Loading...
1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/locking/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/export.h>
15#include <linux/sched.h>
16#include <linux/sched/rt.h>
17#include <linux/sched/deadline.h>
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
22/*
23 * lock->owner state tracking:
24 *
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
27 *
28 * owner bit0
29 * NULL 0 lock is free (fast acquire possible)
30 * NULL 1 lock is free and has waiters and the top waiter
31 * is going to take the lock*
32 * taskpointer 0 lock is held (fast release possible)
33 * taskpointer 1 lock is held and has waiters**
34 *
35 * The fast atomic compare exchange based acquire and release is only
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
42 *
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
47 */
48
49static void
50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51{
52 unsigned long val = (unsigned long)owner;
53
54 if (rt_mutex_has_waiters(lock))
55 val |= RT_MUTEX_HAS_WAITERS;
56
57 lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62 lock->owner = (struct task_struct *)
63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68 if (!rt_mutex_has_waiters(lock))
69 clear_rt_mutex_waiters(lock);
70}
71
72/*
73 * We can speed up the acquire/release, if there's no debugging state to be
74 * set up.
75 */
76#ifndef CONFIG_DEBUG_RT_MUTEXES
77# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
78# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
79# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
80
81/*
82 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
83 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
84 * relaxed semantics suffice.
85 */
86static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
87{
88 unsigned long owner, *p = (unsigned long *) &lock->owner;
89
90 do {
91 owner = *p;
92 } while (cmpxchg_relaxed(p, owner,
93 owner | RT_MUTEX_HAS_WAITERS) != owner);
94}
95
96/*
97 * Safe fastpath aware unlock:
98 * 1) Clear the waiters bit
99 * 2) Drop lock->wait_lock
100 * 3) Try to unlock the lock with cmpxchg
101 */
102static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
103 unsigned long flags)
104 __releases(lock->wait_lock)
105{
106 struct task_struct *owner = rt_mutex_owner(lock);
107
108 clear_rt_mutex_waiters(lock);
109 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
110 /*
111 * If a new waiter comes in between the unlock and the cmpxchg
112 * we have two situations:
113 *
114 * unlock(wait_lock);
115 * lock(wait_lock);
116 * cmpxchg(p, owner, 0) == owner
117 * mark_rt_mutex_waiters(lock);
118 * acquire(lock);
119 * or:
120 *
121 * unlock(wait_lock);
122 * lock(wait_lock);
123 * mark_rt_mutex_waiters(lock);
124 *
125 * cmpxchg(p, owner, 0) != owner
126 * enqueue_waiter();
127 * unlock(wait_lock);
128 * lock(wait_lock);
129 * wake waiter();
130 * unlock(wait_lock);
131 * lock(wait_lock);
132 * acquire(lock);
133 */
134 return rt_mutex_cmpxchg_release(lock, owner, NULL);
135}
136
137#else
138# define rt_mutex_cmpxchg_relaxed(l,c,n) (0)
139# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
140# define rt_mutex_cmpxchg_release(l,c,n) (0)
141
142static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
143{
144 lock->owner = (struct task_struct *)
145 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
146}
147
148/*
149 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
150 */
151static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
152 unsigned long flags)
153 __releases(lock->wait_lock)
154{
155 lock->owner = NULL;
156 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
157 return true;
158}
159#endif
160
161static inline int
162rt_mutex_waiter_less(struct rt_mutex_waiter *left,
163 struct rt_mutex_waiter *right)
164{
165 if (left->prio < right->prio)
166 return 1;
167
168 /*
169 * If both waiters have dl_prio(), we check the deadlines of the
170 * associated tasks.
171 * If left waiter has a dl_prio(), and we didn't return 1 above,
172 * then right waiter has a dl_prio() too.
173 */
174 if (dl_prio(left->prio))
175 return dl_time_before(left->task->dl.deadline,
176 right->task->dl.deadline);
177
178 return 0;
179}
180
181static void
182rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
183{
184 struct rb_node **link = &lock->waiters.rb_node;
185 struct rb_node *parent = NULL;
186 struct rt_mutex_waiter *entry;
187 int leftmost = 1;
188
189 while (*link) {
190 parent = *link;
191 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
192 if (rt_mutex_waiter_less(waiter, entry)) {
193 link = &parent->rb_left;
194 } else {
195 link = &parent->rb_right;
196 leftmost = 0;
197 }
198 }
199
200 if (leftmost)
201 lock->waiters_leftmost = &waiter->tree_entry;
202
203 rb_link_node(&waiter->tree_entry, parent, link);
204 rb_insert_color(&waiter->tree_entry, &lock->waiters);
205}
206
207static void
208rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
209{
210 if (RB_EMPTY_NODE(&waiter->tree_entry))
211 return;
212
213 if (lock->waiters_leftmost == &waiter->tree_entry)
214 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
215
216 rb_erase(&waiter->tree_entry, &lock->waiters);
217 RB_CLEAR_NODE(&waiter->tree_entry);
218}
219
220static void
221rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
222{
223 struct rb_node **link = &task->pi_waiters.rb_node;
224 struct rb_node *parent = NULL;
225 struct rt_mutex_waiter *entry;
226 int leftmost = 1;
227
228 while (*link) {
229 parent = *link;
230 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
231 if (rt_mutex_waiter_less(waiter, entry)) {
232 link = &parent->rb_left;
233 } else {
234 link = &parent->rb_right;
235 leftmost = 0;
236 }
237 }
238
239 if (leftmost)
240 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
241
242 rb_link_node(&waiter->pi_tree_entry, parent, link);
243 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
244}
245
246static void
247rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
248{
249 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
250 return;
251
252 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
253 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
254
255 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
256 RB_CLEAR_NODE(&waiter->pi_tree_entry);
257}
258
259/*
260 * Calculate task priority from the waiter tree priority
261 *
262 * Return task->normal_prio when the waiter tree is empty or when
263 * the waiter is not allowed to do priority boosting
264 */
265int rt_mutex_getprio(struct task_struct *task)
266{
267 if (likely(!task_has_pi_waiters(task)))
268 return task->normal_prio;
269
270 return min(task_top_pi_waiter(task)->prio,
271 task->normal_prio);
272}
273
274struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
275{
276 if (likely(!task_has_pi_waiters(task)))
277 return NULL;
278
279 return task_top_pi_waiter(task)->task;
280}
281
282/*
283 * Called by sched_setscheduler() to get the priority which will be
284 * effective after the change.
285 */
286int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
287{
288 if (!task_has_pi_waiters(task))
289 return newprio;
290
291 if (task_top_pi_waiter(task)->task->prio <= newprio)
292 return task_top_pi_waiter(task)->task->prio;
293 return newprio;
294}
295
296/*
297 * Adjust the priority of a task, after its pi_waiters got modified.
298 *
299 * This can be both boosting and unboosting. task->pi_lock must be held.
300 */
301static void __rt_mutex_adjust_prio(struct task_struct *task)
302{
303 int prio = rt_mutex_getprio(task);
304
305 if (task->prio != prio || dl_prio(prio))
306 rt_mutex_setprio(task, prio);
307}
308
309/*
310 * Adjust task priority (undo boosting). Called from the exit path of
311 * rt_mutex_slowunlock() and rt_mutex_slowlock().
312 *
313 * (Note: We do this outside of the protection of lock->wait_lock to
314 * allow the lock to be taken while or before we readjust the priority
315 * of task. We do not use the spin_xx_mutex() variants here as we are
316 * outside of the debug path.)
317 */
318void rt_mutex_adjust_prio(struct task_struct *task)
319{
320 unsigned long flags;
321
322 raw_spin_lock_irqsave(&task->pi_lock, flags);
323 __rt_mutex_adjust_prio(task);
324 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
325}
326
327/*
328 * Deadlock detection is conditional:
329 *
330 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
331 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
332 *
333 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
334 * conducted independent of the detect argument.
335 *
336 * If the waiter argument is NULL this indicates the deboost path and
337 * deadlock detection is disabled independent of the detect argument
338 * and the config settings.
339 */
340static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
341 enum rtmutex_chainwalk chwalk)
342{
343 /*
344 * This is just a wrapper function for the following call,
345 * because debug_rt_mutex_detect_deadlock() smells like a magic
346 * debug feature and I wanted to keep the cond function in the
347 * main source file along with the comments instead of having
348 * two of the same in the headers.
349 */
350 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
351}
352
353/*
354 * Max number of times we'll walk the boosting chain:
355 */
356int max_lock_depth = 1024;
357
358static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
359{
360 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
361}
362
363/*
364 * Adjust the priority chain. Also used for deadlock detection.
365 * Decreases task's usage by one - may thus free the task.
366 *
367 * @task: the task owning the mutex (owner) for which a chain walk is
368 * probably needed
369 * @chwalk: do we have to carry out deadlock detection?
370 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
371 * things for a task that has just got its priority adjusted, and
372 * is waiting on a mutex)
373 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
374 * we dropped its pi_lock. Is never dereferenced, only used for
375 * comparison to detect lock chain changes.
376 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
377 * its priority to the mutex owner (can be NULL in the case
378 * depicted above or if the top waiter is gone away and we are
379 * actually deboosting the owner)
380 * @top_task: the current top waiter
381 *
382 * Returns 0 or -EDEADLK.
383 *
384 * Chain walk basics and protection scope
385 *
386 * [R] refcount on task
387 * [P] task->pi_lock held
388 * [L] rtmutex->wait_lock held
389 *
390 * Step Description Protected by
391 * function arguments:
392 * @task [R]
393 * @orig_lock if != NULL @top_task is blocked on it
394 * @next_lock Unprotected. Cannot be
395 * dereferenced. Only used for
396 * comparison.
397 * @orig_waiter if != NULL @top_task is blocked on it
398 * @top_task current, or in case of proxy
399 * locking protected by calling
400 * code
401 * again:
402 * loop_sanity_check();
403 * retry:
404 * [1] lock(task->pi_lock); [R] acquire [P]
405 * [2] waiter = task->pi_blocked_on; [P]
406 * [3] check_exit_conditions_1(); [P]
407 * [4] lock = waiter->lock; [P]
408 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
409 * unlock(task->pi_lock); release [P]
410 * goto retry;
411 * }
412 * [6] check_exit_conditions_2(); [P] + [L]
413 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
414 * [8] unlock(task->pi_lock); release [P]
415 * put_task_struct(task); release [R]
416 * [9] check_exit_conditions_3(); [L]
417 * [10] task = owner(lock); [L]
418 * get_task_struct(task); [L] acquire [R]
419 * lock(task->pi_lock); [L] acquire [P]
420 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
421 * [12] check_exit_conditions_4(); [P] + [L]
422 * [13] unlock(task->pi_lock); release [P]
423 * unlock(lock->wait_lock); release [L]
424 * goto again;
425 */
426static int rt_mutex_adjust_prio_chain(struct task_struct *task,
427 enum rtmutex_chainwalk chwalk,
428 struct rt_mutex *orig_lock,
429 struct rt_mutex *next_lock,
430 struct rt_mutex_waiter *orig_waiter,
431 struct task_struct *top_task)
432{
433 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
434 struct rt_mutex_waiter *prerequeue_top_waiter;
435 int ret = 0, depth = 0;
436 struct rt_mutex *lock;
437 bool detect_deadlock;
438 bool requeue = true;
439
440 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
441
442 /*
443 * The (de)boosting is a step by step approach with a lot of
444 * pitfalls. We want this to be preemptible and we want hold a
445 * maximum of two locks per step. So we have to check
446 * carefully whether things change under us.
447 */
448 again:
449 /*
450 * We limit the lock chain length for each invocation.
451 */
452 if (++depth > max_lock_depth) {
453 static int prev_max;
454
455 /*
456 * Print this only once. If the admin changes the limit,
457 * print a new message when reaching the limit again.
458 */
459 if (prev_max != max_lock_depth) {
460 prev_max = max_lock_depth;
461 printk(KERN_WARNING "Maximum lock depth %d reached "
462 "task: %s (%d)\n", max_lock_depth,
463 top_task->comm, task_pid_nr(top_task));
464 }
465 put_task_struct(task);
466
467 return -EDEADLK;
468 }
469
470 /*
471 * We are fully preemptible here and only hold the refcount on
472 * @task. So everything can have changed under us since the
473 * caller or our own code below (goto retry/again) dropped all
474 * locks.
475 */
476 retry:
477 /*
478 * [1] Task cannot go away as we did a get_task() before !
479 */
480 raw_spin_lock_irq(&task->pi_lock);
481
482 /*
483 * [2] Get the waiter on which @task is blocked on.
484 */
485 waiter = task->pi_blocked_on;
486
487 /*
488 * [3] check_exit_conditions_1() protected by task->pi_lock.
489 */
490
491 /*
492 * Check whether the end of the boosting chain has been
493 * reached or the state of the chain has changed while we
494 * dropped the locks.
495 */
496 if (!waiter)
497 goto out_unlock_pi;
498
499 /*
500 * Check the orig_waiter state. After we dropped the locks,
501 * the previous owner of the lock might have released the lock.
502 */
503 if (orig_waiter && !rt_mutex_owner(orig_lock))
504 goto out_unlock_pi;
505
506 /*
507 * We dropped all locks after taking a refcount on @task, so
508 * the task might have moved on in the lock chain or even left
509 * the chain completely and blocks now on an unrelated lock or
510 * on @orig_lock.
511 *
512 * We stored the lock on which @task was blocked in @next_lock,
513 * so we can detect the chain change.
514 */
515 if (next_lock != waiter->lock)
516 goto out_unlock_pi;
517
518 /*
519 * Drop out, when the task has no waiters. Note,
520 * top_waiter can be NULL, when we are in the deboosting
521 * mode!
522 */
523 if (top_waiter) {
524 if (!task_has_pi_waiters(task))
525 goto out_unlock_pi;
526 /*
527 * If deadlock detection is off, we stop here if we
528 * are not the top pi waiter of the task. If deadlock
529 * detection is enabled we continue, but stop the
530 * requeueing in the chain walk.
531 */
532 if (top_waiter != task_top_pi_waiter(task)) {
533 if (!detect_deadlock)
534 goto out_unlock_pi;
535 else
536 requeue = false;
537 }
538 }
539
540 /*
541 * If the waiter priority is the same as the task priority
542 * then there is no further priority adjustment necessary. If
543 * deadlock detection is off, we stop the chain walk. If its
544 * enabled we continue, but stop the requeueing in the chain
545 * walk.
546 */
547 if (waiter->prio == task->prio) {
548 if (!detect_deadlock)
549 goto out_unlock_pi;
550 else
551 requeue = false;
552 }
553
554 /*
555 * [4] Get the next lock
556 */
557 lock = waiter->lock;
558 /*
559 * [5] We need to trylock here as we are holding task->pi_lock,
560 * which is the reverse lock order versus the other rtmutex
561 * operations.
562 */
563 if (!raw_spin_trylock(&lock->wait_lock)) {
564 raw_spin_unlock_irq(&task->pi_lock);
565 cpu_relax();
566 goto retry;
567 }
568
569 /*
570 * [6] check_exit_conditions_2() protected by task->pi_lock and
571 * lock->wait_lock.
572 *
573 * Deadlock detection. If the lock is the same as the original
574 * lock which caused us to walk the lock chain or if the
575 * current lock is owned by the task which initiated the chain
576 * walk, we detected a deadlock.
577 */
578 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
579 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
580 raw_spin_unlock(&lock->wait_lock);
581 ret = -EDEADLK;
582 goto out_unlock_pi;
583 }
584
585 /*
586 * If we just follow the lock chain for deadlock detection, no
587 * need to do all the requeue operations. To avoid a truckload
588 * of conditionals around the various places below, just do the
589 * minimum chain walk checks.
590 */
591 if (!requeue) {
592 /*
593 * No requeue[7] here. Just release @task [8]
594 */
595 raw_spin_unlock(&task->pi_lock);
596 put_task_struct(task);
597
598 /*
599 * [9] check_exit_conditions_3 protected by lock->wait_lock.
600 * If there is no owner of the lock, end of chain.
601 */
602 if (!rt_mutex_owner(lock)) {
603 raw_spin_unlock_irq(&lock->wait_lock);
604 return 0;
605 }
606
607 /* [10] Grab the next task, i.e. owner of @lock */
608 task = rt_mutex_owner(lock);
609 get_task_struct(task);
610 raw_spin_lock(&task->pi_lock);
611
612 /*
613 * No requeue [11] here. We just do deadlock detection.
614 *
615 * [12] Store whether owner is blocked
616 * itself. Decision is made after dropping the locks
617 */
618 next_lock = task_blocked_on_lock(task);
619 /*
620 * Get the top waiter for the next iteration
621 */
622 top_waiter = rt_mutex_top_waiter(lock);
623
624 /* [13] Drop locks */
625 raw_spin_unlock(&task->pi_lock);
626 raw_spin_unlock_irq(&lock->wait_lock);
627
628 /* If owner is not blocked, end of chain. */
629 if (!next_lock)
630 goto out_put_task;
631 goto again;
632 }
633
634 /*
635 * Store the current top waiter before doing the requeue
636 * operation on @lock. We need it for the boost/deboost
637 * decision below.
638 */
639 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
640
641 /* [7] Requeue the waiter in the lock waiter tree. */
642 rt_mutex_dequeue(lock, waiter);
643 waiter->prio = task->prio;
644 rt_mutex_enqueue(lock, waiter);
645
646 /* [8] Release the task */
647 raw_spin_unlock(&task->pi_lock);
648 put_task_struct(task);
649
650 /*
651 * [9] check_exit_conditions_3 protected by lock->wait_lock.
652 *
653 * We must abort the chain walk if there is no lock owner even
654 * in the dead lock detection case, as we have nothing to
655 * follow here. This is the end of the chain we are walking.
656 */
657 if (!rt_mutex_owner(lock)) {
658 /*
659 * If the requeue [7] above changed the top waiter,
660 * then we need to wake the new top waiter up to try
661 * to get the lock.
662 */
663 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
664 wake_up_process(rt_mutex_top_waiter(lock)->task);
665 raw_spin_unlock_irq(&lock->wait_lock);
666 return 0;
667 }
668
669 /* [10] Grab the next task, i.e. the owner of @lock */
670 task = rt_mutex_owner(lock);
671 get_task_struct(task);
672 raw_spin_lock(&task->pi_lock);
673
674 /* [11] requeue the pi waiters if necessary */
675 if (waiter == rt_mutex_top_waiter(lock)) {
676 /*
677 * The waiter became the new top (highest priority)
678 * waiter on the lock. Replace the previous top waiter
679 * in the owner tasks pi waiters tree with this waiter
680 * and adjust the priority of the owner.
681 */
682 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
683 rt_mutex_enqueue_pi(task, waiter);
684 __rt_mutex_adjust_prio(task);
685
686 } else if (prerequeue_top_waiter == waiter) {
687 /*
688 * The waiter was the top waiter on the lock, but is
689 * no longer the top prority waiter. Replace waiter in
690 * the owner tasks pi waiters tree with the new top
691 * (highest priority) waiter and adjust the priority
692 * of the owner.
693 * The new top waiter is stored in @waiter so that
694 * @waiter == @top_waiter evaluates to true below and
695 * we continue to deboost the rest of the chain.
696 */
697 rt_mutex_dequeue_pi(task, waiter);
698 waiter = rt_mutex_top_waiter(lock);
699 rt_mutex_enqueue_pi(task, waiter);
700 __rt_mutex_adjust_prio(task);
701 } else {
702 /*
703 * Nothing changed. No need to do any priority
704 * adjustment.
705 */
706 }
707
708 /*
709 * [12] check_exit_conditions_4() protected by task->pi_lock
710 * and lock->wait_lock. The actual decisions are made after we
711 * dropped the locks.
712 *
713 * Check whether the task which owns the current lock is pi
714 * blocked itself. If yes we store a pointer to the lock for
715 * the lock chain change detection above. After we dropped
716 * task->pi_lock next_lock cannot be dereferenced anymore.
717 */
718 next_lock = task_blocked_on_lock(task);
719 /*
720 * Store the top waiter of @lock for the end of chain walk
721 * decision below.
722 */
723 top_waiter = rt_mutex_top_waiter(lock);
724
725 /* [13] Drop the locks */
726 raw_spin_unlock(&task->pi_lock);
727 raw_spin_unlock_irq(&lock->wait_lock);
728
729 /*
730 * Make the actual exit decisions [12], based on the stored
731 * values.
732 *
733 * We reached the end of the lock chain. Stop right here. No
734 * point to go back just to figure that out.
735 */
736 if (!next_lock)
737 goto out_put_task;
738
739 /*
740 * If the current waiter is not the top waiter on the lock,
741 * then we can stop the chain walk here if we are not in full
742 * deadlock detection mode.
743 */
744 if (!detect_deadlock && waiter != top_waiter)
745 goto out_put_task;
746
747 goto again;
748
749 out_unlock_pi:
750 raw_spin_unlock_irq(&task->pi_lock);
751 out_put_task:
752 put_task_struct(task);
753
754 return ret;
755}
756
757/*
758 * Try to take an rt-mutex
759 *
760 * Must be called with lock->wait_lock held and interrupts disabled
761 *
762 * @lock: The lock to be acquired.
763 * @task: The task which wants to acquire the lock
764 * @waiter: The waiter that is queued to the lock's wait tree if the
765 * callsite called task_blocked_on_lock(), otherwise NULL
766 */
767static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
768 struct rt_mutex_waiter *waiter)
769{
770 /*
771 * Before testing whether we can acquire @lock, we set the
772 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
773 * other tasks which try to modify @lock into the slow path
774 * and they serialize on @lock->wait_lock.
775 *
776 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
777 * as explained at the top of this file if and only if:
778 *
779 * - There is a lock owner. The caller must fixup the
780 * transient state if it does a trylock or leaves the lock
781 * function due to a signal or timeout.
782 *
783 * - @task acquires the lock and there are no other
784 * waiters. This is undone in rt_mutex_set_owner(@task) at
785 * the end of this function.
786 */
787 mark_rt_mutex_waiters(lock);
788
789 /*
790 * If @lock has an owner, give up.
791 */
792 if (rt_mutex_owner(lock))
793 return 0;
794
795 /*
796 * If @waiter != NULL, @task has already enqueued the waiter
797 * into @lock waiter tree. If @waiter == NULL then this is a
798 * trylock attempt.
799 */
800 if (waiter) {
801 /*
802 * If waiter is not the highest priority waiter of
803 * @lock, give up.
804 */
805 if (waiter != rt_mutex_top_waiter(lock))
806 return 0;
807
808 /*
809 * We can acquire the lock. Remove the waiter from the
810 * lock waiters tree.
811 */
812 rt_mutex_dequeue(lock, waiter);
813
814 } else {
815 /*
816 * If the lock has waiters already we check whether @task is
817 * eligible to take over the lock.
818 *
819 * If there are no other waiters, @task can acquire
820 * the lock. @task->pi_blocked_on is NULL, so it does
821 * not need to be dequeued.
822 */
823 if (rt_mutex_has_waiters(lock)) {
824 /*
825 * If @task->prio is greater than or equal to
826 * the top waiter priority (kernel view),
827 * @task lost.
828 */
829 if (task->prio >= rt_mutex_top_waiter(lock)->prio)
830 return 0;
831
832 /*
833 * The current top waiter stays enqueued. We
834 * don't have to change anything in the lock
835 * waiters order.
836 */
837 } else {
838 /*
839 * No waiters. Take the lock without the
840 * pi_lock dance.@task->pi_blocked_on is NULL
841 * and we have no waiters to enqueue in @task
842 * pi waiters tree.
843 */
844 goto takeit;
845 }
846 }
847
848 /*
849 * Clear @task->pi_blocked_on. Requires protection by
850 * @task->pi_lock. Redundant operation for the @waiter == NULL
851 * case, but conditionals are more expensive than a redundant
852 * store.
853 */
854 raw_spin_lock(&task->pi_lock);
855 task->pi_blocked_on = NULL;
856 /*
857 * Finish the lock acquisition. @task is the new owner. If
858 * other waiters exist we have to insert the highest priority
859 * waiter into @task->pi_waiters tree.
860 */
861 if (rt_mutex_has_waiters(lock))
862 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
863 raw_spin_unlock(&task->pi_lock);
864
865takeit:
866 /* We got the lock. */
867 debug_rt_mutex_lock(lock);
868
869 /*
870 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
871 * are still waiters or clears it.
872 */
873 rt_mutex_set_owner(lock, task);
874
875 rt_mutex_deadlock_account_lock(lock, task);
876
877 return 1;
878}
879
880/*
881 * Task blocks on lock.
882 *
883 * Prepare waiter and propagate pi chain
884 *
885 * This must be called with lock->wait_lock held and interrupts disabled
886 */
887static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
888 struct rt_mutex_waiter *waiter,
889 struct task_struct *task,
890 enum rtmutex_chainwalk chwalk)
891{
892 struct task_struct *owner = rt_mutex_owner(lock);
893 struct rt_mutex_waiter *top_waiter = waiter;
894 struct rt_mutex *next_lock;
895 int chain_walk = 0, res;
896
897 /*
898 * Early deadlock detection. We really don't want the task to
899 * enqueue on itself just to untangle the mess later. It's not
900 * only an optimization. We drop the locks, so another waiter
901 * can come in before the chain walk detects the deadlock. So
902 * the other will detect the deadlock and return -EDEADLOCK,
903 * which is wrong, as the other waiter is not in a deadlock
904 * situation.
905 */
906 if (owner == task)
907 return -EDEADLK;
908
909 raw_spin_lock(&task->pi_lock);
910 __rt_mutex_adjust_prio(task);
911 waiter->task = task;
912 waiter->lock = lock;
913 waiter->prio = task->prio;
914
915 /* Get the top priority waiter on the lock */
916 if (rt_mutex_has_waiters(lock))
917 top_waiter = rt_mutex_top_waiter(lock);
918 rt_mutex_enqueue(lock, waiter);
919
920 task->pi_blocked_on = waiter;
921
922 raw_spin_unlock(&task->pi_lock);
923
924 if (!owner)
925 return 0;
926
927 raw_spin_lock(&owner->pi_lock);
928 if (waiter == rt_mutex_top_waiter(lock)) {
929 rt_mutex_dequeue_pi(owner, top_waiter);
930 rt_mutex_enqueue_pi(owner, waiter);
931
932 __rt_mutex_adjust_prio(owner);
933 if (owner->pi_blocked_on)
934 chain_walk = 1;
935 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
936 chain_walk = 1;
937 }
938
939 /* Store the lock on which owner is blocked or NULL */
940 next_lock = task_blocked_on_lock(owner);
941
942 raw_spin_unlock(&owner->pi_lock);
943 /*
944 * Even if full deadlock detection is on, if the owner is not
945 * blocked itself, we can avoid finding this out in the chain
946 * walk.
947 */
948 if (!chain_walk || !next_lock)
949 return 0;
950
951 /*
952 * The owner can't disappear while holding a lock,
953 * so the owner struct is protected by wait_lock.
954 * Gets dropped in rt_mutex_adjust_prio_chain()!
955 */
956 get_task_struct(owner);
957
958 raw_spin_unlock_irq(&lock->wait_lock);
959
960 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
961 next_lock, waiter, task);
962
963 raw_spin_lock_irq(&lock->wait_lock);
964
965 return res;
966}
967
968/*
969 * Remove the top waiter from the current tasks pi waiter tree and
970 * queue it up.
971 *
972 * Called with lock->wait_lock held and interrupts disabled.
973 */
974static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
975 struct rt_mutex *lock)
976{
977 struct rt_mutex_waiter *waiter;
978
979 raw_spin_lock(¤t->pi_lock);
980
981 waiter = rt_mutex_top_waiter(lock);
982
983 /*
984 * Remove it from current->pi_waiters. We do not adjust a
985 * possible priority boost right now. We execute wakeup in the
986 * boosted mode and go back to normal after releasing
987 * lock->wait_lock.
988 */
989 rt_mutex_dequeue_pi(current, waiter);
990
991 /*
992 * As we are waking up the top waiter, and the waiter stays
993 * queued on the lock until it gets the lock, this lock
994 * obviously has waiters. Just set the bit here and this has
995 * the added benefit of forcing all new tasks into the
996 * slow path making sure no task of lower priority than
997 * the top waiter can steal this lock.
998 */
999 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1000
1001 raw_spin_unlock(¤t->pi_lock);
1002
1003 wake_q_add(wake_q, waiter->task);
1004}
1005
1006/*
1007 * Remove a waiter from a lock and give up
1008 *
1009 * Must be called with lock->wait_lock held and interrupts disabled. I must
1010 * have just failed to try_to_take_rt_mutex().
1011 */
1012static void remove_waiter(struct rt_mutex *lock,
1013 struct rt_mutex_waiter *waiter)
1014{
1015 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1016 struct task_struct *owner = rt_mutex_owner(lock);
1017 struct rt_mutex *next_lock;
1018
1019 raw_spin_lock(¤t->pi_lock);
1020 rt_mutex_dequeue(lock, waiter);
1021 current->pi_blocked_on = NULL;
1022 raw_spin_unlock(¤t->pi_lock);
1023
1024 /*
1025 * Only update priority if the waiter was the highest priority
1026 * waiter of the lock and there is an owner to update.
1027 */
1028 if (!owner || !is_top_waiter)
1029 return;
1030
1031 raw_spin_lock(&owner->pi_lock);
1032
1033 rt_mutex_dequeue_pi(owner, waiter);
1034
1035 if (rt_mutex_has_waiters(lock))
1036 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1037
1038 __rt_mutex_adjust_prio(owner);
1039
1040 /* Store the lock on which owner is blocked or NULL */
1041 next_lock = task_blocked_on_lock(owner);
1042
1043 raw_spin_unlock(&owner->pi_lock);
1044
1045 /*
1046 * Don't walk the chain, if the owner task is not blocked
1047 * itself.
1048 */
1049 if (!next_lock)
1050 return;
1051
1052 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1053 get_task_struct(owner);
1054
1055 raw_spin_unlock_irq(&lock->wait_lock);
1056
1057 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1058 next_lock, NULL, current);
1059
1060 raw_spin_lock_irq(&lock->wait_lock);
1061}
1062
1063/*
1064 * Recheck the pi chain, in case we got a priority setting
1065 *
1066 * Called from sched_setscheduler
1067 */
1068void rt_mutex_adjust_pi(struct task_struct *task)
1069{
1070 struct rt_mutex_waiter *waiter;
1071 struct rt_mutex *next_lock;
1072 unsigned long flags;
1073
1074 raw_spin_lock_irqsave(&task->pi_lock, flags);
1075
1076 waiter = task->pi_blocked_on;
1077 if (!waiter || (waiter->prio == task->prio &&
1078 !dl_prio(task->prio))) {
1079 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1080 return;
1081 }
1082 next_lock = waiter->lock;
1083 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1084
1085 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1086 get_task_struct(task);
1087
1088 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1089 next_lock, NULL, task);
1090}
1091
1092/**
1093 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1094 * @lock: the rt_mutex to take
1095 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1096 * or TASK_UNINTERRUPTIBLE)
1097 * @timeout: the pre-initialized and started timer, or NULL for none
1098 * @waiter: the pre-initialized rt_mutex_waiter
1099 *
1100 * Must be called with lock->wait_lock held and interrupts disabled
1101 */
1102static int __sched
1103__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1104 struct hrtimer_sleeper *timeout,
1105 struct rt_mutex_waiter *waiter)
1106{
1107 int ret = 0;
1108
1109 for (;;) {
1110 /* Try to acquire the lock: */
1111 if (try_to_take_rt_mutex(lock, current, waiter))
1112 break;
1113
1114 /*
1115 * TASK_INTERRUPTIBLE checks for signals and
1116 * timeout. Ignored otherwise.
1117 */
1118 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1119 /* Signal pending? */
1120 if (signal_pending(current))
1121 ret = -EINTR;
1122 if (timeout && !timeout->task)
1123 ret = -ETIMEDOUT;
1124 if (ret)
1125 break;
1126 }
1127
1128 raw_spin_unlock_irq(&lock->wait_lock);
1129
1130 debug_rt_mutex_print_deadlock(waiter);
1131
1132 schedule();
1133
1134 raw_spin_lock_irq(&lock->wait_lock);
1135 set_current_state(state);
1136 }
1137
1138 __set_current_state(TASK_RUNNING);
1139 return ret;
1140}
1141
1142static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1143 struct rt_mutex_waiter *w)
1144{
1145 /*
1146 * If the result is not -EDEADLOCK or the caller requested
1147 * deadlock detection, nothing to do here.
1148 */
1149 if (res != -EDEADLOCK || detect_deadlock)
1150 return;
1151
1152 /*
1153 * Yell lowdly and stop the task right here.
1154 */
1155 rt_mutex_print_deadlock(w);
1156 while (1) {
1157 set_current_state(TASK_INTERRUPTIBLE);
1158 schedule();
1159 }
1160}
1161
1162/*
1163 * Slow path lock function:
1164 */
1165static int __sched
1166rt_mutex_slowlock(struct rt_mutex *lock, int state,
1167 struct hrtimer_sleeper *timeout,
1168 enum rtmutex_chainwalk chwalk)
1169{
1170 struct rt_mutex_waiter waiter;
1171 unsigned long flags;
1172 int ret = 0;
1173
1174 debug_rt_mutex_init_waiter(&waiter);
1175 RB_CLEAR_NODE(&waiter.pi_tree_entry);
1176 RB_CLEAR_NODE(&waiter.tree_entry);
1177
1178 /*
1179 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1180 * be called in early boot if the cmpxchg() fast path is disabled
1181 * (debug, no architecture support). In this case we will acquire the
1182 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1183 * enable interrupts in that early boot case. So we need to use the
1184 * irqsave/restore variants.
1185 */
1186 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1187
1188 /* Try to acquire the lock again: */
1189 if (try_to_take_rt_mutex(lock, current, NULL)) {
1190 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1191 return 0;
1192 }
1193
1194 set_current_state(state);
1195
1196 /* Setup the timer, when timeout != NULL */
1197 if (unlikely(timeout))
1198 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1199
1200 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1201
1202 if (likely(!ret))
1203 /* sleep on the mutex */
1204 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1205
1206 if (unlikely(ret)) {
1207 __set_current_state(TASK_RUNNING);
1208 if (rt_mutex_has_waiters(lock))
1209 remove_waiter(lock, &waiter);
1210 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1211 }
1212
1213 /*
1214 * try_to_take_rt_mutex() sets the waiter bit
1215 * unconditionally. We might have to fix that up.
1216 */
1217 fixup_rt_mutex_waiters(lock);
1218
1219 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1220
1221 /* Remove pending timer: */
1222 if (unlikely(timeout))
1223 hrtimer_cancel(&timeout->timer);
1224
1225 debug_rt_mutex_free_waiter(&waiter);
1226
1227 return ret;
1228}
1229
1230/*
1231 * Slow path try-lock function:
1232 */
1233static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1234{
1235 unsigned long flags;
1236 int ret;
1237
1238 /*
1239 * If the lock already has an owner we fail to get the lock.
1240 * This can be done without taking the @lock->wait_lock as
1241 * it is only being read, and this is a trylock anyway.
1242 */
1243 if (rt_mutex_owner(lock))
1244 return 0;
1245
1246 /*
1247 * The mutex has currently no owner. Lock the wait lock and try to
1248 * acquire the lock. We use irqsave here to support early boot calls.
1249 */
1250 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251
1252 ret = try_to_take_rt_mutex(lock, current, NULL);
1253
1254 /*
1255 * try_to_take_rt_mutex() sets the lock waiters bit
1256 * unconditionally. Clean this up.
1257 */
1258 fixup_rt_mutex_waiters(lock);
1259
1260 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1261
1262 return ret;
1263}
1264
1265/*
1266 * Slow path to release a rt-mutex.
1267 * Return whether the current task needs to undo a potential priority boosting.
1268 */
1269static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1270 struct wake_q_head *wake_q)
1271{
1272 unsigned long flags;
1273
1274 /* irqsave required to support early boot calls */
1275 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1276
1277 debug_rt_mutex_unlock(lock);
1278
1279 rt_mutex_deadlock_account_unlock(current);
1280
1281 /*
1282 * We must be careful here if the fast path is enabled. If we
1283 * have no waiters queued we cannot set owner to NULL here
1284 * because of:
1285 *
1286 * foo->lock->owner = NULL;
1287 * rtmutex_lock(foo->lock); <- fast path
1288 * free = atomic_dec_and_test(foo->refcnt);
1289 * rtmutex_unlock(foo->lock); <- fast path
1290 * if (free)
1291 * kfree(foo);
1292 * raw_spin_unlock(foo->lock->wait_lock);
1293 *
1294 * So for the fastpath enabled kernel:
1295 *
1296 * Nothing can set the waiters bit as long as we hold
1297 * lock->wait_lock. So we do the following sequence:
1298 *
1299 * owner = rt_mutex_owner(lock);
1300 * clear_rt_mutex_waiters(lock);
1301 * raw_spin_unlock(&lock->wait_lock);
1302 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1303 * return;
1304 * goto retry;
1305 *
1306 * The fastpath disabled variant is simple as all access to
1307 * lock->owner is serialized by lock->wait_lock:
1308 *
1309 * lock->owner = NULL;
1310 * raw_spin_unlock(&lock->wait_lock);
1311 */
1312 while (!rt_mutex_has_waiters(lock)) {
1313 /* Drops lock->wait_lock ! */
1314 if (unlock_rt_mutex_safe(lock, flags) == true)
1315 return false;
1316 /* Relock the rtmutex and try again */
1317 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1318 }
1319
1320 /*
1321 * The wakeup next waiter path does not suffer from the above
1322 * race. See the comments there.
1323 *
1324 * Queue the next waiter for wakeup once we release the wait_lock.
1325 */
1326 mark_wakeup_next_waiter(wake_q, lock);
1327
1328 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1329
1330 /* check PI boosting */
1331 return true;
1332}
1333
1334/*
1335 * debug aware fast / slowpath lock,trylock,unlock
1336 *
1337 * The atomic acquire/release ops are compiled away, when either the
1338 * architecture does not support cmpxchg or when debugging is enabled.
1339 */
1340static inline int
1341rt_mutex_fastlock(struct rt_mutex *lock, int state,
1342 int (*slowfn)(struct rt_mutex *lock, int state,
1343 struct hrtimer_sleeper *timeout,
1344 enum rtmutex_chainwalk chwalk))
1345{
1346 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1347 rt_mutex_deadlock_account_lock(lock, current);
1348 return 0;
1349 } else
1350 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1351}
1352
1353static inline int
1354rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1355 struct hrtimer_sleeper *timeout,
1356 enum rtmutex_chainwalk chwalk,
1357 int (*slowfn)(struct rt_mutex *lock, int state,
1358 struct hrtimer_sleeper *timeout,
1359 enum rtmutex_chainwalk chwalk))
1360{
1361 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1362 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1363 rt_mutex_deadlock_account_lock(lock, current);
1364 return 0;
1365 } else
1366 return slowfn(lock, state, timeout, chwalk);
1367}
1368
1369static inline int
1370rt_mutex_fasttrylock(struct rt_mutex *lock,
1371 int (*slowfn)(struct rt_mutex *lock))
1372{
1373 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1374 rt_mutex_deadlock_account_lock(lock, current);
1375 return 1;
1376 }
1377 return slowfn(lock);
1378}
1379
1380static inline void
1381rt_mutex_fastunlock(struct rt_mutex *lock,
1382 bool (*slowfn)(struct rt_mutex *lock,
1383 struct wake_q_head *wqh))
1384{
1385 WAKE_Q(wake_q);
1386
1387 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1388 rt_mutex_deadlock_account_unlock(current);
1389
1390 } else {
1391 bool deboost = slowfn(lock, &wake_q);
1392
1393 wake_up_q(&wake_q);
1394
1395 /* Undo pi boosting if necessary: */
1396 if (deboost)
1397 rt_mutex_adjust_prio(current);
1398 }
1399}
1400
1401/**
1402 * rt_mutex_lock - lock a rt_mutex
1403 *
1404 * @lock: the rt_mutex to be locked
1405 */
1406void __sched rt_mutex_lock(struct rt_mutex *lock)
1407{
1408 might_sleep();
1409
1410 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1411}
1412EXPORT_SYMBOL_GPL(rt_mutex_lock);
1413
1414/**
1415 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1416 *
1417 * @lock: the rt_mutex to be locked
1418 *
1419 * Returns:
1420 * 0 on success
1421 * -EINTR when interrupted by a signal
1422 */
1423int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1424{
1425 might_sleep();
1426
1427 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1428}
1429EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1430
1431/*
1432 * Futex variant with full deadlock detection.
1433 */
1434int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1435 struct hrtimer_sleeper *timeout)
1436{
1437 might_sleep();
1438
1439 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1440 RT_MUTEX_FULL_CHAINWALK,
1441 rt_mutex_slowlock);
1442}
1443
1444/**
1445 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1446 * the timeout structure is provided
1447 * by the caller
1448 *
1449 * @lock: the rt_mutex to be locked
1450 * @timeout: timeout structure or NULL (no timeout)
1451 *
1452 * Returns:
1453 * 0 on success
1454 * -EINTR when interrupted by a signal
1455 * -ETIMEDOUT when the timeout expired
1456 */
1457int
1458rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1459{
1460 might_sleep();
1461
1462 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1463 RT_MUTEX_MIN_CHAINWALK,
1464 rt_mutex_slowlock);
1465}
1466EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1467
1468/**
1469 * rt_mutex_trylock - try to lock a rt_mutex
1470 *
1471 * @lock: the rt_mutex to be locked
1472 *
1473 * This function can only be called in thread context. It's safe to
1474 * call it from atomic regions, but not from hard interrupt or soft
1475 * interrupt context.
1476 *
1477 * Returns 1 on success and 0 on contention
1478 */
1479int __sched rt_mutex_trylock(struct rt_mutex *lock)
1480{
1481 if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1482 return 0;
1483
1484 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1485}
1486EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1487
1488/**
1489 * rt_mutex_unlock - unlock a rt_mutex
1490 *
1491 * @lock: the rt_mutex to be unlocked
1492 */
1493void __sched rt_mutex_unlock(struct rt_mutex *lock)
1494{
1495 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1496}
1497EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1498
1499/**
1500 * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1501 * @lock: the rt_mutex to be unlocked
1502 *
1503 * Returns: true/false indicating whether priority adjustment is
1504 * required or not.
1505 */
1506bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1507 struct wake_q_head *wqh)
1508{
1509 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1510 rt_mutex_deadlock_account_unlock(current);
1511 return false;
1512 }
1513 return rt_mutex_slowunlock(lock, wqh);
1514}
1515
1516/**
1517 * rt_mutex_destroy - mark a mutex unusable
1518 * @lock: the mutex to be destroyed
1519 *
1520 * This function marks the mutex uninitialized, and any subsequent
1521 * use of the mutex is forbidden. The mutex must not be locked when
1522 * this function is called.
1523 */
1524void rt_mutex_destroy(struct rt_mutex *lock)
1525{
1526 WARN_ON(rt_mutex_is_locked(lock));
1527#ifdef CONFIG_DEBUG_RT_MUTEXES
1528 lock->magic = NULL;
1529#endif
1530}
1531
1532EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1533
1534/**
1535 * __rt_mutex_init - initialize the rt lock
1536 *
1537 * @lock: the rt lock to be initialized
1538 *
1539 * Initialize the rt lock to unlocked state.
1540 *
1541 * Initializing of a locked rt lock is not allowed
1542 */
1543void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1544{
1545 lock->owner = NULL;
1546 raw_spin_lock_init(&lock->wait_lock);
1547 lock->waiters = RB_ROOT;
1548 lock->waiters_leftmost = NULL;
1549
1550 debug_rt_mutex_init(lock, name);
1551}
1552EXPORT_SYMBOL_GPL(__rt_mutex_init);
1553
1554/**
1555 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1556 * proxy owner
1557 *
1558 * @lock: the rt_mutex to be locked
1559 * @proxy_owner:the task to set as owner
1560 *
1561 * No locking. Caller has to do serializing itself
1562 * Special API call for PI-futex support
1563 */
1564void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1565 struct task_struct *proxy_owner)
1566{
1567 __rt_mutex_init(lock, NULL);
1568 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1569 rt_mutex_set_owner(lock, proxy_owner);
1570 rt_mutex_deadlock_account_lock(lock, proxy_owner);
1571}
1572
1573/**
1574 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1575 *
1576 * @lock: the rt_mutex to be locked
1577 *
1578 * No locking. Caller has to do serializing itself
1579 * Special API call for PI-futex support
1580 */
1581void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1582 struct task_struct *proxy_owner)
1583{
1584 debug_rt_mutex_proxy_unlock(lock);
1585 rt_mutex_set_owner(lock, NULL);
1586 rt_mutex_deadlock_account_unlock(proxy_owner);
1587}
1588
1589/**
1590 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1591 * @lock: the rt_mutex to take
1592 * @waiter: the pre-initialized rt_mutex_waiter
1593 * @task: the task to prepare
1594 *
1595 * Returns:
1596 * 0 - task blocked on lock
1597 * 1 - acquired the lock for task, caller should wake it up
1598 * <0 - error
1599 *
1600 * Special API call for FUTEX_REQUEUE_PI support.
1601 */
1602int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1603 struct rt_mutex_waiter *waiter,
1604 struct task_struct *task)
1605{
1606 int ret;
1607
1608 raw_spin_lock_irq(&lock->wait_lock);
1609
1610 if (try_to_take_rt_mutex(lock, task, NULL)) {
1611 raw_spin_unlock_irq(&lock->wait_lock);
1612 return 1;
1613 }
1614
1615 /* We enforce deadlock detection for futexes */
1616 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1617 RT_MUTEX_FULL_CHAINWALK);
1618
1619 if (ret && !rt_mutex_owner(lock)) {
1620 /*
1621 * Reset the return value. We might have
1622 * returned with -EDEADLK and the owner
1623 * released the lock while we were walking the
1624 * pi chain. Let the waiter sort it out.
1625 */
1626 ret = 0;
1627 }
1628
1629 if (unlikely(ret))
1630 remove_waiter(lock, waiter);
1631
1632 raw_spin_unlock_irq(&lock->wait_lock);
1633
1634 debug_rt_mutex_print_deadlock(waiter);
1635
1636 return ret;
1637}
1638
1639/**
1640 * rt_mutex_next_owner - return the next owner of the lock
1641 *
1642 * @lock: the rt lock query
1643 *
1644 * Returns the next owner of the lock or NULL
1645 *
1646 * Caller has to serialize against other accessors to the lock
1647 * itself.
1648 *
1649 * Special API call for PI-futex support
1650 */
1651struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1652{
1653 if (!rt_mutex_has_waiters(lock))
1654 return NULL;
1655
1656 return rt_mutex_top_waiter(lock)->task;
1657}
1658
1659/**
1660 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1661 * @lock: the rt_mutex we were woken on
1662 * @to: the timeout, null if none. hrtimer should already have
1663 * been started.
1664 * @waiter: the pre-initialized rt_mutex_waiter
1665 *
1666 * Complete the lock acquisition started our behalf by another thread.
1667 *
1668 * Returns:
1669 * 0 - success
1670 * <0 - error, one of -EINTR, -ETIMEDOUT
1671 *
1672 * Special API call for PI-futex requeue support
1673 */
1674int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1675 struct hrtimer_sleeper *to,
1676 struct rt_mutex_waiter *waiter)
1677{
1678 int ret;
1679
1680 raw_spin_lock_irq(&lock->wait_lock);
1681
1682 set_current_state(TASK_INTERRUPTIBLE);
1683
1684 /* sleep on the mutex */
1685 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1686
1687 if (unlikely(ret))
1688 remove_waiter(lock, waiter);
1689
1690 /*
1691 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1692 * have to fix that up.
1693 */
1694 fixup_rt_mutex_waiters(lock);
1695
1696 raw_spin_unlock_irq(&lock->wait_lock);
1697
1698 return ret;
1699}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 *
12 * See Documentation/locking/rt-mutex-design.rst for details.
13 */
14#include <linux/spinlock.h>
15#include <linux/export.h>
16#include <linux/sched/signal.h>
17#include <linux/sched/rt.h>
18#include <linux/sched/deadline.h>
19#include <linux/sched/wake_q.h>
20#include <linux/sched/debug.h>
21#include <linux/timer.h>
22
23#include "rtmutex_common.h"
24
25/*
26 * lock->owner state tracking:
27 *
28 * lock->owner holds the task_struct pointer of the owner. Bit 0
29 * is used to keep track of the "lock has waiters" state.
30 *
31 * owner bit0
32 * NULL 0 lock is free (fast acquire possible)
33 * NULL 1 lock is free and has waiters and the top waiter
34 * is going to take the lock*
35 * taskpointer 0 lock is held (fast release possible)
36 * taskpointer 1 lock is held and has waiters**
37 *
38 * The fast atomic compare exchange based acquire and release is only
39 * possible when bit 0 of lock->owner is 0.
40 *
41 * (*) It also can be a transitional state when grabbing the lock
42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43 * we need to set the bit0 before looking at the lock, and the owner may be
44 * NULL in this small time, hence this can be a transitional state.
45 *
46 * (**) There is a small time when bit 0 is set but there are no
47 * waiters. This can happen when grabbing the lock in the slow path.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to
49 * set this bit before looking at the lock.
50 */
51
52static __always_inline void
53rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54{
55 unsigned long val = (unsigned long)owner;
56
57 if (rt_mutex_has_waiters(lock))
58 val |= RT_MUTEX_HAS_WAITERS;
59
60 WRITE_ONCE(lock->owner, (struct task_struct *)val);
61}
62
63static __always_inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64{
65 lock->owner = (struct task_struct *)
66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67}
68
69static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70{
71 unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73 if (rt_mutex_has_waiters(lock))
74 return;
75
76 /*
77 * The rbtree has no waiters enqueued, now make sure that the
78 * lock->owner still has the waiters bit set, otherwise the
79 * following can happen:
80 *
81 * CPU 0 CPU 1 CPU2
82 * l->owner=T1
83 * rt_mutex_lock(l)
84 * lock(l->lock)
85 * l->owner = T1 | HAS_WAITERS;
86 * enqueue(T2)
87 * boost()
88 * unlock(l->lock)
89 * block()
90 *
91 * rt_mutex_lock(l)
92 * lock(l->lock)
93 * l->owner = T1 | HAS_WAITERS;
94 * enqueue(T3)
95 * boost()
96 * unlock(l->lock)
97 * block()
98 * signal(->T2) signal(->T3)
99 * lock(l->lock)
100 * dequeue(T2)
101 * deboost()
102 * unlock(l->lock)
103 * lock(l->lock)
104 * dequeue(T3)
105 * ==> wait list is empty
106 * deboost()
107 * unlock(l->lock)
108 * lock(l->lock)
109 * fixup_rt_mutex_waiters()
110 * if (wait_list_empty(l) {
111 * l->owner = owner
112 * owner = l->owner & ~HAS_WAITERS;
113 * ==> l->owner = T1
114 * }
115 * lock(l->lock)
116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
117 * if (wait_list_empty(l) {
118 * owner = l->owner & ~HAS_WAITERS;
119 * cmpxchg(l->owner, T1, NULL)
120 * ===> Success (l->owner = NULL)
121 *
122 * l->owner = owner
123 * ==> l->owner = T1
124 * }
125 *
126 * With the check for the waiter bit in place T3 on CPU2 will not
127 * overwrite. All tasks fiddling with the waiters bit are
128 * serialized by l->lock, so nothing else can modify the waiters
129 * bit. If the bit is set then nothing can change l->owner either
130 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 * happens in the middle of the RMW because the waiters bit is
132 * still set.
133 */
134 owner = READ_ONCE(*p);
135 if (owner & RT_MUTEX_HAS_WAITERS)
136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137}
138
139/*
140 * We can speed up the acquire/release, if there's no debugging state to be
141 * set up.
142 */
143#ifndef CONFIG_DEBUG_RT_MUTEXES
144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147/*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
152static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153{
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
160}
161
162/*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
168static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
171{
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
201}
202
203#else
204# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
205# define rt_mutex_cmpxchg_release(l,c,n) (0)
206
207static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208{
209 lock->owner = (struct task_struct *)
210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211}
212
213/*
214 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215 */
216static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 unsigned long flags)
218 __releases(lock->wait_lock)
219{
220 lock->owner = NULL;
221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 return true;
223}
224#endif
225
226/*
227 * Only use with rt_mutex_waiter_{less,equal}()
228 */
229#define task_to_waiter(p) \
230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
232static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
233 struct rt_mutex_waiter *right)
234{
235 if (left->prio < right->prio)
236 return 1;
237
238 /*
239 * If both waiters have dl_prio(), we check the deadlines of the
240 * associated tasks.
241 * If left waiter has a dl_prio(), and we didn't return 1 above,
242 * then right waiter has a dl_prio() too.
243 */
244 if (dl_prio(left->prio))
245 return dl_time_before(left->deadline, right->deadline);
246
247 return 0;
248}
249
250static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
251 struct rt_mutex_waiter *right)
252{
253 if (left->prio != right->prio)
254 return 0;
255
256 /*
257 * If both waiters have dl_prio(), we check the deadlines of the
258 * associated tasks.
259 * If left waiter has a dl_prio(), and we didn't return 0 above,
260 * then right waiter has a dl_prio() too.
261 */
262 if (dl_prio(left->prio))
263 return left->deadline == right->deadline;
264
265 return 1;
266}
267
268#define __node_2_waiter(node) \
269 rb_entry((node), struct rt_mutex_waiter, tree_entry)
270
271static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
272{
273 return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b));
274}
275
276static __always_inline void
277rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
278{
279 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
280}
281
282static __always_inline void
283rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
284{
285 if (RB_EMPTY_NODE(&waiter->tree_entry))
286 return;
287
288 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
289 RB_CLEAR_NODE(&waiter->tree_entry);
290}
291
292#define __node_2_pi_waiter(node) \
293 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
294
295static __always_inline bool
296__pi_waiter_less(struct rb_node *a, const struct rb_node *b)
297{
298 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
299}
300
301static __always_inline void
302rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
303{
304 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
305}
306
307static __always_inline void
308rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
309{
310 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
311 return;
312
313 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
314 RB_CLEAR_NODE(&waiter->pi_tree_entry);
315}
316
317static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
318{
319 struct task_struct *pi_task = NULL;
320
321 lockdep_assert_held(&p->pi_lock);
322
323 if (task_has_pi_waiters(p))
324 pi_task = task_top_pi_waiter(p)->task;
325
326 rt_mutex_setprio(p, pi_task);
327}
328
329/*
330 * Deadlock detection is conditional:
331 *
332 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
333 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
334 *
335 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
336 * conducted independent of the detect argument.
337 *
338 * If the waiter argument is NULL this indicates the deboost path and
339 * deadlock detection is disabled independent of the detect argument
340 * and the config settings.
341 */
342static __always_inline bool
343rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
344 enum rtmutex_chainwalk chwalk)
345{
346 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
347 return waiter != NULL;
348 return chwalk == RT_MUTEX_FULL_CHAINWALK;
349}
350
351/*
352 * Max number of times we'll walk the boosting chain:
353 */
354int max_lock_depth = 1024;
355
356static __always_inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
357{
358 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
359}
360
361/*
362 * Adjust the priority chain. Also used for deadlock detection.
363 * Decreases task's usage by one - may thus free the task.
364 *
365 * @task: the task owning the mutex (owner) for which a chain walk is
366 * probably needed
367 * @chwalk: do we have to carry out deadlock detection?
368 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
369 * things for a task that has just got its priority adjusted, and
370 * is waiting on a mutex)
371 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
372 * we dropped its pi_lock. Is never dereferenced, only used for
373 * comparison to detect lock chain changes.
374 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
375 * its priority to the mutex owner (can be NULL in the case
376 * depicted above or if the top waiter is gone away and we are
377 * actually deboosting the owner)
378 * @top_task: the current top waiter
379 *
380 * Returns 0 or -EDEADLK.
381 *
382 * Chain walk basics and protection scope
383 *
384 * [R] refcount on task
385 * [P] task->pi_lock held
386 * [L] rtmutex->wait_lock held
387 *
388 * Step Description Protected by
389 * function arguments:
390 * @task [R]
391 * @orig_lock if != NULL @top_task is blocked on it
392 * @next_lock Unprotected. Cannot be
393 * dereferenced. Only used for
394 * comparison.
395 * @orig_waiter if != NULL @top_task is blocked on it
396 * @top_task current, or in case of proxy
397 * locking protected by calling
398 * code
399 * again:
400 * loop_sanity_check();
401 * retry:
402 * [1] lock(task->pi_lock); [R] acquire [P]
403 * [2] waiter = task->pi_blocked_on; [P]
404 * [3] check_exit_conditions_1(); [P]
405 * [4] lock = waiter->lock; [P]
406 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
407 * unlock(task->pi_lock); release [P]
408 * goto retry;
409 * }
410 * [6] check_exit_conditions_2(); [P] + [L]
411 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
412 * [8] unlock(task->pi_lock); release [P]
413 * put_task_struct(task); release [R]
414 * [9] check_exit_conditions_3(); [L]
415 * [10] task = owner(lock); [L]
416 * get_task_struct(task); [L] acquire [R]
417 * lock(task->pi_lock); [L] acquire [P]
418 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
419 * [12] check_exit_conditions_4(); [P] + [L]
420 * [13] unlock(task->pi_lock); release [P]
421 * unlock(lock->wait_lock); release [L]
422 * goto again;
423 */
424static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
425 enum rtmutex_chainwalk chwalk,
426 struct rt_mutex *orig_lock,
427 struct rt_mutex *next_lock,
428 struct rt_mutex_waiter *orig_waiter,
429 struct task_struct *top_task)
430{
431 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
432 struct rt_mutex_waiter *prerequeue_top_waiter;
433 int ret = 0, depth = 0;
434 struct rt_mutex *lock;
435 bool detect_deadlock;
436 bool requeue = true;
437
438 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
439
440 /*
441 * The (de)boosting is a step by step approach with a lot of
442 * pitfalls. We want this to be preemptible and we want hold a
443 * maximum of two locks per step. So we have to check
444 * carefully whether things change under us.
445 */
446 again:
447 /*
448 * We limit the lock chain length for each invocation.
449 */
450 if (++depth > max_lock_depth) {
451 static int prev_max;
452
453 /*
454 * Print this only once. If the admin changes the limit,
455 * print a new message when reaching the limit again.
456 */
457 if (prev_max != max_lock_depth) {
458 prev_max = max_lock_depth;
459 printk(KERN_WARNING "Maximum lock depth %d reached "
460 "task: %s (%d)\n", max_lock_depth,
461 top_task->comm, task_pid_nr(top_task));
462 }
463 put_task_struct(task);
464
465 return -EDEADLK;
466 }
467
468 /*
469 * We are fully preemptible here and only hold the refcount on
470 * @task. So everything can have changed under us since the
471 * caller or our own code below (goto retry/again) dropped all
472 * locks.
473 */
474 retry:
475 /*
476 * [1] Task cannot go away as we did a get_task() before !
477 */
478 raw_spin_lock_irq(&task->pi_lock);
479
480 /*
481 * [2] Get the waiter on which @task is blocked on.
482 */
483 waiter = task->pi_blocked_on;
484
485 /*
486 * [3] check_exit_conditions_1() protected by task->pi_lock.
487 */
488
489 /*
490 * Check whether the end of the boosting chain has been
491 * reached or the state of the chain has changed while we
492 * dropped the locks.
493 */
494 if (!waiter)
495 goto out_unlock_pi;
496
497 /*
498 * Check the orig_waiter state. After we dropped the locks,
499 * the previous owner of the lock might have released the lock.
500 */
501 if (orig_waiter && !rt_mutex_owner(orig_lock))
502 goto out_unlock_pi;
503
504 /*
505 * We dropped all locks after taking a refcount on @task, so
506 * the task might have moved on in the lock chain or even left
507 * the chain completely and blocks now on an unrelated lock or
508 * on @orig_lock.
509 *
510 * We stored the lock on which @task was blocked in @next_lock,
511 * so we can detect the chain change.
512 */
513 if (next_lock != waiter->lock)
514 goto out_unlock_pi;
515
516 /*
517 * Drop out, when the task has no waiters. Note,
518 * top_waiter can be NULL, when we are in the deboosting
519 * mode!
520 */
521 if (top_waiter) {
522 if (!task_has_pi_waiters(task))
523 goto out_unlock_pi;
524 /*
525 * If deadlock detection is off, we stop here if we
526 * are not the top pi waiter of the task. If deadlock
527 * detection is enabled we continue, but stop the
528 * requeueing in the chain walk.
529 */
530 if (top_waiter != task_top_pi_waiter(task)) {
531 if (!detect_deadlock)
532 goto out_unlock_pi;
533 else
534 requeue = false;
535 }
536 }
537
538 /*
539 * If the waiter priority is the same as the task priority
540 * then there is no further priority adjustment necessary. If
541 * deadlock detection is off, we stop the chain walk. If its
542 * enabled we continue, but stop the requeueing in the chain
543 * walk.
544 */
545 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
546 if (!detect_deadlock)
547 goto out_unlock_pi;
548 else
549 requeue = false;
550 }
551
552 /*
553 * [4] Get the next lock
554 */
555 lock = waiter->lock;
556 /*
557 * [5] We need to trylock here as we are holding task->pi_lock,
558 * which is the reverse lock order versus the other rtmutex
559 * operations.
560 */
561 if (!raw_spin_trylock(&lock->wait_lock)) {
562 raw_spin_unlock_irq(&task->pi_lock);
563 cpu_relax();
564 goto retry;
565 }
566
567 /*
568 * [6] check_exit_conditions_2() protected by task->pi_lock and
569 * lock->wait_lock.
570 *
571 * Deadlock detection. If the lock is the same as the original
572 * lock which caused us to walk the lock chain or if the
573 * current lock is owned by the task which initiated the chain
574 * walk, we detected a deadlock.
575 */
576 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
577 raw_spin_unlock(&lock->wait_lock);
578 ret = -EDEADLK;
579 goto out_unlock_pi;
580 }
581
582 /*
583 * If we just follow the lock chain for deadlock detection, no
584 * need to do all the requeue operations. To avoid a truckload
585 * of conditionals around the various places below, just do the
586 * minimum chain walk checks.
587 */
588 if (!requeue) {
589 /*
590 * No requeue[7] here. Just release @task [8]
591 */
592 raw_spin_unlock(&task->pi_lock);
593 put_task_struct(task);
594
595 /*
596 * [9] check_exit_conditions_3 protected by lock->wait_lock.
597 * If there is no owner of the lock, end of chain.
598 */
599 if (!rt_mutex_owner(lock)) {
600 raw_spin_unlock_irq(&lock->wait_lock);
601 return 0;
602 }
603
604 /* [10] Grab the next task, i.e. owner of @lock */
605 task = get_task_struct(rt_mutex_owner(lock));
606 raw_spin_lock(&task->pi_lock);
607
608 /*
609 * No requeue [11] here. We just do deadlock detection.
610 *
611 * [12] Store whether owner is blocked
612 * itself. Decision is made after dropping the locks
613 */
614 next_lock = task_blocked_on_lock(task);
615 /*
616 * Get the top waiter for the next iteration
617 */
618 top_waiter = rt_mutex_top_waiter(lock);
619
620 /* [13] Drop locks */
621 raw_spin_unlock(&task->pi_lock);
622 raw_spin_unlock_irq(&lock->wait_lock);
623
624 /* If owner is not blocked, end of chain. */
625 if (!next_lock)
626 goto out_put_task;
627 goto again;
628 }
629
630 /*
631 * Store the current top waiter before doing the requeue
632 * operation on @lock. We need it for the boost/deboost
633 * decision below.
634 */
635 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
636
637 /* [7] Requeue the waiter in the lock waiter tree. */
638 rt_mutex_dequeue(lock, waiter);
639
640 /*
641 * Update the waiter prio fields now that we're dequeued.
642 *
643 * These values can have changed through either:
644 *
645 * sys_sched_set_scheduler() / sys_sched_setattr()
646 *
647 * or
648 *
649 * DL CBS enforcement advancing the effective deadline.
650 *
651 * Even though pi_waiters also uses these fields, and that tree is only
652 * updated in [11], we can do this here, since we hold [L], which
653 * serializes all pi_waiters access and rb_erase() does not care about
654 * the values of the node being removed.
655 */
656 waiter->prio = task->prio;
657 waiter->deadline = task->dl.deadline;
658
659 rt_mutex_enqueue(lock, waiter);
660
661 /* [8] Release the task */
662 raw_spin_unlock(&task->pi_lock);
663 put_task_struct(task);
664
665 /*
666 * [9] check_exit_conditions_3 protected by lock->wait_lock.
667 *
668 * We must abort the chain walk if there is no lock owner even
669 * in the dead lock detection case, as we have nothing to
670 * follow here. This is the end of the chain we are walking.
671 */
672 if (!rt_mutex_owner(lock)) {
673 /*
674 * If the requeue [7] above changed the top waiter,
675 * then we need to wake the new top waiter up to try
676 * to get the lock.
677 */
678 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
679 wake_up_process(rt_mutex_top_waiter(lock)->task);
680 raw_spin_unlock_irq(&lock->wait_lock);
681 return 0;
682 }
683
684 /* [10] Grab the next task, i.e. the owner of @lock */
685 task = get_task_struct(rt_mutex_owner(lock));
686 raw_spin_lock(&task->pi_lock);
687
688 /* [11] requeue the pi waiters if necessary */
689 if (waiter == rt_mutex_top_waiter(lock)) {
690 /*
691 * The waiter became the new top (highest priority)
692 * waiter on the lock. Replace the previous top waiter
693 * in the owner tasks pi waiters tree with this waiter
694 * and adjust the priority of the owner.
695 */
696 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
697 rt_mutex_enqueue_pi(task, waiter);
698 rt_mutex_adjust_prio(task);
699
700 } else if (prerequeue_top_waiter == waiter) {
701 /*
702 * The waiter was the top waiter on the lock, but is
703 * no longer the top priority waiter. Replace waiter in
704 * the owner tasks pi waiters tree with the new top
705 * (highest priority) waiter and adjust the priority
706 * of the owner.
707 * The new top waiter is stored in @waiter so that
708 * @waiter == @top_waiter evaluates to true below and
709 * we continue to deboost the rest of the chain.
710 */
711 rt_mutex_dequeue_pi(task, waiter);
712 waiter = rt_mutex_top_waiter(lock);
713 rt_mutex_enqueue_pi(task, waiter);
714 rt_mutex_adjust_prio(task);
715 } else {
716 /*
717 * Nothing changed. No need to do any priority
718 * adjustment.
719 */
720 }
721
722 /*
723 * [12] check_exit_conditions_4() protected by task->pi_lock
724 * and lock->wait_lock. The actual decisions are made after we
725 * dropped the locks.
726 *
727 * Check whether the task which owns the current lock is pi
728 * blocked itself. If yes we store a pointer to the lock for
729 * the lock chain change detection above. After we dropped
730 * task->pi_lock next_lock cannot be dereferenced anymore.
731 */
732 next_lock = task_blocked_on_lock(task);
733 /*
734 * Store the top waiter of @lock for the end of chain walk
735 * decision below.
736 */
737 top_waiter = rt_mutex_top_waiter(lock);
738
739 /* [13] Drop the locks */
740 raw_spin_unlock(&task->pi_lock);
741 raw_spin_unlock_irq(&lock->wait_lock);
742
743 /*
744 * Make the actual exit decisions [12], based on the stored
745 * values.
746 *
747 * We reached the end of the lock chain. Stop right here. No
748 * point to go back just to figure that out.
749 */
750 if (!next_lock)
751 goto out_put_task;
752
753 /*
754 * If the current waiter is not the top waiter on the lock,
755 * then we can stop the chain walk here if we are not in full
756 * deadlock detection mode.
757 */
758 if (!detect_deadlock && waiter != top_waiter)
759 goto out_put_task;
760
761 goto again;
762
763 out_unlock_pi:
764 raw_spin_unlock_irq(&task->pi_lock);
765 out_put_task:
766 put_task_struct(task);
767
768 return ret;
769}
770
771/*
772 * Try to take an rt-mutex
773 *
774 * Must be called with lock->wait_lock held and interrupts disabled
775 *
776 * @lock: The lock to be acquired.
777 * @task: The task which wants to acquire the lock
778 * @waiter: The waiter that is queued to the lock's wait tree if the
779 * callsite called task_blocked_on_lock(), otherwise NULL
780 */
781static int __sched
782try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
783 struct rt_mutex_waiter *waiter)
784{
785 lockdep_assert_held(&lock->wait_lock);
786
787 /*
788 * Before testing whether we can acquire @lock, we set the
789 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
790 * other tasks which try to modify @lock into the slow path
791 * and they serialize on @lock->wait_lock.
792 *
793 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
794 * as explained at the top of this file if and only if:
795 *
796 * - There is a lock owner. The caller must fixup the
797 * transient state if it does a trylock or leaves the lock
798 * function due to a signal or timeout.
799 *
800 * - @task acquires the lock and there are no other
801 * waiters. This is undone in rt_mutex_set_owner(@task) at
802 * the end of this function.
803 */
804 mark_rt_mutex_waiters(lock);
805
806 /*
807 * If @lock has an owner, give up.
808 */
809 if (rt_mutex_owner(lock))
810 return 0;
811
812 /*
813 * If @waiter != NULL, @task has already enqueued the waiter
814 * into @lock waiter tree. If @waiter == NULL then this is a
815 * trylock attempt.
816 */
817 if (waiter) {
818 /*
819 * If waiter is not the highest priority waiter of
820 * @lock, give up.
821 */
822 if (waiter != rt_mutex_top_waiter(lock))
823 return 0;
824
825 /*
826 * We can acquire the lock. Remove the waiter from the
827 * lock waiters tree.
828 */
829 rt_mutex_dequeue(lock, waiter);
830
831 } else {
832 /*
833 * If the lock has waiters already we check whether @task is
834 * eligible to take over the lock.
835 *
836 * If there are no other waiters, @task can acquire
837 * the lock. @task->pi_blocked_on is NULL, so it does
838 * not need to be dequeued.
839 */
840 if (rt_mutex_has_waiters(lock)) {
841 /*
842 * If @task->prio is greater than or equal to
843 * the top waiter priority (kernel view),
844 * @task lost.
845 */
846 if (!rt_mutex_waiter_less(task_to_waiter(task),
847 rt_mutex_top_waiter(lock)))
848 return 0;
849
850 /*
851 * The current top waiter stays enqueued. We
852 * don't have to change anything in the lock
853 * waiters order.
854 */
855 } else {
856 /*
857 * No waiters. Take the lock without the
858 * pi_lock dance.@task->pi_blocked_on is NULL
859 * and we have no waiters to enqueue in @task
860 * pi waiters tree.
861 */
862 goto takeit;
863 }
864 }
865
866 /*
867 * Clear @task->pi_blocked_on. Requires protection by
868 * @task->pi_lock. Redundant operation for the @waiter == NULL
869 * case, but conditionals are more expensive than a redundant
870 * store.
871 */
872 raw_spin_lock(&task->pi_lock);
873 task->pi_blocked_on = NULL;
874 /*
875 * Finish the lock acquisition. @task is the new owner. If
876 * other waiters exist we have to insert the highest priority
877 * waiter into @task->pi_waiters tree.
878 */
879 if (rt_mutex_has_waiters(lock))
880 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
881 raw_spin_unlock(&task->pi_lock);
882
883takeit:
884 /*
885 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
886 * are still waiters or clears it.
887 */
888 rt_mutex_set_owner(lock, task);
889
890 return 1;
891}
892
893/*
894 * Task blocks on lock.
895 *
896 * Prepare waiter and propagate pi chain
897 *
898 * This must be called with lock->wait_lock held and interrupts disabled
899 */
900static int __sched task_blocks_on_rt_mutex(struct rt_mutex *lock,
901 struct rt_mutex_waiter *waiter,
902 struct task_struct *task,
903 enum rtmutex_chainwalk chwalk)
904{
905 struct task_struct *owner = rt_mutex_owner(lock);
906 struct rt_mutex_waiter *top_waiter = waiter;
907 struct rt_mutex *next_lock;
908 int chain_walk = 0, res;
909
910 lockdep_assert_held(&lock->wait_lock);
911
912 /*
913 * Early deadlock detection. We really don't want the task to
914 * enqueue on itself just to untangle the mess later. It's not
915 * only an optimization. We drop the locks, so another waiter
916 * can come in before the chain walk detects the deadlock. So
917 * the other will detect the deadlock and return -EDEADLOCK,
918 * which is wrong, as the other waiter is not in a deadlock
919 * situation.
920 */
921 if (owner == task)
922 return -EDEADLK;
923
924 raw_spin_lock(&task->pi_lock);
925 waiter->task = task;
926 waiter->lock = lock;
927 waiter->prio = task->prio;
928 waiter->deadline = task->dl.deadline;
929
930 /* Get the top priority waiter on the lock */
931 if (rt_mutex_has_waiters(lock))
932 top_waiter = rt_mutex_top_waiter(lock);
933 rt_mutex_enqueue(lock, waiter);
934
935 task->pi_blocked_on = waiter;
936
937 raw_spin_unlock(&task->pi_lock);
938
939 if (!owner)
940 return 0;
941
942 raw_spin_lock(&owner->pi_lock);
943 if (waiter == rt_mutex_top_waiter(lock)) {
944 rt_mutex_dequeue_pi(owner, top_waiter);
945 rt_mutex_enqueue_pi(owner, waiter);
946
947 rt_mutex_adjust_prio(owner);
948 if (owner->pi_blocked_on)
949 chain_walk = 1;
950 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
951 chain_walk = 1;
952 }
953
954 /* Store the lock on which owner is blocked or NULL */
955 next_lock = task_blocked_on_lock(owner);
956
957 raw_spin_unlock(&owner->pi_lock);
958 /*
959 * Even if full deadlock detection is on, if the owner is not
960 * blocked itself, we can avoid finding this out in the chain
961 * walk.
962 */
963 if (!chain_walk || !next_lock)
964 return 0;
965
966 /*
967 * The owner can't disappear while holding a lock,
968 * so the owner struct is protected by wait_lock.
969 * Gets dropped in rt_mutex_adjust_prio_chain()!
970 */
971 get_task_struct(owner);
972
973 raw_spin_unlock_irq(&lock->wait_lock);
974
975 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
976 next_lock, waiter, task);
977
978 raw_spin_lock_irq(&lock->wait_lock);
979
980 return res;
981}
982
983/*
984 * Remove the top waiter from the current tasks pi waiter tree and
985 * queue it up.
986 *
987 * Called with lock->wait_lock held and interrupts disabled.
988 */
989static void __sched mark_wakeup_next_waiter(struct wake_q_head *wake_q,
990 struct rt_mutex *lock)
991{
992 struct rt_mutex_waiter *waiter;
993
994 raw_spin_lock(¤t->pi_lock);
995
996 waiter = rt_mutex_top_waiter(lock);
997
998 /*
999 * Remove it from current->pi_waiters and deboost.
1000 *
1001 * We must in fact deboost here in order to ensure we call
1002 * rt_mutex_setprio() to update p->pi_top_task before the
1003 * task unblocks.
1004 */
1005 rt_mutex_dequeue_pi(current, waiter);
1006 rt_mutex_adjust_prio(current);
1007
1008 /*
1009 * As we are waking up the top waiter, and the waiter stays
1010 * queued on the lock until it gets the lock, this lock
1011 * obviously has waiters. Just set the bit here and this has
1012 * the added benefit of forcing all new tasks into the
1013 * slow path making sure no task of lower priority than
1014 * the top waiter can steal this lock.
1015 */
1016 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1017
1018 /*
1019 * We deboosted before waking the top waiter task such that we don't
1020 * run two tasks with the 'same' priority (and ensure the
1021 * p->pi_top_task pointer points to a blocked task). This however can
1022 * lead to priority inversion if we would get preempted after the
1023 * deboost but before waking our donor task, hence the preempt_disable()
1024 * before unlock.
1025 *
1026 * Pairs with preempt_enable() in rt_mutex_postunlock();
1027 */
1028 preempt_disable();
1029 wake_q_add(wake_q, waiter->task);
1030 raw_spin_unlock(¤t->pi_lock);
1031}
1032
1033/*
1034 * Remove a waiter from a lock and give up
1035 *
1036 * Must be called with lock->wait_lock held and interrupts disabled. I must
1037 * have just failed to try_to_take_rt_mutex().
1038 */
1039static void __sched remove_waiter(struct rt_mutex *lock,
1040 struct rt_mutex_waiter *waiter)
1041{
1042 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1043 struct task_struct *owner = rt_mutex_owner(lock);
1044 struct rt_mutex *next_lock;
1045
1046 lockdep_assert_held(&lock->wait_lock);
1047
1048 raw_spin_lock(¤t->pi_lock);
1049 rt_mutex_dequeue(lock, waiter);
1050 current->pi_blocked_on = NULL;
1051 raw_spin_unlock(¤t->pi_lock);
1052
1053 /*
1054 * Only update priority if the waiter was the highest priority
1055 * waiter of the lock and there is an owner to update.
1056 */
1057 if (!owner || !is_top_waiter)
1058 return;
1059
1060 raw_spin_lock(&owner->pi_lock);
1061
1062 rt_mutex_dequeue_pi(owner, waiter);
1063
1064 if (rt_mutex_has_waiters(lock))
1065 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1066
1067 rt_mutex_adjust_prio(owner);
1068
1069 /* Store the lock on which owner is blocked or NULL */
1070 next_lock = task_blocked_on_lock(owner);
1071
1072 raw_spin_unlock(&owner->pi_lock);
1073
1074 /*
1075 * Don't walk the chain, if the owner task is not blocked
1076 * itself.
1077 */
1078 if (!next_lock)
1079 return;
1080
1081 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1082 get_task_struct(owner);
1083
1084 raw_spin_unlock_irq(&lock->wait_lock);
1085
1086 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1087 next_lock, NULL, current);
1088
1089 raw_spin_lock_irq(&lock->wait_lock);
1090}
1091
1092/*
1093 * Recheck the pi chain, in case we got a priority setting
1094 *
1095 * Called from sched_setscheduler
1096 */
1097void __sched rt_mutex_adjust_pi(struct task_struct *task)
1098{
1099 struct rt_mutex_waiter *waiter;
1100 struct rt_mutex *next_lock;
1101 unsigned long flags;
1102
1103 raw_spin_lock_irqsave(&task->pi_lock, flags);
1104
1105 waiter = task->pi_blocked_on;
1106 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1107 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1108 return;
1109 }
1110 next_lock = waiter->lock;
1111 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1112
1113 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1114 get_task_struct(task);
1115
1116 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1117 next_lock, NULL, task);
1118}
1119
1120void __sched rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1121{
1122 debug_rt_mutex_init_waiter(waiter);
1123 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1124 RB_CLEAR_NODE(&waiter->tree_entry);
1125 waiter->task = NULL;
1126}
1127
1128/**
1129 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1130 * @lock: the rt_mutex to take
1131 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1132 * or TASK_UNINTERRUPTIBLE)
1133 * @timeout: the pre-initialized and started timer, or NULL for none
1134 * @waiter: the pre-initialized rt_mutex_waiter
1135 *
1136 * Must be called with lock->wait_lock held and interrupts disabled
1137 */
1138static int __sched __rt_mutex_slowlock(struct rt_mutex *lock, unsigned int state,
1139 struct hrtimer_sleeper *timeout,
1140 struct rt_mutex_waiter *waiter)
1141{
1142 int ret = 0;
1143
1144 for (;;) {
1145 /* Try to acquire the lock: */
1146 if (try_to_take_rt_mutex(lock, current, waiter))
1147 break;
1148
1149 if (timeout && !timeout->task) {
1150 ret = -ETIMEDOUT;
1151 break;
1152 }
1153 if (signal_pending_state(state, current)) {
1154 ret = -EINTR;
1155 break;
1156 }
1157
1158 raw_spin_unlock_irq(&lock->wait_lock);
1159
1160 schedule();
1161
1162 raw_spin_lock_irq(&lock->wait_lock);
1163 set_current_state(state);
1164 }
1165
1166 __set_current_state(TASK_RUNNING);
1167 return ret;
1168}
1169
1170static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1171 struct rt_mutex_waiter *w)
1172{
1173 /*
1174 * If the result is not -EDEADLOCK or the caller requested
1175 * deadlock detection, nothing to do here.
1176 */
1177 if (res != -EDEADLOCK || detect_deadlock)
1178 return;
1179
1180 /*
1181 * Yell loudly and stop the task right here.
1182 */
1183 WARN(1, "rtmutex deadlock detected\n");
1184 while (1) {
1185 set_current_state(TASK_INTERRUPTIBLE);
1186 schedule();
1187 }
1188}
1189
1190/*
1191 * Slow path lock function:
1192 */
1193static int __sched rt_mutex_slowlock(struct rt_mutex *lock, unsigned int state,
1194 struct hrtimer_sleeper *timeout,
1195 enum rtmutex_chainwalk chwalk)
1196{
1197 struct rt_mutex_waiter waiter;
1198 unsigned long flags;
1199 int ret = 0;
1200
1201 rt_mutex_init_waiter(&waiter);
1202
1203 /*
1204 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1205 * be called in early boot if the cmpxchg() fast path is disabled
1206 * (debug, no architecture support). In this case we will acquire the
1207 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1208 * enable interrupts in that early boot case. So we need to use the
1209 * irqsave/restore variants.
1210 */
1211 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1212
1213 /* Try to acquire the lock again: */
1214 if (try_to_take_rt_mutex(lock, current, NULL)) {
1215 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1216 return 0;
1217 }
1218
1219 set_current_state(state);
1220
1221 /* Setup the timer, when timeout != NULL */
1222 if (unlikely(timeout))
1223 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1224
1225 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1226
1227 if (likely(!ret))
1228 /* sleep on the mutex */
1229 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1230
1231 if (unlikely(ret)) {
1232 __set_current_state(TASK_RUNNING);
1233 remove_waiter(lock, &waiter);
1234 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1235 }
1236
1237 /*
1238 * try_to_take_rt_mutex() sets the waiter bit
1239 * unconditionally. We might have to fix that up.
1240 */
1241 fixup_rt_mutex_waiters(lock);
1242
1243 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1244
1245 /* Remove pending timer: */
1246 if (unlikely(timeout))
1247 hrtimer_cancel(&timeout->timer);
1248
1249 debug_rt_mutex_free_waiter(&waiter);
1250
1251 return ret;
1252}
1253
1254static int __sched __rt_mutex_slowtrylock(struct rt_mutex *lock)
1255{
1256 int ret = try_to_take_rt_mutex(lock, current, NULL);
1257
1258 /*
1259 * try_to_take_rt_mutex() sets the lock waiters bit
1260 * unconditionally. Clean this up.
1261 */
1262 fixup_rt_mutex_waiters(lock);
1263
1264 return ret;
1265}
1266
1267/*
1268 * Slow path try-lock function:
1269 */
1270static int __sched rt_mutex_slowtrylock(struct rt_mutex *lock)
1271{
1272 unsigned long flags;
1273 int ret;
1274
1275 /*
1276 * If the lock already has an owner we fail to get the lock.
1277 * This can be done without taking the @lock->wait_lock as
1278 * it is only being read, and this is a trylock anyway.
1279 */
1280 if (rt_mutex_owner(lock))
1281 return 0;
1282
1283 /*
1284 * The mutex has currently no owner. Lock the wait lock and try to
1285 * acquire the lock. We use irqsave here to support early boot calls.
1286 */
1287 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1288
1289 ret = __rt_mutex_slowtrylock(lock);
1290
1291 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1292
1293 return ret;
1294}
1295
1296/*
1297 * Performs the wakeup of the top-waiter and re-enables preemption.
1298 */
1299void __sched rt_mutex_postunlock(struct wake_q_head *wake_q)
1300{
1301 wake_up_q(wake_q);
1302
1303 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
1304 preempt_enable();
1305}
1306
1307/*
1308 * Slow path to release a rt-mutex.
1309 *
1310 * Return whether the current task needs to call rt_mutex_postunlock().
1311 */
1312static void __sched rt_mutex_slowunlock(struct rt_mutex *lock)
1313{
1314 DEFINE_WAKE_Q(wake_q);
1315 unsigned long flags;
1316
1317 /* irqsave required to support early boot calls */
1318 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1319
1320 debug_rt_mutex_unlock(lock);
1321
1322 /*
1323 * We must be careful here if the fast path is enabled. If we
1324 * have no waiters queued we cannot set owner to NULL here
1325 * because of:
1326 *
1327 * foo->lock->owner = NULL;
1328 * rtmutex_lock(foo->lock); <- fast path
1329 * free = atomic_dec_and_test(foo->refcnt);
1330 * rtmutex_unlock(foo->lock); <- fast path
1331 * if (free)
1332 * kfree(foo);
1333 * raw_spin_unlock(foo->lock->wait_lock);
1334 *
1335 * So for the fastpath enabled kernel:
1336 *
1337 * Nothing can set the waiters bit as long as we hold
1338 * lock->wait_lock. So we do the following sequence:
1339 *
1340 * owner = rt_mutex_owner(lock);
1341 * clear_rt_mutex_waiters(lock);
1342 * raw_spin_unlock(&lock->wait_lock);
1343 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1344 * return;
1345 * goto retry;
1346 *
1347 * The fastpath disabled variant is simple as all access to
1348 * lock->owner is serialized by lock->wait_lock:
1349 *
1350 * lock->owner = NULL;
1351 * raw_spin_unlock(&lock->wait_lock);
1352 */
1353 while (!rt_mutex_has_waiters(lock)) {
1354 /* Drops lock->wait_lock ! */
1355 if (unlock_rt_mutex_safe(lock, flags) == true)
1356 return;
1357 /* Relock the rtmutex and try again */
1358 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1359 }
1360
1361 /*
1362 * The wakeup next waiter path does not suffer from the above
1363 * race. See the comments there.
1364 *
1365 * Queue the next waiter for wakeup once we release the wait_lock.
1366 */
1367 mark_wakeup_next_waiter(&wake_q, lock);
1368 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1369
1370 rt_mutex_postunlock(&wake_q);
1371}
1372
1373/*
1374 * debug aware fast / slowpath lock,trylock,unlock
1375 *
1376 * The atomic acquire/release ops are compiled away, when either the
1377 * architecture does not support cmpxchg or when debugging is enabled.
1378 */
1379static __always_inline int __rt_mutex_lock(struct rt_mutex *lock, long state,
1380 unsigned int subclass)
1381{
1382 int ret;
1383
1384 might_sleep();
1385 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1386
1387 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1388 return 0;
1389
1390 ret = rt_mutex_slowlock(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1391 if (ret)
1392 mutex_release(&lock->dep_map, _RET_IP_);
1393 return ret;
1394}
1395
1396#ifdef CONFIG_DEBUG_LOCK_ALLOC
1397/**
1398 * rt_mutex_lock_nested - lock a rt_mutex
1399 *
1400 * @lock: the rt_mutex to be locked
1401 * @subclass: the lockdep subclass
1402 */
1403void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1404{
1405 __rt_mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass);
1406}
1407EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1408
1409#else /* !CONFIG_DEBUG_LOCK_ALLOC */
1410
1411/**
1412 * rt_mutex_lock - lock a rt_mutex
1413 *
1414 * @lock: the rt_mutex to be locked
1415 */
1416void __sched rt_mutex_lock(struct rt_mutex *lock)
1417{
1418 __rt_mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0);
1419}
1420EXPORT_SYMBOL_GPL(rt_mutex_lock);
1421#endif
1422
1423/**
1424 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1425 *
1426 * @lock: the rt_mutex to be locked
1427 *
1428 * Returns:
1429 * 0 on success
1430 * -EINTR when interrupted by a signal
1431 */
1432int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1433{
1434 return __rt_mutex_lock(lock, TASK_INTERRUPTIBLE, 0);
1435}
1436EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1437
1438/**
1439 * rt_mutex_trylock - try to lock a rt_mutex
1440 *
1441 * @lock: the rt_mutex to be locked
1442 *
1443 * This function can only be called in thread context. It's safe to call it
1444 * from atomic regions, but not from hard or soft interrupt context.
1445 *
1446 * Returns:
1447 * 1 on success
1448 * 0 on contention
1449 */
1450int __sched rt_mutex_trylock(struct rt_mutex *lock)
1451{
1452 int ret;
1453
1454 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
1455 return 0;
1456
1457 /*
1458 * No lockdep annotation required because lockdep disables the fast
1459 * path.
1460 */
1461 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1462 return 1;
1463
1464 ret = rt_mutex_slowtrylock(lock);
1465 if (ret)
1466 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1467
1468 return ret;
1469}
1470EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1471
1472/**
1473 * rt_mutex_unlock - unlock a rt_mutex
1474 *
1475 * @lock: the rt_mutex to be unlocked
1476 */
1477void __sched rt_mutex_unlock(struct rt_mutex *lock)
1478{
1479 mutex_release(&lock->dep_map, _RET_IP_);
1480 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1481 return;
1482
1483 rt_mutex_slowunlock(lock);
1484}
1485EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1486
1487/*
1488 * Futex variants, must not use fastpath.
1489 */
1490int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1491{
1492 return rt_mutex_slowtrylock(lock);
1493}
1494
1495int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1496{
1497 return __rt_mutex_slowtrylock(lock);
1498}
1499
1500/**
1501 * __rt_mutex_futex_unlock - Futex variant, that since futex variants
1502 * do not use the fast-path, can be simple and will not need to retry.
1503 *
1504 * @lock: The rt_mutex to be unlocked
1505 * @wake_q: The wake queue head from which to get the next lock waiter
1506 */
1507bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1508 struct wake_q_head *wake_q)
1509{
1510 lockdep_assert_held(&lock->wait_lock);
1511
1512 debug_rt_mutex_unlock(lock);
1513
1514 if (!rt_mutex_has_waiters(lock)) {
1515 lock->owner = NULL;
1516 return false; /* done */
1517 }
1518
1519 /*
1520 * We've already deboosted, mark_wakeup_next_waiter() will
1521 * retain preempt_disabled when we drop the wait_lock, to
1522 * avoid inversion prior to the wakeup. preempt_disable()
1523 * therein pairs with rt_mutex_postunlock().
1524 */
1525 mark_wakeup_next_waiter(wake_q, lock);
1526
1527 return true; /* call postunlock() */
1528}
1529
1530void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1531{
1532 DEFINE_WAKE_Q(wake_q);
1533 unsigned long flags;
1534 bool postunlock;
1535
1536 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1537 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1538 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1539
1540 if (postunlock)
1541 rt_mutex_postunlock(&wake_q);
1542}
1543
1544/**
1545 * __rt_mutex_init - initialize the rt_mutex
1546 *
1547 * @lock: The rt_mutex to be initialized
1548 * @name: The lock name used for debugging
1549 * @key: The lock class key used for debugging
1550 *
1551 * Initialize the rt_mutex to unlocked state.
1552 *
1553 * Initializing of a locked rt_mutex is not allowed
1554 */
1555void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
1556 struct lock_class_key *key)
1557{
1558 debug_check_no_locks_freed((void *)lock, sizeof(*lock));
1559 lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
1560
1561 __rt_mutex_basic_init(lock);
1562}
1563EXPORT_SYMBOL_GPL(__rt_mutex_init);
1564
1565/**
1566 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1567 * proxy owner
1568 *
1569 * @lock: the rt_mutex to be locked
1570 * @proxy_owner:the task to set as owner
1571 *
1572 * No locking. Caller has to do serializing itself
1573 *
1574 * Special API call for PI-futex support. This initializes the rtmutex and
1575 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1576 * possible at this point because the pi_state which contains the rtmutex
1577 * is not yet visible to other tasks.
1578 */
1579void __sched rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1580 struct task_struct *proxy_owner)
1581{
1582 __rt_mutex_basic_init(lock);
1583 rt_mutex_set_owner(lock, proxy_owner);
1584}
1585
1586/**
1587 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1588 *
1589 * @lock: the rt_mutex to be locked
1590 *
1591 * No locking. Caller has to do serializing itself
1592 *
1593 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1594 * (debugging) state. Concurrent operations on this rt_mutex are not
1595 * possible because it belongs to the pi_state which is about to be freed
1596 * and it is not longer visible to other tasks.
1597 */
1598void __sched rt_mutex_proxy_unlock(struct rt_mutex *lock)
1599{
1600 debug_rt_mutex_proxy_unlock(lock);
1601 rt_mutex_set_owner(lock, NULL);
1602}
1603
1604/**
1605 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1606 * @lock: the rt_mutex to take
1607 * @waiter: the pre-initialized rt_mutex_waiter
1608 * @task: the task to prepare
1609 *
1610 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1611 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1612 *
1613 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1614 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1615 *
1616 * Returns:
1617 * 0 - task blocked on lock
1618 * 1 - acquired the lock for task, caller should wake it up
1619 * <0 - error
1620 *
1621 * Special API call for PI-futex support.
1622 */
1623int __sched __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1624 struct rt_mutex_waiter *waiter,
1625 struct task_struct *task)
1626{
1627 int ret;
1628
1629 lockdep_assert_held(&lock->wait_lock);
1630
1631 if (try_to_take_rt_mutex(lock, task, NULL))
1632 return 1;
1633
1634 /* We enforce deadlock detection for futexes */
1635 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1636 RT_MUTEX_FULL_CHAINWALK);
1637
1638 if (ret && !rt_mutex_owner(lock)) {
1639 /*
1640 * Reset the return value. We might have
1641 * returned with -EDEADLK and the owner
1642 * released the lock while we were walking the
1643 * pi chain. Let the waiter sort it out.
1644 */
1645 ret = 0;
1646 }
1647
1648 return ret;
1649}
1650
1651/**
1652 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1653 * @lock: the rt_mutex to take
1654 * @waiter: the pre-initialized rt_mutex_waiter
1655 * @task: the task to prepare
1656 *
1657 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1658 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1659 *
1660 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1661 * on failure.
1662 *
1663 * Returns:
1664 * 0 - task blocked on lock
1665 * 1 - acquired the lock for task, caller should wake it up
1666 * <0 - error
1667 *
1668 * Special API call for PI-futex support.
1669 */
1670int __sched rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1671 struct rt_mutex_waiter *waiter,
1672 struct task_struct *task)
1673{
1674 int ret;
1675
1676 raw_spin_lock_irq(&lock->wait_lock);
1677 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1678 if (unlikely(ret))
1679 remove_waiter(lock, waiter);
1680 raw_spin_unlock_irq(&lock->wait_lock);
1681
1682 return ret;
1683}
1684
1685/**
1686 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1687 * @lock: the rt_mutex we were woken on
1688 * @to: the timeout, null if none. hrtimer should already have
1689 * been started.
1690 * @waiter: the pre-initialized rt_mutex_waiter
1691 *
1692 * Wait for the lock acquisition started on our behalf by
1693 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1694 * rt_mutex_cleanup_proxy_lock().
1695 *
1696 * Returns:
1697 * 0 - success
1698 * <0 - error, one of -EINTR, -ETIMEDOUT
1699 *
1700 * Special API call for PI-futex support
1701 */
1702int __sched rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1703 struct hrtimer_sleeper *to,
1704 struct rt_mutex_waiter *waiter)
1705{
1706 int ret;
1707
1708 raw_spin_lock_irq(&lock->wait_lock);
1709 /* sleep on the mutex */
1710 set_current_state(TASK_INTERRUPTIBLE);
1711 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1712 /*
1713 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1714 * have to fix that up.
1715 */
1716 fixup_rt_mutex_waiters(lock);
1717 raw_spin_unlock_irq(&lock->wait_lock);
1718
1719 return ret;
1720}
1721
1722/**
1723 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1724 * @lock: the rt_mutex we were woken on
1725 * @waiter: the pre-initialized rt_mutex_waiter
1726 *
1727 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1728 * rt_mutex_wait_proxy_lock().
1729 *
1730 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1731 * in fact still be granted ownership until we're removed. Therefore we can
1732 * find we are in fact the owner and must disregard the
1733 * rt_mutex_wait_proxy_lock() failure.
1734 *
1735 * Returns:
1736 * true - did the cleanup, we done.
1737 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1738 * caller should disregards its return value.
1739 *
1740 * Special API call for PI-futex support
1741 */
1742bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1743 struct rt_mutex_waiter *waiter)
1744{
1745 bool cleanup = false;
1746
1747 raw_spin_lock_irq(&lock->wait_lock);
1748 /*
1749 * Do an unconditional try-lock, this deals with the lock stealing
1750 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1751 * sets a NULL owner.
1752 *
1753 * We're not interested in the return value, because the subsequent
1754 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1755 * we will own the lock and it will have removed the waiter. If we
1756 * failed the trylock, we're still not owner and we need to remove
1757 * ourselves.
1758 */
1759 try_to_take_rt_mutex(lock, current, waiter);
1760 /*
1761 * Unless we're the owner; we're still enqueued on the wait_list.
1762 * So check if we became owner, if not, take us off the wait_list.
1763 */
1764 if (rt_mutex_owner(lock) != current) {
1765 remove_waiter(lock, waiter);
1766 cleanup = true;
1767 }
1768 /*
1769 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1770 * have to fix that up.
1771 */
1772 fixup_rt_mutex_waiters(lock);
1773
1774 raw_spin_unlock_irq(&lock->wait_lock);
1775
1776 return cleanup;
1777}
1778
1779#ifdef CONFIG_DEBUG_RT_MUTEXES
1780void rt_mutex_debug_task_free(struct task_struct *task)
1781{
1782 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
1783 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
1784}
1785#endif