 896 * Returns true if the signal should be actually delivered, otherwise
 897 * it should be dropped.
 898 */
 899static bool prepare_signal(int sig, struct task_struct *p, bool force)
 900{
 901	struct signal_struct *signal = p->signal;
 902	struct task_struct *t;
 903	sigset_t flush;
 904
 905	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 906		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 907			return sig == SIGKILL;
 908		/*
 909		 * The process is in the middle of dying, nothing to do.
 910		 */
 911	} else if (sig_kernel_stop(sig)) {
 912		/*
 913		 * This is a stop signal.  Remove SIGCONT from all queues.
 914		 */
 915		siginitset(&flush, sigmask(SIGCONT));
 916		flush_sigqueue_mask(&flush, &signal->shared_pending);
 917		for_each_thread(p, t)
 918			flush_sigqueue_mask(&flush, &t->pending);
 919	} else if (sig == SIGCONT) {
 920		unsigned int why;
 921		/*
 922		 * Remove all stop signals from all queues, wake all threads.
 923		 */
 924		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 925		flush_sigqueue_mask(&flush, &signal->shared_pending);
 926		for_each_thread(p, t) {
 927			flush_sigqueue_mask(&flush, &t->pending);
 928			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 929			if (likely(!(t->ptrace & PT_SEIZED)))
 930				wake_up_state(t, __TASK_STOPPED);
 931			else
 932				ptrace_trap_notify(t);
 933		}
 934
 935		/*
 936		 * Notify the parent with CLD_CONTINUED if we were stopped.
 937		 *
 938		 * If we were in the middle of a group stop, we pretend it
 939		 * was already finished, and then continued. Since SIGCHLD
 940		 * doesn't queue we report only CLD_STOPPED, as if the next
 941		 * CLD_CONTINUED was dropped.
 942		 */
 943		why = 0;
 944		if (signal->flags & SIGNAL_STOP_STOPPED)
 945			why |= SIGNAL_CLD_CONTINUED;
 946		else if (signal->group_stop_count)
 947			why |= SIGNAL_CLD_STOPPED;
 948
 949		if (why) {
 950			/*
 951			 * The first thread which returns from do_signal_stop()
 952			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 953			 * notify its parent. See get_signal().
 954			 */
 955			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 956			signal->group_stop_count = 0;
 957			signal->group_exit_code = 0;
 958		}
 959	}
 960
 961	return !sig_ignored(p, sig, force);
 962}
 963
 964/*
 965 * Test if P wants to take SIG.  After we've checked all threads with this,
 966 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 967 * blocking SIG were ruled out because they are not running and already
 968 * have pending signals.  Such threads will dequeue from the shared queue
 969 * as soon as they're available, so putting the signal on the shared queue
 970 * will be equivalent to sending it to one such thread.
 971 */
 972static inline bool wants_signal(int sig, struct task_struct *p)
 973{
 974	if (sigismember(&p->blocked, sig))
 975		return false;
 976
 977	if (p->flags & PF_EXITING)
 978		return false;
 979
 980	if (sig == SIGKILL)
 981		return true;
 982
 983	if (task_is_stopped_or_traced(p))
 984		return false;
 985
 986	return task_curr(p) || !task_sigpending(p);
 987}
 988
 989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 990{
 991	struct signal_struct *signal = p->signal;
 992	struct task_struct *t;
 993
 994	/*
 995	 * Now find a thread we can wake up to take the signal off the queue.
 996	 *
 997	 * If the main thread wants the signal, it gets first crack.
 998	 * Probably the least surprising to the average bear.
 999	 */
1000	if (wants_signal(sig, p))
1001		t = p;
1002	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003		/*
1004		 * There is just one thread and it does not need to be woken.
1005		 * It will dequeue unblocked signals before it runs again.
1006		 */
1007		return;
1008	else {
1009		/*
1010		 * Otherwise try to find a suitable thread.
1011		 */
1012		t = signal->curr_target;
1013		while (!wants_signal(sig, t)) {
1014			t = next_thread(t);
1015			if (t == signal->curr_target)
1016				/*
1017				 * No thread needs to be woken.
1018				 * Any eligible threads will see
1019				 * the signal in the queue soon.
1020				 */
1021				return;
1022		}
1023		signal->curr_target = t;
1024	}
1025
1026	/*
1027	 * Found a killable thread.  If the signal will be fatal,
1028	 * then start taking the whole group down immediately.
1029	 */
1030	if (sig_fatal(p, sig) &&
1031	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032	    !sigismember(&t->real_blocked, sig) &&
1033	    (sig == SIGKILL || !p->ptrace)) {
1034		/*
1035		 * This signal will be fatal to the whole group.
1036		 */
1037		if (!sig_kernel_coredump(sig)) {
1038			/*
1039			 * Start a group exit and wake everybody up.
1040			 * This way we don't have other threads
1041			 * running and doing things after a slower
1042			 * thread has the fatal signal pending.
1043			 */
1044			signal->flags = SIGNAL_GROUP_EXIT;
1045			signal->group_exit_code = sig;
1046			signal->group_stop_count = 0;
1047			t = p;
1048			do {
1049				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050				sigaddset(&t->pending.signal, SIGKILL);
1051				signal_wake_up(t, 1);
1052			} while_each_thread(p, t);
1053			return;
1054		}
1055	}
1056
1057	/*
1058	 * The signal is already in the shared-pending queue.
1059	 * Tell the chosen thread to wake up and dequeue it.
1060	 */
1061	signal_wake_up(t, sig == SIGKILL);
1062	return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071			enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
1073	struct sigpending *pending;
1074	struct sigqueue *q;
1075	int override_rlimit;
1076	int ret = 0, result;
1077
1078	assert_spin_locked(&t->sighand->siglock);
1079
1080	result = TRACE_SIGNAL_IGNORED;
1081	if (!prepare_signal(sig, t, force))
 
1082		goto ret;
1083
1084	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085	/*
1086	 * Short-circuit ignored signals and support queuing
1087	 * exactly one non-rt signal, so that we can get more
1088	 * detailed information about the cause of the signal.
1089	 */
1090	result = TRACE_SIGNAL_ALREADY_PENDING;
1091	if (legacy_queue(pending, sig))
1092		goto ret;
1093
1094	result = TRACE_SIGNAL_DELIVERED;
1095	/*
1096	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1097	 */
1098	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099		goto out_set;
1100
1101	/*
1102	 * Real-time signals must be queued if sent by sigqueue, or
1103	 * some other real-time mechanism.  It is implementation
1104	 * defined whether kill() does so.  We attempt to do so, on
1105	 * the principle of least surprise, but since kill is not
1106	 * allowed to fail with EAGAIN when low on memory we just
1107	 * make sure at least one signal gets delivered and don't
1108	 * pass on the info struct.
1109	 */
1110	if (sig < SIGRTMIN)
1111		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112	else
1113		override_rlimit = 0;
1114
1115	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1116
1117	if (q) {
1118		list_add_tail(&q->list, &pending->list);
1119		switch ((unsigned long) info) {
1120		case (unsigned long) SEND_SIG_NOINFO:
1121			clear_siginfo(&q->info);
1122			q->info.si_signo = sig;
1123			q->info.si_errno = 0;
1124			q->info.si_code = SI_USER;
1125			q->info.si_pid = task_tgid_nr_ns(current,
1126							task_active_pid_ns(t));
1127			rcu_read_lock();
1128			q->info.si_uid =
1129				from_kuid_munged(task_cred_xxx(t, user_ns),
1130						 current_uid());
1131			rcu_read_unlock();
1132			break;
1133		case (unsigned long) SEND_SIG_PRIV:
1134			clear_siginfo(&q->info);
1135			q->info.si_signo = sig;
1136			q->info.si_errno = 0;
1137			q->info.si_code = SI_KERNEL;
1138			q->info.si_pid = 0;
1139			q->info.si_uid = 0;
1140			break;
1141		default:
1142			copy_siginfo(&q->info, info);
 
 
1143			break;
1144		}
1145	} else if (!is_si_special(info) &&
1146		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1147		/*
1148		 * Queue overflow, abort.  We may abort if the
1149		 * signal was rt and sent by user using something
1150		 * other than kill().
1151		 */
1152		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153		ret = -EAGAIN;
1154		goto ret;
1155	} else {
1156		/*
1157		 * This is a silent loss of information.  We still
1158		 * send the signal, but the *info bits are lost.
1159		 */
1160		result = TRACE_SIGNAL_LOSE_INFO;
 
 
 
 
1161	}
1162
1163out_set:
1164	signalfd_notify(t, sig);
1165	sigaddset(&pending->signal, sig);
1166
1167	/* Let multiprocess signals appear after on-going forks */
1168	if (type > PIDTYPE_TGID) {
1169		struct multiprocess_signals *delayed;
1170		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171			sigset_t *signal = &delayed->signal;
1172			/* Can't queue both a stop and a continue signal */
1173			if (sig == SIGCONT)
1174				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175			else if (sig_kernel_stop(sig))
1176				sigdelset(signal, SIGCONT);
1177			sigaddset(signal, sig);
1178		}
1179	}
1180
1181	complete_signal(sig, t, type);
1182ret:
1183	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184	return ret;
1185}
1186
1187static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188{
1189	bool ret = false;
1190	switch (siginfo_layout(info->si_signo, info->si_code)) {
1191	case SIL_KILL:
1192	case SIL_CHLD:
1193	case SIL_RT:
1194		ret = true;
1195		break;
1196	case SIL_TIMER:
1197	case SIL_POLL:
1198	case SIL_FAULT:
1199	case SIL_FAULT_TRAPNO:
1200	case SIL_FAULT_MCEERR:
1201	case SIL_FAULT_BNDERR:
1202	case SIL_FAULT_PKUERR:
1203	case SIL_PERF_EVENT:
1204	case SIL_SYS:
1205		ret = false;
1206		break;
1207	}
1208	return ret;
1209}
1210
1211static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1212			enum pid_type type)
1213{
1214	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1215	bool force = false;
1216
1217	if (info == SEND_SIG_NOINFO) {
1218		/* Force if sent from an ancestor pid namespace */
1219		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1220	} else if (info == SEND_SIG_PRIV) {
1221		/* Don't ignore kernel generated signals */
1222		force = true;
1223	} else if (has_si_pid_and_uid(info)) {
1224		/* SIGKILL and SIGSTOP is special or has ids */
1225		struct user_namespace *t_user_ns;
1226
1227		rcu_read_lock();
1228		t_user_ns = task_cred_xxx(t, user_ns);
1229		if (current_user_ns() != t_user_ns) {
1230			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1231			info->si_uid = from_kuid_munged(t_user_ns, uid);
1232		}
1233		rcu_read_unlock();
1234
1235		/* A kernel generated signal? */
1236		force = (info->si_code == SI_KERNEL);
1237
1238		/* From an ancestor pid namespace? */
1239		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1240			info->si_pid = 0;
1241			force = true;
1242		}
1243	}
1244	return __send_signal(sig, info, t, type, force);
1245}
1246
1247static void print_fatal_signal(int signr)
1248{
1249	struct pt_regs *regs = signal_pt_regs();
1250	pr_info("potentially unexpected fatal signal %d.\n", signr);
1251
1252#if defined(__i386__) && !defined(__arch_um__)
1253	pr_info("code at %08lx: ", regs->ip);
1254	{
1255		int i;
1256		for (i = 0; i < 16; i++) {
1257			unsigned char insn;
1258
1259			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1260				break;
1261			pr_cont("%02x ", insn);
1262		}
1263	}
1264	pr_cont("\n");
1265#endif
1266	preempt_disable();
1267	show_regs(regs);
1268	preempt_enable();
1269}
1270
1271static int __init setup_print_fatal_signals(char *str)
1272{
1273	get_option (&str, &print_fatal_signals);
1274
1275	return 1;
1276}
1277
1278__setup("print-fatal-signals=", setup_print_fatal_signals);
1279
1280int
1281__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
 
 
 
 
 
 
1282{
1283	return send_signal(sig, info, p, PIDTYPE_TGID);
1284}
1285
1286int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1287			enum pid_type type)
1288{
1289	unsigned long flags;
1290	int ret = -ESRCH;
1291
1292	if (lock_task_sighand(p, &flags)) {
1293		ret = send_signal(sig, info, p, type);
1294		unlock_task_sighand(p, &flags);
1295	}
1296
1297	return ret;
1298}
1299
1300/*
1301 * Force a signal that the process can't ignore: if necessary
1302 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1303 *
1304 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1305 * since we do not want to have a signal handler that was blocked
1306 * be invoked when user space had explicitly blocked it.
1307 *
1308 * We don't want to have recursive SIGSEGV's etc, for example,
1309 * that is why we also clear SIGNAL_UNKILLABLE.
1310 */
1311static int
1312force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1313{
1314	unsigned long int flags;
1315	int ret, blocked, ignored;
1316	struct k_sigaction *action;
1317	int sig = info->si_signo;
1318
1319	spin_lock_irqsave(&t->sighand->siglock, flags);
1320	action = &t->sighand->action[sig-1];
1321	ignored = action->sa.sa_handler == SIG_IGN;
1322	blocked = sigismember(&t->blocked, sig);
1323	if (blocked || ignored) {
1324		action->sa.sa_handler = SIG_DFL;
1325		if (blocked) {
1326			sigdelset(&t->blocked, sig);
1327			recalc_sigpending_and_wake(t);
1328		}
1329	}
1330	/*
1331	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1332	 * debugging to leave init killable.
1333	 */
1334	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1335		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1336	ret = send_signal(sig, info, t, PIDTYPE_PID);
1337	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1338
1339	return ret;
1340}
1341
1342int force_sig_info(struct kernel_siginfo *info)
1343{
1344	return force_sig_info_to_task(info, current);
1345}
1346
1347/*
1348 * Nuke all other threads in the group.
1349 */
1350int zap_other_threads(struct task_struct *p)
1351{
1352	struct task_struct *t = p;
1353	int count = 0;
1354
1355	p->signal->group_stop_count = 0;
1356
1357	while_each_thread(p, t) {
1358		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1359		count++;
1360
1361		/* Don't bother with already dead threads */
1362		if (t->exit_state)
1363			continue;
1364		sigaddset(&t->pending.signal, SIGKILL);
1365		signal_wake_up(t, 1);
1366	}
1367
1368	return count;
1369}
1370
1371struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1372					   unsigned long *flags)
1373{
1374	struct sighand_struct *sighand;
1375
1376	rcu_read_lock();
1377	for (;;) {
 
 
 
 
 
 
1378		sighand = rcu_dereference(tsk->sighand);
1379		if (unlikely(sighand == NULL))
 
 
1380			break;
1381
1382		/*
1383		 * This sighand can be already freed and even reused, but
1384		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1385		 * initializes ->siglock: this slab can't go away, it has
1386		 * the same object type, ->siglock can't be reinitialized.
1387		 *
1388		 * We need to ensure that tsk->sighand is still the same
1389		 * after we take the lock, we can race with de_thread() or
1390		 * __exit_signal(). In the latter case the next iteration
1391		 * must see ->sighand == NULL.
1392		 */
1393		spin_lock_irqsave(&sighand->siglock, *flags);
1394		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
 
1395			break;
1396		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1397	}
1398	rcu_read_unlock();
1399
1400	return sighand;
1401}
1402
1403/*
1404 * send signal info to all the members of a group
1405 */
1406int group_send_sig_info(int sig, struct kernel_siginfo *info,
1407			struct task_struct *p, enum pid_type type)
1408{
1409	int ret;
1410
1411	rcu_read_lock();
1412	ret = check_kill_permission(sig, info, p);
1413	rcu_read_unlock();
1414
1415	if (!ret && sig)
1416		ret = do_send_sig_info(sig, info, p, type);
1417
1418	return ret;
1419}
1420
1421/*
1422 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1423 * control characters do (^C, ^Z etc)
1424 * - the caller must hold at least a readlock on tasklist_lock
1425 */
1426int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1427{
1428	struct task_struct *p = NULL;
1429	int retval, success;
1430
1431	success = 0;
1432	retval = -ESRCH;
1433	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435		success |= !err;
1436		retval = err;
1437	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1438	return success ? 0 : retval;
1439}
1440
1441int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1442{
1443	int error = -ESRCH;
1444	struct task_struct *p;
1445
1446	for (;;) {
1447		rcu_read_lock();
1448		p = pid_task(pid, PIDTYPE_PID);
1449		if (p)
1450			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1451		rcu_read_unlock();
1452		if (likely(!p || error != -ESRCH))
1453			return error;
1454
1455		/*
1456		 * The task was unhashed in between, try again.  If it
1457		 * is dead, pid_task() will return NULL, if we race with
1458		 * de_thread() it will find the new leader.
1459		 */
1460	}
1461}
1462
1463static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1464{
1465	int error;
1466	rcu_read_lock();
1467	error = kill_pid_info(sig, info, find_vpid(pid));
1468	rcu_read_unlock();
1469	return error;
1470}
1471
1472static inline bool kill_as_cred_perm(const struct cred *cred,
1473				     struct task_struct *target)
1474{
1475	const struct cred *pcred = __task_cred(target);
1476
1477	return uid_eq(cred->euid, pcred->suid) ||
1478	       uid_eq(cred->euid, pcred->uid) ||
1479	       uid_eq(cred->uid, pcred->suid) ||
1480	       uid_eq(cred->uid, pcred->uid);
1481}
1482
1483/*
1484 * The usb asyncio usage of siginfo is wrong.  The glibc support
1485 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1486 * AKA after the generic fields:
1487 *	kernel_pid_t	si_pid;
1488 *	kernel_uid32_t	si_uid;
1489 *	sigval_t	si_value;
1490 *
1491 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1492 * after the generic fields is:
1493 *	void __user 	*si_addr;
1494 *
1495 * This is a practical problem when there is a 64bit big endian kernel
1496 * and a 32bit userspace.  As the 32bit address will encoded in the low
1497 * 32bits of the pointer.  Those low 32bits will be stored at higher
1498 * address than appear in a 32 bit pointer.  So userspace will not
1499 * see the address it was expecting for it's completions.
1500 *
1501 * There is nothing in the encoding that can allow
1502 * copy_siginfo_to_user32 to detect this confusion of formats, so
1503 * handle this by requiring the caller of kill_pid_usb_asyncio to
1504 * notice when this situration takes place and to store the 32bit
1505 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1506 * parameter.
1507 */
1508int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1509			 struct pid *pid, const struct cred *cred)
1510{
1511	struct kernel_siginfo info;
1512	struct task_struct *p;
1513	unsigned long flags;
1514	int ret = -EINVAL;
1515
1516	if (!valid_signal(sig))
1517		return ret;
1518
1519	clear_siginfo(&info);
1520	info.si_signo = sig;
1521	info.si_errno = errno;
1522	info.si_code = SI_ASYNCIO;
1523	*((sigval_t *)&info.si_pid) = addr;
1524
1525	rcu_read_lock();
1526	p = pid_task(pid, PIDTYPE_PID);
1527	if (!p) {
1528		ret = -ESRCH;
1529		goto out_unlock;
1530	}
1531	if (!kill_as_cred_perm(cred, p)) {
1532		ret = -EPERM;
1533		goto out_unlock;
1534	}
1535	ret = security_task_kill(p, &info, sig, cred);
1536	if (ret)
1537		goto out_unlock;
1538
1539	if (sig) {
1540		if (lock_task_sighand(p, &flags)) {
1541			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1542			unlock_task_sighand(p, &flags);
1543		} else
1544			ret = -ESRCH;
1545	}
1546out_unlock:
1547	rcu_read_unlock();
1548	return ret;
1549}
1550EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1551
1552/*
1553 * kill_something_info() interprets pid in interesting ways just like kill(2).
1554 *
1555 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1556 * is probably wrong.  Should make it like BSD or SYSV.
1557 */
1558
1559static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1560{
1561	int ret;
1562
1563	if (pid > 0)
1564		return kill_proc_info(sig, info, pid);
1565
1566	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1567	if (pid == INT_MIN)
1568		return -ESRCH;
1569
1570	read_lock(&tasklist_lock);
1571	if (pid != -1) {
1572		ret = __kill_pgrp_info(sig, info,
1573				pid ? find_vpid(-pid) : task_pgrp(current));
1574	} else {
1575		int retval = 0, count = 0;
1576		struct task_struct * p;
1577
1578		for_each_process(p) {
1579			if (task_pid_vnr(p) > 1 &&
1580					!same_thread_group(p, current)) {
1581				int err = group_send_sig_info(sig, info, p,
1582							      PIDTYPE_MAX);
1583				++count;
1584				if (err != -EPERM)
1585					retval = err;
1586			}
1587		}
1588		ret = count ? retval : -ESRCH;
1589	}
1590	read_unlock(&tasklist_lock);
1591
1592	return ret;
1593}
1594
1595/*
1596 * These are for backward compatibility with the rest of the kernel source.
1597 */
1598
1599int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1600{
1601	/*
1602	 * Make sure legacy kernel users don't send in bad values
1603	 * (normal paths check this in check_kill_permission).
1604	 */
1605	if (!valid_signal(sig))
1606		return -EINVAL;
1607
1608	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1609}
1610EXPORT_SYMBOL(send_sig_info);
1611
1612#define __si_special(priv) \
1613	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1614
1615int
1616send_sig(int sig, struct task_struct *p, int priv)
1617{
1618	return send_sig_info(sig, __si_special(priv), p);
1619}
1620EXPORT_SYMBOL(send_sig);
1621
1622void force_sig(int sig)
 
1623{
1624	struct kernel_siginfo info;
1625
1626	clear_siginfo(&info);
1627	info.si_signo = sig;
1628	info.si_errno = 0;
1629	info.si_code = SI_KERNEL;
1630	info.si_pid = 0;
1631	info.si_uid = 0;
1632	force_sig_info(&info);
1633}
1634EXPORT_SYMBOL(force_sig);
1635
1636/*
1637 * When things go south during signal handling, we
1638 * will force a SIGSEGV. And if the signal that caused
1639 * the problem was already a SIGSEGV, we'll want to
1640 * make sure we don't even try to deliver the signal..
1641 */
1642void force_sigsegv(int sig)
 
1643{
1644	struct task_struct *p = current;
1645
1646	if (sig == SIGSEGV) {
1647		unsigned long flags;
1648		spin_lock_irqsave(&p->sighand->siglock, flags);
1649		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1650		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1651	}
1652	force_sig(SIGSEGV);
1653}
1654
1655int force_sig_fault_to_task(int sig, int code, void __user *addr
1656	___ARCH_SI_TRAPNO(int trapno)
1657	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1658	, struct task_struct *t)
1659{
1660	struct kernel_siginfo info;
1661
1662	clear_siginfo(&info);
1663	info.si_signo = sig;
1664	info.si_errno = 0;
1665	info.si_code  = code;
1666	info.si_addr  = addr;
1667#ifdef __ARCH_SI_TRAPNO
1668	info.si_trapno = trapno;
1669#endif
1670#ifdef __ia64__
1671	info.si_imm = imm;
1672	info.si_flags = flags;
1673	info.si_isr = isr;
1674#endif
1675	return force_sig_info_to_task(&info, t);
1676}
1677
1678int force_sig_fault(int sig, int code, void __user *addr
1679	___ARCH_SI_TRAPNO(int trapno)
1680	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1681{
1682	return force_sig_fault_to_task(sig, code, addr
1683				       ___ARCH_SI_TRAPNO(trapno)
1684				       ___ARCH_SI_IA64(imm, flags, isr), current);
1685}
1686
1687int send_sig_fault(int sig, int code, void __user *addr
1688	___ARCH_SI_TRAPNO(int trapno)
1689	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1690	, struct task_struct *t)
1691{
1692	struct kernel_siginfo info;
1693
1694	clear_siginfo(&info);
1695	info.si_signo = sig;
1696	info.si_errno = 0;
1697	info.si_code  = code;
1698	info.si_addr  = addr;
1699#ifdef __ARCH_SI_TRAPNO
1700	info.si_trapno = trapno;
1701#endif
1702#ifdef __ia64__
1703	info.si_imm = imm;
1704	info.si_flags = flags;
1705	info.si_isr = isr;
1706#endif
1707	return send_sig_info(info.si_signo, &info, t);
1708}
1709
1710int force_sig_mceerr(int code, void __user *addr, short lsb)
1711{
1712	struct kernel_siginfo info;
1713
1714	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1715	clear_siginfo(&info);
1716	info.si_signo = SIGBUS;
1717	info.si_errno = 0;
1718	info.si_code = code;
1719	info.si_addr = addr;
1720	info.si_addr_lsb = lsb;
1721	return force_sig_info(&info);
1722}
1723
1724int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1725{
1726	struct kernel_siginfo info;
1727
1728	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1729	clear_siginfo(&info);
1730	info.si_signo = SIGBUS;
1731	info.si_errno = 0;
1732	info.si_code = code;
1733	info.si_addr = addr;
1734	info.si_addr_lsb = lsb;
1735	return send_sig_info(info.si_signo, &info, t);
1736}
1737EXPORT_SYMBOL(send_sig_mceerr);
1738
1739int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1740{
1741	struct kernel_siginfo info;
1742
1743	clear_siginfo(&info);
1744	info.si_signo = SIGSEGV;
1745	info.si_errno = 0;
1746	info.si_code  = SEGV_BNDERR;
1747	info.si_addr  = addr;
1748	info.si_lower = lower;
1749	info.si_upper = upper;
1750	return force_sig_info(&info);
1751}
1752
1753#ifdef SEGV_PKUERR
1754int force_sig_pkuerr(void __user *addr, u32 pkey)
1755{
1756	struct kernel_siginfo info;
1757
1758	clear_siginfo(&info);
1759	info.si_signo = SIGSEGV;
1760	info.si_errno = 0;
1761	info.si_code  = SEGV_PKUERR;
1762	info.si_addr  = addr;
1763	info.si_pkey  = pkey;
1764	return force_sig_info(&info);
1765}
1766#endif
1767
1768int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1769{
1770	struct kernel_siginfo info;
1771
1772	clear_siginfo(&info);
1773	info.si_signo     = SIGTRAP;
1774	info.si_errno     = 0;
1775	info.si_code      = TRAP_PERF;
1776	info.si_addr      = addr;
1777	info.si_perf_data = sig_data;
1778	info.si_perf_type = type;
1779
1780	return force_sig_info(&info);
1781}
1782
1783/* For the crazy architectures that include trap information in
1784 * the errno field, instead of an actual errno value.
1785 */
1786int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1787{
1788	struct kernel_siginfo info;
1789
1790	clear_siginfo(&info);
1791	info.si_signo = SIGTRAP;
1792	info.si_errno = errno;
1793	info.si_code  = TRAP_HWBKPT;
1794	info.si_addr  = addr;
1795	return force_sig_info(&info);
1796}
1797
1798int kill_pgrp(struct pid *pid, int sig, int priv)
1799{
1800	int ret;
1801
1802	read_lock(&tasklist_lock);
1803	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1804	read_unlock(&tasklist_lock);
1805
1806	return ret;
1807}
1808EXPORT_SYMBOL(kill_pgrp);
1809
1810int kill_pid(struct pid *pid, int sig, int priv)
1811{
1812	return kill_pid_info(sig, __si_special(priv), pid);
1813}
1814EXPORT_SYMBOL(kill_pid);
1815
1816/*
1817 * These functions support sending signals using preallocated sigqueue
1818 * structures.  This is needed "because realtime applications cannot
1819 * afford to lose notifications of asynchronous events, like timer
1820 * expirations or I/O completions".  In the case of POSIX Timers
1821 * we allocate the sigqueue structure from the timer_create.  If this
1822 * allocation fails we are able to report the failure to the application
1823 * with an EAGAIN error.
1824 */
1825struct sigqueue *sigqueue_alloc(void)
1826{
1827	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1828}
1829
1830void sigqueue_free(struct sigqueue *q)
1831{
1832	unsigned long flags;
1833	spinlock_t *lock = &current->sighand->siglock;
1834
1835	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1836	/*
1837	 * We must hold ->siglock while testing q->list
1838	 * to serialize with collect_signal() or with
1839	 * __exit_signal()->flush_sigqueue().
1840	 */
1841	spin_lock_irqsave(lock, flags);
1842	q->flags &= ~SIGQUEUE_PREALLOC;
1843	/*
1844	 * If it is queued it will be freed when dequeued,
1845	 * like the "regular" sigqueue.
1846	 */
1847	if (!list_empty(&q->list))
1848		q = NULL;
1849	spin_unlock_irqrestore(lock, flags);
1850
1851	if (q)
1852		__sigqueue_free(q);
1853}
1854
1855int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1856{
1857	int sig = q->info.si_signo;
1858	struct sigpending *pending;
1859	struct task_struct *t;
1860	unsigned long flags;
1861	int ret, result;
1862
1863	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1864
1865	ret = -1;
1866	rcu_read_lock();
1867	t = pid_task(pid, type);
1868	if (!t || !likely(lock_task_sighand(t, &flags)))
1869		goto ret;
1870
1871	ret = 1; /* the signal is ignored */
1872	result = TRACE_SIGNAL_IGNORED;
1873	if (!prepare_signal(sig, t, false))
1874		goto out;
1875
1876	ret = 0;
1877	if (unlikely(!list_empty(&q->list))) {
1878		/*
1879		 * If an SI_TIMER entry is already queue just increment
1880		 * the overrun count.
1881		 */
1882		BUG_ON(q->info.si_code != SI_TIMER);
1883		q->info.si_overrun++;
1884		result = TRACE_SIGNAL_ALREADY_PENDING;
1885		goto out;
1886	}
1887	q->info.si_overrun = 0;
1888
1889	signalfd_notify(t, sig);
1890	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1891	list_add_tail(&q->list, &pending->list);
1892	sigaddset(&pending->signal, sig);
1893	complete_signal(sig, t, type);
1894	result = TRACE_SIGNAL_DELIVERED;
1895out:
1896	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1897	unlock_task_sighand(t, &flags);
1898ret:
1899	rcu_read_unlock();
1900	return ret;
1901}
1902
1903static void do_notify_pidfd(struct task_struct *task)
1904{
1905	struct pid *pid;
1906
1907	WARN_ON(task->exit_state == 0);
1908	pid = task_pid(task);
1909	wake_up_all(&pid->wait_pidfd);
1910}
1911
1912/*
1913 * Let a parent know about the death of a child.
1914 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1915 *
1916 * Returns true if our parent ignored us and so we've switched to
1917 * self-reaping.
1918 */
1919bool do_notify_parent(struct task_struct *tsk, int sig)
1920{
1921	struct kernel_siginfo info;
1922	unsigned long flags;
1923	struct sighand_struct *psig;
1924	bool autoreap = false;
1925	u64 utime, stime;
1926
1927	BUG_ON(sig == -1);
1928
1929 	/* do_notify_parent_cldstop should have been called instead.  */
1930 	BUG_ON(task_is_stopped_or_traced(tsk));
1931
1932	BUG_ON(!tsk->ptrace &&
1933	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1934
1935	/* Wake up all pidfd waiters */
1936	do_notify_pidfd(tsk);
1937
1938	if (sig != SIGCHLD) {
1939		/*
1940		 * This is only possible if parent == real_parent.
1941		 * Check if it has changed security domain.
1942		 */
1943		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1944			sig = SIGCHLD;
1945	}
1946
1947	clear_siginfo(&info);
1948	info.si_signo = sig;
1949	info.si_errno = 0;
1950	/*
1951	 * We are under tasklist_lock here so our parent is tied to
1952	 * us and cannot change.
1953	 *
1954	 * task_active_pid_ns will always return the same pid namespace
1955	 * until a task passes through release_task.
1956	 *
1957	 * write_lock() currently calls preempt_disable() which is the
1958	 * same as rcu_read_lock(), but according to Oleg, this is not
1959	 * correct to rely on this
1960	 */
1961	rcu_read_lock();
1962	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1963	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1964				       task_uid(tsk));
1965	rcu_read_unlock();
1966
1967	task_cputime(tsk, &utime, &stime);
1968	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1969	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1970
1971	info.si_status = tsk->exit_code & 0x7f;
1972	if (tsk->exit_code & 0x80)
1973		info.si_code = CLD_DUMPED;
1974	else if (tsk->exit_code & 0x7f)
1975		info.si_code = CLD_KILLED;
1976	else {
1977		info.si_code = CLD_EXITED;
1978		info.si_status = tsk->exit_code >> 8;
1979	}
1980
1981	psig = tsk->parent->sighand;
1982	spin_lock_irqsave(&psig->siglock, flags);
1983	if (!tsk->ptrace && sig == SIGCHLD &&
1984	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1985	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1986		/*
1987		 * We are exiting and our parent doesn't care.  POSIX.1
1988		 * defines special semantics for setting SIGCHLD to SIG_IGN
1989		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1990		 * automatically and not left for our parent's wait4 call.
1991		 * Rather than having the parent do it as a magic kind of
1992		 * signal handler, we just set this to tell do_exit that we
1993		 * can be cleaned up without becoming a zombie.  Note that
1994		 * we still call __wake_up_parent in this case, because a
1995		 * blocked sys_wait4 might now return -ECHILD.
1996		 *
1997		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1998		 * is implementation-defined: we do (if you don't want
1999		 * it, just use SIG_IGN instead).
2000		 */
2001		autoreap = true;
2002		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2003			sig = 0;
2004	}
2005	/*
2006	 * Send with __send_signal as si_pid and si_uid are in the
2007	 * parent's namespaces.
2008	 */
2009	if (valid_signal(sig) && sig)
2010		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2011	__wake_up_parent(tsk, tsk->parent);
2012	spin_unlock_irqrestore(&psig->siglock, flags);
2013
2014	return autoreap;
2015}
2016
2017/**
2018 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2019 * @tsk: task reporting the state change
2020 * @for_ptracer: the notification is for ptracer
2021 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2022 *
2023 * Notify @tsk's parent that the stopped/continued state has changed.  If
2024 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2025 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2026 *
2027 * CONTEXT:
2028 * Must be called with tasklist_lock at least read locked.
2029 */
2030static void do_notify_parent_cldstop(struct task_struct *tsk,
2031				     bool for_ptracer, int why)
2032{
2033	struct kernel_siginfo info;
2034	unsigned long flags;
2035	struct task_struct *parent;
2036	struct sighand_struct *sighand;
2037	u64 utime, stime;
2038
2039	if (for_ptracer) {
2040		parent = tsk->parent;
2041	} else {
2042		tsk = tsk->group_leader;
2043		parent = tsk->real_parent;
2044	}
2045
2046	clear_siginfo(&info);
2047	info.si_signo = SIGCHLD;
2048	info.si_errno = 0;
2049	/*
2050	 * see comment in do_notify_parent() about the following 4 lines
2051	 */
2052	rcu_read_lock();
2053	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2054	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2055	rcu_read_unlock();
2056
2057	task_cputime(tsk, &utime, &stime);
2058	info.si_utime = nsec_to_clock_t(utime);
2059	info.si_stime = nsec_to_clock_t(stime);
2060
2061 	info.si_code = why;
2062 	switch (why) {
2063 	case CLD_CONTINUED:
2064 		info.si_status = SIGCONT;
2065 		break;
2066 	case CLD_STOPPED:
2067 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2068 		break;
2069 	case CLD_TRAPPED:
2070 		info.si_status = tsk->exit_code & 0x7f;
2071 		break;
2072 	default:
2073 		BUG();
2074 	}
2075
2076	sighand = parent->sighand;
2077	spin_lock_irqsave(&sighand->siglock, flags);
2078	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2079	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2080		__group_send_sig_info(SIGCHLD, &info, parent);
2081	/*
2082	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2083	 */
2084	__wake_up_parent(tsk, parent);
2085	spin_unlock_irqrestore(&sighand->siglock, flags);
2086}
2087
2088static inline bool may_ptrace_stop(void)
2089{
2090	if (!likely(current->ptrace))
2091		return false;
2092	/*
2093	 * Are we in the middle of do_coredump?
2094	 * If so and our tracer is also part of the coredump stopping
2095	 * is a deadlock situation, and pointless because our tracer
2096	 * is dead so don't allow us to stop.
2097	 * If SIGKILL was already sent before the caller unlocked
2098	 * ->siglock we must see ->core_state != NULL. Otherwise it
2099	 * is safe to enter schedule().
2100	 *
2101	 * This is almost outdated, a task with the pending SIGKILL can't
2102	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2103	 * after SIGKILL was already dequeued.
2104	 */
2105	if (unlikely(current->mm->core_state) &&
2106	    unlikely(current->mm == current->parent->mm))
2107		return false;
2108
2109	return true;
2110}
2111
2112/*
2113 * Return non-zero if there is a SIGKILL that should be waking us up.
2114 * Called with the siglock held.
2115 */
2116static bool sigkill_pending(struct task_struct *tsk)
2117{
2118	return sigismember(&tsk->pending.signal, SIGKILL) ||
2119	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2120}
2121
2122/*
2123 * This must be called with current->sighand->siglock held.
2124 *
2125 * This should be the path for all ptrace stops.
2126 * We always set current->last_siginfo while stopped here.
2127 * That makes it a way to test a stopped process for
2128 * being ptrace-stopped vs being job-control-stopped.
2129 *
2130 * If we actually decide not to stop at all because the tracer
2131 * is gone, we keep current->exit_code unless clear_code.
2132 */
2133static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2134	__releases(&current->sighand->siglock)
2135	__acquires(&current->sighand->siglock)
2136{
2137	bool gstop_done = false;
2138
2139	if (arch_ptrace_stop_needed(exit_code, info)) {
2140		/*
2141		 * The arch code has something special to do before a
2142		 * ptrace stop.  This is allowed to block, e.g. for faults
2143		 * on user stack pages.  We can't keep the siglock while
2144		 * calling arch_ptrace_stop, so we must release it now.
2145		 * To preserve proper semantics, we must do this before
2146		 * any signal bookkeeping like checking group_stop_count.
2147		 * Meanwhile, a SIGKILL could come in before we retake the
2148		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2149		 * So after regaining the lock, we must check for SIGKILL.
2150		 */
2151		spin_unlock_irq(&current->sighand->siglock);
2152		arch_ptrace_stop(exit_code, info);
2153		spin_lock_irq(&current->sighand->siglock);
2154		if (sigkill_pending(current))
2155			return;
2156	}
2157
2158	set_special_state(TASK_TRACED);
2159
2160	/*
2161	 * We're committing to trapping.  TRACED should be visible before
2162	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2163	 * Also, transition to TRACED and updates to ->jobctl should be
2164	 * atomic with respect to siglock and should be done after the arch
2165	 * hook as siglock is released and regrabbed across it.
2166	 *
2167	 *     TRACER				    TRACEE
2168	 *
2169	 *     ptrace_attach()
2170	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2171	 *     do_wait()
2172	 *       set_current_state()                smp_wmb();
2173	 *       ptrace_do_wait()
2174	 *         wait_task_stopped()
2175	 *           task_stopped_code()
2176	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2177	 */
2178	smp_wmb();
2179
2180	current->last_siginfo = info;
2181	current->exit_code = exit_code;
2182
2183	/*
2184	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2185	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2186	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2187	 * could be clear now.  We act as if SIGCONT is received after
2188	 * TASK_TRACED is entered - ignore it.
2189	 */
2190	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2191		gstop_done = task_participate_group_stop(current);
2192
2193	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2194	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2195	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2196		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2197
2198	/* entering a trap, clear TRAPPING */
2199	task_clear_jobctl_trapping(current);
2200
2201	spin_unlock_irq(&current->sighand->siglock);
2202	read_lock(&tasklist_lock);
2203	if (may_ptrace_stop()) {
2204		/*
2205		 * Notify parents of the stop.
2206		 *
2207		 * While ptraced, there are two parents - the ptracer and
2208		 * the real_parent of the group_leader.  The ptracer should
2209		 * know about every stop while the real parent is only
2210		 * interested in the completion of group stop.  The states
2211		 * for the two don't interact with each other.  Notify
2212		 * separately unless they're gonna be duplicates.
2213		 */
2214		do_notify_parent_cldstop(current, true, why);
2215		if (gstop_done && ptrace_reparented(current))
2216			do_notify_parent_cldstop(current, false, why);
2217
2218		/*
2219		 * Don't want to allow preemption here, because
2220		 * sys_ptrace() needs this task to be inactive.
2221		 *
2222		 * XXX: implement read_unlock_no_resched().
2223		 */
2224		preempt_disable();
2225		read_unlock(&tasklist_lock);
2226		cgroup_enter_frozen();
2227		preempt_enable_no_resched();
2228		freezable_schedule();
2229		cgroup_leave_frozen(true);
2230	} else {
2231		/*
2232		 * By the time we got the lock, our tracer went away.
2233		 * Don't drop the lock yet, another tracer may come.
2234		 *
2235		 * If @gstop_done, the ptracer went away between group stop
2236		 * completion and here.  During detach, it would have set
2237		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2238		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2239		 * the real parent of the group stop completion is enough.
2240		 */
2241		if (gstop_done)
2242			do_notify_parent_cldstop(current, false, why);
2243
2244		/* tasklist protects us from ptrace_freeze_traced() */
2245		__set_current_state(TASK_RUNNING);
2246		if (clear_code)
2247			current->exit_code = 0;
2248		read_unlock(&tasklist_lock);
2249	}
2250
2251	/*
2252	 * We are back.  Now reacquire the siglock before touching
2253	 * last_siginfo, so that we are sure to have synchronized with
2254	 * any signal-sending on another CPU that wants to examine it.
2255	 */
2256	spin_lock_irq(&current->sighand->siglock);
2257	current->last_siginfo = NULL;
2258
2259	/* LISTENING can be set only during STOP traps, clear it */
2260	current->jobctl &= ~JOBCTL_LISTENING;
2261
2262	/*
2263	 * Queued signals ignored us while we were stopped for tracing.
2264	 * So check for any that we should take before resuming user mode.
2265	 * This sets TIF_SIGPENDING, but never clears it.
2266	 */
2267	recalc_sigpending_tsk(current);
2268}
2269
2270static void ptrace_do_notify(int signr, int exit_code, int why)
2271{
2272	kernel_siginfo_t info;
2273
2274	clear_siginfo(&info);
2275	info.si_signo = signr;
2276	info.si_code = exit_code;
2277	info.si_pid = task_pid_vnr(current);
2278	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2279
2280	/* Let the debugger run.  */
2281	ptrace_stop(exit_code, why, 1, &info);
2282}
2283
2284void ptrace_notify(int exit_code)
2285{
2286	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2287	if (unlikely(current->task_works))
2288		task_work_run();
2289
2290	spin_lock_irq(&current->sighand->siglock);
2291	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2292	spin_unlock_irq(&current->sighand->siglock);
2293}
2294
2295/**
2296 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2297 * @signr: signr causing group stop if initiating
2298 *
2299 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2300 * and participate in it.  If already set, participate in the existing
2301 * group stop.  If participated in a group stop (and thus slept), %true is
2302 * returned with siglock released.
2303 *
2304 * If ptraced, this function doesn't handle stop itself.  Instead,
2305 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2306 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2307 * places afterwards.
2308 *
2309 * CONTEXT:
2310 * Must be called with @current->sighand->siglock held, which is released
2311 * on %true return.
2312 *
2313 * RETURNS:
2314 * %false if group stop is already cancelled or ptrace trap is scheduled.
2315 * %true if participated in group stop.
2316 */
2317static bool do_signal_stop(int signr)
2318	__releases(&current->sighand->siglock)
2319{
2320	struct signal_struct *sig = current->signal;
2321
2322	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2323		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2324		struct task_struct *t;
2325
2326		/* signr will be recorded in task->jobctl for retries */
2327		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2328
2329		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2330		    unlikely(signal_group_exit(sig)))
2331			return false;
2332		/*
2333		 * There is no group stop already in progress.  We must
2334		 * initiate one now.
2335		 *
2336		 * While ptraced, a task may be resumed while group stop is
2337		 * still in effect and then receive a stop signal and
2338		 * initiate another group stop.  This deviates from the
2339		 * usual behavior as two consecutive stop signals can't
2340		 * cause two group stops when !ptraced.  That is why we
2341		 * also check !task_is_stopped(t) below.
2342		 *
2343		 * The condition can be distinguished by testing whether
2344		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2345		 * group_exit_code in such case.
2346		 *
2347		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2348		 * an intervening stop signal is required to cause two
2349		 * continued events regardless of ptrace.
2350		 */
2351		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2352			sig->group_exit_code = signr;
2353
2354		sig->group_stop_count = 0;
2355
2356		if (task_set_jobctl_pending(current, signr | gstop))
2357			sig->group_stop_count++;
2358
2359		t = current;
2360		while_each_thread(current, t) {
2361			/*
2362			 * Setting state to TASK_STOPPED for a group
2363			 * stop is always done with the siglock held,
2364			 * so this check has no races.
2365			 */
2366			if (!task_is_stopped(t) &&
2367			    task_set_jobctl_pending(t, signr | gstop)) {
2368				sig->group_stop_count++;
2369				if (likely(!(t->ptrace & PT_SEIZED)))
2370					signal_wake_up(t, 0);
2371				else
2372					ptrace_trap_notify(t);
2373			}
2374		}
2375	}
2376
2377	if (likely(!current->ptrace)) {
2378		int notify = 0;
2379
2380		/*
2381		 * If there are no other threads in the group, or if there
2382		 * is a group stop in progress and we are the last to stop,
2383		 * report to the parent.
2384		 */
2385		if (task_participate_group_stop(current))
2386			notify = CLD_STOPPED;
2387
2388		set_special_state(TASK_STOPPED);
2389		spin_unlock_irq(&current->sighand->siglock);
2390
2391		/*
2392		 * Notify the parent of the group stop completion.  Because
2393		 * we're not holding either the siglock or tasklist_lock
2394		 * here, ptracer may attach inbetween; however, this is for
2395		 * group stop and should always be delivered to the real
2396		 * parent of the group leader.  The new ptracer will get
2397		 * its notification when this task transitions into
2398		 * TASK_TRACED.
2399		 */
2400		if (notify) {
2401			read_lock(&tasklist_lock);
2402			do_notify_parent_cldstop(current, false, notify);
2403			read_unlock(&tasklist_lock);
2404		}
2405
2406		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2407		cgroup_enter_frozen();
2408		freezable_schedule();
2409		return true;
2410	} else {
2411		/*
2412		 * While ptraced, group stop is handled by STOP trap.
2413		 * Schedule it and let the caller deal with it.
2414		 */
2415		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2416		return false;
2417	}
2418}
2419
2420/**
2421 * do_jobctl_trap - take care of ptrace jobctl traps
2422 *
2423 * When PT_SEIZED, it's used for both group stop and explicit
2424 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2425 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2426 * the stop signal; otherwise, %SIGTRAP.
2427 *
2428 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2429 * number as exit_code and no siginfo.
2430 *
2431 * CONTEXT:
2432 * Must be called with @current->sighand->siglock held, which may be
2433 * released and re-acquired before returning with intervening sleep.
2434 */
2435static void do_jobctl_trap(void)
2436{
2437	struct signal_struct *signal = current->signal;
2438	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2439
2440	if (current->ptrace & PT_SEIZED) {
2441		if (!signal->group_stop_count &&
2442		    !(signal->flags & SIGNAL_STOP_STOPPED))
2443			signr = SIGTRAP;
2444		WARN_ON_ONCE(!signr);
2445		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2446				 CLD_STOPPED);
2447	} else {
2448		WARN_ON_ONCE(!signr);
2449		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2450		current->exit_code = 0;
2451	}
2452}
2453
2454/**
2455 * do_freezer_trap - handle the freezer jobctl trap
2456 *
2457 * Puts the task into frozen state, if only the task is not about to quit.
2458 * In this case it drops JOBCTL_TRAP_FREEZE.
2459 *
2460 * CONTEXT:
2461 * Must be called with @current->sighand->siglock held,
2462 * which is always released before returning.
2463 */
2464static void do_freezer_trap(void)
2465	__releases(&current->sighand->siglock)
2466{
2467	/*
2468	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2469	 * let's make another loop to give it a chance to be handled.
2470	 * In any case, we'll return back.
2471	 */
2472	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2473	     JOBCTL_TRAP_FREEZE) {
2474		spin_unlock_irq(&current->sighand->siglock);
2475		return;
2476	}
2477
2478	/*
2479	 * Now we're sure that there is no pending fatal signal and no
2480	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2481	 * immediately (if there is a non-fatal signal pending), and
2482	 * put the task into sleep.
2483	 */
2484	__set_current_state(TASK_INTERRUPTIBLE);
2485	clear_thread_flag(TIF_SIGPENDING);
2486	spin_unlock_irq(&current->sighand->siglock);
2487	cgroup_enter_frozen();
2488	freezable_schedule();
2489}
2490
2491static int ptrace_signal(int signr, kernel_siginfo_t *info)
2492{
 
2493	/*
2494	 * We do not check sig_kernel_stop(signr) but set this marker
2495	 * unconditionally because we do not know whether debugger will
2496	 * change signr. This flag has no meaning unless we are going
2497	 * to stop after return from ptrace_stop(). In this case it will
2498	 * be checked in do_signal_stop(), we should only stop if it was
2499	 * not cleared by SIGCONT while we were sleeping. See also the
2500	 * comment in dequeue_signal().
2501	 */
2502	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2503	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2504
2505	/* We're back.  Did the debugger cancel the sig?  */
2506	signr = current->exit_code;
2507	if (signr == 0)
2508		return signr;
2509
2510	current->exit_code = 0;
2511
2512	/*
2513	 * Update the siginfo structure if the signal has
2514	 * changed.  If the debugger wanted something
2515	 * specific in the siginfo structure then it should
2516	 * have updated *info via PTRACE_SETSIGINFO.
2517	 */
2518	if (signr != info->si_signo) {
2519		clear_siginfo(info);
2520		info->si_signo = signr;
2521		info->si_errno = 0;
2522		info->si_code = SI_USER;
2523		rcu_read_lock();
2524		info->si_pid = task_pid_vnr(current->parent);
2525		info->si_uid = from_kuid_munged(current_user_ns(),
2526						task_uid(current->parent));
2527		rcu_read_unlock();
2528	}
2529
2530	/* If the (new) signal is now blocked, requeue it.  */
2531	if (sigismember(&current->blocked, signr)) {
2532		send_signal(signr, info, current, PIDTYPE_PID);
2533		signr = 0;
2534	}
2535
2536	return signr;
2537}
2538
2539static void hide_si_addr_tag_bits(struct ksignal *ksig)
2540{
2541	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2542	case SIL_FAULT:
2543	case SIL_FAULT_TRAPNO:
2544	case SIL_FAULT_MCEERR:
2545	case SIL_FAULT_BNDERR:
2546	case SIL_FAULT_PKUERR:
2547	case SIL_PERF_EVENT:
2548		ksig->info.si_addr = arch_untagged_si_addr(
2549			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2550		break;
2551	case SIL_KILL:
2552	case SIL_TIMER:
2553	case SIL_POLL:
2554	case SIL_CHLD:
2555	case SIL_RT:
2556	case SIL_SYS:
2557		break;
2558	}
2559}
2560
2561bool get_signal(struct ksignal *ksig)
2562{
2563	struct sighand_struct *sighand = current->sighand;
2564	struct signal_struct *signal = current->signal;
2565	int signr;
2566
2567	if (unlikely(current->task_works))
2568		task_work_run();
2569
2570	/*
2571	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2572	 * that the arch handlers don't all have to do it. If we get here
2573	 * without TIF_SIGPENDING, just exit after running signal work.
2574	 */
2575	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2576		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2577			tracehook_notify_signal();
2578		if (!task_sigpending(current))
2579			return false;
2580	}
2581
2582	if (unlikely(uprobe_deny_signal()))
2583		return false;
2584
2585	/*
2586	 * Do this once, we can't return to user-mode if freezing() == T.
2587	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2588	 * thus do not need another check after return.
2589	 */
2590	try_to_freeze();
2591
2592relock:
2593	spin_lock_irq(&sighand->siglock);
2594
2595	/*
2596	 * Every stopped thread goes here after wakeup. Check to see if
2597	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2598	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2599	 */
2600	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2601		int why;
2602
2603		if (signal->flags & SIGNAL_CLD_CONTINUED)
2604			why = CLD_CONTINUED;
2605		else
2606			why = CLD_STOPPED;
2607
2608		signal->flags &= ~SIGNAL_CLD_MASK;
2609
2610		spin_unlock_irq(&sighand->siglock);
2611
2612		/*
2613		 * Notify the parent that we're continuing.  This event is
2614		 * always per-process and doesn't make whole lot of sense
2615		 * for ptracers, who shouldn't consume the state via
2616		 * wait(2) either, but, for backward compatibility, notify
2617		 * the ptracer of the group leader too unless it's gonna be
2618		 * a duplicate.
2619		 */
2620		read_lock(&tasklist_lock);
2621		do_notify_parent_cldstop(current, false, why);
2622
2623		if (ptrace_reparented(current->group_leader))
2624			do_notify_parent_cldstop(current->group_leader,
2625						true, why);
2626		read_unlock(&tasklist_lock);
2627
2628		goto relock;
2629	}
2630
2631	/* Has this task already been marked for death? */
2632	if (signal_group_exit(signal)) {
2633		ksig->info.si_signo = signr = SIGKILL;
2634		sigdelset(&current->pending.signal, SIGKILL);
2635		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2636				&sighand->action[SIGKILL - 1]);
2637		recalc_sigpending();
2638		goto fatal;
2639	}
2640
2641	for (;;) {
2642		struct k_sigaction *ka;
2643
2644		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2645		    do_signal_stop(0))
2646			goto relock;
2647
2648		if (unlikely(current->jobctl &
2649			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2650			if (current->jobctl & JOBCTL_TRAP_MASK) {
2651				do_jobctl_trap();
2652				spin_unlock_irq(&sighand->siglock);
2653			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2654				do_freezer_trap();
2655
2656			goto relock;
2657		}
2658
2659		/*
2660		 * If the task is leaving the frozen state, let's update
2661		 * cgroup counters and reset the frozen bit.
2662		 */
2663		if (unlikely(cgroup_task_frozen(current))) {
2664			spin_unlock_irq(&sighand->siglock);
2665			cgroup_leave_frozen(false);
2666			goto relock;
2667		}
2668
2669		/*
2670		 * Signals generated by the execution of an instruction
2671		 * need to be delivered before any other pending signals
2672		 * so that the instruction pointer in the signal stack
2673		 * frame points to the faulting instruction.
2674		 */
2675		signr = dequeue_synchronous_signal(&ksig->info);
2676		if (!signr)
2677			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2678
2679		if (!signr)
2680			break; /* will return 0 */
2681
2682		if (unlikely(current->ptrace) && signr != SIGKILL) {
2683			signr = ptrace_signal(signr, &ksig->info);
2684			if (!signr)
2685				continue;
2686		}
2687
2688		ka = &sighand->action[signr-1];
2689
2690		/* Trace actually delivered signals. */
2691		trace_signal_deliver(signr, &ksig->info, ka);
2692
2693		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2694			continue;
2695		if (ka->sa.sa_handler != SIG_DFL) {
2696			/* Run the handler.  */
2697			ksig->ka = *ka;
2698
2699			if (ka->sa.sa_flags & SA_ONESHOT)
2700				ka->sa.sa_handler = SIG_DFL;
2701
2702			break; /* will return non-zero "signr" value */
2703		}
2704
2705		/*
2706		 * Now we are doing the default action for this signal.
2707		 */
2708		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2709			continue;
2710
2711		/*
2712		 * Global init gets no signals it doesn't want.
2713		 * Container-init gets no signals it doesn't want from same
2714		 * container.
2715		 *
2716		 * Note that if global/container-init sees a sig_kernel_only()
2717		 * signal here, the signal must have been generated internally
2718		 * or must have come from an ancestor namespace. In either
2719		 * case, the signal cannot be dropped.
2720		 */
2721		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2722				!sig_kernel_only(signr))
2723			continue;
2724
2725		if (sig_kernel_stop(signr)) {
2726			/*
2727			 * The default action is to stop all threads in
2728			 * the thread group.  The job control signals
2729			 * do nothing in an orphaned pgrp, but SIGSTOP
2730			 * always works.  Note that siglock needs to be
2731			 * dropped during the call to is_orphaned_pgrp()
2732			 * because of lock ordering with tasklist_lock.
2733			 * This allows an intervening SIGCONT to be posted.
2734			 * We need to check for that and bail out if necessary.
2735			 */
2736			if (signr != SIGSTOP) {
2737				spin_unlock_irq(&sighand->siglock);
2738
2739				/* signals can be posted during this window */
2740
2741				if (is_current_pgrp_orphaned())
2742					goto relock;
2743
2744				spin_lock_irq(&sighand->siglock);
2745			}
2746
2747			if (likely(do_signal_stop(ksig->info.si_signo))) {
2748				/* It released the siglock.  */
2749				goto relock;
2750			}
2751
2752			/*
2753			 * We didn't actually stop, due to a race
2754			 * with SIGCONT or something like that.
2755			 */
2756			continue;
2757		}
2758
2759	fatal:
2760		spin_unlock_irq(&sighand->siglock);
2761		if (unlikely(cgroup_task_frozen(current)))
2762			cgroup_leave_frozen(true);
2763
2764		/*
2765		 * Anything else is fatal, maybe with a core dump.
2766		 */
2767		current->flags |= PF_SIGNALED;
2768
2769		if (sig_kernel_coredump(signr)) {
2770			if (print_fatal_signals)
2771				print_fatal_signal(ksig->info.si_signo);
2772			proc_coredump_connector(current);
2773			/*
2774			 * If it was able to dump core, this kills all
2775			 * other threads in the group and synchronizes with
2776			 * their demise.  If we lost the race with another
2777			 * thread getting here, it set group_exit_code
2778			 * first and our do_group_exit call below will use
2779			 * that value and ignore the one we pass it.
2780			 */
2781			do_coredump(&ksig->info);
2782		}
2783
2784		/*
2785		 * PF_IO_WORKER threads will catch and exit on fatal signals
2786		 * themselves. They have cleanup that must be performed, so
2787		 * we cannot call do_exit() on their behalf.
2788		 */
2789		if (current->flags & PF_IO_WORKER)
2790			goto out;
2791
2792		/*
2793		 * Death signals, no core dump.
2794		 */
2795		do_group_exit(ksig->info.si_signo);
2796		/* NOTREACHED */
2797	}
2798	spin_unlock_irq(&sighand->siglock);
2799out:
2800	ksig->sig = signr;
2801
2802	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2803		hide_si_addr_tag_bits(ksig);
2804
2805	return ksig->sig > 0;
2806}
2807
2808/**
2809 * signal_delivered - 
2810 * @ksig:		kernel signal struct
2811 * @stepping:		nonzero if debugger single-step or block-step in use
2812 *
2813 * This function should be called when a signal has successfully been
2814 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2815 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2816 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2817 */
2818static void signal_delivered(struct ksignal *ksig, int stepping)
2819{
2820	sigset_t blocked;
2821
2822	/* A signal was successfully delivered, and the
2823	   saved sigmask was stored on the signal frame,
2824	   and will be restored by sigreturn.  So we can
2825	   simply clear the restore sigmask flag.  */
2826	clear_restore_sigmask();
2827
2828	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2829	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2830		sigaddset(&blocked, ksig->sig);
2831	set_current_blocked(&blocked);
2832	if (current->sas_ss_flags & SS_AUTODISARM)
2833		sas_ss_reset(current);
2834	tracehook_signal_handler(stepping);
2835}
2836
2837void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2838{
2839	if (failed)
2840		force_sigsegv(ksig->sig);
2841	else
2842		signal_delivered(ksig, stepping);
2843}
2844
2845/*
2846 * It could be that complete_signal() picked us to notify about the
2847 * group-wide signal. Other threads should be notified now to take
2848 * the shared signals in @which since we will not.
2849 */
2850static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2851{
2852	sigset_t retarget;
2853	struct task_struct *t;
2854
2855	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2856	if (sigisemptyset(&retarget))
2857		return;
2858
2859	t = tsk;
2860	while_each_thread(tsk, t) {
2861		if (t->flags & PF_EXITING)
2862			continue;
2863
2864		if (!has_pending_signals(&retarget, &t->blocked))
2865			continue;
2866		/* Remove the signals this thread can handle. */
2867		sigandsets(&retarget, &retarget, &t->blocked);
2868
2869		if (!task_sigpending(t))
2870			signal_wake_up(t, 0);
2871
2872		if (sigisemptyset(&retarget))
2873			break;
2874	}
2875}
2876
2877void exit_signals(struct task_struct *tsk)
2878{
2879	int group_stop = 0;
2880	sigset_t unblocked;
2881
2882	/*
2883	 * @tsk is about to have PF_EXITING set - lock out users which
2884	 * expect stable threadgroup.
2885	 */
2886	cgroup_threadgroup_change_begin(tsk);
2887
2888	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2889		tsk->flags |= PF_EXITING;
2890		cgroup_threadgroup_change_end(tsk);
2891		return;
2892	}
2893
2894	spin_lock_irq(&tsk->sighand->siglock);
2895	/*
2896	 * From now this task is not visible for group-wide signals,
2897	 * see wants_signal(), do_signal_stop().
2898	 */
2899	tsk->flags |= PF_EXITING;
2900
2901	cgroup_threadgroup_change_end(tsk);
2902
2903	if (!task_sigpending(tsk))
2904		goto out;
2905
2906	unblocked = tsk->blocked;
2907	signotset(&unblocked);
2908	retarget_shared_pending(tsk, &unblocked);
2909
2910	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2911	    task_participate_group_stop(tsk))
2912		group_stop = CLD_STOPPED;
2913out:
2914	spin_unlock_irq(&tsk->sighand->siglock);
2915
2916	/*
2917	 * If group stop has completed, deliver the notification.  This
2918	 * should always go to the real parent of the group leader.
2919	 */
2920	if (unlikely(group_stop)) {
2921		read_lock(&tasklist_lock);
2922		do_notify_parent_cldstop(tsk, false, group_stop);
2923		read_unlock(&tasklist_lock);
2924	}
2925}
2926
 
 
 
 
 
 
 
 
2927/*
2928 * System call entry points.
2929 */
2930
2931/**
2932 *  sys_restart_syscall - restart a system call
2933 */
2934SYSCALL_DEFINE0(restart_syscall)
2935{
2936	struct restart_block *restart = &current->restart_block;
2937	return restart->fn(restart);
2938}
2939
2940long do_no_restart_syscall(struct restart_block *param)
2941{
2942	return -EINTR;
2943}
2944
2945static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2946{
2947	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2948		sigset_t newblocked;
2949		/* A set of now blocked but previously unblocked signals. */
2950		sigandnsets(&newblocked, newset, &current->blocked);
2951		retarget_shared_pending(tsk, &newblocked);
2952	}
2953	tsk->blocked = *newset;
2954	recalc_sigpending();
2955}
2956
2957/**
2958 * set_current_blocked - change current->blocked mask
2959 * @newset: new mask
2960 *
2961 * It is wrong to change ->blocked directly, this helper should be used
2962 * to ensure the process can't miss a shared signal we are going to block.
2963 */
2964void set_current_blocked(sigset_t *newset)
2965{
2966	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2967	__set_current_blocked(newset);
2968}
2969
2970void __set_current_blocked(const sigset_t *newset)
2971{
2972	struct task_struct *tsk = current;
2973
2974	/*
2975	 * In case the signal mask hasn't changed, there is nothing we need
2976	 * to do. The current->blocked shouldn't be modified by other task.
2977	 */
2978	if (sigequalsets(&tsk->blocked, newset))
2979		return;
2980
2981	spin_lock_irq(&tsk->sighand->siglock);
2982	__set_task_blocked(tsk, newset);
2983	spin_unlock_irq(&tsk->sighand->siglock);
2984}
2985
2986/*
2987 * This is also useful for kernel threads that want to temporarily
2988 * (or permanently) block certain signals.
2989 *
2990 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2991 * interface happily blocks "unblockable" signals like SIGKILL
2992 * and friends.
2993 */
2994int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2995{
2996	struct task_struct *tsk = current;
2997	sigset_t newset;
2998
2999	/* Lockless, only current can change ->blocked, never from irq */
3000	if (oldset)
3001		*oldset = tsk->blocked;
3002
3003	switch (how) {
3004	case SIG_BLOCK:
3005		sigorsets(&newset, &tsk->blocked, set);
3006		break;
3007	case SIG_UNBLOCK:
3008		sigandnsets(&newset, &tsk->blocked, set);
3009		break;
3010	case SIG_SETMASK:
3011		newset = *set;
3012		break;
3013	default:
3014		return -EINVAL;
3015	}
3016
3017	__set_current_blocked(&newset);
3018	return 0;
3019}
3020EXPORT_SYMBOL(sigprocmask);
3021
3022/*
3023 * The api helps set app-provided sigmasks.
3024 *
3025 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3026 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3027 *
3028 * Note that it does set_restore_sigmask() in advance, so it must be always
3029 * paired with restore_saved_sigmask_unless() before return from syscall.
3030 */
3031int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3032{
3033	sigset_t kmask;
3034
3035	if (!umask)
3036		return 0;
3037	if (sigsetsize != sizeof(sigset_t))
3038		return -EINVAL;
3039	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3040		return -EFAULT;
3041
3042	set_restore_sigmask();
3043	current->saved_sigmask = current->blocked;
3044	set_current_blocked(&kmask);
3045
3046	return 0;
3047}
3048
3049#ifdef CONFIG_COMPAT
3050int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3051			    size_t sigsetsize)
3052{
3053	sigset_t kmask;
3054
3055	if (!umask)
3056		return 0;
3057	if (sigsetsize != sizeof(compat_sigset_t))
3058		return -EINVAL;
3059	if (get_compat_sigset(&kmask, umask))
3060		return -EFAULT;
3061
3062	set_restore_sigmask();
3063	current->saved_sigmask = current->blocked;
3064	set_current_blocked(&kmask);
3065
3066	return 0;
3067}
3068#endif
3069
3070/**
3071 *  sys_rt_sigprocmask - change the list of currently blocked signals
3072 *  @how: whether to add, remove, or set signals
3073 *  @nset: stores pending signals
3074 *  @oset: previous value of signal mask if non-null
3075 *  @sigsetsize: size of sigset_t type
3076 */
3077SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3078		sigset_t __user *, oset, size_t, sigsetsize)
3079{
3080	sigset_t old_set, new_set;
3081	int error;
3082
3083	/* XXX: Don't preclude handling different sized sigset_t's.  */
3084	if (sigsetsize != sizeof(sigset_t))
3085		return -EINVAL;
3086
3087	old_set = current->blocked;
3088
3089	if (nset) {
3090		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3091			return -EFAULT;
3092		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3093
3094		error = sigprocmask(how, &new_set, NULL);
3095		if (error)
3096			return error;
3097	}
3098
3099	if (oset) {
3100		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3101			return -EFAULT;
3102	}
3103
3104	return 0;
3105}
3106
3107#ifdef CONFIG_COMPAT
3108COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3109		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3110{
 
3111	sigset_t old_set = current->blocked;
3112
3113	/* XXX: Don't preclude handling different sized sigset_t's.  */
3114	if (sigsetsize != sizeof(sigset_t))
3115		return -EINVAL;
3116
3117	if (nset) {
 
3118		sigset_t new_set;
3119		int error;
3120		if (get_compat_sigset(&new_set, nset))
3121			return -EFAULT;
 
 
3122		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3123
3124		error = sigprocmask(how, &new_set, NULL);
3125		if (error)
3126			return error;
3127	}
3128	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
 
 
 
 
 
 
 
 
 
 
3129}
3130#endif
3131
3132static void do_sigpending(sigset_t *set)
3133{
 
 
 
3134	spin_lock_irq(&current->sighand->siglock);
3135	sigorsets(set, &current->pending.signal,
3136		  &current->signal->shared_pending.signal);
3137	spin_unlock_irq(&current->sighand->siglock);
3138
3139	/* Outside the lock because only this thread touches it.  */
3140	sigandsets(set, &current->blocked, set);
 
3141}
3142
3143/**
3144 *  sys_rt_sigpending - examine a pending signal that has been raised
3145 *			while blocked
3146 *  @uset: stores pending signals
3147 *  @sigsetsize: size of sigset_t type or larger
3148 */
3149SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3150{
3151	sigset_t set;
3152
3153	if (sigsetsize > sizeof(*uset))
3154		return -EINVAL;
3155
3156	do_sigpending(&set);
3157
3158	if (copy_to_user(uset, &set, sigsetsize))
3159		return -EFAULT;
3160
3161	return 0;
3162}
3163
3164#ifdef CONFIG_COMPAT
3165COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3166		compat_size_t, sigsetsize)
3167{
 
3168	sigset_t set;
3169
3170	if (sigsetsize > sizeof(*uset))
3171		return -EINVAL;
3172
3173	do_sigpending(&set);
3174
3175	return put_compat_sigset(uset, &set, sigsetsize);
 
 
 
 
 
3176}
3177#endif
3178
3179static const struct {
3180	unsigned char limit, layout;
3181} sig_sicodes[] = {
3182	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3183	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3184	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3185	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3186	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3187#if defined(SIGEMT)
3188	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3189#endif
3190	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3191	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3192	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3193};
3194
3195static bool known_siginfo_layout(unsigned sig, int si_code)
3196{
3197	if (si_code == SI_KERNEL)
3198		return true;
3199	else if ((si_code > SI_USER)) {
3200		if (sig_specific_sicodes(sig)) {
3201			if (si_code <= sig_sicodes[sig].limit)
3202				return true;
3203		}
3204		else if (si_code <= NSIGPOLL)
3205			return true;
3206	}
3207	else if (si_code >= SI_DETHREAD)
3208		return true;
3209	else if (si_code == SI_ASYNCNL)
3210		return true;
3211	return false;
3212}
3213
3214enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3215{
3216	enum siginfo_layout layout = SIL_KILL;
3217	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3218		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3219		    (si_code <= sig_sicodes[sig].limit)) {
3220			layout = sig_sicodes[sig].layout;
3221			/* Handle the exceptions */
3222			if ((sig == SIGBUS) &&
3223			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3224				layout = SIL_FAULT_MCEERR;
3225			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3226				layout = SIL_FAULT_BNDERR;
3227#ifdef SEGV_PKUERR
3228			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3229				layout = SIL_FAULT_PKUERR;
3230#endif
3231			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3232				layout = SIL_PERF_EVENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233#ifdef __ARCH_SI_TRAPNO
3234			else if (layout == SIL_FAULT)
3235				layout = SIL_FAULT_TRAPNO;
3236#endif
3237		}
3238		else if (si_code <= NSIGPOLL)
3239			layout = SIL_POLL;
3240	} else {
3241		if (si_code == SI_TIMER)
3242			layout = SIL_TIMER;
3243		else if (si_code == SI_SIGIO)
3244			layout = SIL_POLL;
3245		else if (si_code < 0)
3246			layout = SIL_RT;
3247	}
3248	return layout;
3249}
3250
3251static inline char __user *si_expansion(const siginfo_t __user *info)
3252{
3253	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3254}
3255
3256int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3257{
3258	char __user *expansion = si_expansion(to);
3259	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3260		return -EFAULT;
3261	if (clear_user(expansion, SI_EXPANSION_SIZE))
3262		return -EFAULT;
3263	return 0;
3264}
3265
3266static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3267				       const siginfo_t __user *from)
3268{
3269	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3270		char __user *expansion = si_expansion(from);
3271		char buf[SI_EXPANSION_SIZE];
3272		int i;
3273		/*
3274		 * An unknown si_code might need more than
3275		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3276		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3277		 * will return this data to userspace exactly.
3278		 */
3279		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3280			return -EFAULT;
3281		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3282			if (buf[i] != 0)
3283				return -E2BIG;
 
 
 
3284		}
3285	}
3286	return 0;
3287}
3288
3289static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3290				    const siginfo_t __user *from)
3291{
3292	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3293		return -EFAULT;
3294	to->si_signo = signo;
3295	return post_copy_siginfo_from_user(to, from);
3296}
3297
3298int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3299{
3300	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3301		return -EFAULT;
3302	return post_copy_siginfo_from_user(to, from);
3303}
3304
3305#ifdef CONFIG_COMPAT
3306/**
3307 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3308 * @to: compat siginfo destination
3309 * @from: kernel siginfo source
3310 *
3311 * Note: This function does not work properly for the SIGCHLD on x32, but
3312 * fortunately it doesn't have to.  The only valid callers for this function are
3313 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3314 * The latter does not care because SIGCHLD will never cause a coredump.
3315 */
3316void copy_siginfo_to_external32(struct compat_siginfo *to,
3317		const struct kernel_siginfo *from)
3318{
3319	memset(to, 0, sizeof(*to));
3320
3321	to->si_signo = from->si_signo;
3322	to->si_errno = from->si_errno;
3323	to->si_code  = from->si_code;
3324	switch(siginfo_layout(from->si_signo, from->si_code)) {
3325	case SIL_KILL:
3326		to->si_pid = from->si_pid;
3327		to->si_uid = from->si_uid;
3328		break;
3329	case SIL_TIMER:
3330		to->si_tid     = from->si_tid;
3331		to->si_overrun = from->si_overrun;
3332		to->si_int     = from->si_int;
3333		break;
3334	case SIL_POLL:
3335		to->si_band = from->si_band;
3336		to->si_fd   = from->si_fd;
3337		break;
3338	case SIL_FAULT:
3339		to->si_addr = ptr_to_compat(from->si_addr);
3340		break;
3341	case SIL_FAULT_TRAPNO:
3342		to->si_addr = ptr_to_compat(from->si_addr);
3343		to->si_trapno = from->si_trapno;
3344		break;
3345	case SIL_FAULT_MCEERR:
3346		to->si_addr = ptr_to_compat(from->si_addr);
3347		to->si_addr_lsb = from->si_addr_lsb;
3348		break;
3349	case SIL_FAULT_BNDERR:
3350		to->si_addr = ptr_to_compat(from->si_addr);
3351		to->si_lower = ptr_to_compat(from->si_lower);
3352		to->si_upper = ptr_to_compat(from->si_upper);
3353		break;
3354	case SIL_FAULT_PKUERR:
3355		to->si_addr = ptr_to_compat(from->si_addr);
3356		to->si_pkey = from->si_pkey;
3357		break;
3358	case SIL_PERF_EVENT:
3359		to->si_addr = ptr_to_compat(from->si_addr);
3360		to->si_perf_data = from->si_perf_data;
3361		to->si_perf_type = from->si_perf_type;
3362		break;
3363	case SIL_CHLD:
3364		to->si_pid = from->si_pid;
3365		to->si_uid = from->si_uid;
3366		to->si_status = from->si_status;
3367		to->si_utime = from->si_utime;
3368		to->si_stime = from->si_stime;
3369		break;
3370	case SIL_RT:
3371		to->si_pid = from->si_pid;
3372		to->si_uid = from->si_uid;
3373		to->si_int = from->si_int;
3374		break;
3375	case SIL_SYS:
3376		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3377		to->si_syscall   = from->si_syscall;
3378		to->si_arch      = from->si_arch;
3379		break;
3380	}
 
3381}
3382
3383int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3384			   const struct kernel_siginfo *from)
3385{
3386	struct compat_siginfo new;
3387
3388	copy_siginfo_to_external32(&new, from);
3389	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3390		return -EFAULT;
3391	return 0;
3392}
3393
3394static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3395					 const struct compat_siginfo *from)
3396{
3397	clear_siginfo(to);
3398	to->si_signo = from->si_signo;
3399	to->si_errno = from->si_errno;
3400	to->si_code  = from->si_code;
3401	switch(siginfo_layout(from->si_signo, from->si_code)) {
3402	case SIL_KILL:
3403		to->si_pid = from->si_pid;
3404		to->si_uid = from->si_uid;
3405		break;
3406	case SIL_TIMER:
3407		to->si_tid     = from->si_tid;
3408		to->si_overrun = from->si_overrun;
3409		to->si_int     = from->si_int;
3410		break;
3411	case SIL_POLL:
3412		to->si_band = from->si_band;
3413		to->si_fd   = from->si_fd;
3414		break;
3415	case SIL_FAULT:
3416		to->si_addr = compat_ptr(from->si_addr);
3417		break;
3418	case SIL_FAULT_TRAPNO:
3419		to->si_addr = compat_ptr(from->si_addr);
3420		to->si_trapno = from->si_trapno;
3421		break;
3422	case SIL_FAULT_MCEERR:
3423		to->si_addr = compat_ptr(from->si_addr);
3424		to->si_addr_lsb = from->si_addr_lsb;
3425		break;
3426	case SIL_FAULT_BNDERR:
3427		to->si_addr = compat_ptr(from->si_addr);
3428		to->si_lower = compat_ptr(from->si_lower);
3429		to->si_upper = compat_ptr(from->si_upper);
3430		break;
3431	case SIL_FAULT_PKUERR:
3432		to->si_addr = compat_ptr(from->si_addr);
3433		to->si_pkey = from->si_pkey;
3434		break;
3435	case SIL_PERF_EVENT:
3436		to->si_addr = compat_ptr(from->si_addr);
3437		to->si_perf_data = from->si_perf_data;
3438		to->si_perf_type = from->si_perf_type;
3439		break;
3440	case SIL_CHLD:
3441		to->si_pid    = from->si_pid;
3442		to->si_uid    = from->si_uid;
3443		to->si_status = from->si_status;
3444#ifdef CONFIG_X86_X32_ABI
3445		if (in_x32_syscall()) {
3446			to->si_utime = from->_sifields._sigchld_x32._utime;
3447			to->si_stime = from->_sifields._sigchld_x32._stime;
3448		} else
3449#endif
3450		{
3451			to->si_utime = from->si_utime;
3452			to->si_stime = from->si_stime;
3453		}
3454		break;
3455	case SIL_RT:
3456		to->si_pid = from->si_pid;
3457		to->si_uid = from->si_uid;
3458		to->si_int = from->si_int;
3459		break;
3460	case SIL_SYS:
3461		to->si_call_addr = compat_ptr(from->si_call_addr);
3462		to->si_syscall   = from->si_syscall;
3463		to->si_arch      = from->si_arch;
3464		break;
3465	}
3466	return 0;
3467}
3468
3469static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3470				      const struct compat_siginfo __user *ufrom)
3471{
3472	struct compat_siginfo from;
3473
3474	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3475		return -EFAULT;
3476
3477	from.si_signo = signo;
3478	return post_copy_siginfo_from_user32(to, &from);
3479}
3480
3481int copy_siginfo_from_user32(struct kernel_siginfo *to,
3482			     const struct compat_siginfo __user *ufrom)
3483{
3484	struct compat_siginfo from;
3485
3486	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3487		return -EFAULT;
3488
3489	return post_copy_siginfo_from_user32(to, &from);
3490}
3491#endif /* CONFIG_COMPAT */
3492
3493/**
3494 *  do_sigtimedwait - wait for queued signals specified in @which
3495 *  @which: queued signals to wait for
3496 *  @info: if non-null, the signal's siginfo is returned here
3497 *  @ts: upper bound on process time suspension
3498 */
3499static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3500		    const struct timespec64 *ts)
3501{
3502	ktime_t *to = NULL, timeout = KTIME_MAX;
3503	struct task_struct *tsk = current;
 
3504	sigset_t mask = *which;
3505	int sig, ret = 0;
3506
3507	if (ts) {
3508		if (!timespec64_valid(ts))
3509			return -EINVAL;
3510		timeout = timespec64_to_ktime(*ts);
3511		to = &timeout;
 
 
 
 
 
3512	}
3513
3514	/*
3515	 * Invert the set of allowed signals to get those we want to block.
3516	 */
3517	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3518	signotset(&mask);
3519
3520	spin_lock_irq(&tsk->sighand->siglock);
3521	sig = dequeue_signal(tsk, &mask, info);
3522	if (!sig && timeout) {
3523		/*
3524		 * None ready, temporarily unblock those we're interested
3525		 * while we are sleeping in so that we'll be awakened when
3526		 * they arrive. Unblocking is always fine, we can avoid
3527		 * set_current_blocked().
3528		 */
3529		tsk->real_blocked = tsk->blocked;
3530		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3531		recalc_sigpending();
3532		spin_unlock_irq(&tsk->sighand->siglock);
3533
3534		__set_current_state(TASK_INTERRUPTIBLE);
3535		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3536							 HRTIMER_MODE_REL);
3537		spin_lock_irq(&tsk->sighand->siglock);
3538		__set_task_blocked(tsk, &tsk->real_blocked);
3539		sigemptyset(&tsk->real_blocked);
3540		sig = dequeue_signal(tsk, &mask, info);
3541	}
3542	spin_unlock_irq(&tsk->sighand->siglock);
3543
3544	if (sig)
3545		return sig;
3546	return ret ? -EINTR : -EAGAIN;
3547}
3548
3549/**
3550 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3551 *			in @uthese
3552 *  @uthese: queued signals to wait for
3553 *  @uinfo: if non-null, the signal's siginfo is returned here
3554 *  @uts: upper bound on process time suspension
3555 *  @sigsetsize: size of sigset_t type
3556 */
3557SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3558		siginfo_t __user *, uinfo,
3559		const struct __kernel_timespec __user *, uts,
3560		size_t, sigsetsize)
3561{
3562	sigset_t these;
3563	struct timespec64 ts;
3564	kernel_siginfo_t info;
3565	int ret;
3566
3567	/* XXX: Don't preclude handling different sized sigset_t's.  */
3568	if (sigsetsize != sizeof(sigset_t))
3569		return -EINVAL;
3570
3571	if (copy_from_user(&these, uthese, sizeof(these)))
3572		return -EFAULT;
3573
3574	if (uts) {
3575		if (get_timespec64(&ts, uts))
3576			return -EFAULT;
3577	}
3578
3579	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3580
3581	if (ret > 0 && uinfo) {
3582		if (copy_siginfo_to_user(uinfo, &info))
3583			ret = -EFAULT;
3584	}
3585
3586	return ret;
3587}
3588
3589#ifdef CONFIG_COMPAT_32BIT_TIME
3590SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3591		siginfo_t __user *, uinfo,
3592		const struct old_timespec32 __user *, uts,
3593		size_t, sigsetsize)
3594{
3595	sigset_t these;
3596	struct timespec64 ts;
3597	kernel_siginfo_t info;
3598	int ret;
3599
3600	if (sigsetsize != sizeof(sigset_t))
3601		return -EINVAL;
3602
3603	if (copy_from_user(&these, uthese, sizeof(these)))
3604		return -EFAULT;
3605
3606	if (uts) {
3607		if (get_old_timespec32(&ts, uts))
3608			return -EFAULT;
3609	}
3610
3611	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3612
3613	if (ret > 0 && uinfo) {
3614		if (copy_siginfo_to_user(uinfo, &info))
3615			ret = -EFAULT;
3616	}
3617
3618	return ret;
3619}
3620#endif
3621
3622#ifdef CONFIG_COMPAT
3623COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3624		struct compat_siginfo __user *, uinfo,
3625		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3626{
3627	sigset_t s;
3628	struct timespec64 t;
3629	kernel_siginfo_t info;
3630	long ret;
3631
3632	if (sigsetsize != sizeof(sigset_t))
3633		return -EINVAL;
3634
3635	if (get_compat_sigset(&s, uthese))
3636		return -EFAULT;
3637
3638	if (uts) {
3639		if (get_timespec64(&t, uts))
3640			return -EFAULT;
3641	}
3642
3643	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3644
3645	if (ret > 0 && uinfo) {
3646		if (copy_siginfo_to_user32(uinfo, &info))
3647			ret = -EFAULT;
3648	}
3649
3650	return ret;
3651}
3652
3653#ifdef CONFIG_COMPAT_32BIT_TIME
3654COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3655		struct compat_siginfo __user *, uinfo,
3656		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3657{
3658	sigset_t s;
3659	struct timespec64 t;
3660	kernel_siginfo_t info;
3661	long ret;
3662
3663	if (sigsetsize != sizeof(sigset_t))
3664		return -EINVAL;
3665
3666	if (get_compat_sigset(&s, uthese))
3667		return -EFAULT;
3668
3669	if (uts) {
3670		if (get_old_timespec32(&t, uts))
3671			return -EFAULT;
3672	}
3673
3674	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3675
3676	if (ret > 0 && uinfo) {
3677		if (copy_siginfo_to_user32(uinfo, &info))
3678			ret = -EFAULT;
3679	}
3680
3681	return ret;
3682}
3683#endif
3684#endif
3685
3686static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3687{
3688	clear_siginfo(info);
3689	info->si_signo = sig;
3690	info->si_errno = 0;
3691	info->si_code = SI_USER;
3692	info->si_pid = task_tgid_vnr(current);
3693	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3694}
3695
3696/**
3697 *  sys_kill - send a signal to a process
3698 *  @pid: the PID of the process
3699 *  @sig: signal to be sent
3700 */
3701SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3702{
3703	struct kernel_siginfo info;
3704
3705	prepare_kill_siginfo(sig, &info);
 
 
 
 
3706
3707	return kill_something_info(sig, &info, pid);
3708}
3709
3710/*
3711 * Verify that the signaler and signalee either are in the same pid namespace
3712 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3713 * namespace.
3714 */
3715static bool access_pidfd_pidns(struct pid *pid)
3716{
3717	struct pid_namespace *active = task_active_pid_ns(current);
3718	struct pid_namespace *p = ns_of_pid(pid);
3719
3720	for (;;) {
3721		if (!p)
3722			return false;
3723		if (p == active)
3724			break;
3725		p = p->parent;
3726	}
3727
3728	return true;
3729}
3730
3731static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3732		siginfo_t __user *info)
3733{
3734#ifdef CONFIG_COMPAT
3735	/*
3736	 * Avoid hooking up compat syscalls and instead handle necessary
3737	 * conversions here. Note, this is a stop-gap measure and should not be
3738	 * considered a generic solution.
3739	 */
3740	if (in_compat_syscall())
3741		return copy_siginfo_from_user32(
3742			kinfo, (struct compat_siginfo __user *)info);
3743#endif
3744	return copy_siginfo_from_user(kinfo, info);
3745}
3746
3747static struct pid *pidfd_to_pid(const struct file *file)
3748{
3749	struct pid *pid;
3750
3751	pid = pidfd_pid(file);
3752	if (!IS_ERR(pid))
3753		return pid;
3754
3755	return tgid_pidfd_to_pid(file);
3756}
3757
3758/**
3759 * sys_pidfd_send_signal - Signal a process through a pidfd
3760 * @pidfd:  file descriptor of the process
3761 * @sig:    signal to send
3762 * @info:   signal info
3763 * @flags:  future flags
3764 *
3765 * The syscall currently only signals via PIDTYPE_PID which covers
3766 * kill(<positive-pid>, <signal>. It does not signal threads or process
3767 * groups.
3768 * In order to extend the syscall to threads and process groups the @flags
3769 * argument should be used. In essence, the @flags argument will determine
3770 * what is signaled and not the file descriptor itself. Put in other words,
3771 * grouping is a property of the flags argument not a property of the file
3772 * descriptor.
3773 *
3774 * Return: 0 on success, negative errno on failure
3775 */
3776SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3777		siginfo_t __user *, info, unsigned int, flags)
3778{
3779	int ret;
3780	struct fd f;
3781	struct pid *pid;
3782	kernel_siginfo_t kinfo;
3783
3784	/* Enforce flags be set to 0 until we add an extension. */
3785	if (flags)
3786		return -EINVAL;
3787
3788	f = fdget(pidfd);
3789	if (!f.file)
3790		return -EBADF;
3791
3792	/* Is this a pidfd? */
3793	pid = pidfd_to_pid(f.file);
3794	if (IS_ERR(pid)) {
3795		ret = PTR_ERR(pid);
3796		goto err;
3797	}
3798
3799	ret = -EINVAL;
3800	if (!access_pidfd_pidns(pid))
3801		goto err;
3802
3803	if (info) {
3804		ret = copy_siginfo_from_user_any(&kinfo, info);
3805		if (unlikely(ret))
3806			goto err;
3807
3808		ret = -EINVAL;
3809		if (unlikely(sig != kinfo.si_signo))
3810			goto err;
3811
3812		/* Only allow sending arbitrary signals to yourself. */
3813		ret = -EPERM;
3814		if ((task_pid(current) != pid) &&
3815		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3816			goto err;
3817	} else {
3818		prepare_kill_siginfo(sig, &kinfo);
3819	}
3820
3821	ret = kill_pid_info(sig, &kinfo, pid);
3822
3823err:
3824	fdput(f);
3825	return ret;
3826}
3827
3828static int
3829do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3830{
3831	struct task_struct *p;
3832	int error = -ESRCH;
3833
3834	rcu_read_lock();
3835	p = find_task_by_vpid(pid);
3836	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3837		error = check_kill_permission(sig, info, p);
3838		/*
3839		 * The null signal is a permissions and process existence
3840		 * probe.  No signal is actually delivered.
3841		 */
3842		if (!error && sig) {
3843			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3844			/*
3845			 * If lock_task_sighand() failed we pretend the task
3846			 * dies after receiving the signal. The window is tiny,
3847			 * and the signal is private anyway.
3848			 */
3849			if (unlikely(error == -ESRCH))
3850				error = 0;
3851		}
3852	}
3853	rcu_read_unlock();
3854
3855	return error;
3856}
3857
3858static int do_tkill(pid_t tgid, pid_t pid, int sig)
3859{
3860	struct kernel_siginfo info;
3861
3862	clear_siginfo(&info);
3863	info.si_signo = sig;
3864	info.si_errno = 0;
3865	info.si_code = SI_TKILL;
3866	info.si_pid = task_tgid_vnr(current);
3867	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3868
3869	return do_send_specific(tgid, pid, sig, &info);
3870}
3871
3872/**
3873 *  sys_tgkill - send signal to one specific thread
3874 *  @tgid: the thread group ID of the thread
3875 *  @pid: the PID of the thread
3876 *  @sig: signal to be sent
3877 *
3878 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3879 *  exists but it's not belonging to the target process anymore. This
3880 *  method solves the problem of threads exiting and PIDs getting reused.
3881 */
3882SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	return do_tkill(tgid, pid, sig);
3889}
3890
3891/**
3892 *  sys_tkill - send signal to one specific task
3893 *  @pid: the PID of the task
3894 *  @sig: signal to be sent
3895 *
3896 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3897 */
3898SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3899{
3900	/* This is only valid for single tasks */
3901	if (pid <= 0)
3902		return -EINVAL;
3903
3904	return do_tkill(0, pid, sig);
3905}
3906
3907static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3908{
3909	/* Not even root can pretend to send signals from the kernel.
3910	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3911	 */
3912	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3913	    (task_pid_vnr(current) != pid))
3914		return -EPERM;
3915
 
 
3916	/* POSIX.1b doesn't mention process groups.  */
3917	return kill_proc_info(sig, info, pid);
3918}
3919
3920/**
3921 *  sys_rt_sigqueueinfo - send signal information to a signal
3922 *  @pid: the PID of the thread
3923 *  @sig: signal to be sent
3924 *  @uinfo: signal info to be sent
3925 */
3926SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3927		siginfo_t __user *, uinfo)
3928{
3929	kernel_siginfo_t info;
3930	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3931	if (unlikely(ret))
3932		return ret;
3933	return do_rt_sigqueueinfo(pid, sig, &info);
3934}
3935
3936#ifdef CONFIG_COMPAT
3937COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3938			compat_pid_t, pid,
3939			int, sig,
3940			struct compat_siginfo __user *, uinfo)
3941{
3942	kernel_siginfo_t info;
3943	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3944	if (unlikely(ret))
3945		return ret;
3946	return do_rt_sigqueueinfo(pid, sig, &info);
3947}
3948#endif
3949
3950static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3951{
3952	/* This is only valid for single tasks */
3953	if (pid <= 0 || tgid <= 0)
3954		return -EINVAL;
3955
3956	/* Not even root can pretend to send signals from the kernel.
3957	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3958	 */
3959	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3960	    (task_pid_vnr(current) != pid))
3961		return -EPERM;
3962
 
 
3963	return do_send_specific(tgid, pid, sig, info);
3964}
3965
3966SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3967		siginfo_t __user *, uinfo)
3968{
3969	kernel_siginfo_t info;
3970	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3971	if (unlikely(ret))
3972		return ret;
 
3973	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3974}
3975
3976#ifdef CONFIG_COMPAT
3977COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3978			compat_pid_t, tgid,
3979			compat_pid_t, pid,
3980			int, sig,
3981			struct compat_siginfo __user *, uinfo)
3982{
3983	kernel_siginfo_t info;
3984	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3985	if (unlikely(ret))
3986		return ret;
3987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3988}
3989#endif
3990
3991/*
3992 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3993 */
3994void kernel_sigaction(int sig, __sighandler_t action)
3995{
3996	spin_lock_irq(&current->sighand->siglock);
3997	current->sighand->action[sig - 1].sa.sa_handler = action;
3998	if (action == SIG_IGN) {
3999		sigset_t mask;
4000
4001		sigemptyset(&mask);
4002		sigaddset(&mask, sig);
4003
4004		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4005		flush_sigqueue_mask(&mask, &current->pending);
4006		recalc_sigpending();
4007	}
4008	spin_unlock_irq(&current->sighand->siglock);
4009}
4010EXPORT_SYMBOL(kernel_sigaction);
4011
4012void __weak sigaction_compat_abi(struct k_sigaction *act,
4013		struct k_sigaction *oact)
4014{
4015}
4016
4017int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4018{
4019	struct task_struct *p = current, *t;
4020	struct k_sigaction *k;
4021	sigset_t mask;
4022
4023	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4024		return -EINVAL;
4025
4026	k = &p->sighand->action[sig-1];
4027
4028	spin_lock_irq(&p->sighand->siglock);
4029	if (oact)
4030		*oact = *k;
4031
4032	/*
4033	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4034	 * e.g. by having an architecture use the bit in their uapi.
4035	 */
4036	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4037
4038	/*
4039	 * Clear unknown flag bits in order to allow userspace to detect missing
4040	 * support for flag bits and to allow the kernel to use non-uapi bits
4041	 * internally.
4042	 */
4043	if (act)
4044		act->sa.sa_flags &= UAPI_SA_FLAGS;
4045	if (oact)
4046		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4047
4048	sigaction_compat_abi(act, oact);
4049
4050	if (act) {
4051		sigdelsetmask(&act->sa.sa_mask,
4052			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4053		*k = *act;
4054		/*
4055		 * POSIX 3.3.1.3:
4056		 *  "Setting a signal action to SIG_IGN for a signal that is
4057		 *   pending shall cause the pending signal to be discarded,
4058		 *   whether or not it is blocked."
4059		 *
4060		 *  "Setting a signal action to SIG_DFL for a signal that is
4061		 *   pending and whose default action is to ignore the signal
4062		 *   (for example, SIGCHLD), shall cause the pending signal to
4063		 *   be discarded, whether or not it is blocked"
4064		 */
4065		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4066			sigemptyset(&mask);
4067			sigaddset(&mask, sig);
4068			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4069			for_each_thread(p, t)
4070				flush_sigqueue_mask(&mask, &t->pending);
4071		}
4072	}
4073
4074	spin_unlock_irq(&p->sighand->siglock);
4075	return 0;
4076}
4077
4078static int
4079do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4080		size_t min_ss_size)
4081{
4082	struct task_struct *t = current;
 
4083
4084	if (oss) {
4085		memset(oss, 0, sizeof(stack_t));
4086		oss->ss_sp = (void __user *) t->sas_ss_sp;
4087		oss->ss_size = t->sas_ss_size;
4088		oss->ss_flags = sas_ss_flags(sp) |
4089			(current->sas_ss_flags & SS_FLAG_BITS);
4090	}
 
4091
4092	if (ss) {
4093		void __user *ss_sp = ss->ss_sp;
4094		size_t ss_size = ss->ss_size;
4095		unsigned ss_flags = ss->ss_flags;
4096		int ss_mode;
 
 
 
4097
4098		if (unlikely(on_sig_stack(sp)))
4099			return -EPERM;
 
4100
4101		ss_mode = ss_flags & ~SS_FLAG_BITS;
4102		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4103				ss_mode != 0))
4104			return -EINVAL;
 
 
 
 
 
 
4105
4106		if (ss_mode == SS_DISABLE) {
4107			ss_size = 0;
4108			ss_sp = NULL;
4109		} else {
4110			if (unlikely(ss_size < min_ss_size))
4111				return -ENOMEM;
 
4112		}
4113
4114		t->sas_ss_sp = (unsigned long) ss_sp;
4115		t->sas_ss_size = ss_size;
4116		t->sas_ss_flags = ss_flags;
 
 
 
 
 
 
 
 
 
4117	}
4118	return 0;
 
 
4119}
4120
4121SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4122{
4123	stack_t new, old;
4124	int err;
4125	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4126		return -EFAULT;
4127	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4128			      current_user_stack_pointer(),
4129			      MINSIGSTKSZ);
4130	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4131		err = -EFAULT;
4132	return err;
4133}
4134
4135int restore_altstack(const stack_t __user *uss)
4136{
4137	stack_t new;
4138	if (copy_from_user(&new, uss, sizeof(stack_t)))
4139		return -EFAULT;
4140	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4141			     MINSIGSTKSZ);
4142	/* squash all but EFAULT for now */
4143	return 0;
4144}
4145
4146int __save_altstack(stack_t __user *uss, unsigned long sp)
4147{
4148	struct task_struct *t = current;
4149	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4150		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4151		__put_user(t->sas_ss_size, &uss->ss_size);
4152	return err;
4153}
4154
4155#ifdef CONFIG_COMPAT
4156static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4157				 compat_stack_t __user *uoss_ptr)
 
4158{
4159	stack_t uss, uoss;
4160	int ret;
 
4161
4162	if (uss_ptr) {
4163		compat_stack_t uss32;
 
 
4164		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4165			return -EFAULT;
4166		uss.ss_sp = compat_ptr(uss32.ss_sp);
4167		uss.ss_flags = uss32.ss_flags;
4168		uss.ss_size = uss32.ss_size;
4169	}
4170	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4171			     compat_user_stack_pointer(),
4172			     COMPAT_MINSIGSTKSZ);
 
 
 
4173	if (ret >= 0 && uoss_ptr)  {
4174		compat_stack_t old;
4175		memset(&old, 0, sizeof(old));
4176		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4177		old.ss_flags = uoss.ss_flags;
4178		old.ss_size = uoss.ss_size;
4179		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4180			ret = -EFAULT;
4181	}
4182	return ret;
4183}
4184
4185COMPAT_SYSCALL_DEFINE2(sigaltstack,
4186			const compat_stack_t __user *, uss_ptr,
4187			compat_stack_t __user *, uoss_ptr)
4188{
4189	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4190}
4191
4192int compat_restore_altstack(const compat_stack_t __user *uss)
4193{
4194	int err = do_compat_sigaltstack(uss, NULL);
4195	/* squash all but -EFAULT for now */
4196	return err == -EFAULT ? err : 0;
4197}
4198
4199int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4200{
4201	int err;
4202	struct task_struct *t = current;
4203	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4204			 &uss->ss_sp) |
4205		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4206		__put_user(t->sas_ss_size, &uss->ss_size);
4207	return err;
4208}
4209#endif
4210
4211#ifdef __ARCH_WANT_SYS_SIGPENDING
4212
4213/**
4214 *  sys_sigpending - examine pending signals
4215 *  @uset: where mask of pending signal is returned
4216 */
4217SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4218{
4219	sigset_t set;
4220
4221	if (sizeof(old_sigset_t) > sizeof(*uset))
4222		return -EINVAL;
4223
4224	do_sigpending(&set);
4225
4226	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4227		return -EFAULT;
4228
4229	return 0;
4230}
4231
4232#ifdef CONFIG_COMPAT
4233COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4234{
4235	sigset_t set;
4236
4237	do_sigpending(&set);
4238
4239	return put_user(set.sig[0], set32);
4240}
4241#endif
4242
4243#endif
4244
4245#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4246/**
4247 *  sys_sigprocmask - examine and change blocked signals
4248 *  @how: whether to add, remove, or set signals
4249 *  @nset: signals to add or remove (if non-null)
4250 *  @oset: previous value of signal mask if non-null
4251 *
4252 * Some platforms have their own version with special arguments;
4253 * others support only sys_rt_sigprocmask.
4254 */
4255
4256SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4257		old_sigset_t __user *, oset)
4258{
4259	old_sigset_t old_set, new_set;
4260	sigset_t new_blocked;
4261
4262	old_set = current->blocked.sig[0];
4263
4264	if (nset) {
4265		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4266			return -EFAULT;
4267
4268		new_blocked = current->blocked;
4269
4270		switch (how) {
4271		case SIG_BLOCK:
4272			sigaddsetmask(&new_blocked, new_set);
4273			break;
4274		case SIG_UNBLOCK:
4275			sigdelsetmask(&new_blocked, new_set);
4276			break;
4277		case SIG_SETMASK:
4278			new_blocked.sig[0] = new_set;
4279			break;
4280		default:
4281			return -EINVAL;
4282		}
4283
4284		set_current_blocked(&new_blocked);
4285	}
4286
4287	if (oset) {
4288		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4289			return -EFAULT;
4290	}
4291
4292	return 0;
4293}
4294#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4295
4296#ifndef CONFIG_ODD_RT_SIGACTION
4297/**
4298 *  sys_rt_sigaction - alter an action taken by a process
4299 *  @sig: signal to be sent
4300 *  @act: new sigaction
4301 *  @oact: used to save the previous sigaction
4302 *  @sigsetsize: size of sigset_t type
4303 */
4304SYSCALL_DEFINE4(rt_sigaction, int, sig,
4305		const struct sigaction __user *, act,
4306		struct sigaction __user *, oact,
4307		size_t, sigsetsize)
4308{
4309	struct k_sigaction new_sa, old_sa;
4310	int ret;
4311
4312	/* XXX: Don't preclude handling different sized sigset_t's.  */
4313	if (sigsetsize != sizeof(sigset_t))
4314		return -EINVAL;
4315
4316	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4317		return -EFAULT;
 
 
4318
4319	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4320	if (ret)
4321		return ret;
4322
4323	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4324		return -EFAULT;
4325
4326	return 0;
 
 
4327}
4328#ifdef CONFIG_COMPAT
4329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4330		const struct compat_sigaction __user *, act,
4331		struct compat_sigaction __user *, oact,
4332		compat_size_t, sigsetsize)
4333{
4334	struct k_sigaction new_ka, old_ka;
 
4335#ifdef __ARCH_HAS_SA_RESTORER
4336	compat_uptr_t restorer;
4337#endif
4338	int ret;
4339
4340	/* XXX: Don't preclude handling different sized sigset_t's.  */
4341	if (sigsetsize != sizeof(compat_sigset_t))
4342		return -EINVAL;
4343
4344	if (act) {
4345		compat_uptr_t handler;
4346		ret = get_user(handler, &act->sa_handler);
4347		new_ka.sa.sa_handler = compat_ptr(handler);
4348#ifdef __ARCH_HAS_SA_RESTORER
4349		ret |= get_user(restorer, &act->sa_restorer);
4350		new_ka.sa.sa_restorer = compat_ptr(restorer);
4351#endif
4352		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4353		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4354		if (ret)
4355			return -EFAULT;
 
4356	}
4357
4358	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4359	if (!ret && oact) {
 
4360		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4361			       &oact->sa_handler);
4362		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4363					 sizeof(oact->sa_mask));
4364		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4365#ifdef __ARCH_HAS_SA_RESTORER
4366		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4367				&oact->sa_restorer);
4368#endif
4369	}
4370	return ret;
4371}
4372#endif
4373#endif /* !CONFIG_ODD_RT_SIGACTION */
4374
4375#ifdef CONFIG_OLD_SIGACTION
4376SYSCALL_DEFINE3(sigaction, int, sig,
4377		const struct old_sigaction __user *, act,
4378	        struct old_sigaction __user *, oact)
4379{
4380	struct k_sigaction new_ka, old_ka;
4381	int ret;
4382
4383	if (act) {
4384		old_sigset_t mask;
4385		if (!access_ok(act, sizeof(*act)) ||
4386		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4387		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4388		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4389		    __get_user(mask, &act->sa_mask))
4390			return -EFAULT;
4391#ifdef __ARCH_HAS_KA_RESTORER
4392		new_ka.ka_restorer = NULL;
4393#endif
4394		siginitset(&new_ka.sa.sa_mask, mask);
4395	}
4396
4397	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4398
4399	if (!ret && oact) {
4400		if (!access_ok(oact, sizeof(*oact)) ||
4401		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4402		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4403		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4404		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4405			return -EFAULT;
4406	}
4407
4408	return ret;
4409}
4410#endif
4411#ifdef CONFIG_COMPAT_OLD_SIGACTION
4412COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4413		const struct compat_old_sigaction __user *, act,
4414	        struct compat_old_sigaction __user *, oact)
4415{
4416	struct k_sigaction new_ka, old_ka;
4417	int ret;
4418	compat_old_sigset_t mask;
4419	compat_uptr_t handler, restorer;
4420
4421	if (act) {
4422		if (!access_ok(act, sizeof(*act)) ||
4423		    __get_user(handler, &act->sa_handler) ||
4424		    __get_user(restorer, &act->sa_restorer) ||
4425		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4426		    __get_user(mask, &act->sa_mask))
4427			return -EFAULT;
4428
4429#ifdef __ARCH_HAS_KA_RESTORER
4430		new_ka.ka_restorer = NULL;
4431#endif
4432		new_ka.sa.sa_handler = compat_ptr(handler);
4433		new_ka.sa.sa_restorer = compat_ptr(restorer);
4434		siginitset(&new_ka.sa.sa_mask, mask);
4435	}
4436
4437	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4438
4439	if (!ret && oact) {
4440		if (!access_ok(oact, sizeof(*oact)) ||
4441		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4442			       &oact->sa_handler) ||
4443		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4444			       &oact->sa_restorer) ||
4445		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4446		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4447			return -EFAULT;
4448	}
4449	return ret;
4450}
4451#endif
4452
4453#ifdef CONFIG_SGETMASK_SYSCALL
4454
4455/*
4456 * For backwards compatibility.  Functionality superseded by sigprocmask.
4457 */
4458SYSCALL_DEFINE0(sgetmask)
4459{
4460	/* SMP safe */
4461	return current->blocked.sig[0];
4462}
4463
4464SYSCALL_DEFINE1(ssetmask, int, newmask)
4465{
4466	int old = current->blocked.sig[0];
4467	sigset_t newset;
4468
4469	siginitset(&newset, newmask);
4470	set_current_blocked(&newset);
4471
4472	return old;
4473}
4474#endif /* CONFIG_SGETMASK_SYSCALL */
4475
4476#ifdef __ARCH_WANT_SYS_SIGNAL
4477/*
4478 * For backwards compatibility.  Functionality superseded by sigaction.
4479 */
4480SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4481{
4482	struct k_sigaction new_sa, old_sa;
4483	int ret;
4484
4485	new_sa.sa.sa_handler = handler;
4486	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4487	sigemptyset(&new_sa.sa.sa_mask);
4488
4489	ret = do_sigaction(sig, &new_sa, &old_sa);
4490
4491	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4492}
4493#endif /* __ARCH_WANT_SYS_SIGNAL */
4494
4495#ifdef __ARCH_WANT_SYS_PAUSE
4496
4497SYSCALL_DEFINE0(pause)
4498{
4499	while (!signal_pending(current)) {
4500		__set_current_state(TASK_INTERRUPTIBLE);
4501		schedule();
4502	}
4503	return -ERESTARTNOHAND;
4504}
4505
4506#endif
4507
4508static int sigsuspend(sigset_t *set)
4509{
4510	current->saved_sigmask = current->blocked;
4511	set_current_blocked(set);
4512
4513	while (!signal_pending(current)) {
4514		__set_current_state(TASK_INTERRUPTIBLE);
4515		schedule();
4516	}
4517	set_restore_sigmask();
4518	return -ERESTARTNOHAND;
4519}
4520
4521/**
4522 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4523 *	@unewset value until a signal is received
4524 *  @unewset: new signal mask value
4525 *  @sigsetsize: size of sigset_t type
4526 */
4527SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4528{
4529	sigset_t newset;
4530
4531	/* XXX: Don't preclude handling different sized sigset_t's.  */
4532	if (sigsetsize != sizeof(sigset_t))
4533		return -EINVAL;
4534
4535	if (copy_from_user(&newset, unewset, sizeof(newset)))
4536		return -EFAULT;
4537	return sigsuspend(&newset);
4538}
4539 
4540#ifdef CONFIG_COMPAT
4541COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4542{
 
4543	sigset_t newset;
 
4544
4545	/* XXX: Don't preclude handling different sized sigset_t's.  */
4546	if (sigsetsize != sizeof(sigset_t))
4547		return -EINVAL;
4548
4549	if (get_compat_sigset(&newset, unewset))
4550		return -EFAULT;
 
4551	return sigsuspend(&newset);
 
 
 
 
4552}
4553#endif
4554
4555#ifdef CONFIG_OLD_SIGSUSPEND
4556SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4557{
4558	sigset_t blocked;
4559	siginitset(&blocked, mask);
4560	return sigsuspend(&blocked);
4561}
4562#endif
4563#ifdef CONFIG_OLD_SIGSUSPEND3
4564SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4565{
4566	sigset_t blocked;
4567	siginitset(&blocked, mask);
4568	return sigsuspend(&blocked);
4569}
4570#endif
4571
4572__weak const char *arch_vma_name(struct vm_area_struct *vma)
4573{
4574	return NULL;
4575}
4576
4577static inline void siginfo_buildtime_checks(void)
4578{
4579	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4580
4581	/* Verify the offsets in the two siginfos match */
4582#define CHECK_OFFSET(field) \
4583	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4584
4585	/* kill */
4586	CHECK_OFFSET(si_pid);
4587	CHECK_OFFSET(si_uid);
4588
4589	/* timer */
4590	CHECK_OFFSET(si_tid);
4591	CHECK_OFFSET(si_overrun);
4592	CHECK_OFFSET(si_value);
4593
4594	/* rt */
4595	CHECK_OFFSET(si_pid);
4596	CHECK_OFFSET(si_uid);
4597	CHECK_OFFSET(si_value);
4598
4599	/* sigchld */
4600	CHECK_OFFSET(si_pid);
4601	CHECK_OFFSET(si_uid);
4602	CHECK_OFFSET(si_status);
4603	CHECK_OFFSET(si_utime);
4604	CHECK_OFFSET(si_stime);
4605
4606	/* sigfault */
4607	CHECK_OFFSET(si_addr);
4608	CHECK_OFFSET(si_trapno);
4609	CHECK_OFFSET(si_addr_lsb);
4610	CHECK_OFFSET(si_lower);
4611	CHECK_OFFSET(si_upper);
4612	CHECK_OFFSET(si_pkey);
4613	CHECK_OFFSET(si_perf_data);
4614	CHECK_OFFSET(si_perf_type);
4615
4616	/* sigpoll */
4617	CHECK_OFFSET(si_band);
4618	CHECK_OFFSET(si_fd);
4619
4620	/* sigsys */
4621	CHECK_OFFSET(si_call_addr);
4622	CHECK_OFFSET(si_syscall);
4623	CHECK_OFFSET(si_arch);
4624#undef CHECK_OFFSET
4625
4626	/* usb asyncio */
4627	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4628		     offsetof(struct siginfo, si_addr));
4629	if (sizeof(int) == sizeof(void __user *)) {
4630		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4631			     sizeof(void __user *));
4632	} else {
4633		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4634			      sizeof_field(struct siginfo, si_uid)) !=
4635			     sizeof(void __user *));
4636		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4637			     offsetof(struct siginfo, si_uid));
4638	}
4639#ifdef CONFIG_COMPAT
4640	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4641		     offsetof(struct compat_siginfo, si_addr));
4642	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4643		     sizeof(compat_uptr_t));
4644	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4645		     sizeof_field(struct siginfo, si_pid));
4646#endif
4647}
4648
4649void __init signals_init(void)
4650{
4651	siginfo_buildtime_checks();
 
 
4652
4653	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4654}
4655
4656#ifdef CONFIG_KGDB_KDB
4657#include <linux/kdb.h>
4658/*
4659 * kdb_send_sig - Allows kdb to send signals without exposing
4660 * signal internals.  This function checks if the required locks are
4661 * available before calling the main signal code, to avoid kdb
4662 * deadlocks.
4663 */
4664void kdb_send_sig(struct task_struct *t, int sig)
 
4665{
4666	static struct task_struct *kdb_prev_t;
4667	int new_t, ret;
4668	if (!spin_trylock(&t->sighand->siglock)) {
4669		kdb_printf("Can't do kill command now.\n"
4670			   "The sigmask lock is held somewhere else in "
4671			   "kernel, try again later\n");
4672		return;
4673	}
 
4674	new_t = kdb_prev_t != t;
4675	kdb_prev_t = t;
4676	if (!task_is_running(t) && new_t) {
4677		spin_unlock(&t->sighand->siglock);
4678		kdb_printf("Process is not RUNNING, sending a signal from "
4679			   "kdb risks deadlock\n"
4680			   "on the run queue locks. "
4681			   "The signal has _not_ been sent.\n"
4682			   "Reissue the kill command if you want to risk "
4683			   "the deadlock.\n");
4684		return;
4685	}
4686	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4687	spin_unlock(&t->sighand->siglock);
4688	if (ret)
4689		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4690			   sig, t->pid);
4691	else
4692		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4693}
4694#endif	/* CONFIG_KGDB_KDB */