Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * kexec: kexec_file_load system call
  3 *
  4 * Copyright (C) 2014 Red Hat Inc.
  5 * Authors:
  6 *      Vivek Goyal <vgoyal@redhat.com>
  7 *
  8 * This source code is licensed under the GNU General Public License,
  9 * Version 2.  See the file COPYING for more details.
 10 */
 11
 12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 13
 14#include <linux/capability.h>
 15#include <linux/mm.h>
 16#include <linux/file.h>
 17#include <linux/slab.h>
 18#include <linux/kexec.h>
 
 19#include <linux/mutex.h>
 20#include <linux/list.h>
 21#include <linux/fs.h>
 
 22#include <crypto/hash.h>
 23#include <crypto/sha.h>
 
 
 
 
 24#include <linux/syscalls.h>
 25#include <linux/vmalloc.h>
 26#include "kexec_internal.h"
 27
 
 
 28/*
 29 * Declare these symbols weak so that if architecture provides a purgatory,
 30 * these will be overridden.
 
 31 */
 32char __weak kexec_purgatory[0];
 33size_t __weak kexec_purgatory_size = 0;
 
 
 
 34
 35static int kexec_calculate_store_digests(struct kimage *image);
 
 
 
 
 
 
 
 
 
 36
 37/* Architectures can provide this probe function */
 38int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
 39					 unsigned long buf_len)
 40{
 41	return -ENOEXEC;
 
 
 
 
 
 
 
 
 
 
 
 42}
 43
 44void * __weak arch_kexec_kernel_image_load(struct kimage *image)
 45{
 46	return ERR_PTR(-ENOEXEC);
 
 
 
 
 
 
 
 
 47}
 48
 49int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
 50{
 51	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 52}
 53
 54#ifdef CONFIG_KEXEC_VERIFY_SIG
 55int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 56					unsigned long buf_len)
 57{
 58	return -EKEYREJECTED;
 59}
 60#endif
 61
 62/* Apply relocations of type RELA */
 
 
 
 
 
 
 
 
 63int __weak
 64arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 65				 unsigned int relsec)
 66{
 67	pr_err("RELA relocation unsupported.\n");
 68	return -ENOEXEC;
 69}
 70
 71/* Apply relocations of type REL */
 
 
 
 
 
 
 
 
 72int __weak
 73arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
 74			     unsigned int relsec)
 75{
 76	pr_err("REL relocation unsupported.\n");
 77	return -ENOEXEC;
 78}
 79
 80/*
 81 * Free up memory used by kernel, initrd, and command line. This is temporary
 82 * memory allocation which is not needed any more after these buffers have
 83 * been loaded into separate segments and have been copied elsewhere.
 84 */
 85void kimage_file_post_load_cleanup(struct kimage *image)
 86{
 87	struct purgatory_info *pi = &image->purgatory_info;
 88
 89	vfree(image->kernel_buf);
 90	image->kernel_buf = NULL;
 91
 92	vfree(image->initrd_buf);
 93	image->initrd_buf = NULL;
 94
 95	kfree(image->cmdline_buf);
 96	image->cmdline_buf = NULL;
 97
 98	vfree(pi->purgatory_buf);
 99	pi->purgatory_buf = NULL;
100
101	vfree(pi->sechdrs);
102	pi->sechdrs = NULL;
103
 
 
 
 
 
104	/* See if architecture has anything to cleanup post load */
105	arch_kimage_file_post_load_cleanup(image);
106
107	/*
108	 * Above call should have called into bootloader to free up
109	 * any data stored in kimage->image_loader_data. It should
110	 * be ok now to free it up.
111	 */
112	kfree(image->image_loader_data);
113	image->image_loader_data = NULL;
114}
115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116/*
117 * In file mode list of segments is prepared by kernel. Copy relevant
118 * data from user space, do error checking, prepare segment list
119 */
120static int
121kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122			     const char __user *cmdline_ptr,
123			     unsigned long cmdline_len, unsigned flags)
124{
125	int ret = 0;
126	void *ldata;
127	loff_t size;
128
129	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130				       &size, INT_MAX, READING_KEXEC_IMAGE);
131	if (ret)
132		return ret;
133	image->kernel_buf_len = size;
134
135	/* Call arch image probe handlers */
136	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137					    image->kernel_buf_len);
138	if (ret)
139		goto out;
140
141#ifdef CONFIG_KEXEC_VERIFY_SIG
142	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143					   image->kernel_buf_len);
144	if (ret) {
145		pr_debug("kernel signature verification failed.\n");
146		goto out;
147	}
148	pr_debug("kernel signature verification successful.\n");
149#endif
150	/* It is possible that there no initramfs is being loaded */
151	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
152		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153					       &size, INT_MAX,
154					       READING_KEXEC_INITRAMFS);
155		if (ret)
156			goto out;
157		image->initrd_buf_len = size;
 
158	}
159
160	if (cmdline_len) {
161		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162		if (!image->cmdline_buf) {
163			ret = -ENOMEM;
164			goto out;
165		}
166
167		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168				     cmdline_len);
169		if (ret) {
170			ret = -EFAULT;
171			goto out;
172		}
173
174		image->cmdline_buf_len = cmdline_len;
175
176		/* command line should be a string with last byte null */
177		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178			ret = -EINVAL;
179			goto out;
180		}
 
 
 
181	}
182
 
 
 
183	/* Call arch image load handlers */
184	ldata = arch_kexec_kernel_image_load(image);
185
186	if (IS_ERR(ldata)) {
187		ret = PTR_ERR(ldata);
188		goto out;
189	}
190
191	image->image_loader_data = ldata;
192out:
193	/* In case of error, free up all allocated memory in this function */
194	if (ret)
195		kimage_file_post_load_cleanup(image);
196	return ret;
197}
198
199static int
200kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201		       int initrd_fd, const char __user *cmdline_ptr,
202		       unsigned long cmdline_len, unsigned long flags)
203{
204	int ret;
205	struct kimage *image;
206	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208	image = do_kimage_alloc_init();
209	if (!image)
210		return -ENOMEM;
211
212	image->file_mode = 1;
213
214	if (kexec_on_panic) {
215		/* Enable special crash kernel control page alloc policy. */
216		image->control_page = crashk_res.start;
217		image->type = KEXEC_TYPE_CRASH;
218	}
219
220	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221					   cmdline_ptr, cmdline_len, flags);
222	if (ret)
223		goto out_free_image;
224
225	ret = sanity_check_segment_list(image);
226	if (ret)
227		goto out_free_post_load_bufs;
228
229	ret = -ENOMEM;
230	image->control_code_page = kimage_alloc_control_pages(image,
231					   get_order(KEXEC_CONTROL_PAGE_SIZE));
232	if (!image->control_code_page) {
233		pr_err("Could not allocate control_code_buffer\n");
234		goto out_free_post_load_bufs;
235	}
236
237	if (!kexec_on_panic) {
238		image->swap_page = kimage_alloc_control_pages(image, 0);
239		if (!image->swap_page) {
240			pr_err("Could not allocate swap buffer\n");
241			goto out_free_control_pages;
242		}
243	}
244
245	*rimage = image;
246	return 0;
247out_free_control_pages:
248	kimage_free_page_list(&image->control_pages);
249out_free_post_load_bufs:
250	kimage_file_post_load_cleanup(image);
251out_free_image:
252	kfree(image);
253	return ret;
254}
255
256SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258		unsigned long, flags)
259{
260	int ret = 0, i;
261	struct kimage **dest_image, *image;
262
263	/* We only trust the superuser with rebooting the system. */
264	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265		return -EPERM;
266
267	/* Make sure we have a legal set of flags */
268	if (flags != (flags & KEXEC_FILE_FLAGS))
269		return -EINVAL;
270
271	image = NULL;
272
273	if (!mutex_trylock(&kexec_mutex))
274		return -EBUSY;
275
276	dest_image = &kexec_image;
277	if (flags & KEXEC_FILE_ON_CRASH)
278		dest_image = &kexec_crash_image;
 
 
 
279
280	if (flags & KEXEC_FILE_UNLOAD)
281		goto exchange;
282
283	/*
284	 * In case of crash, new kernel gets loaded in reserved region. It is
285	 * same memory where old crash kernel might be loaded. Free any
286	 * current crash dump kernel before we corrupt it.
287	 */
288	if (flags & KEXEC_FILE_ON_CRASH)
289		kimage_free(xchg(&kexec_crash_image, NULL));
290
291	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
292				     cmdline_len, flags);
293	if (ret)
294		goto out;
295
296	ret = machine_kexec_prepare(image);
297	if (ret)
298		goto out;
299
 
 
 
 
 
 
 
 
300	ret = kexec_calculate_store_digests(image);
301	if (ret)
302		goto out;
303
304	for (i = 0; i < image->nr_segments; i++) {
305		struct kexec_segment *ksegment;
306
307		ksegment = &image->segment[i];
308		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
309			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
310			 ksegment->memsz);
311
312		ret = kimage_load_segment(image, &image->segment[i]);
313		if (ret)
314			goto out;
315	}
316
317	kimage_terminate(image);
318
 
 
 
 
319	/*
320	 * Free up any temporary buffers allocated which are not needed
321	 * after image has been loaded
322	 */
323	kimage_file_post_load_cleanup(image);
324exchange:
325	image = xchg(dest_image, image);
326out:
 
 
 
327	mutex_unlock(&kexec_mutex);
328	kimage_free(image);
329	return ret;
330}
331
332static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
333				    struct kexec_buf *kbuf)
334{
335	struct kimage *image = kbuf->image;
336	unsigned long temp_start, temp_end;
337
338	temp_end = min(end, kbuf->buf_max);
339	temp_start = temp_end - kbuf->memsz;
340
341	do {
342		/* align down start */
343		temp_start = temp_start & (~(kbuf->buf_align - 1));
344
345		if (temp_start < start || temp_start < kbuf->buf_min)
346			return 0;
347
348		temp_end = temp_start + kbuf->memsz - 1;
349
350		/*
351		 * Make sure this does not conflict with any of existing
352		 * segments
353		 */
354		if (kimage_is_destination_range(image, temp_start, temp_end)) {
355			temp_start = temp_start - PAGE_SIZE;
356			continue;
357		}
358
359		/* We found a suitable memory range */
360		break;
361	} while (1);
362
363	/* If we are here, we found a suitable memory range */
364	kbuf->mem = temp_start;
365
366	/* Success, stop navigating through remaining System RAM ranges */
367	return 1;
368}
369
370static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
371				     struct kexec_buf *kbuf)
372{
373	struct kimage *image = kbuf->image;
374	unsigned long temp_start, temp_end;
375
376	temp_start = max(start, kbuf->buf_min);
377
378	do {
379		temp_start = ALIGN(temp_start, kbuf->buf_align);
380		temp_end = temp_start + kbuf->memsz - 1;
381
382		if (temp_end > end || temp_end > kbuf->buf_max)
383			return 0;
384		/*
385		 * Make sure this does not conflict with any of existing
386		 * segments
387		 */
388		if (kimage_is_destination_range(image, temp_start, temp_end)) {
389			temp_start = temp_start + PAGE_SIZE;
390			continue;
391		}
392
393		/* We found a suitable memory range */
394		break;
395	} while (1);
396
397	/* If we are here, we found a suitable memory range */
398	kbuf->mem = temp_start;
399
400	/* Success, stop navigating through remaining System RAM ranges */
401	return 1;
402}
403
404static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
405{
406	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 
407	unsigned long sz = end - start + 1;
408
409	/* Returning 0 will take to next memory range */
 
 
 
 
 
410	if (sz < kbuf->memsz)
411		return 0;
412
413	if (end < kbuf->buf_min || start > kbuf->buf_max)
414		return 0;
415
416	/*
417	 * Allocate memory top down with-in ram range. Otherwise bottom up
418	 * allocation.
419	 */
420	if (kbuf->top_down)
421		return locate_mem_hole_top_down(start, end, kbuf);
422	return locate_mem_hole_bottom_up(start, end, kbuf);
423}
424
425/*
426 * Helper function for placing a buffer in a kexec segment. This assumes
427 * that kexec_mutex is held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428 */
429int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
430		     unsigned long memsz, unsigned long buf_align,
431		     unsigned long buf_min, unsigned long buf_max,
432		     bool top_down, unsigned long *load_addr)
433{
 
 
 
 
 
 
 
 
434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435	struct kexec_segment *ksegment;
436	struct kexec_buf buf, *kbuf;
437	int ret;
438
439	/* Currently adding segment this way is allowed only in file mode */
440	if (!image->file_mode)
441		return -EINVAL;
442
443	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
444		return -EINVAL;
445
446	/*
447	 * Make sure we are not trying to add buffer after allocating
448	 * control pages. All segments need to be placed first before
449	 * any control pages are allocated. As control page allocation
450	 * logic goes through list of segments to make sure there are
451	 * no destination overlaps.
452	 */
453	if (!list_empty(&image->control_pages)) {
454		WARN_ON(1);
455		return -EINVAL;
456	}
457
458	memset(&buf, 0, sizeof(struct kexec_buf));
459	kbuf = &buf;
460	kbuf->image = image;
461	kbuf->buffer = buffer;
462	kbuf->bufsz = bufsz;
463
464	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
465	kbuf->buf_align = max(buf_align, PAGE_SIZE);
466	kbuf->buf_min = buf_min;
467	kbuf->buf_max = buf_max;
468	kbuf->top_down = top_down;
469
470	/* Walk the RAM ranges and allocate a suitable range for the buffer */
471	if (image->type == KEXEC_TYPE_CRASH)
472		ret = walk_iomem_res_desc(crashk_res.desc,
473				IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
474				crashk_res.start, crashk_res.end, kbuf,
475				locate_mem_hole_callback);
476	else
477		ret = walk_system_ram_res(0, -1, kbuf,
478					  locate_mem_hole_callback);
479	if (ret != 1) {
480		/* A suitable memory range could not be found for buffer */
481		return -EADDRNOTAVAIL;
482	}
483
484	/* Found a suitable memory range */
485	ksegment = &image->segment[image->nr_segments];
486	ksegment->kbuf = kbuf->buffer;
487	ksegment->bufsz = kbuf->bufsz;
488	ksegment->mem = kbuf->mem;
489	ksegment->memsz = kbuf->memsz;
490	image->nr_segments++;
491	*load_addr = ksegment->mem;
492	return 0;
493}
494
495/* Calculate and store the digest of segments */
496static int kexec_calculate_store_digests(struct kimage *image)
497{
498	struct crypto_shash *tfm;
499	struct shash_desc *desc;
500	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
501	size_t desc_size, nullsz;
502	char *digest;
503	void *zero_buf;
504	struct kexec_sha_region *sha_regions;
505	struct purgatory_info *pi = &image->purgatory_info;
506
 
 
 
507	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
508	zero_buf_sz = PAGE_SIZE;
509
510	tfm = crypto_alloc_shash("sha256", 0, 0);
511	if (IS_ERR(tfm)) {
512		ret = PTR_ERR(tfm);
513		goto out;
514	}
515
516	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
517	desc = kzalloc(desc_size, GFP_KERNEL);
518	if (!desc) {
519		ret = -ENOMEM;
520		goto out_free_tfm;
521	}
522
523	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
524	sha_regions = vzalloc(sha_region_sz);
525	if (!sha_regions)
 
526		goto out_free_desc;
 
527
528	desc->tfm   = tfm;
529	desc->flags = 0;
530
531	ret = crypto_shash_init(desc);
532	if (ret < 0)
533		goto out_free_sha_regions;
534
535	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
536	if (!digest) {
537		ret = -ENOMEM;
538		goto out_free_sha_regions;
539	}
540
541	for (j = i = 0; i < image->nr_segments; i++) {
542		struct kexec_segment *ksegment;
543
544		ksegment = &image->segment[i];
545		/*
546		 * Skip purgatory as it will be modified once we put digest
547		 * info in purgatory.
548		 */
549		if (ksegment->kbuf == pi->purgatory_buf)
550			continue;
551
552		ret = crypto_shash_update(desc, ksegment->kbuf,
553					  ksegment->bufsz);
554		if (ret)
555			break;
556
557		/*
558		 * Assume rest of the buffer is filled with zero and
559		 * update digest accordingly.
560		 */
561		nullsz = ksegment->memsz - ksegment->bufsz;
562		while (nullsz) {
563			unsigned long bytes = nullsz;
564
565			if (bytes > zero_buf_sz)
566				bytes = zero_buf_sz;
567			ret = crypto_shash_update(desc, zero_buf, bytes);
568			if (ret)
569				break;
570			nullsz -= bytes;
571		}
572
573		if (ret)
574			break;
575
576		sha_regions[j].start = ksegment->mem;
577		sha_regions[j].len = ksegment->memsz;
578		j++;
579	}
580
581	if (!ret) {
582		ret = crypto_shash_final(desc, digest);
583		if (ret)
584			goto out_free_digest;
585		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
586						sha_regions, sha_region_sz, 0);
587		if (ret)
588			goto out_free_digest;
589
590		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
591						digest, SHA256_DIGEST_SIZE, 0);
592		if (ret)
593			goto out_free_digest;
594	}
595
596out_free_digest:
597	kfree(digest);
598out_free_sha_regions:
599	vfree(sha_regions);
600out_free_desc:
601	kfree(desc);
602out_free_tfm:
603	kfree(tfm);
604out:
605	return ret;
606}
607
608/* Actually load purgatory. Lot of code taken from kexec-tools */
609static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
610				  unsigned long max, int top_down)
 
 
 
 
 
 
 
 
 
 
611{
612	struct purgatory_info *pi = &image->purgatory_info;
613	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
614	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
615	unsigned char *buf_addr, *src;
616	int i, ret = 0, entry_sidx = -1;
617	const Elf_Shdr *sechdrs_c;
618	Elf_Shdr *sechdrs = NULL;
619	void *purgatory_buf = NULL;
620
621	/*
622	 * sechdrs_c points to section headers in purgatory and are read
623	 * only. No modifications allowed.
624	 */
625	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
626
627	/*
628	 * We can not modify sechdrs_c[] and its fields. It is read only.
629	 * Copy it over to a local copy where one can store some temporary
630	 * data and free it at the end. We need to modify ->sh_addr and
631	 * ->sh_offset fields to keep track of permanent and temporary
632	 * locations of sections.
633	 */
634	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
635	if (!sechdrs)
636		return -ENOMEM;
637
638	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
639
640	/*
641	 * We seem to have multiple copies of sections. First copy is which
642	 * is embedded in kernel in read only section. Some of these sections
643	 * will be copied to a temporary buffer and relocated. And these
644	 * sections will finally be copied to their final destination at
645	 * segment load time.
646	 *
647	 * Use ->sh_offset to reflect section address in memory. It will
648	 * point to original read only copy if section is not allocatable.
649	 * Otherwise it will point to temporary copy which will be relocated.
650	 *
651	 * Use ->sh_addr to contain final address of the section where it
652	 * will go during execution time.
653	 */
654	for (i = 0; i < pi->ehdr->e_shnum; i++) {
655		if (sechdrs[i].sh_type == SHT_NOBITS)
656			continue;
657
658		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
659						sechdrs[i].sh_offset;
660	}
661
662	/*
663	 * Identify entry point section and make entry relative to section
664	 * start.
665	 */
666	entry = pi->ehdr->e_entry;
667	for (i = 0; i < pi->ehdr->e_shnum; i++) {
668		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
669			continue;
670
671		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
672			continue;
673
674		/* Make entry section relative */
675		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
676		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
677		     pi->ehdr->e_entry)) {
678			entry_sidx = i;
679			entry -= sechdrs[i].sh_addr;
680			break;
681		}
682	}
683
684	/* Determine how much memory is needed to load relocatable object. */
685	buf_align = 1;
686	bss_align = 1;
687	buf_sz = 0;
688	bss_sz = 0;
689
690	for (i = 0; i < pi->ehdr->e_shnum; i++) {
691		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
692			continue;
693
694		align = sechdrs[i].sh_addralign;
695		if (sechdrs[i].sh_type != SHT_NOBITS) {
696			if (buf_align < align)
697				buf_align = align;
698			buf_sz = ALIGN(buf_sz, align);
699			buf_sz += sechdrs[i].sh_size;
700		} else {
701			/* bss section */
702			if (bss_align < align)
703				bss_align = align;
704			bss_sz = ALIGN(bss_sz, align);
705			bss_sz += sechdrs[i].sh_size;
706		}
707	}
 
 
 
 
708
709	/* Determine the bss padding required to align bss properly */
710	bss_pad = 0;
711	if (buf_sz & (bss_align - 1))
712		bss_pad = bss_align - (buf_sz & (bss_align - 1));
713
714	memsz = buf_sz + bss_pad + bss_sz;
715
716	/* Allocate buffer for purgatory */
717	purgatory_buf = vzalloc(buf_sz);
718	if (!purgatory_buf) {
719		ret = -ENOMEM;
720		goto out;
721	}
722
723	if (buf_align < bss_align)
724		buf_align = bss_align;
725
726	/* Add buffer to segment list */
727	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
728				buf_align, min, max, top_down,
729				&pi->purgatory_load_addr);
730	if (ret)
731		goto out;
732
733	/* Load SHF_ALLOC sections */
734	buf_addr = purgatory_buf;
735	load_addr = curr_load_addr = pi->purgatory_load_addr;
736	bss_addr = load_addr + buf_sz + bss_pad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737
738	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 
 
 
739		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
740			continue;
741
742		align = sechdrs[i].sh_addralign;
743		if (sechdrs[i].sh_type != SHT_NOBITS) {
744			curr_load_addr = ALIGN(curr_load_addr, align);
745			offset = curr_load_addr - load_addr;
746			/* We already modifed ->sh_offset to keep src addr */
747			src = (char *) sechdrs[i].sh_offset;
748			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
749
750			/* Store load address and source address of section */
751			sechdrs[i].sh_addr = curr_load_addr;
752
753			/*
754			 * This section got copied to temporary buffer. Update
755			 * ->sh_offset accordingly.
756			 */
757			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
758
759			/* Advance to the next address */
760			curr_load_addr += sechdrs[i].sh_size;
761		} else {
762			bss_addr = ALIGN(bss_addr, align);
763			sechdrs[i].sh_addr = bss_addr;
764			bss_addr += sechdrs[i].sh_size;
 
765		}
766	}
767
768	/* Update entry point based on load address of text section */
769	if (entry_sidx >= 0)
770		entry += sechdrs[entry_sidx].sh_addr;
771
772	/* Make kernel jump to purgatory after shutdown */
773	image->start = entry;
 
 
 
 
 
 
774
775	/* Used later to get/set symbol values */
776	pi->sechdrs = sechdrs;
 
 
 
 
 
 
777
778	/*
779	 * Used later to identify which section is purgatory and skip it
780	 * from checksumming.
781	 */
782	pi->purgatory_buf = purgatory_buf;
783	return ret;
784out:
785	vfree(sechdrs);
786	vfree(purgatory_buf);
787	return ret;
788}
789
790static int kexec_apply_relocations(struct kimage *image)
791{
792	int i, ret;
793	struct purgatory_info *pi = &image->purgatory_info;
794	Elf_Shdr *sechdrs = pi->sechdrs;
 
 
795
796	/* Apply relocations */
797	for (i = 0; i < pi->ehdr->e_shnum; i++) {
798		Elf_Shdr *section, *symtab;
 
 
799
800		if (sechdrs[i].sh_type != SHT_RELA &&
801		    sechdrs[i].sh_type != SHT_REL)
 
 
802			continue;
803
804		/*
805		 * For section of type SHT_RELA/SHT_REL,
806		 * ->sh_link contains section header index of associated
807		 * symbol table. And ->sh_info contains section header
808		 * index of section to which relocations apply.
809		 */
810		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
811		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
812			return -ENOEXEC;
813
814		section = &sechdrs[sechdrs[i].sh_info];
815		symtab = &sechdrs[sechdrs[i].sh_link];
816
817		if (!(section->sh_flags & SHF_ALLOC))
818			continue;
819
820		/*
821		 * symtab->sh_link contain section header index of associated
822		 * string table.
823		 */
824		if (symtab->sh_link >= pi->ehdr->e_shnum)
825			/* Invalid section number? */
826			continue;
827
828		/*
829		 * Respective architecture needs to provide support for applying
830		 * relocations of type SHT_RELA/SHT_REL.
831		 */
832		if (sechdrs[i].sh_type == SHT_RELA)
833			ret = arch_kexec_apply_relocations_add(pi->ehdr,
834							       sechdrs, i);
835		else if (sechdrs[i].sh_type == SHT_REL)
836			ret = arch_kexec_apply_relocations(pi->ehdr,
837							   sechdrs, i);
838		if (ret)
839			return ret;
840	}
841
842	return 0;
843}
844
845/* Load relocatable purgatory object and relocate it appropriately */
846int kexec_load_purgatory(struct kimage *image, unsigned long min,
847			 unsigned long max, int top_down,
848			 unsigned long *load_addr)
 
 
 
 
 
 
 
 
849{
850	struct purgatory_info *pi = &image->purgatory_info;
851	int ret;
852
853	if (kexec_purgatory_size <= 0)
854		return -EINVAL;
855
856	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
857		return -ENOEXEC;
858
859	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
860
861	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
862	    || pi->ehdr->e_type != ET_REL
863	    || !elf_check_arch(pi->ehdr)
864	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
865		return -ENOEXEC;
866
867	if (pi->ehdr->e_shoff >= kexec_purgatory_size
868	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
869	    kexec_purgatory_size - pi->ehdr->e_shoff))
870		return -ENOEXEC;
871
872	ret = __kexec_load_purgatory(image, min, max, top_down);
873	if (ret)
874		return ret;
875
 
 
 
 
876	ret = kexec_apply_relocations(image);
877	if (ret)
878		goto out;
879
880	*load_addr = pi->purgatory_load_addr;
881	return 0;
882out:
883	vfree(pi->sechdrs);
 
 
884	vfree(pi->purgatory_buf);
 
885	return ret;
886}
887
888static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
889					    const char *name)
 
 
 
 
 
 
 
890{
891	Elf_Sym *syms;
892	Elf_Shdr *sechdrs;
893	Elf_Ehdr *ehdr;
894	int i, k;
895	const char *strtab;
 
896
897	if (!pi->sechdrs || !pi->ehdr)
898		return NULL;
899
900	sechdrs = pi->sechdrs;
901	ehdr = pi->ehdr;
 
902
903	for (i = 0; i < ehdr->e_shnum; i++) {
904		if (sechdrs[i].sh_type != SHT_SYMTAB)
905			continue;
906
907		if (sechdrs[i].sh_link >= ehdr->e_shnum)
908			/* Invalid strtab section number */
909			continue;
910		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
911		syms = (Elf_Sym *)sechdrs[i].sh_offset;
912
913		/* Go through symbols for a match */
914		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
915			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
916				continue;
917
918			if (strcmp(strtab + syms[k].st_name, name) != 0)
919				continue;
920
921			if (syms[k].st_shndx == SHN_UNDEF ||
922			    syms[k].st_shndx >= ehdr->e_shnum) {
923				pr_debug("Symbol: %s has bad section index %d.\n",
924						name, syms[k].st_shndx);
925				return NULL;
926			}
927
928			/* Found the symbol we are looking for */
929			return &syms[k];
930		}
931	}
932
933	return NULL;
934}
935
936void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
937{
938	struct purgatory_info *pi = &image->purgatory_info;
939	Elf_Sym *sym;
940	Elf_Shdr *sechdr;
941
942	sym = kexec_purgatory_find_symbol(pi, name);
943	if (!sym)
944		return ERR_PTR(-EINVAL);
945
946	sechdr = &pi->sechdrs[sym->st_shndx];
947
948	/*
949	 * Returns the address where symbol will finally be loaded after
950	 * kexec_load_segment()
951	 */
952	return (void *)(sechdr->sh_addr + sym->st_value);
953}
954
955/*
956 * Get or set value of a symbol. If "get_value" is true, symbol value is
957 * returned in buf otherwise symbol value is set based on value in buf.
958 */
959int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
960				   void *buf, unsigned int size, bool get_value)
961{
962	Elf_Sym *sym;
963	Elf_Shdr *sechdrs;
964	struct purgatory_info *pi = &image->purgatory_info;
 
 
965	char *sym_buf;
966
967	sym = kexec_purgatory_find_symbol(pi, name);
968	if (!sym)
969		return -EINVAL;
970
971	if (sym->st_size != size) {
972		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
973		       name, (unsigned long)sym->st_size, size);
974		return -EINVAL;
975	}
976
977	sechdrs = pi->sechdrs;
978
979	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
980		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
981		       get_value ? "get" : "set");
982		return -EINVAL;
983	}
984
985	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
986					sym->st_value;
987
988	if (get_value)
989		memcpy((void *)buf, sym_buf, size);
990	else
991		memcpy((void *)sym_buf, buf, size);
992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993	return 0;
994}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
 
 
 
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32static int kexec_calculate_store_digests(struct kimage *image);
  33
  34/*
  35 * Currently this is the only default function that is exported as some
  36 * architectures need it to do additional handlings.
  37 * In the future, other default functions may be exported too if required.
  38 */
  39int kexec_image_probe_default(struct kimage *image, void *buf,
  40			      unsigned long buf_len)
  41{
  42	const struct kexec_file_ops * const *fops;
  43	int ret = -ENOEXEC;
  44
  45	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  46		ret = (*fops)->probe(buf, buf_len);
  47		if (!ret) {
  48			image->fops = *fops;
  49			return ret;
  50		}
  51	}
  52
  53	return ret;
  54}
  55
  56/* Architectures can provide this probe function */
  57int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  58					 unsigned long buf_len)
  59{
  60	return kexec_image_probe_default(image, buf, buf_len);
  61}
  62
  63static void *kexec_image_load_default(struct kimage *image)
  64{
  65	if (!image->fops || !image->fops->load)
  66		return ERR_PTR(-ENOEXEC);
  67
  68	return image->fops->load(image, image->kernel_buf,
  69				 image->kernel_buf_len, image->initrd_buf,
  70				 image->initrd_buf_len, image->cmdline_buf,
  71				 image->cmdline_buf_len);
  72}
  73
  74void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  75{
  76	return kexec_image_load_default(image);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
  87int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  88{
  89	return kexec_image_post_load_cleanup_default(image);
  90}
  91
  92#ifdef CONFIG_KEXEC_SIG
  93static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  94					  unsigned long buf_len)
  95{
  96	if (!image->fops || !image->fops->verify_sig) {
  97		pr_debug("kernel loader does not support signature verification.\n");
  98		return -EKEYREJECTED;
  99	}
 100
 101	return image->fops->verify_sig(buf, buf_len);
 102}
 103
 
 104int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 105					unsigned long buf_len)
 106{
 107	return kexec_image_verify_sig_default(image, buf, buf_len);
 108}
 109#endif
 110
 111/*
 112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 113 * @pi:		Purgatory to be relocated.
 114 * @section:	Section relocations applying to.
 115 * @relsec:	Section containing RELAs.
 116 * @symtab:	Corresponding symtab.
 117 *
 118 * Return: 0 on success, negative errno on error.
 119 */
 120int __weak
 121arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 122				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 123{
 124	pr_err("RELA relocation unsupported.\n");
 125	return -ENOEXEC;
 126}
 127
 128/*
 129 * arch_kexec_apply_relocations - apply relocations of type REL
 130 * @pi:		Purgatory to be relocated.
 131 * @section:	Section relocations applying to.
 132 * @relsec:	Section containing RELs.
 133 * @symtab:	Corresponding symtab.
 134 *
 135 * Return: 0 on success, negative errno on error.
 136 */
 137int __weak
 138arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 139			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 140{
 141	pr_err("REL relocation unsupported.\n");
 142	return -ENOEXEC;
 143}
 144
 145/*
 146 * Free up memory used by kernel, initrd, and command line. This is temporary
 147 * memory allocation which is not needed any more after these buffers have
 148 * been loaded into separate segments and have been copied elsewhere.
 149 */
 150void kimage_file_post_load_cleanup(struct kimage *image)
 151{
 152	struct purgatory_info *pi = &image->purgatory_info;
 153
 154	vfree(image->kernel_buf);
 155	image->kernel_buf = NULL;
 156
 157	vfree(image->initrd_buf);
 158	image->initrd_buf = NULL;
 159
 160	kfree(image->cmdline_buf);
 161	image->cmdline_buf = NULL;
 162
 163	vfree(pi->purgatory_buf);
 164	pi->purgatory_buf = NULL;
 165
 166	vfree(pi->sechdrs);
 167	pi->sechdrs = NULL;
 168
 169#ifdef CONFIG_IMA_KEXEC
 170	vfree(image->ima_buffer);
 171	image->ima_buffer = NULL;
 172#endif /* CONFIG_IMA_KEXEC */
 173
 174	/* See if architecture has anything to cleanup post load */
 175	arch_kimage_file_post_load_cleanup(image);
 176
 177	/*
 178	 * Above call should have called into bootloader to free up
 179	 * any data stored in kimage->image_loader_data. It should
 180	 * be ok now to free it up.
 181	 */
 182	kfree(image->image_loader_data);
 183	image->image_loader_data = NULL;
 184}
 185
 186#ifdef CONFIG_KEXEC_SIG
 187static int
 188kimage_validate_signature(struct kimage *image)
 189{
 190	int ret;
 191
 192	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 193					   image->kernel_buf_len);
 194	if (ret) {
 195
 196		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 197			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 198			return ret;
 199		}
 200
 201		/*
 202		 * If IMA is guaranteed to appraise a signature on the kexec
 203		 * image, permit it even if the kernel is otherwise locked
 204		 * down.
 205		 */
 206		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 207		    security_locked_down(LOCKDOWN_KEXEC))
 208			return -EPERM;
 209
 210		pr_debug("kernel signature verification failed (%d).\n", ret);
 211	}
 212
 213	return 0;
 214}
 215#endif
 216
 217/*
 218 * In file mode list of segments is prepared by kernel. Copy relevant
 219 * data from user space, do error checking, prepare segment list
 220 */
 221static int
 222kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 223			     const char __user *cmdline_ptr,
 224			     unsigned long cmdline_len, unsigned flags)
 225{
 226	int ret;
 227	void *ldata;
 
 228
 229	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 230				       INT_MAX, NULL, READING_KEXEC_IMAGE);
 231	if (ret < 0)
 232		return ret;
 233	image->kernel_buf_len = ret;
 234
 235	/* Call arch image probe handlers */
 236	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 237					    image->kernel_buf_len);
 238	if (ret)
 239		goto out;
 240
 241#ifdef CONFIG_KEXEC_SIG
 242	ret = kimage_validate_signature(image);
 243
 244	if (ret)
 
 245		goto out;
 
 
 246#endif
 247	/* It is possible that there no initramfs is being loaded */
 248	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 249		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 250					       INT_MAX, NULL,
 251					       READING_KEXEC_INITRAMFS);
 252		if (ret < 0)
 253			goto out;
 254		image->initrd_buf_len = ret;
 255		ret = 0;
 256	}
 257
 258	if (cmdline_len) {
 259		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 260		if (IS_ERR(image->cmdline_buf)) {
 261			ret = PTR_ERR(image->cmdline_buf);
 262			image->cmdline_buf = NULL;
 
 
 
 
 
 
 263			goto out;
 264		}
 265
 266		image->cmdline_buf_len = cmdline_len;
 267
 268		/* command line should be a string with last byte null */
 269		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 270			ret = -EINVAL;
 271			goto out;
 272		}
 273
 274		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 275				  image->cmdline_buf_len - 1);
 276	}
 277
 278	/* IMA needs to pass the measurement list to the next kernel. */
 279	ima_add_kexec_buffer(image);
 280
 281	/* Call arch image load handlers */
 282	ldata = arch_kexec_kernel_image_load(image);
 283
 284	if (IS_ERR(ldata)) {
 285		ret = PTR_ERR(ldata);
 286		goto out;
 287	}
 288
 289	image->image_loader_data = ldata;
 290out:
 291	/* In case of error, free up all allocated memory in this function */
 292	if (ret)
 293		kimage_file_post_load_cleanup(image);
 294	return ret;
 295}
 296
 297static int
 298kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 299		       int initrd_fd, const char __user *cmdline_ptr,
 300		       unsigned long cmdline_len, unsigned long flags)
 301{
 302	int ret;
 303	struct kimage *image;
 304	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 305
 306	image = do_kimage_alloc_init();
 307	if (!image)
 308		return -ENOMEM;
 309
 310	image->file_mode = 1;
 311
 312	if (kexec_on_panic) {
 313		/* Enable special crash kernel control page alloc policy. */
 314		image->control_page = crashk_res.start;
 315		image->type = KEXEC_TYPE_CRASH;
 316	}
 317
 318	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 319					   cmdline_ptr, cmdline_len, flags);
 320	if (ret)
 321		goto out_free_image;
 322
 323	ret = sanity_check_segment_list(image);
 324	if (ret)
 325		goto out_free_post_load_bufs;
 326
 327	ret = -ENOMEM;
 328	image->control_code_page = kimage_alloc_control_pages(image,
 329					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 330	if (!image->control_code_page) {
 331		pr_err("Could not allocate control_code_buffer\n");
 332		goto out_free_post_load_bufs;
 333	}
 334
 335	if (!kexec_on_panic) {
 336		image->swap_page = kimage_alloc_control_pages(image, 0);
 337		if (!image->swap_page) {
 338			pr_err("Could not allocate swap buffer\n");
 339			goto out_free_control_pages;
 340		}
 341	}
 342
 343	*rimage = image;
 344	return 0;
 345out_free_control_pages:
 346	kimage_free_page_list(&image->control_pages);
 347out_free_post_load_bufs:
 348	kimage_file_post_load_cleanup(image);
 349out_free_image:
 350	kfree(image);
 351	return ret;
 352}
 353
 354SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 355		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 356		unsigned long, flags)
 357{
 358	int ret = 0, i;
 359	struct kimage **dest_image, *image;
 360
 361	/* We only trust the superuser with rebooting the system. */
 362	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 363		return -EPERM;
 364
 365	/* Make sure we have a legal set of flags */
 366	if (flags != (flags & KEXEC_FILE_FLAGS))
 367		return -EINVAL;
 368
 369	image = NULL;
 370
 371	if (!mutex_trylock(&kexec_mutex))
 372		return -EBUSY;
 373
 374	dest_image = &kexec_image;
 375	if (flags & KEXEC_FILE_ON_CRASH) {
 376		dest_image = &kexec_crash_image;
 377		if (kexec_crash_image)
 378			arch_kexec_unprotect_crashkres();
 379	}
 380
 381	if (flags & KEXEC_FILE_UNLOAD)
 382		goto exchange;
 383
 384	/*
 385	 * In case of crash, new kernel gets loaded in reserved region. It is
 386	 * same memory where old crash kernel might be loaded. Free any
 387	 * current crash dump kernel before we corrupt it.
 388	 */
 389	if (flags & KEXEC_FILE_ON_CRASH)
 390		kimage_free(xchg(&kexec_crash_image, NULL));
 391
 392	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 393				     cmdline_len, flags);
 394	if (ret)
 395		goto out;
 396
 397	ret = machine_kexec_prepare(image);
 398	if (ret)
 399		goto out;
 400
 401	/*
 402	 * Some architecture(like S390) may touch the crash memory before
 403	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 404	 */
 405	ret = kimage_crash_copy_vmcoreinfo(image);
 406	if (ret)
 407		goto out;
 408
 409	ret = kexec_calculate_store_digests(image);
 410	if (ret)
 411		goto out;
 412
 413	for (i = 0; i < image->nr_segments; i++) {
 414		struct kexec_segment *ksegment;
 415
 416		ksegment = &image->segment[i];
 417		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 418			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 419			 ksegment->memsz);
 420
 421		ret = kimage_load_segment(image, &image->segment[i]);
 422		if (ret)
 423			goto out;
 424	}
 425
 426	kimage_terminate(image);
 427
 428	ret = machine_kexec_post_load(image);
 429	if (ret)
 430		goto out;
 431
 432	/*
 433	 * Free up any temporary buffers allocated which are not needed
 434	 * after image has been loaded
 435	 */
 436	kimage_file_post_load_cleanup(image);
 437exchange:
 438	image = xchg(dest_image, image);
 439out:
 440	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 441		arch_kexec_protect_crashkres();
 442
 443	mutex_unlock(&kexec_mutex);
 444	kimage_free(image);
 445	return ret;
 446}
 447
 448static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 449				    struct kexec_buf *kbuf)
 450{
 451	struct kimage *image = kbuf->image;
 452	unsigned long temp_start, temp_end;
 453
 454	temp_end = min(end, kbuf->buf_max);
 455	temp_start = temp_end - kbuf->memsz;
 456
 457	do {
 458		/* align down start */
 459		temp_start = temp_start & (~(kbuf->buf_align - 1));
 460
 461		if (temp_start < start || temp_start < kbuf->buf_min)
 462			return 0;
 463
 464		temp_end = temp_start + kbuf->memsz - 1;
 465
 466		/*
 467		 * Make sure this does not conflict with any of existing
 468		 * segments
 469		 */
 470		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 471			temp_start = temp_start - PAGE_SIZE;
 472			continue;
 473		}
 474
 475		/* We found a suitable memory range */
 476		break;
 477	} while (1);
 478
 479	/* If we are here, we found a suitable memory range */
 480	kbuf->mem = temp_start;
 481
 482	/* Success, stop navigating through remaining System RAM ranges */
 483	return 1;
 484}
 485
 486static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 487				     struct kexec_buf *kbuf)
 488{
 489	struct kimage *image = kbuf->image;
 490	unsigned long temp_start, temp_end;
 491
 492	temp_start = max(start, kbuf->buf_min);
 493
 494	do {
 495		temp_start = ALIGN(temp_start, kbuf->buf_align);
 496		temp_end = temp_start + kbuf->memsz - 1;
 497
 498		if (temp_end > end || temp_end > kbuf->buf_max)
 499			return 0;
 500		/*
 501		 * Make sure this does not conflict with any of existing
 502		 * segments
 503		 */
 504		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 505			temp_start = temp_start + PAGE_SIZE;
 506			continue;
 507		}
 508
 509		/* We found a suitable memory range */
 510		break;
 511	} while (1);
 512
 513	/* If we are here, we found a suitable memory range */
 514	kbuf->mem = temp_start;
 515
 516	/* Success, stop navigating through remaining System RAM ranges */
 517	return 1;
 518}
 519
 520static int locate_mem_hole_callback(struct resource *res, void *arg)
 521{
 522	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 523	u64 start = res->start, end = res->end;
 524	unsigned long sz = end - start + 1;
 525
 526	/* Returning 0 will take to next memory range */
 527
 528	/* Don't use memory that will be detected and handled by a driver. */
 529	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 530		return 0;
 531
 532	if (sz < kbuf->memsz)
 533		return 0;
 534
 535	if (end < kbuf->buf_min || start > kbuf->buf_max)
 536		return 0;
 537
 538	/*
 539	 * Allocate memory top down with-in ram range. Otherwise bottom up
 540	 * allocation.
 541	 */
 542	if (kbuf->top_down)
 543		return locate_mem_hole_top_down(start, end, kbuf);
 544	return locate_mem_hole_bottom_up(start, end, kbuf);
 545}
 546
 547#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 548static int kexec_walk_memblock(struct kexec_buf *kbuf,
 549			       int (*func)(struct resource *, void *))
 550{
 551	int ret = 0;
 552	u64 i;
 553	phys_addr_t mstart, mend;
 554	struct resource res = { };
 555
 556	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 557		return func(&crashk_res, kbuf);
 558
 559	if (kbuf->top_down) {
 560		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 561						&mstart, &mend, NULL) {
 562			/*
 563			 * In memblock, end points to the first byte after the
 564			 * range while in kexec, end points to the last byte
 565			 * in the range.
 566			 */
 567			res.start = mstart;
 568			res.end = mend - 1;
 569			ret = func(&res, kbuf);
 570			if (ret)
 571				break;
 572		}
 573	} else {
 574		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 575					&mstart, &mend, NULL) {
 576			/*
 577			 * In memblock, end points to the first byte after the
 578			 * range while in kexec, end points to the last byte
 579			 * in the range.
 580			 */
 581			res.start = mstart;
 582			res.end = mend - 1;
 583			ret = func(&res, kbuf);
 584			if (ret)
 585				break;
 586		}
 587	}
 588
 589	return ret;
 590}
 591#else
 592static int kexec_walk_memblock(struct kexec_buf *kbuf,
 593			       int (*func)(struct resource *, void *))
 594{
 595	return 0;
 596}
 597#endif
 598
 599/**
 600 * kexec_walk_resources - call func(data) on free memory regions
 601 * @kbuf:	Context info for the search. Also passed to @func.
 602 * @func:	Function to call for each memory region.
 603 *
 604 * Return: The memory walk will stop when func returns a non-zero value
 605 * and that value will be returned. If all free regions are visited without
 606 * func returning non-zero, then zero will be returned.
 607 */
 608static int kexec_walk_resources(struct kexec_buf *kbuf,
 609				int (*func)(struct resource *, void *))
 
 
 610{
 611	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 612		return walk_iomem_res_desc(crashk_res.desc,
 613					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 614					   crashk_res.start, crashk_res.end,
 615					   kbuf, func);
 616	else
 617		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 618}
 619
 620/**
 621 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 622 * @kbuf:	Parameters for the memory search.
 623 *
 624 * On success, kbuf->mem will have the start address of the memory region found.
 625 *
 626 * Return: 0 on success, negative errno on error.
 627 */
 628int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 629{
 630	int ret;
 631
 632	/* Arch knows where to place */
 633	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 634		return 0;
 635
 636	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 637		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 638	else
 639		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 640
 641	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 642}
 643
 644/**
 645 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
 646 * @kbuf:                       Parameters for the memory search.
 647 *
 648 * On success, kbuf->mem will have the start address of the memory region found.
 649 *
 650 * Return: 0 on success, negative errno on error.
 651 */
 652int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
 653{
 654	return kexec_locate_mem_hole(kbuf);
 655}
 656
 657/**
 658 * kexec_add_buffer - place a buffer in a kexec segment
 659 * @kbuf:	Buffer contents and memory parameters.
 660 *
 661 * This function assumes that kexec_mutex is held.
 662 * On successful return, @kbuf->mem will have the physical address of
 663 * the buffer in memory.
 664 *
 665 * Return: 0 on success, negative errno on error.
 666 */
 667int kexec_add_buffer(struct kexec_buf *kbuf)
 668{
 669	struct kexec_segment *ksegment;
 
 670	int ret;
 671
 672	/* Currently adding segment this way is allowed only in file mode */
 673	if (!kbuf->image->file_mode)
 674		return -EINVAL;
 675
 676	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 677		return -EINVAL;
 678
 679	/*
 680	 * Make sure we are not trying to add buffer after allocating
 681	 * control pages. All segments need to be placed first before
 682	 * any control pages are allocated. As control page allocation
 683	 * logic goes through list of segments to make sure there are
 684	 * no destination overlaps.
 685	 */
 686	if (!list_empty(&kbuf->image->control_pages)) {
 687		WARN_ON(1);
 688		return -EINVAL;
 689	}
 690
 691	/* Ensure minimum alignment needed for segments. */
 692	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 693	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 
 
 
 
 
 
 
 
 694
 695	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 696	ret = arch_kexec_locate_mem_hole(kbuf);
 697	if (ret)
 698		return ret;
 
 
 
 
 
 
 
 
 
 699
 700	/* Found a suitable memory range */
 701	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 702	ksegment->kbuf = kbuf->buffer;
 703	ksegment->bufsz = kbuf->bufsz;
 704	ksegment->mem = kbuf->mem;
 705	ksegment->memsz = kbuf->memsz;
 706	kbuf->image->nr_segments++;
 
 707	return 0;
 708}
 709
 710/* Calculate and store the digest of segments */
 711static int kexec_calculate_store_digests(struct kimage *image)
 712{
 713	struct crypto_shash *tfm;
 714	struct shash_desc *desc;
 715	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 716	size_t desc_size, nullsz;
 717	char *digest;
 718	void *zero_buf;
 719	struct kexec_sha_region *sha_regions;
 720	struct purgatory_info *pi = &image->purgatory_info;
 721
 722	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 723		return 0;
 724
 725	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 726	zero_buf_sz = PAGE_SIZE;
 727
 728	tfm = crypto_alloc_shash("sha256", 0, 0);
 729	if (IS_ERR(tfm)) {
 730		ret = PTR_ERR(tfm);
 731		goto out;
 732	}
 733
 734	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 735	desc = kzalloc(desc_size, GFP_KERNEL);
 736	if (!desc) {
 737		ret = -ENOMEM;
 738		goto out_free_tfm;
 739	}
 740
 741	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 742	sha_regions = vzalloc(sha_region_sz);
 743	if (!sha_regions) {
 744		ret = -ENOMEM;
 745		goto out_free_desc;
 746	}
 747
 748	desc->tfm   = tfm;
 
 749
 750	ret = crypto_shash_init(desc);
 751	if (ret < 0)
 752		goto out_free_sha_regions;
 753
 754	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 755	if (!digest) {
 756		ret = -ENOMEM;
 757		goto out_free_sha_regions;
 758	}
 759
 760	for (j = i = 0; i < image->nr_segments; i++) {
 761		struct kexec_segment *ksegment;
 762
 763		ksegment = &image->segment[i];
 764		/*
 765		 * Skip purgatory as it will be modified once we put digest
 766		 * info in purgatory.
 767		 */
 768		if (ksegment->kbuf == pi->purgatory_buf)
 769			continue;
 770
 771		ret = crypto_shash_update(desc, ksegment->kbuf,
 772					  ksegment->bufsz);
 773		if (ret)
 774			break;
 775
 776		/*
 777		 * Assume rest of the buffer is filled with zero and
 778		 * update digest accordingly.
 779		 */
 780		nullsz = ksegment->memsz - ksegment->bufsz;
 781		while (nullsz) {
 782			unsigned long bytes = nullsz;
 783
 784			if (bytes > zero_buf_sz)
 785				bytes = zero_buf_sz;
 786			ret = crypto_shash_update(desc, zero_buf, bytes);
 787			if (ret)
 788				break;
 789			nullsz -= bytes;
 790		}
 791
 792		if (ret)
 793			break;
 794
 795		sha_regions[j].start = ksegment->mem;
 796		sha_regions[j].len = ksegment->memsz;
 797		j++;
 798	}
 799
 800	if (!ret) {
 801		ret = crypto_shash_final(desc, digest);
 802		if (ret)
 803			goto out_free_digest;
 804		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 805						     sha_regions, sha_region_sz, 0);
 806		if (ret)
 807			goto out_free_digest;
 808
 809		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 810						     digest, SHA256_DIGEST_SIZE, 0);
 811		if (ret)
 812			goto out_free_digest;
 813	}
 814
 815out_free_digest:
 816	kfree(digest);
 817out_free_sha_regions:
 818	vfree(sha_regions);
 819out_free_desc:
 820	kfree(desc);
 821out_free_tfm:
 822	kfree(tfm);
 823out:
 824	return ret;
 825}
 826
 827#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 828/*
 829 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 830 * @pi:		Purgatory to be loaded.
 831 * @kbuf:	Buffer to setup.
 832 *
 833 * Allocates the memory needed for the buffer. Caller is responsible to free
 834 * the memory after use.
 835 *
 836 * Return: 0 on success, negative errno on error.
 837 */
 838static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 839				      struct kexec_buf *kbuf)
 840{
 841	const Elf_Shdr *sechdrs;
 842	unsigned long bss_align;
 843	unsigned long bss_sz;
 844	unsigned long align;
 845	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 848	kbuf->buf_align = bss_align = 1;
 849	kbuf->bufsz = bss_sz = 0;
 
 
 850
 851	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 853			continue;
 854
 855		align = sechdrs[i].sh_addralign;
 856		if (sechdrs[i].sh_type != SHT_NOBITS) {
 857			if (kbuf->buf_align < align)
 858				kbuf->buf_align = align;
 859			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 860			kbuf->bufsz += sechdrs[i].sh_size;
 861		} else {
 
 862			if (bss_align < align)
 863				bss_align = align;
 864			bss_sz = ALIGN(bss_sz, align);
 865			bss_sz += sechdrs[i].sh_size;
 866		}
 867	}
 868	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 869	kbuf->memsz = kbuf->bufsz + bss_sz;
 870	if (kbuf->buf_align < bss_align)
 871		kbuf->buf_align = bss_align;
 872
 873	kbuf->buffer = vzalloc(kbuf->bufsz);
 874	if (!kbuf->buffer)
 875		return -ENOMEM;
 876	pi->purgatory_buf = kbuf->buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 877
 878	ret = kexec_add_buffer(kbuf);
 
 
 
 879	if (ret)
 880		goto out;
 881
 882	return 0;
 883out:
 884	vfree(pi->purgatory_buf);
 885	pi->purgatory_buf = NULL;
 886	return ret;
 887}
 888
 889/*
 890 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 891 * @pi:		Purgatory to be loaded.
 892 * @kbuf:	Buffer prepared to store purgatory.
 893 *
 894 * Allocates the memory needed for the buffer. Caller is responsible to free
 895 * the memory after use.
 896 *
 897 * Return: 0 on success, negative errno on error.
 898 */
 899static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 900					 struct kexec_buf *kbuf)
 901{
 902	unsigned long bss_addr;
 903	unsigned long offset;
 904	Elf_Shdr *sechdrs;
 905	int i;
 906
 907	/*
 908	 * The section headers in kexec_purgatory are read-only. In order to
 909	 * have them modifiable make a temporary copy.
 910	 */
 911	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 912	if (!sechdrs)
 913		return -ENOMEM;
 914	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 915	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 916	pi->sechdrs = sechdrs;
 917
 918	offset = 0;
 919	bss_addr = kbuf->mem + kbuf->bufsz;
 920	kbuf->image->start = pi->ehdr->e_entry;
 921
 922	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 923		unsigned long align;
 924		void *src, *dst;
 925
 926		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 927			continue;
 928
 929		align = sechdrs[i].sh_addralign;
 930		if (sechdrs[i].sh_type == SHT_NOBITS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931			bss_addr = ALIGN(bss_addr, align);
 932			sechdrs[i].sh_addr = bss_addr;
 933			bss_addr += sechdrs[i].sh_size;
 934			continue;
 935		}
 
 
 
 
 
 936
 937		offset = ALIGN(offset, align);
 938		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 939		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 940		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 941					 + sechdrs[i].sh_size)) {
 942			kbuf->image->start -= sechdrs[i].sh_addr;
 943			kbuf->image->start += kbuf->mem + offset;
 944		}
 945
 946		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 947		dst = pi->purgatory_buf + offset;
 948		memcpy(dst, src, sechdrs[i].sh_size);
 949
 950		sechdrs[i].sh_addr = kbuf->mem + offset;
 951		sechdrs[i].sh_offset = offset;
 952		offset += sechdrs[i].sh_size;
 953	}
 954
 955	return 0;
 
 
 
 
 
 
 
 
 
 956}
 957
 958static int kexec_apply_relocations(struct kimage *image)
 959{
 960	int i, ret;
 961	struct purgatory_info *pi = &image->purgatory_info;
 962	const Elf_Shdr *sechdrs;
 963
 964	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 965
 
 966	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 967		const Elf_Shdr *relsec;
 968		const Elf_Shdr *symtab;
 969		Elf_Shdr *section;
 970
 971		relsec = sechdrs + i;
 972
 973		if (relsec->sh_type != SHT_RELA &&
 974		    relsec->sh_type != SHT_REL)
 975			continue;
 976
 977		/*
 978		 * For section of type SHT_RELA/SHT_REL,
 979		 * ->sh_link contains section header index of associated
 980		 * symbol table. And ->sh_info contains section header
 981		 * index of section to which relocations apply.
 982		 */
 983		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 984		    relsec->sh_link >= pi->ehdr->e_shnum)
 985			return -ENOEXEC;
 986
 987		section = pi->sechdrs + relsec->sh_info;
 988		symtab = sechdrs + relsec->sh_link;
 989
 990		if (!(section->sh_flags & SHF_ALLOC))
 991			continue;
 992
 993		/*
 994		 * symtab->sh_link contain section header index of associated
 995		 * string table.
 996		 */
 997		if (symtab->sh_link >= pi->ehdr->e_shnum)
 998			/* Invalid section number? */
 999			continue;
1000
1001		/*
1002		 * Respective architecture needs to provide support for applying
1003		 * relocations of type SHT_RELA/SHT_REL.
1004		 */
1005		if (relsec->sh_type == SHT_RELA)
1006			ret = arch_kexec_apply_relocations_add(pi, section,
1007							       relsec, symtab);
1008		else if (relsec->sh_type == SHT_REL)
1009			ret = arch_kexec_apply_relocations(pi, section,
1010							   relsec, symtab);
1011		if (ret)
1012			return ret;
1013	}
1014
1015	return 0;
1016}
1017
1018/*
1019 * kexec_load_purgatory - Load and relocate the purgatory object.
1020 * @image:	Image to add the purgatory to.
1021 * @kbuf:	Memory parameters to use.
1022 *
1023 * Allocates the memory needed for image->purgatory_info.sechdrs and
1024 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1025 * to free the memory after use.
1026 *
1027 * Return: 0 on success, negative errno on error.
1028 */
1029int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1030{
1031	struct purgatory_info *pi = &image->purgatory_info;
1032	int ret;
1033
1034	if (kexec_purgatory_size <= 0)
1035		return -EINVAL;
1036
1037	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038
1039	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1040	if (ret)
1041		return ret;
1042
1043	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1044	if (ret)
1045		goto out_free_kbuf;
1046
1047	ret = kexec_apply_relocations(image);
1048	if (ret)
1049		goto out;
1050
 
1051	return 0;
1052out:
1053	vfree(pi->sechdrs);
1054	pi->sechdrs = NULL;
1055out_free_kbuf:
1056	vfree(pi->purgatory_buf);
1057	pi->purgatory_buf = NULL;
1058	return ret;
1059}
1060
1061/*
1062 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1063 * @pi:		Purgatory to search in.
1064 * @name:	Name of the symbol.
1065 *
1066 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1067 */
1068static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1069						  const char *name)
1070{
1071	const Elf_Shdr *sechdrs;
1072	const Elf_Ehdr *ehdr;
1073	const Elf_Sym *syms;
 
1074	const char *strtab;
1075	int i, k;
1076
1077	if (!pi->ehdr)
1078		return NULL;
1079
 
1080	ehdr = pi->ehdr;
1081	sechdrs = (void *)ehdr + ehdr->e_shoff;
1082
1083	for (i = 0; i < ehdr->e_shnum; i++) {
1084		if (sechdrs[i].sh_type != SHT_SYMTAB)
1085			continue;
1086
1087		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1088			/* Invalid strtab section number */
1089			continue;
1090		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1091		syms = (void *)ehdr + sechdrs[i].sh_offset;
1092
1093		/* Go through symbols for a match */
1094		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1095			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1096				continue;
1097
1098			if (strcmp(strtab + syms[k].st_name, name) != 0)
1099				continue;
1100
1101			if (syms[k].st_shndx == SHN_UNDEF ||
1102			    syms[k].st_shndx >= ehdr->e_shnum) {
1103				pr_debug("Symbol: %s has bad section index %d.\n",
1104						name, syms[k].st_shndx);
1105				return NULL;
1106			}
1107
1108			/* Found the symbol we are looking for */
1109			return &syms[k];
1110		}
1111	}
1112
1113	return NULL;
1114}
1115
1116void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1117{
1118	struct purgatory_info *pi = &image->purgatory_info;
1119	const Elf_Sym *sym;
1120	Elf_Shdr *sechdr;
1121
1122	sym = kexec_purgatory_find_symbol(pi, name);
1123	if (!sym)
1124		return ERR_PTR(-EINVAL);
1125
1126	sechdr = &pi->sechdrs[sym->st_shndx];
1127
1128	/*
1129	 * Returns the address where symbol will finally be loaded after
1130	 * kexec_load_segment()
1131	 */
1132	return (void *)(sechdr->sh_addr + sym->st_value);
1133}
1134
1135/*
1136 * Get or set value of a symbol. If "get_value" is true, symbol value is
1137 * returned in buf otherwise symbol value is set based on value in buf.
1138 */
1139int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1140				   void *buf, unsigned int size, bool get_value)
1141{
 
 
1142	struct purgatory_info *pi = &image->purgatory_info;
1143	const Elf_Sym *sym;
1144	Elf_Shdr *sec;
1145	char *sym_buf;
1146
1147	sym = kexec_purgatory_find_symbol(pi, name);
1148	if (!sym)
1149		return -EINVAL;
1150
1151	if (sym->st_size != size) {
1152		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1153		       name, (unsigned long)sym->st_size, size);
1154		return -EINVAL;
1155	}
1156
1157	sec = pi->sechdrs + sym->st_shndx;
1158
1159	if (sec->sh_type == SHT_NOBITS) {
1160		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1161		       get_value ? "get" : "set");
1162		return -EINVAL;
1163	}
1164
1165	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
 
1166
1167	if (get_value)
1168		memcpy((void *)buf, sym_buf, size);
1169	else
1170		memcpy((void *)sym_buf, buf, size);
1171
1172	return 0;
1173}
1174#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1175
1176int crash_exclude_mem_range(struct crash_mem *mem,
1177			    unsigned long long mstart, unsigned long long mend)
1178{
1179	int i, j;
1180	unsigned long long start, end, p_start, p_end;
1181	struct crash_mem_range temp_range = {0, 0};
1182
1183	for (i = 0; i < mem->nr_ranges; i++) {
1184		start = mem->ranges[i].start;
1185		end = mem->ranges[i].end;
1186		p_start = mstart;
1187		p_end = mend;
1188
1189		if (mstart > end || mend < start)
1190			continue;
1191
1192		/* Truncate any area outside of range */
1193		if (mstart < start)
1194			p_start = start;
1195		if (mend > end)
1196			p_end = end;
1197
1198		/* Found completely overlapping range */
1199		if (p_start == start && p_end == end) {
1200			mem->ranges[i].start = 0;
1201			mem->ranges[i].end = 0;
1202			if (i < mem->nr_ranges - 1) {
1203				/* Shift rest of the ranges to left */
1204				for (j = i; j < mem->nr_ranges - 1; j++) {
1205					mem->ranges[j].start =
1206						mem->ranges[j+1].start;
1207					mem->ranges[j].end =
1208							mem->ranges[j+1].end;
1209				}
1210
1211				/*
1212				 * Continue to check if there are another overlapping ranges
1213				 * from the current position because of shifting the above
1214				 * mem ranges.
1215				 */
1216				i--;
1217				mem->nr_ranges--;
1218				continue;
1219			}
1220			mem->nr_ranges--;
1221			return 0;
1222		}
1223
1224		if (p_start > start && p_end < end) {
1225			/* Split original range */
1226			mem->ranges[i].end = p_start - 1;
1227			temp_range.start = p_end + 1;
1228			temp_range.end = end;
1229		} else if (p_start != start)
1230			mem->ranges[i].end = p_start - 1;
1231		else
1232			mem->ranges[i].start = p_end + 1;
1233		break;
1234	}
1235
1236	/* If a split happened, add the split to array */
1237	if (!temp_range.end)
1238		return 0;
1239
1240	/* Split happened */
1241	if (i == mem->max_nr_ranges - 1)
1242		return -ENOMEM;
1243
1244	/* Location where new range should go */
1245	j = i + 1;
1246	if (j < mem->nr_ranges) {
1247		/* Move over all ranges one slot towards the end */
1248		for (i = mem->nr_ranges - 1; i >= j; i--)
1249			mem->ranges[i + 1] = mem->ranges[i];
1250	}
1251
1252	mem->ranges[j].start = temp_range.start;
1253	mem->ranges[j].end = temp_range.end;
1254	mem->nr_ranges++;
1255	return 0;
1256}
1257
1258int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1259			  void **addr, unsigned long *sz)
1260{
1261	Elf64_Ehdr *ehdr;
1262	Elf64_Phdr *phdr;
1263	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1264	unsigned char *buf;
1265	unsigned int cpu, i;
1266	unsigned long long notes_addr;
1267	unsigned long mstart, mend;
1268
1269	/* extra phdr for vmcoreinfo ELF note */
1270	nr_phdr = nr_cpus + 1;
1271	nr_phdr += mem->nr_ranges;
1272
1273	/*
1274	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1275	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1276	 * I think this is required by tools like gdb. So same physical
1277	 * memory will be mapped in two ELF headers. One will contain kernel
1278	 * text virtual addresses and other will have __va(physical) addresses.
1279	 */
1280
1281	nr_phdr++;
1282	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1283	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1284
1285	buf = vzalloc(elf_sz);
1286	if (!buf)
1287		return -ENOMEM;
1288
1289	ehdr = (Elf64_Ehdr *)buf;
1290	phdr = (Elf64_Phdr *)(ehdr + 1);
1291	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1292	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1293	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1294	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1295	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1296	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1297	ehdr->e_type = ET_CORE;
1298	ehdr->e_machine = ELF_ARCH;
1299	ehdr->e_version = EV_CURRENT;
1300	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1301	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1302	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1303
1304	/* Prepare one phdr of type PT_NOTE for each present CPU */
1305	for_each_present_cpu(cpu) {
1306		phdr->p_type = PT_NOTE;
1307		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1308		phdr->p_offset = phdr->p_paddr = notes_addr;
1309		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1310		(ehdr->e_phnum)++;
1311		phdr++;
1312	}
1313
1314	/* Prepare one PT_NOTE header for vmcoreinfo */
1315	phdr->p_type = PT_NOTE;
1316	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1317	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1318	(ehdr->e_phnum)++;
1319	phdr++;
1320
1321	/* Prepare PT_LOAD type program header for kernel text region */
1322	if (kernel_map) {
1323		phdr->p_type = PT_LOAD;
1324		phdr->p_flags = PF_R|PF_W|PF_X;
1325		phdr->p_vaddr = (unsigned long) _text;
1326		phdr->p_filesz = phdr->p_memsz = _end - _text;
1327		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1328		ehdr->e_phnum++;
1329		phdr++;
1330	}
1331
1332	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1333	for (i = 0; i < mem->nr_ranges; i++) {
1334		mstart = mem->ranges[i].start;
1335		mend = mem->ranges[i].end;
1336
1337		phdr->p_type = PT_LOAD;
1338		phdr->p_flags = PF_R|PF_W|PF_X;
1339		phdr->p_offset  = mstart;
1340
1341		phdr->p_paddr = mstart;
1342		phdr->p_vaddr = (unsigned long) __va(mstart);
1343		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1344		phdr->p_align = 0;
1345		ehdr->e_phnum++;
1346		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1347			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1348			ehdr->e_phnum, phdr->p_offset);
1349		phdr++;
1350	}
1351
1352	*addr = buf;
1353	*sz = elf_sz;
1354	return 0;
1355}