Linux Audio

Check our new training course

Loading...
v4.6
 
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *	  2) Minimal run-time overhead:
  26 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *	     b) Small when syscall auditing is enabled and no audit record
  28 *		is generated (defer as much work as possible to record
  29 *		generation time):
  30 *		i) context is allocated,
  31 *		ii) names from getname are stored without a copy, and
  32 *		iii) inode information stored from path_lookup.
  33 *	  3) Ability to disable syscall auditing at boot time (audit=0).
  34 *	  4) Usable by other parts of the kernel (if audit_log* is called,
  35 *	     then a syscall record will be generated automatically for the
  36 *	     current syscall).
  37 *	  5) Netlink interface to user-space.
  38 *	  6) Support low-overhead kernel-based filtering to minimize the
  39 *	     information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
 
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/file.h>
  47#include <linux/init.h>
  48#include <linux/types.h>
  49#include <linux/atomic.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/err.h>
  54#include <linux/kthread.h>
  55#include <linux/kernel.h>
  56#include <linux/syscalls.h>
 
 
 
 
 
  57
  58#include <linux/audit.h>
  59
  60#include <net/sock.h>
  61#include <net/netlink.h>
  62#include <linux/skbuff.h>
  63#ifdef CONFIG_SECURITY
  64#include <linux/security.h>
  65#endif
  66#include <linux/freezer.h>
  67#include <linux/tty.h>
  68#include <linux/pid_namespace.h>
  69#include <net/netns/generic.h>
  70
  71#include "audit.h"
  72
  73/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  74 * (Initialization happens after skb_init is called.) */
  75#define AUDIT_DISABLED		-1
  76#define AUDIT_UNINITIALIZED	0
  77#define AUDIT_INITIALIZED	1
  78static int	audit_initialized;
  79
  80#define AUDIT_OFF	0
  81#define AUDIT_ON	1
  82#define AUDIT_LOCKED	2
  83u32		audit_enabled;
  84u32		audit_ever_enabled;
  85
  86EXPORT_SYMBOL_GPL(audit_enabled);
  87
  88/* Default state when kernel boots without any parameters. */
  89static u32	audit_default;
  90
  91/* If auditing cannot proceed, audit_failure selects what happens. */
  92static u32	audit_failure = AUDIT_FAIL_PRINTK;
  93
  94/*
  95 * If audit records are to be written to the netlink socket, audit_pid
  96 * contains the pid of the auditd process and audit_nlk_portid contains
  97 * the portid to use to send netlink messages to that process.
 
 
  98 */
  99int		audit_pid;
 100static __u32	audit_nlk_portid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101
 102/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 103 * to that number per second.  This prevents DoS attacks, but results in
 104 * audit records being dropped. */
 105static u32	audit_rate_limit;
 106
 107/* Number of outstanding audit_buffers allowed.
 108 * When set to zero, this means unlimited. */
 109static u32	audit_backlog_limit = 64;
 110#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 111static u32	audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
 112static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 113
 114/* The identity of the user shutting down the audit system. */
 115kuid_t		audit_sig_uid = INVALID_UID;
 116pid_t		audit_sig_pid = -1;
 117u32		audit_sig_sid = 0;
 118
 119/* Records can be lost in several ways:
 120   0) [suppressed in audit_alloc]
 121   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 122   2) out of memory in audit_log_move [alloc_skb]
 123   3) suppressed due to audit_rate_limit
 124   4) suppressed due to audit_backlog_limit
 125*/
 126static atomic_t    audit_lost = ATOMIC_INIT(0);
 127
 128/* The netlink socket. */
 129static struct sock *audit_sock;
 130static int audit_net_id;
 
 131
 132/* Hash for inode-based rules */
 133struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 134
 135/* The audit_freelist is a list of pre-allocated audit buffers (if more
 136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 137 * being placed on the freelist). */
 138static DEFINE_SPINLOCK(audit_freelist_lock);
 139static int	   audit_freelist_count;
 140static LIST_HEAD(audit_freelist);
 141
 142static struct sk_buff_head audit_skb_queue;
 143/* queue of skbs to send to auditd when/if it comes back */
 144static struct sk_buff_head audit_skb_hold_queue;
 145static struct task_struct *kauditd_task;
 146static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 
 
 147static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 148
 149static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 150				   .mask = -1,
 151				   .features = 0,
 152				   .lock = 0,};
 153
 154static char *audit_feature_names[2] = {
 155	"only_unset_loginuid",
 156	"loginuid_immutable",
 157};
 158
 159
 160/* Serialize requests from userspace. */
 161DEFINE_MUTEX(audit_cmd_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 162
 163/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 164 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 165 * should be at least that large. */
 166#define AUDIT_BUFSIZ 1024
 167
 168/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 169 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 170#define AUDIT_MAXFREE  (2*NR_CPUS)
 171
 172/* The audit_buffer is used when formatting an audit record.  The caller
 173 * locks briefly to get the record off the freelist or to allocate the
 174 * buffer, and locks briefly to send the buffer to the netlink layer or
 175 * to place it on a transmit queue.  Multiple audit_buffers can be in
 176 * use simultaneously. */
 177struct audit_buffer {
 178	struct list_head     list;
 179	struct sk_buff       *skb;	/* formatted skb ready to send */
 180	struct audit_context *ctx;	/* NULL or associated context */
 181	gfp_t		     gfp_mask;
 182};
 183
 184struct audit_reply {
 185	__u32 portid;
 186	struct net *net;
 187	struct sk_buff *skb;
 188};
 189
 190static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 
 
 
 
 
 
 
 191{
 192	if (ab) {
 193		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 194		nlh->nlmsg_pid = portid;
 195	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196}
 197
 198void audit_panic(const char *message)
 199{
 200	switch (audit_failure) {
 201	case AUDIT_FAIL_SILENT:
 202		break;
 203	case AUDIT_FAIL_PRINTK:
 204		if (printk_ratelimit())
 205			pr_err("%s\n", message);
 206		break;
 207	case AUDIT_FAIL_PANIC:
 208		/* test audit_pid since printk is always losey, why bother? */
 209		if (audit_pid)
 210			panic("audit: %s\n", message);
 211		break;
 212	}
 213}
 214
 215static inline int audit_rate_check(void)
 216{
 217	static unsigned long	last_check = 0;
 218	static int		messages   = 0;
 219	static DEFINE_SPINLOCK(lock);
 220	unsigned long		flags;
 221	unsigned long		now;
 222	unsigned long		elapsed;
 223	int			retval	   = 0;
 224
 225	if (!audit_rate_limit) return 1;
 226
 227	spin_lock_irqsave(&lock, flags);
 228	if (++messages < audit_rate_limit) {
 229		retval = 1;
 230	} else {
 231		now     = jiffies;
 232		elapsed = now - last_check;
 233		if (elapsed > HZ) {
 234			last_check = now;
 235			messages   = 0;
 236			retval     = 1;
 237		}
 238	}
 239	spin_unlock_irqrestore(&lock, flags);
 240
 241	return retval;
 242}
 243
 244/**
 245 * audit_log_lost - conditionally log lost audit message event
 246 * @message: the message stating reason for lost audit message
 247 *
 248 * Emit at least 1 message per second, even if audit_rate_check is
 249 * throttling.
 250 * Always increment the lost messages counter.
 251*/
 252void audit_log_lost(const char *message)
 253{
 254	static unsigned long	last_msg = 0;
 255	static DEFINE_SPINLOCK(lock);
 256	unsigned long		flags;
 257	unsigned long		now;
 258	int			print;
 259
 260	atomic_inc(&audit_lost);
 261
 262	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 263
 264	if (!print) {
 265		spin_lock_irqsave(&lock, flags);
 266		now = jiffies;
 267		if (now - last_msg > HZ) {
 268			print = 1;
 269			last_msg = now;
 270		}
 271		spin_unlock_irqrestore(&lock, flags);
 272	}
 273
 274	if (print) {
 275		if (printk_ratelimit())
 276			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 277				atomic_read(&audit_lost),
 278				audit_rate_limit,
 279				audit_backlog_limit);
 280		audit_panic(message);
 281	}
 282}
 283
 284static int audit_log_config_change(char *function_name, u32 new, u32 old,
 285				   int allow_changes)
 286{
 287	struct audit_buffer *ab;
 288	int rc = 0;
 289
 290	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 291	if (unlikely(!ab))
 292		return rc;
 293	audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 294	audit_log_session_info(ab);
 295	rc = audit_log_task_context(ab);
 296	if (rc)
 297		allow_changes = 0; /* Something weird, deny request */
 298	audit_log_format(ab, " res=%d", allow_changes);
 299	audit_log_end(ab);
 300	return rc;
 301}
 302
 303static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 304{
 305	int allow_changes, rc = 0;
 306	u32 old = *to_change;
 307
 308	/* check if we are locked */
 309	if (audit_enabled == AUDIT_LOCKED)
 310		allow_changes = 0;
 311	else
 312		allow_changes = 1;
 313
 314	if (audit_enabled != AUDIT_OFF) {
 315		rc = audit_log_config_change(function_name, new, old, allow_changes);
 316		if (rc)
 317			allow_changes = 0;
 318	}
 319
 320	/* If we are allowed, make the change */
 321	if (allow_changes == 1)
 322		*to_change = new;
 323	/* Not allowed, update reason */
 324	else if (rc == 0)
 325		rc = -EPERM;
 326	return rc;
 327}
 328
 329static int audit_set_rate_limit(u32 limit)
 330{
 331	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 332}
 333
 334static int audit_set_backlog_limit(u32 limit)
 335{
 336	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 337}
 338
 339static int audit_set_backlog_wait_time(u32 timeout)
 340{
 341	return audit_do_config_change("audit_backlog_wait_time",
 342				      &audit_backlog_wait_time_master, timeout);
 343}
 344
 345static int audit_set_enabled(u32 state)
 346{
 347	int rc;
 348	if (state > AUDIT_LOCKED)
 349		return -EINVAL;
 350
 351	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 352	if (!rc)
 353		audit_ever_enabled |= !!state;
 354
 355	return rc;
 356}
 357
 358static int audit_set_failure(u32 state)
 359{
 360	if (state != AUDIT_FAIL_SILENT
 361	    && state != AUDIT_FAIL_PRINTK
 362	    && state != AUDIT_FAIL_PANIC)
 363		return -EINVAL;
 364
 365	return audit_do_config_change("audit_failure", &audit_failure, state);
 366}
 367
 368/*
 369 * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
 370 * already have been sent via prink/syslog and so if these messages are dropped
 371 * it is not a huge concern since we already passed the audit_log_lost()
 372 * notification and stuff.  This is just nice to get audit messages during
 373 * boot before auditd is running or messages generated while auditd is stopped.
 374 * This only holds messages is audit_default is set, aka booting with audit=1
 375 * or building your kernel that way.
 376 */
 377static void audit_hold_skb(struct sk_buff *skb)
 378{
 379	if (audit_default &&
 380	    (!audit_backlog_limit ||
 381	     skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
 382		skb_queue_tail(&audit_skb_hold_queue, skb);
 383	else
 384		kfree_skb(skb);
 385}
 386
 387/*
 388 * For one reason or another this nlh isn't getting delivered to the userspace
 389 * audit daemon, just send it to printk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390 */
 391static void audit_printk_skb(struct sk_buff *skb)
 392{
 393	struct nlmsghdr *nlh = nlmsg_hdr(skb);
 394	char *data = nlmsg_data(nlh);
 395
 396	if (nlh->nlmsg_type != AUDIT_EOE) {
 397		if (printk_ratelimit())
 398			pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 399		else
 400			audit_log_lost("printk limit exceeded");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 401	}
 402
 403	audit_hold_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404}
 405
 406static void kauditd_send_skb(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 407{
 408	int err;
 409	int attempts = 0;
 410#define AUDITD_RETRIES 5
 411
 412restart:
 413	/* take a reference in case we can't send it and we want to hold it */
 414	skb_get(skb);
 415	err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 416	if (err < 0) {
 417		pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
 418		       audit_pid, err);
 419		if (audit_pid) {
 420			if (err == -ECONNREFUSED || err == -EPERM
 421			    || ++attempts >= AUDITD_RETRIES) {
 422				char s[32];
 423
 424				snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
 425				audit_log_lost(s);
 426				audit_pid = 0;
 427				audit_sock = NULL;
 428			} else {
 429				pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
 430					attempts, audit_pid);
 431				set_current_state(TASK_INTERRUPTIBLE);
 432				schedule();
 433				__set_current_state(TASK_RUNNING);
 434				goto restart;
 435			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436		}
 437		/* we might get lucky and get this in the next auditd */
 438		audit_hold_skb(skb);
 439	} else
 440		/* drop the extra reference if sent ok */
 441		consume_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 442}
 443
 444/*
 445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
 
 446 *
 447 * This function doesn't consume an skb as might be expected since it has to
 448 * copy it anyways.
 
 
 449 */
 450static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
 451{
 452	struct sk_buff		*copy;
 453	struct audit_net	*aunet = net_generic(&init_net, audit_net_id);
 454	struct sock		*sock = aunet->nlsk;
 
 
 
 455
 456	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 457		return;
 458
 459	/*
 460	 * The seemingly wasteful skb_copy() rather than bumping the refcount
 461	 * using skb_get() is necessary because non-standard mods are made to
 462	 * the skb by the original kaudit unicast socket send routine.  The
 463	 * existing auditd daemon assumes this breakage.  Fixing this would
 464	 * require co-ordinating a change in the established protocol between
 465	 * the kaudit kernel subsystem and the auditd userspace code.  There is
 466	 * no reason for new multicast clients to continue with this
 467	 * non-compliance.
 468	 */
 469	copy = skb_copy(skb, gfp_mask);
 470	if (!copy)
 471		return;
 
 
 472
 473	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
 474}
 475
 476/*
 477 * flush_hold_queue - empty the hold queue if auditd appears
 478 *
 479 * If auditd just started, drain the queue of messages already
 480 * sent to syslog/printk.  Remember loss here is ok.  We already
 481 * called audit_log_lost() if it didn't go out normally.  so the
 482 * race between the skb_dequeue and the next check for audit_pid
 483 * doesn't matter.
 484 *
 485 * If you ever find kauditd to be too slow we can get a perf win
 486 * by doing our own locking and keeping better track if there
 487 * are messages in this queue.  I don't see the need now, but
 488 * in 5 years when I want to play with this again I'll see this
 489 * note and still have no friggin idea what i'm thinking today.
 490 */
 491static void flush_hold_queue(void)
 492{
 493	struct sk_buff *skb;
 494
 495	if (!audit_default || !audit_pid)
 496		return;
 497
 498	skb = skb_dequeue(&audit_skb_hold_queue);
 499	if (likely(!skb))
 500		return;
 501
 502	while (skb && audit_pid) {
 503		kauditd_send_skb(skb);
 504		skb = skb_dequeue(&audit_skb_hold_queue);
 505	}
 506
 507	/*
 508	 * if auditd just disappeared but we
 509	 * dequeued an skb we need to drop ref
 510	 */
 511	consume_skb(skb);
 512}
 513
 514static int kauditd_thread(void *dummy)
 515{
 516	set_freezable();
 517	while (!kthread_should_stop()) {
 518		struct sk_buff *skb;
 519
 520		flush_hold_queue();
 521
 522		skb = skb_dequeue(&audit_skb_queue);
 523
 524		if (skb) {
 525			if (!audit_backlog_limit ||
 526			    (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
 527				wake_up(&audit_backlog_wait);
 528			if (audit_pid)
 529				kauditd_send_skb(skb);
 530			else
 531				audit_printk_skb(skb);
 532			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533		}
 534
 535		wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
 
 
 
 
 
 
 
 
 536	}
 
 537	return 0;
 538}
 539
 540int audit_send_list(void *_dest)
 541{
 542	struct audit_netlink_list *dest = _dest;
 543	struct sk_buff *skb;
 544	struct net *net = dest->net;
 545	struct audit_net *aunet = net_generic(net, audit_net_id);
 546
 547	/* wait for parent to finish and send an ACK */
 548	mutex_lock(&audit_cmd_mutex);
 549	mutex_unlock(&audit_cmd_mutex);
 550
 551	while ((skb = __skb_dequeue(&dest->q)) != NULL)
 552		netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
 553
 554	put_net(net);
 555	kfree(dest);
 556
 557	return 0;
 558}
 559
 560struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 561				 int multi, const void *payload, int size)
 562{
 563	struct sk_buff	*skb;
 564	struct nlmsghdr	*nlh;
 565	void		*data;
 566	int		flags = multi ? NLM_F_MULTI : 0;
 567	int		t     = done  ? NLMSG_DONE  : type;
 568
 569	skb = nlmsg_new(size, GFP_KERNEL);
 570	if (!skb)
 571		return NULL;
 572
 573	nlh	= nlmsg_put(skb, portid, seq, t, size, flags);
 574	if (!nlh)
 575		goto out_kfree_skb;
 576	data = nlmsg_data(nlh);
 577	memcpy(data, payload, size);
 578	return skb;
 579
 580out_kfree_skb:
 581	kfree_skb(skb);
 582	return NULL;
 583}
 584
 
 
 
 
 
 
 
 
 
 
 
 585static int audit_send_reply_thread(void *arg)
 586{
 587	struct audit_reply *reply = (struct audit_reply *)arg;
 588	struct net *net = reply->net;
 589	struct audit_net *aunet = net_generic(net, audit_net_id);
 590
 591	mutex_lock(&audit_cmd_mutex);
 592	mutex_unlock(&audit_cmd_mutex);
 593
 594	/* Ignore failure. It'll only happen if the sender goes away,
 595	   because our timeout is set to infinite. */
 596	netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
 597	put_net(net);
 598	kfree(reply);
 599	return 0;
 600}
 
 601/**
 602 * audit_send_reply - send an audit reply message via netlink
 603 * @request_skb: skb of request we are replying to (used to target the reply)
 604 * @seq: sequence number
 605 * @type: audit message type
 606 * @done: done (last) flag
 607 * @multi: multi-part message flag
 608 * @payload: payload data
 609 * @size: payload size
 610 *
 611 * Allocates an skb, builds the netlink message, and sends it to the port id.
 612 * No failure notifications.
 613 */
 614static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 615			     int multi, const void *payload, int size)
 616{
 617	u32 portid = NETLINK_CB(request_skb).portid;
 618	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 619	struct sk_buff *skb;
 620	struct task_struct *tsk;
 621	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 622					    GFP_KERNEL);
 623
 
 624	if (!reply)
 625		return;
 626
 627	skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 628	if (!skb)
 629		goto out;
 630
 631	reply->net = get_net(net);
 632	reply->portid = portid;
 633	reply->skb = skb;
 634
 635	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 636	if (!IS_ERR(tsk))
 637		return;
 638	kfree_skb(skb);
 639out:
 640	kfree(reply);
 
 
 641}
 642
 643/*
 644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 645 * control messages.
 646 */
 647static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 648{
 649	int err = 0;
 650
 651	/* Only support initial user namespace for now. */
 652	/*
 653	 * We return ECONNREFUSED because it tricks userspace into thinking
 654	 * that audit was not configured into the kernel.  Lots of users
 655	 * configure their PAM stack (because that's what the distro does)
 656	 * to reject login if unable to send messages to audit.  If we return
 657	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 658	 * configured in and will let login proceed.  If we return EPERM
 659	 * userspace will reject all logins.  This should be removed when we
 660	 * support non init namespaces!!
 661	 */
 662	if (current_user_ns() != &init_user_ns)
 663		return -ECONNREFUSED;
 664
 665	switch (msg_type) {
 666	case AUDIT_LIST:
 667	case AUDIT_ADD:
 668	case AUDIT_DEL:
 669		return -EOPNOTSUPP;
 670	case AUDIT_GET:
 671	case AUDIT_SET:
 672	case AUDIT_GET_FEATURE:
 673	case AUDIT_SET_FEATURE:
 674	case AUDIT_LIST_RULES:
 675	case AUDIT_ADD_RULE:
 676	case AUDIT_DEL_RULE:
 677	case AUDIT_SIGNAL_INFO:
 678	case AUDIT_TTY_GET:
 679	case AUDIT_TTY_SET:
 680	case AUDIT_TRIM:
 681	case AUDIT_MAKE_EQUIV:
 682		/* Only support auditd and auditctl in initial pid namespace
 683		 * for now. */
 684		if (task_active_pid_ns(current) != &init_pid_ns)
 685			return -EPERM;
 686
 687		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 688			err = -EPERM;
 689		break;
 690	case AUDIT_USER:
 691	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 692	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 693		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 694			err = -EPERM;
 695		break;
 696	default:  /* bad msg */
 697		err = -EINVAL;
 698	}
 699
 700	return err;
 701}
 702
 703static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 
 704{
 705	uid_t uid = from_kuid(&init_user_ns, current_uid());
 706	pid_t pid = task_tgid_nr(current);
 707
 708	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 709		*ab = NULL;
 710		return;
 711	}
 712
 713	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 714	if (unlikely(!*ab))
 715		return;
 716	audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 717	audit_log_session_info(*ab);
 718	audit_log_task_context(*ab);
 719}
 720
 
 
 
 
 
 
 721int is_audit_feature_set(int i)
 722{
 723	return af.features & AUDIT_FEATURE_TO_MASK(i);
 724}
 725
 726
 727static int audit_get_feature(struct sk_buff *skb)
 728{
 729	u32 seq;
 730
 731	seq = nlmsg_hdr(skb)->nlmsg_seq;
 732
 733	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
 734
 735	return 0;
 736}
 737
 738static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
 739				     u32 old_lock, u32 new_lock, int res)
 740{
 741	struct audit_buffer *ab;
 742
 743	if (audit_enabled == AUDIT_OFF)
 744		return;
 745
 746	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
 747	audit_log_task_info(ab, current);
 
 
 748	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
 749			 audit_feature_names[which], !!old_feature, !!new_feature,
 750			 !!old_lock, !!new_lock, res);
 751	audit_log_end(ab);
 752}
 753
 754static int audit_set_feature(struct sk_buff *skb)
 755{
 756	struct audit_features *uaf;
 757	int i;
 758
 759	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 760	uaf = nlmsg_data(nlmsg_hdr(skb));
 761
 762	/* if there is ever a version 2 we should handle that here */
 763
 764	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 765		u32 feature = AUDIT_FEATURE_TO_MASK(i);
 766		u32 old_feature, new_feature, old_lock, new_lock;
 767
 768		/* if we are not changing this feature, move along */
 769		if (!(feature & uaf->mask))
 770			continue;
 771
 772		old_feature = af.features & feature;
 773		new_feature = uaf->features & feature;
 774		new_lock = (uaf->lock | af.lock) & feature;
 775		old_lock = af.lock & feature;
 776
 777		/* are we changing a locked feature? */
 778		if (old_lock && (new_feature != old_feature)) {
 779			audit_log_feature_change(i, old_feature, new_feature,
 780						 old_lock, new_lock, 0);
 781			return -EPERM;
 782		}
 783	}
 784	/* nothing invalid, do the changes */
 785	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 786		u32 feature = AUDIT_FEATURE_TO_MASK(i);
 787		u32 old_feature, new_feature, old_lock, new_lock;
 788
 789		/* if we are not changing this feature, move along */
 790		if (!(feature & uaf->mask))
 791			continue;
 792
 793		old_feature = af.features & feature;
 794		new_feature = uaf->features & feature;
 795		old_lock = af.lock & feature;
 796		new_lock = (uaf->lock | af.lock) & feature;
 797
 798		if (new_feature != old_feature)
 799			audit_log_feature_change(i, old_feature, new_feature,
 800						 old_lock, new_lock, 1);
 801
 802		if (new_feature)
 803			af.features |= feature;
 804		else
 805			af.features &= ~feature;
 806		af.lock |= new_lock;
 807	}
 808
 809	return 0;
 810}
 811
 812static int audit_replace(pid_t pid)
 813{
 814	struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
 815					       &pid, sizeof(pid));
 816
 
 
 817	if (!skb)
 818		return -ENOMEM;
 819	return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 820}
 821
 822static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 823{
 824	u32			seq;
 825	void			*data;
 
 826	int			err;
 827	struct audit_buffer	*ab;
 828	u16			msg_type = nlh->nlmsg_type;
 829	struct audit_sig_info   *sig_data;
 830	char			*ctx = NULL;
 831	u32			len;
 832
 833	err = audit_netlink_ok(skb, msg_type);
 834	if (err)
 835		return err;
 836
 837	/* As soon as there's any sign of userspace auditd,
 838	 * start kauditd to talk to it */
 839	if (!kauditd_task) {
 840		kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
 841		if (IS_ERR(kauditd_task)) {
 842			err = PTR_ERR(kauditd_task);
 843			kauditd_task = NULL;
 844			return err;
 845		}
 846	}
 847	seq  = nlh->nlmsg_seq;
 848	data = nlmsg_data(nlh);
 
 849
 850	switch (msg_type) {
 851	case AUDIT_GET: {
 852		struct audit_status	s;
 853		memset(&s, 0, sizeof(s));
 854		s.enabled		= audit_enabled;
 855		s.failure		= audit_failure;
 856		s.pid			= audit_pid;
 857		s.rate_limit		= audit_rate_limit;
 858		s.backlog_limit		= audit_backlog_limit;
 859		s.lost			= atomic_read(&audit_lost);
 860		s.backlog		= skb_queue_len(&audit_skb_queue);
 861		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
 862		s.backlog_wait_time	= audit_backlog_wait_time_master;
 
 
 
 863		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
 864		break;
 865	}
 866	case AUDIT_SET: {
 867		struct audit_status	s;
 868		memset(&s, 0, sizeof(s));
 869		/* guard against past and future API changes */
 870		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
 871		if (s.mask & AUDIT_STATUS_ENABLED) {
 872			err = audit_set_enabled(s.enabled);
 873			if (err < 0)
 874				return err;
 875		}
 876		if (s.mask & AUDIT_STATUS_FAILURE) {
 877			err = audit_set_failure(s.failure);
 878			if (err < 0)
 879				return err;
 880		}
 881		if (s.mask & AUDIT_STATUS_PID) {
 882			int new_pid = s.pid;
 883			pid_t requesting_pid = task_tgid_vnr(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885			if ((!new_pid) && (requesting_pid != audit_pid)) {
 886				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
 887				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 888			}
 889			if (audit_pid && new_pid &&
 890			    audit_replace(requesting_pid) != -ECONNREFUSED) {
 891				audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
 892				return -EEXIST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893			}
 894			if (audit_enabled != AUDIT_OFF)
 895				audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
 896			audit_pid = new_pid;
 897			audit_nlk_portid = NETLINK_CB(skb).portid;
 898			audit_sock = skb->sk;
 899		}
 900		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
 901			err = audit_set_rate_limit(s.rate_limit);
 902			if (err < 0)
 903				return err;
 904		}
 905		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
 906			err = audit_set_backlog_limit(s.backlog_limit);
 907			if (err < 0)
 908				return err;
 909		}
 910		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
 911			if (sizeof(s) > (size_t)nlh->nlmsg_len)
 912				return -EINVAL;
 913			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 914				return -EINVAL;
 915			err = audit_set_backlog_wait_time(s.backlog_wait_time);
 916			if (err < 0)
 917				return err;
 918		}
 
 
 
 
 
 
 
 
 
 
 
 
 919		break;
 920	}
 921	case AUDIT_GET_FEATURE:
 922		err = audit_get_feature(skb);
 923		if (err)
 924			return err;
 925		break;
 926	case AUDIT_SET_FEATURE:
 927		err = audit_set_feature(skb);
 
 
 928		if (err)
 929			return err;
 930		break;
 931	case AUDIT_USER:
 932	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 933	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 934		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
 935			return 0;
 
 
 
 936
 937		err = audit_filter_user(msg_type);
 938		if (err == 1) { /* match or error */
 
 
 939			err = 0;
 940			if (msg_type == AUDIT_USER_TTY) {
 941				err = tty_audit_push();
 942				if (err)
 943					break;
 944			}
 945			mutex_unlock(&audit_cmd_mutex);
 946			audit_log_common_recv_msg(&ab, msg_type);
 947			if (msg_type != AUDIT_USER_TTY)
 
 948				audit_log_format(ab, " msg='%.*s'",
 949						 AUDIT_MESSAGE_TEXT_MAX,
 950						 (char *)data);
 951			else {
 952				int size;
 953
 954				audit_log_format(ab, " data=");
 955				size = nlmsg_len(nlh);
 956				if (size > 0 &&
 957				    ((unsigned char *)data)[size - 1] == '\0')
 958					size--;
 959				audit_log_n_untrustedstring(ab, data, size);
 960			}
 961			audit_set_portid(ab, NETLINK_CB(skb).portid);
 962			audit_log_end(ab);
 963			mutex_lock(&audit_cmd_mutex);
 964		}
 965		break;
 966	case AUDIT_ADD_RULE:
 967	case AUDIT_DEL_RULE:
 968		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
 969			return -EINVAL;
 970		if (audit_enabled == AUDIT_LOCKED) {
 971			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 972			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 
 
 
 
 973			audit_log_end(ab);
 974			return -EPERM;
 975		}
 976		err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
 977					   seq, data, nlmsg_len(nlh));
 978		break;
 979	case AUDIT_LIST_RULES:
 980		err = audit_list_rules_send(skb, seq);
 981		break;
 982	case AUDIT_TRIM:
 983		audit_trim_trees();
 984		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 
 985		audit_log_format(ab, " op=trim res=1");
 986		audit_log_end(ab);
 987		break;
 988	case AUDIT_MAKE_EQUIV: {
 989		void *bufp = data;
 990		u32 sizes[2];
 991		size_t msglen = nlmsg_len(nlh);
 992		char *old, *new;
 993
 994		err = -EINVAL;
 995		if (msglen < 2 * sizeof(u32))
 996			break;
 997		memcpy(sizes, bufp, 2 * sizeof(u32));
 998		bufp += 2 * sizeof(u32);
 999		msglen -= 2 * sizeof(u32);
1000		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1001		if (IS_ERR(old)) {
1002			err = PTR_ERR(old);
1003			break;
1004		}
1005		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1006		if (IS_ERR(new)) {
1007			err = PTR_ERR(new);
1008			kfree(old);
1009			break;
1010		}
1011		/* OK, here comes... */
1012		err = audit_tag_tree(old, new);
1013
1014		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015
1016		audit_log_format(ab, " op=make_equiv old=");
1017		audit_log_untrustedstring(ab, old);
1018		audit_log_format(ab, " new=");
1019		audit_log_untrustedstring(ab, new);
1020		audit_log_format(ab, " res=%d", !err);
1021		audit_log_end(ab);
1022		kfree(old);
1023		kfree(new);
1024		break;
1025	}
1026	case AUDIT_SIGNAL_INFO:
1027		len = 0;
1028		if (audit_sig_sid) {
1029			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1030			if (err)
1031				return err;
1032		}
1033		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1034		if (!sig_data) {
1035			if (audit_sig_sid)
1036				security_release_secctx(ctx, len);
1037			return -ENOMEM;
1038		}
1039		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1040		sig_data->pid = audit_sig_pid;
1041		if (audit_sig_sid) {
1042			memcpy(sig_data->ctx, ctx, len);
1043			security_release_secctx(ctx, len);
1044		}
1045		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1046				 sig_data, sizeof(*sig_data) + len);
1047		kfree(sig_data);
1048		break;
1049	case AUDIT_TTY_GET: {
1050		struct audit_tty_status s;
1051		unsigned int t;
1052
1053		t = READ_ONCE(current->signal->audit_tty);
1054		s.enabled = t & AUDIT_TTY_ENABLE;
1055		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1056
1057		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1058		break;
1059	}
1060	case AUDIT_TTY_SET: {
1061		struct audit_tty_status s, old;
1062		struct audit_buffer	*ab;
1063		unsigned int t;
1064
1065		memset(&s, 0, sizeof(s));
1066		/* guard against past and future API changes */
1067		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1068		/* check if new data is valid */
1069		if ((s.enabled != 0 && s.enabled != 1) ||
1070		    (s.log_passwd != 0 && s.log_passwd != 1))
1071			err = -EINVAL;
1072
1073		if (err)
1074			t = READ_ONCE(current->signal->audit_tty);
1075		else {
1076			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1077			t = xchg(&current->signal->audit_tty, t);
1078		}
1079		old.enabled = t & AUDIT_TTY_ENABLE;
1080		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1081
1082		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 
1083		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1084				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1085				 old.enabled, s.enabled, old.log_passwd,
1086				 s.log_passwd, !err);
1087		audit_log_end(ab);
1088		break;
1089	}
1090	default:
1091		err = -EINVAL;
1092		break;
1093	}
1094
1095	return err < 0 ? err : 0;
1096}
1097
1098/*
1099 * Get message from skb.  Each message is processed by audit_receive_msg.
1100 * Malformed skbs with wrong length are discarded silently.
 
 
 
1101 */
1102static void audit_receive_skb(struct sk_buff *skb)
1103{
1104	struct nlmsghdr *nlh;
1105	/*
1106	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1107	 * if the nlmsg_len was not aligned
1108	 */
1109	int len;
1110	int err;
1111
1112	nlh = nlmsg_hdr(skb);
1113	len = skb->len;
1114
 
1115	while (nlmsg_ok(nlh, len)) {
1116		err = audit_receive_msg(skb, nlh);
1117		/* if err or if this message says it wants a response */
1118		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1119			netlink_ack(skb, nlh, err);
1120
1121		nlh = nlmsg_next(nlh, &len);
1122	}
 
1123}
1124
1125/* Receive messages from netlink socket. */
1126static void audit_receive(struct sk_buff  *skb)
1127{
1128	mutex_lock(&audit_cmd_mutex);
1129	audit_receive_skb(skb);
1130	mutex_unlock(&audit_cmd_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131}
1132
1133/* Run custom bind function on netlink socket group connect or bind requests. */
1134static int audit_bind(struct net *net, int group)
1135{
 
 
1136	if (!capable(CAP_AUDIT_READ))
1137		return -EPERM;
 
 
 
1138
1139	return 0;
 
 
1140}
1141
1142static int __net_init audit_net_init(struct net *net)
1143{
1144	struct netlink_kernel_cfg cfg = {
1145		.input	= audit_receive,
1146		.bind	= audit_bind,
 
1147		.flags	= NL_CFG_F_NONROOT_RECV,
1148		.groups	= AUDIT_NLGRP_MAX,
1149	};
1150
1151	struct audit_net *aunet = net_generic(net, audit_net_id);
1152
1153	aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1154	if (aunet->nlsk == NULL) {
1155		audit_panic("cannot initialize netlink socket in namespace");
1156		return -ENOMEM;
1157	}
1158	aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
 
1159	return 0;
1160}
1161
1162static void __net_exit audit_net_exit(struct net *net)
1163{
1164	struct audit_net *aunet = net_generic(net, audit_net_id);
1165	struct sock *sock = aunet->nlsk;
1166	if (sock == audit_sock) {
1167		audit_pid = 0;
1168		audit_sock = NULL;
1169	}
1170
1171	RCU_INIT_POINTER(aunet->nlsk, NULL);
1172	synchronize_net();
1173	netlink_kernel_release(sock);
 
 
 
 
1174}
1175
1176static struct pernet_operations audit_net_ops __net_initdata = {
1177	.init = audit_net_init,
1178	.exit = audit_net_exit,
1179	.id = &audit_net_id,
1180	.size = sizeof(struct audit_net),
1181};
1182
1183/* Initialize audit support at boot time. */
1184static int __init audit_init(void)
1185{
1186	int i;
1187
1188	if (audit_initialized == AUDIT_DISABLED)
1189		return 0;
1190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191	pr_info("initializing netlink subsys (%s)\n",
1192		audit_default ? "enabled" : "disabled");
1193	register_pernet_subsys(&audit_net_ops);
1194
1195	skb_queue_head_init(&audit_skb_queue);
1196	skb_queue_head_init(&audit_skb_hold_queue);
1197	audit_initialized = AUDIT_INITIALIZED;
1198	audit_enabled = audit_default;
1199	audit_ever_enabled |= !!audit_default;
1200
1201	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
 
 
 
 
1202
1203	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1204		INIT_LIST_HEAD(&audit_inode_hash[i]);
 
1205
1206	return 0;
1207}
1208__initcall(audit_init);
1209
1210/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
 
 
 
1211static int __init audit_enable(char *str)
1212{
1213	audit_default = !!simple_strtol(str, NULL, 0);
1214	if (!audit_default)
 
 
 
 
 
 
 
 
1215		audit_initialized = AUDIT_DISABLED;
 
 
 
1216
1217	pr_info("%s\n", audit_default ?
1218		"enabled (after initialization)" : "disabled (until reboot)");
1219
1220	return 1;
1221}
1222__setup("audit=", audit_enable);
1223
1224/* Process kernel command-line parameter at boot time.
1225 * audit_backlog_limit=<n> */
1226static int __init audit_backlog_limit_set(char *str)
1227{
1228	u32 audit_backlog_limit_arg;
1229
1230	pr_info("audit_backlog_limit: ");
1231	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1232		pr_cont("using default of %u, unable to parse %s\n",
1233			audit_backlog_limit, str);
1234		return 1;
1235	}
1236
1237	audit_backlog_limit = audit_backlog_limit_arg;
1238	pr_cont("%d\n", audit_backlog_limit);
1239
1240	return 1;
1241}
1242__setup("audit_backlog_limit=", audit_backlog_limit_set);
1243
1244static void audit_buffer_free(struct audit_buffer *ab)
1245{
1246	unsigned long flags;
1247
1248	if (!ab)
1249		return;
1250
1251	kfree_skb(ab->skb);
1252	spin_lock_irqsave(&audit_freelist_lock, flags);
1253	if (audit_freelist_count > AUDIT_MAXFREE)
1254		kfree(ab);
1255	else {
1256		audit_freelist_count++;
1257		list_add(&ab->list, &audit_freelist);
1258	}
1259	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1260}
1261
1262static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1263						gfp_t gfp_mask, int type)
1264{
1265	unsigned long flags;
1266	struct audit_buffer *ab = NULL;
1267	struct nlmsghdr *nlh;
1268
1269	spin_lock_irqsave(&audit_freelist_lock, flags);
1270	if (!list_empty(&audit_freelist)) {
1271		ab = list_entry(audit_freelist.next,
1272				struct audit_buffer, list);
1273		list_del(&ab->list);
1274		--audit_freelist_count;
1275	}
1276	spin_unlock_irqrestore(&audit_freelist_lock, flags);
1277
1278	if (!ab) {
1279		ab = kmalloc(sizeof(*ab), gfp_mask);
1280		if (!ab)
1281			goto err;
1282	}
1283
1284	ab->ctx = ctx;
1285	ab->gfp_mask = gfp_mask;
 
1286
1287	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1288	if (!ab->skb)
1289		goto err;
 
 
1290
1291	nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1292	if (!nlh)
1293		goto out_kfree_skb;
1294
1295	return ab;
1296
1297out_kfree_skb:
1298	kfree_skb(ab->skb);
1299	ab->skb = NULL;
1300err:
1301	audit_buffer_free(ab);
1302	return NULL;
1303}
1304
1305/**
1306 * audit_serial - compute a serial number for the audit record
1307 *
1308 * Compute a serial number for the audit record.  Audit records are
1309 * written to user-space as soon as they are generated, so a complete
1310 * audit record may be written in several pieces.  The timestamp of the
1311 * record and this serial number are used by the user-space tools to
1312 * determine which pieces belong to the same audit record.  The
1313 * (timestamp,serial) tuple is unique for each syscall and is live from
1314 * syscall entry to syscall exit.
1315 *
1316 * NOTE: Another possibility is to store the formatted records off the
1317 * audit context (for those records that have a context), and emit them
1318 * all at syscall exit.  However, this could delay the reporting of
1319 * significant errors until syscall exit (or never, if the system
1320 * halts).
1321 */
1322unsigned int audit_serial(void)
1323{
1324	static atomic_t serial = ATOMIC_INIT(0);
1325
1326	return atomic_add_return(1, &serial);
1327}
1328
1329static inline void audit_get_stamp(struct audit_context *ctx,
1330				   struct timespec *t, unsigned int *serial)
1331{
1332	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1333		*t = CURRENT_TIME;
1334		*serial = audit_serial();
1335	}
1336}
1337
1338/*
1339 * Wait for auditd to drain the queue a little
1340 */
1341static long wait_for_auditd(long sleep_time)
1342{
1343	DECLARE_WAITQUEUE(wait, current);
1344	set_current_state(TASK_UNINTERRUPTIBLE);
1345	add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346
1347	if (audit_backlog_limit &&
1348	    skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1349		sleep_time = schedule_timeout(sleep_time);
1350
1351	__set_current_state(TASK_RUNNING);
1352	remove_wait_queue(&audit_backlog_wait, &wait);
1353
1354	return sleep_time;
1355}
1356
1357/**
1358 * audit_log_start - obtain an audit buffer
1359 * @ctx: audit_context (may be NULL)
1360 * @gfp_mask: type of allocation
1361 * @type: audit message type
1362 *
1363 * Returns audit_buffer pointer on success or NULL on error.
1364 *
1365 * Obtain an audit buffer.  This routine does locking to obtain the
1366 * audit buffer, but then no locking is required for calls to
1367 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1368 * syscall, then the syscall is marked as auditable and an audit record
1369 * will be written at syscall exit.  If there is no associated task, then
1370 * task context (ctx) should be NULL.
1371 */
1372struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1373				     int type)
1374{
1375	struct audit_buffer	*ab	= NULL;
1376	struct timespec		t;
1377	unsigned int		uninitialized_var(serial);
1378	int reserve = 5; /* Allow atomic callers to go up to five
1379			    entries over the normal backlog limit */
1380	unsigned long timeout_start = jiffies;
1381
1382	if (audit_initialized != AUDIT_INITIALIZED)
1383		return NULL;
1384
1385	if (unlikely(audit_filter_type(type)))
1386		return NULL;
1387
1388	if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1389		if (audit_pid && audit_pid == current->tgid)
1390			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1391		else
1392			reserve = 0;
1393	}
 
 
 
 
 
 
 
 
1394
1395	while (audit_backlog_limit
1396	       && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1397		if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1398			long sleep_time;
1399
1400			sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1401			if (sleep_time > 0) {
1402				sleep_time = wait_for_auditd(sleep_time);
1403				if (sleep_time > 0)
1404					continue;
 
 
 
 
 
 
 
 
 
 
1405			}
1406		}
1407		if (audit_rate_check() && printk_ratelimit())
1408			pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1409				skb_queue_len(&audit_skb_queue),
1410				audit_backlog_limit);
1411		audit_log_lost("backlog limit exceeded");
1412		audit_backlog_wait_time = 0;
1413		wake_up(&audit_backlog_wait);
1414		return NULL;
1415	}
1416
1417	if (!reserve && !audit_backlog_wait_time)
1418		audit_backlog_wait_time = audit_backlog_wait_time_master;
1419
1420	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1421	if (!ab) {
1422		audit_log_lost("out of memory in audit_log_start");
1423		return NULL;
1424	}
1425
1426	audit_get_stamp(ab->ctx, &t, &serial);
 
 
 
 
 
1427
1428	audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1429			 t.tv_sec, t.tv_nsec/1000000, serial);
1430	return ab;
1431}
1432
1433/**
1434 * audit_expand - expand skb in the audit buffer
1435 * @ab: audit_buffer
1436 * @extra: space to add at tail of the skb
1437 *
1438 * Returns 0 (no space) on failed expansion, or available space if
1439 * successful.
1440 */
1441static inline int audit_expand(struct audit_buffer *ab, int extra)
1442{
1443	struct sk_buff *skb = ab->skb;
1444	int oldtail = skb_tailroom(skb);
1445	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1446	int newtail = skb_tailroom(skb);
1447
1448	if (ret < 0) {
1449		audit_log_lost("out of memory in audit_expand");
1450		return 0;
1451	}
1452
1453	skb->truesize += newtail - oldtail;
1454	return newtail;
1455}
1456
1457/*
1458 * Format an audit message into the audit buffer.  If there isn't enough
1459 * room in the audit buffer, more room will be allocated and vsnprint
1460 * will be called a second time.  Currently, we assume that a printk
1461 * can't format message larger than 1024 bytes, so we don't either.
1462 */
1463static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1464			      va_list args)
1465{
1466	int len, avail;
1467	struct sk_buff *skb;
1468	va_list args2;
1469
1470	if (!ab)
1471		return;
1472
1473	BUG_ON(!ab->skb);
1474	skb = ab->skb;
1475	avail = skb_tailroom(skb);
1476	if (avail == 0) {
1477		avail = audit_expand(ab, AUDIT_BUFSIZ);
1478		if (!avail)
1479			goto out;
1480	}
1481	va_copy(args2, args);
1482	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1483	if (len >= avail) {
1484		/* The printk buffer is 1024 bytes long, so if we get
1485		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1486		 * log everything that printk could have logged. */
1487		avail = audit_expand(ab,
1488			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1489		if (!avail)
1490			goto out_va_end;
1491		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1492	}
1493	if (len > 0)
1494		skb_put(skb, len);
1495out_va_end:
1496	va_end(args2);
1497out:
1498	return;
1499}
1500
1501/**
1502 * audit_log_format - format a message into the audit buffer.
1503 * @ab: audit_buffer
1504 * @fmt: format string
1505 * @...: optional parameters matching @fmt string
1506 *
1507 * All the work is done in audit_log_vformat.
1508 */
1509void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1510{
1511	va_list args;
1512
1513	if (!ab)
1514		return;
1515	va_start(args, fmt);
1516	audit_log_vformat(ab, fmt, args);
1517	va_end(args);
1518}
1519
1520/**
1521 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1522 * @ab: the audit_buffer
1523 * @buf: buffer to convert to hex
1524 * @len: length of @buf to be converted
1525 *
1526 * No return value; failure to expand is silently ignored.
1527 *
1528 * This function will take the passed buf and convert it into a string of
1529 * ascii hex digits. The new string is placed onto the skb.
1530 */
1531void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1532		size_t len)
1533{
1534	int i, avail, new_len;
1535	unsigned char *ptr;
1536	struct sk_buff *skb;
1537
1538	if (!ab)
1539		return;
1540
1541	BUG_ON(!ab->skb);
1542	skb = ab->skb;
1543	avail = skb_tailroom(skb);
1544	new_len = len<<1;
1545	if (new_len >= avail) {
1546		/* Round the buffer request up to the next multiple */
1547		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1548		avail = audit_expand(ab, new_len);
1549		if (!avail)
1550			return;
1551	}
1552
1553	ptr = skb_tail_pointer(skb);
1554	for (i = 0; i < len; i++)
1555		ptr = hex_byte_pack_upper(ptr, buf[i]);
1556	*ptr = 0;
1557	skb_put(skb, len << 1); /* new string is twice the old string */
1558}
1559
1560/*
1561 * Format a string of no more than slen characters into the audit buffer,
1562 * enclosed in quote marks.
1563 */
1564void audit_log_n_string(struct audit_buffer *ab, const char *string,
1565			size_t slen)
1566{
1567	int avail, new_len;
1568	unsigned char *ptr;
1569	struct sk_buff *skb;
1570
1571	if (!ab)
1572		return;
1573
1574	BUG_ON(!ab->skb);
1575	skb = ab->skb;
1576	avail = skb_tailroom(skb);
1577	new_len = slen + 3;	/* enclosing quotes + null terminator */
1578	if (new_len > avail) {
1579		avail = audit_expand(ab, new_len);
1580		if (!avail)
1581			return;
1582	}
1583	ptr = skb_tail_pointer(skb);
1584	*ptr++ = '"';
1585	memcpy(ptr, string, slen);
1586	ptr += slen;
1587	*ptr++ = '"';
1588	*ptr = 0;
1589	skb_put(skb, slen + 2);	/* don't include null terminator */
1590}
1591
1592/**
1593 * audit_string_contains_control - does a string need to be logged in hex
1594 * @string: string to be checked
1595 * @len: max length of the string to check
1596 */
1597bool audit_string_contains_control(const char *string, size_t len)
1598{
1599	const unsigned char *p;
1600	for (p = string; p < (const unsigned char *)string + len; p++) {
1601		if (*p == '"' || *p < 0x21 || *p > 0x7e)
1602			return true;
1603	}
1604	return false;
1605}
1606
1607/**
1608 * audit_log_n_untrustedstring - log a string that may contain random characters
1609 * @ab: audit_buffer
1610 * @len: length of string (not including trailing null)
1611 * @string: string to be logged
1612 *
1613 * This code will escape a string that is passed to it if the string
1614 * contains a control character, unprintable character, double quote mark,
1615 * or a space. Unescaped strings will start and end with a double quote mark.
1616 * Strings that are escaped are printed in hex (2 digits per char).
1617 *
1618 * The caller specifies the number of characters in the string to log, which may
1619 * or may not be the entire string.
1620 */
1621void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1622				 size_t len)
1623{
1624	if (audit_string_contains_control(string, len))
1625		audit_log_n_hex(ab, string, len);
1626	else
1627		audit_log_n_string(ab, string, len);
1628}
1629
1630/**
1631 * audit_log_untrustedstring - log a string that may contain random characters
1632 * @ab: audit_buffer
1633 * @string: string to be logged
1634 *
1635 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1636 * determine string length.
1637 */
1638void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1639{
1640	audit_log_n_untrustedstring(ab, string, strlen(string));
1641}
1642
1643/* This is a helper-function to print the escaped d_path */
1644void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1645		      const struct path *path)
1646{
1647	char *p, *pathname;
1648
1649	if (prefix)
1650		audit_log_format(ab, "%s", prefix);
1651
1652	/* We will allow 11 spaces for ' (deleted)' to be appended */
1653	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1654	if (!pathname) {
1655		audit_log_string(ab, "<no_memory>");
1656		return;
1657	}
1658	p = d_path(path, pathname, PATH_MAX+11);
1659	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1660		/* FIXME: can we save some information here? */
1661		audit_log_string(ab, "<too_long>");
1662	} else
1663		audit_log_untrustedstring(ab, p);
1664	kfree(pathname);
1665}
1666
1667void audit_log_session_info(struct audit_buffer *ab)
1668{
1669	unsigned int sessionid = audit_get_sessionid(current);
1670	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1671
1672	audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1673}
1674
1675void audit_log_key(struct audit_buffer *ab, char *key)
1676{
1677	audit_log_format(ab, " key=");
1678	if (key)
1679		audit_log_untrustedstring(ab, key);
1680	else
1681		audit_log_format(ab, "(null)");
1682}
1683
1684void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1685{
1686	int i;
1687
1688	audit_log_format(ab, " %s=", prefix);
1689	CAP_FOR_EACH_U32(i) {
1690		audit_log_format(ab, "%08x",
1691				 cap->cap[CAP_LAST_U32 - i]);
1692	}
1693}
1694
1695static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1696{
1697	kernel_cap_t *perm = &name->fcap.permitted;
1698	kernel_cap_t *inh = &name->fcap.inheritable;
1699	int log = 0;
1700
1701	if (!cap_isclear(*perm)) {
1702		audit_log_cap(ab, "cap_fp", perm);
1703		log = 1;
1704	}
1705	if (!cap_isclear(*inh)) {
1706		audit_log_cap(ab, "cap_fi", inh);
1707		log = 1;
1708	}
1709
1710	if (log)
1711		audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1712				 name->fcap.fE, name->fcap_ver);
1713}
1714
1715static inline int audit_copy_fcaps(struct audit_names *name,
1716				   const struct dentry *dentry)
1717{
1718	struct cpu_vfs_cap_data caps;
1719	int rc;
1720
1721	if (!dentry)
1722		return 0;
1723
1724	rc = get_vfs_caps_from_disk(dentry, &caps);
1725	if (rc)
1726		return rc;
1727
1728	name->fcap.permitted = caps.permitted;
1729	name->fcap.inheritable = caps.inheritable;
1730	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1731	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1732				VFS_CAP_REVISION_SHIFT;
1733
1734	return 0;
1735}
1736
1737/* Copy inode data into an audit_names. */
1738void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1739		      struct inode *inode)
1740{
1741	name->ino   = inode->i_ino;
1742	name->dev   = inode->i_sb->s_dev;
1743	name->mode  = inode->i_mode;
1744	name->uid   = inode->i_uid;
1745	name->gid   = inode->i_gid;
1746	name->rdev  = inode->i_rdev;
1747	security_inode_getsecid(inode, &name->osid);
1748	audit_copy_fcaps(name, dentry);
1749}
1750
1751/**
1752 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1753 * @context: audit_context for the task
1754 * @n: audit_names structure with reportable details
1755 * @path: optional path to report instead of audit_names->name
1756 * @record_num: record number to report when handling a list of names
1757 * @call_panic: optional pointer to int that will be updated if secid fails
1758 */
1759void audit_log_name(struct audit_context *context, struct audit_names *n,
1760		    struct path *path, int record_num, int *call_panic)
1761{
1762	struct audit_buffer *ab;
1763	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1764	if (!ab)
1765		return;
1766
1767	audit_log_format(ab, "item=%d", record_num);
1768
1769	if (path)
1770		audit_log_d_path(ab, " name=", path);
1771	else if (n->name) {
1772		switch (n->name_len) {
1773		case AUDIT_NAME_FULL:
1774			/* log the full path */
1775			audit_log_format(ab, " name=");
1776			audit_log_untrustedstring(ab, n->name->name);
1777			break;
1778		case 0:
1779			/* name was specified as a relative path and the
1780			 * directory component is the cwd */
1781			audit_log_d_path(ab, " name=", &context->pwd);
1782			break;
1783		default:
1784			/* log the name's directory component */
1785			audit_log_format(ab, " name=");
1786			audit_log_n_untrustedstring(ab, n->name->name,
1787						    n->name_len);
1788		}
1789	} else
1790		audit_log_format(ab, " name=(null)");
1791
1792	if (n->ino != AUDIT_INO_UNSET)
1793		audit_log_format(ab, " inode=%lu"
1794				 " dev=%02x:%02x mode=%#ho"
1795				 " ouid=%u ogid=%u rdev=%02x:%02x",
1796				 n->ino,
1797				 MAJOR(n->dev),
1798				 MINOR(n->dev),
1799				 n->mode,
1800				 from_kuid(&init_user_ns, n->uid),
1801				 from_kgid(&init_user_ns, n->gid),
1802				 MAJOR(n->rdev),
1803				 MINOR(n->rdev));
1804	if (n->osid != 0) {
1805		char *ctx = NULL;
1806		u32 len;
1807		if (security_secid_to_secctx(
1808			n->osid, &ctx, &len)) {
1809			audit_log_format(ab, " osid=%u", n->osid);
1810			if (call_panic)
1811				*call_panic = 2;
1812		} else {
1813			audit_log_format(ab, " obj=%s", ctx);
1814			security_release_secctx(ctx, len);
1815		}
1816	}
1817
1818	/* log the audit_names record type */
1819	audit_log_format(ab, " nametype=");
1820	switch(n->type) {
1821	case AUDIT_TYPE_NORMAL:
1822		audit_log_format(ab, "NORMAL");
1823		break;
1824	case AUDIT_TYPE_PARENT:
1825		audit_log_format(ab, "PARENT");
1826		break;
1827	case AUDIT_TYPE_CHILD_DELETE:
1828		audit_log_format(ab, "DELETE");
1829		break;
1830	case AUDIT_TYPE_CHILD_CREATE:
1831		audit_log_format(ab, "CREATE");
1832		break;
1833	default:
1834		audit_log_format(ab, "UNKNOWN");
1835		break;
1836	}
1837
1838	audit_log_fcaps(ab, n);
1839	audit_log_end(ab);
1840}
1841
1842int audit_log_task_context(struct audit_buffer *ab)
1843{
1844	char *ctx = NULL;
1845	unsigned len;
1846	int error;
1847	u32 sid;
1848
1849	security_task_getsecid(current, &sid);
1850	if (!sid)
1851		return 0;
1852
1853	error = security_secid_to_secctx(sid, &ctx, &len);
1854	if (error) {
1855		if (error != -EINVAL)
1856			goto error_path;
1857		return 0;
1858	}
1859
1860	audit_log_format(ab, " subj=%s", ctx);
1861	security_release_secctx(ctx, len);
1862	return 0;
1863
1864error_path:
1865	audit_panic("error in audit_log_task_context");
1866	return error;
1867}
1868EXPORT_SYMBOL(audit_log_task_context);
1869
1870void audit_log_d_path_exe(struct audit_buffer *ab,
1871			  struct mm_struct *mm)
1872{
1873	struct file *exe_file;
1874
1875	if (!mm)
1876		goto out_null;
1877
1878	exe_file = get_mm_exe_file(mm);
1879	if (!exe_file)
1880		goto out_null;
1881
1882	audit_log_d_path(ab, " exe=", &exe_file->f_path);
1883	fput(exe_file);
1884	return;
1885out_null:
1886	audit_log_format(ab, " exe=(null)");
1887}
1888
1889void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890{
1891	const struct cred *cred;
1892	char comm[sizeof(tsk->comm)];
1893	char *tty;
1894
1895	if (!ab)
1896		return;
1897
1898	/* tsk == current */
1899	cred = current_cred();
1900
1901	spin_lock_irq(&tsk->sighand->siglock);
1902	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1903		tty = tsk->signal->tty->name;
1904	else
1905		tty = "(none)";
1906	spin_unlock_irq(&tsk->sighand->siglock);
1907
1908	audit_log_format(ab,
1909			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1910			 " euid=%u suid=%u fsuid=%u"
1911			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1912			 task_ppid_nr(tsk),
1913			 task_pid_nr(tsk),
1914			 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1915			 from_kuid(&init_user_ns, cred->uid),
1916			 from_kgid(&init_user_ns, cred->gid),
1917			 from_kuid(&init_user_ns, cred->euid),
1918			 from_kuid(&init_user_ns, cred->suid),
1919			 from_kuid(&init_user_ns, cred->fsuid),
1920			 from_kgid(&init_user_ns, cred->egid),
1921			 from_kgid(&init_user_ns, cred->sgid),
1922			 from_kgid(&init_user_ns, cred->fsgid),
1923			 tty, audit_get_sessionid(tsk));
1924
 
1925	audit_log_format(ab, " comm=");
1926	audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1927
1928	audit_log_d_path_exe(ab, tsk->mm);
1929	audit_log_task_context(ab);
1930}
1931EXPORT_SYMBOL(audit_log_task_info);
1932
1933/**
1934 * audit_log_link_denied - report a link restriction denial
1935 * @operation: specific link operation
1936 * @link: the path that triggered the restriction
1937 */
1938void audit_log_link_denied(const char *operation, struct path *link)
1939{
1940	struct audit_buffer *ab;
1941	struct audit_names *name;
1942
1943	name = kzalloc(sizeof(*name), GFP_NOFS);
1944	if (!name)
1945		return;
1946
1947	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1948	ab = audit_log_start(current->audit_context, GFP_KERNEL,
1949			     AUDIT_ANOM_LINK);
1950	if (!ab)
1951		goto out;
1952	audit_log_format(ab, "op=%s", operation);
1953	audit_log_task_info(ab, current);
1954	audit_log_format(ab, " res=0");
1955	audit_log_end(ab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956
1957	/* Generate AUDIT_PATH record with object. */
1958	name->type = AUDIT_TYPE_NORMAL;
1959	audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1960	audit_log_name(current->audit_context, name, link, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961out:
1962	kfree(name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963}
1964
1965/**
1966 * audit_log_end - end one audit record
1967 * @ab: the audit_buffer
1968 *
1969 * netlink_unicast() cannot be called inside an irq context because it blocks
1970 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1971 * on a queue and a tasklet is scheduled to remove them from the queue outside
1972 * the irq context.  May be called in any context.
1973 */
1974void audit_log_end(struct audit_buffer *ab)
1975{
 
 
 
1976	if (!ab)
1977		return;
1978	if (!audit_rate_check()) {
1979		audit_log_lost("rate limit exceeded");
1980	} else {
1981		struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1982
1983		nlh->nlmsg_len = ab->skb->len;
1984		kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
 
1985
1986		/*
1987		 * The original kaudit unicast socket sends up messages with
1988		 * nlmsg_len set to the payload length rather than the entire
1989		 * message length.  This breaks the standard set by netlink.
1990		 * The existing auditd daemon assumes this breakage.  Fixing
1991		 * this would require co-ordinating a change in the established
1992		 * protocol between the kaudit kernel subsystem and the auditd
1993		 * userspace code.
1994		 */
1995		nlh->nlmsg_len -= NLMSG_HDRLEN;
1996
1997		if (audit_pid) {
1998			skb_queue_tail(&audit_skb_queue, ab->skb);
1999			wake_up_interruptible(&kauditd_wait);
2000		} else {
2001			audit_printk_skb(ab->skb);
2002		}
2003		ab->skb = NULL;
2004	}
2005	audit_buffer_free(ab);
2006}
2007
2008/**
2009 * audit_log - Log an audit record
2010 * @ctx: audit context
2011 * @gfp_mask: type of allocation
2012 * @type: audit message type
2013 * @fmt: format string to use
2014 * @...: variable parameters matching the format string
2015 *
2016 * This is a convenience function that calls audit_log_start,
2017 * audit_log_vformat, and audit_log_end.  It may be called
2018 * in any context.
2019 */
2020void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2021	       const char *fmt, ...)
2022{
2023	struct audit_buffer *ab;
2024	va_list args;
2025
2026	ab = audit_log_start(ctx, gfp_mask, type);
2027	if (ab) {
2028		va_start(args, fmt);
2029		audit_log_vformat(ab, fmt, args);
2030		va_end(args);
2031		audit_log_end(ab);
2032	}
2033}
2034
2035#ifdef CONFIG_SECURITY
2036/**
2037 * audit_log_secctx - Converts and logs SELinux context
2038 * @ab: audit_buffer
2039 * @secid: security number
2040 *
2041 * This is a helper function that calls security_secid_to_secctx to convert
2042 * secid to secctx and then adds the (converted) SELinux context to the audit
2043 * log by calling audit_log_format, thus also preventing leak of internal secid
2044 * to userspace. If secid cannot be converted audit_panic is called.
2045 */
2046void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2047{
2048	u32 len;
2049	char *secctx;
2050
2051	if (security_secid_to_secctx(secid, &secctx, &len)) {
2052		audit_panic("Cannot convert secid to context");
2053	} else {
2054		audit_log_format(ab, " obj=%s", secctx);
2055		security_release_secctx(secctx, len);
2056	}
2057}
2058EXPORT_SYMBOL(audit_log_secctx);
2059#endif
2060
2061EXPORT_SYMBOL(audit_log_start);
2062EXPORT_SYMBOL(audit_log_end);
2063EXPORT_SYMBOL(audit_log_format);
2064EXPORT_SYMBOL(audit_log);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* audit.c -- Auditing support
   3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   4 * System-call specific features have moved to auditsc.c
   5 *
   6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   7 * All Rights Reserved.
   8 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  10 *
  11 * Goals: 1) Integrate fully with Security Modules.
  12 *	  2) Minimal run-time overhead:
  13 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
  14 *	     b) Small when syscall auditing is enabled and no audit record
  15 *		is generated (defer as much work as possible to record
  16 *		generation time):
  17 *		i) context is allocated,
  18 *		ii) names from getname are stored without a copy, and
  19 *		iii) inode information stored from path_lookup.
  20 *	  3) Ability to disable syscall auditing at boot time (audit=0).
  21 *	  4) Usable by other parts of the kernel (if audit_log* is called,
  22 *	     then a syscall record will be generated automatically for the
  23 *	     current syscall).
  24 *	  5) Netlink interface to user-space.
  25 *	  6) Support low-overhead kernel-based filtering to minimize the
  26 *	     information that must be passed to user-space.
  27 *
  28 * Audit userspace, documentation, tests, and bug/issue trackers:
  29 * 	https://github.com/linux-audit
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/file.h>
  35#include <linux/init.h>
  36#include <linux/types.h>
  37#include <linux/atomic.h>
  38#include <linux/mm.h>
  39#include <linux/export.h>
  40#include <linux/slab.h>
  41#include <linux/err.h>
  42#include <linux/kthread.h>
  43#include <linux/kernel.h>
  44#include <linux/syscalls.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/mutex.h>
  48#include <linux/gfp.h>
  49#include <linux/pid.h>
  50
  51#include <linux/audit.h>
  52
  53#include <net/sock.h>
  54#include <net/netlink.h>
  55#include <linux/skbuff.h>
  56#ifdef CONFIG_SECURITY
  57#include <linux/security.h>
  58#endif
  59#include <linux/freezer.h>
 
  60#include <linux/pid_namespace.h>
  61#include <net/netns/generic.h>
  62
  63#include "audit.h"
  64
  65/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  66 * (Initialization happens after skb_init is called.) */
  67#define AUDIT_DISABLED		-1
  68#define AUDIT_UNINITIALIZED	0
  69#define AUDIT_INITIALIZED	1
  70static int	audit_initialized = AUDIT_UNINITIALIZED;
  71
  72u32		audit_enabled = AUDIT_OFF;
  73bool		audit_ever_enabled = !!AUDIT_OFF;
 
 
 
  74
  75EXPORT_SYMBOL_GPL(audit_enabled);
  76
  77/* Default state when kernel boots without any parameters. */
  78static u32	audit_default = AUDIT_OFF;
  79
  80/* If auditing cannot proceed, audit_failure selects what happens. */
  81static u32	audit_failure = AUDIT_FAIL_PRINTK;
  82
  83/* private audit network namespace index */
  84static unsigned int audit_net_id;
  85
  86/**
  87 * struct audit_net - audit private network namespace data
  88 * @sk: communication socket
  89 */
  90struct audit_net {
  91	struct sock *sk;
  92};
  93
  94/**
  95 * struct auditd_connection - kernel/auditd connection state
  96 * @pid: auditd PID
  97 * @portid: netlink portid
  98 * @net: the associated network namespace
  99 * @rcu: RCU head
 100 *
 101 * Description:
 102 * This struct is RCU protected; you must either hold the RCU lock for reading
 103 * or the associated spinlock for writing.
 104 */
 105struct auditd_connection {
 106	struct pid *pid;
 107	u32 portid;
 108	struct net *net;
 109	struct rcu_head rcu;
 110};
 111static struct auditd_connection __rcu *auditd_conn;
 112static DEFINE_SPINLOCK(auditd_conn_lock);
 113
 114/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 115 * to that number per second.  This prevents DoS attacks, but results in
 116 * audit records being dropped. */
 117static u32	audit_rate_limit;
 118
 119/* Number of outstanding audit_buffers allowed.
 120 * When set to zero, this means unlimited. */
 121static u32	audit_backlog_limit = 64;
 122#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 
 123static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 124
 125/* The identity of the user shutting down the audit system. */
 126static kuid_t		audit_sig_uid = INVALID_UID;
 127static pid_t		audit_sig_pid = -1;
 128static u32		audit_sig_sid;
 129
 130/* Records can be lost in several ways:
 131   0) [suppressed in audit_alloc]
 132   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 133   2) out of memory in audit_log_move [alloc_skb]
 134   3) suppressed due to audit_rate_limit
 135   4) suppressed due to audit_backlog_limit
 136*/
 137static atomic_t	audit_lost = ATOMIC_INIT(0);
 138
 139/* Monotonically increasing sum of time the kernel has spent
 140 * waiting while the backlog limit is exceeded.
 141 */
 142static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
 143
 144/* Hash for inode-based rules */
 145struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 146
 147static struct kmem_cache *audit_buffer_cache;
 148
 149/* queue msgs to send via kauditd_task */
 150static struct sk_buff_head audit_queue;
 151/* queue msgs due to temporary unicast send problems */
 152static struct sk_buff_head audit_retry_queue;
 153/* queue msgs waiting for new auditd connection */
 154static struct sk_buff_head audit_hold_queue;
 155
 156/* queue servicing thread */
 157static struct task_struct *kauditd_task;
 158static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 159
 160/* waitqueue for callers who are blocked on the audit backlog */
 161static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 162
 163static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 164				   .mask = -1,
 165				   .features = 0,
 166				   .lock = 0,};
 167
 168static char *audit_feature_names[2] = {
 169	"only_unset_loginuid",
 170	"loginuid_immutable",
 171};
 172
 173/**
 174 * struct audit_ctl_mutex - serialize requests from userspace
 175 * @lock: the mutex used for locking
 176 * @owner: the task which owns the lock
 177 *
 178 * Description:
 179 * This is the lock struct used to ensure we only process userspace requests
 180 * in an orderly fashion.  We can't simply use a mutex/lock here because we
 181 * need to track lock ownership so we don't end up blocking the lock owner in
 182 * audit_log_start() or similar.
 183 */
 184static struct audit_ctl_mutex {
 185	struct mutex lock;
 186	void *owner;
 187} audit_cmd_mutex;
 188
 189/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 190 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 191 * should be at least that large. */
 192#define AUDIT_BUFSIZ 1024
 193
 
 
 
 
 194/* The audit_buffer is used when formatting an audit record.  The caller
 195 * locks briefly to get the record off the freelist or to allocate the
 196 * buffer, and locks briefly to send the buffer to the netlink layer or
 197 * to place it on a transmit queue.  Multiple audit_buffers can be in
 198 * use simultaneously. */
 199struct audit_buffer {
 
 200	struct sk_buff       *skb;	/* formatted skb ready to send */
 201	struct audit_context *ctx;	/* NULL or associated context */
 202	gfp_t		     gfp_mask;
 203};
 204
 205struct audit_reply {
 206	__u32 portid;
 207	struct net *net;
 208	struct sk_buff *skb;
 209};
 210
 211/**
 212 * auditd_test_task - Check to see if a given task is an audit daemon
 213 * @task: the task to check
 214 *
 215 * Description:
 216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
 217 */
 218int auditd_test_task(struct task_struct *task)
 219{
 220	int rc;
 221	struct auditd_connection *ac;
 222
 223	rcu_read_lock();
 224	ac = rcu_dereference(auditd_conn);
 225	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
 226	rcu_read_unlock();
 227
 228	return rc;
 229}
 230
 231/**
 232 * audit_ctl_lock - Take the audit control lock
 233 */
 234void audit_ctl_lock(void)
 235{
 236	mutex_lock(&audit_cmd_mutex.lock);
 237	audit_cmd_mutex.owner = current;
 238}
 239
 240/**
 241 * audit_ctl_unlock - Drop the audit control lock
 242 */
 243void audit_ctl_unlock(void)
 244{
 245	audit_cmd_mutex.owner = NULL;
 246	mutex_unlock(&audit_cmd_mutex.lock);
 247}
 248
 249/**
 250 * audit_ctl_owner_current - Test to see if the current task owns the lock
 251 *
 252 * Description:
 253 * Return true if the current task owns the audit control lock, false if it
 254 * doesn't own the lock.
 255 */
 256static bool audit_ctl_owner_current(void)
 257{
 258	return (current == audit_cmd_mutex.owner);
 259}
 260
 261/**
 262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
 263 *
 264 * Description:
 265 * Returns the PID in relation to the namespace, 0 on failure.
 266 */
 267static pid_t auditd_pid_vnr(void)
 268{
 269	pid_t pid;
 270	const struct auditd_connection *ac;
 271
 272	rcu_read_lock();
 273	ac = rcu_dereference(auditd_conn);
 274	if (!ac || !ac->pid)
 275		pid = 0;
 276	else
 277		pid = pid_vnr(ac->pid);
 278	rcu_read_unlock();
 279
 280	return pid;
 281}
 282
 283/**
 284 * audit_get_sk - Return the audit socket for the given network namespace
 285 * @net: the destination network namespace
 286 *
 287 * Description:
 288 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
 289 * that a reference is held for the network namespace while the sock is in use.
 290 */
 291static struct sock *audit_get_sk(const struct net *net)
 292{
 293	struct audit_net *aunet;
 294
 295	if (!net)
 296		return NULL;
 297
 298	aunet = net_generic(net, audit_net_id);
 299	return aunet->sk;
 300}
 301
 302void audit_panic(const char *message)
 303{
 304	switch (audit_failure) {
 305	case AUDIT_FAIL_SILENT:
 306		break;
 307	case AUDIT_FAIL_PRINTK:
 308		if (printk_ratelimit())
 309			pr_err("%s\n", message);
 310		break;
 311	case AUDIT_FAIL_PANIC:
 312		panic("audit: %s\n", message);
 
 
 313		break;
 314	}
 315}
 316
 317static inline int audit_rate_check(void)
 318{
 319	static unsigned long	last_check = 0;
 320	static int		messages   = 0;
 321	static DEFINE_SPINLOCK(lock);
 322	unsigned long		flags;
 323	unsigned long		now;
 324	unsigned long		elapsed;
 325	int			retval	   = 0;
 326
 327	if (!audit_rate_limit) return 1;
 328
 329	spin_lock_irqsave(&lock, flags);
 330	if (++messages < audit_rate_limit) {
 331		retval = 1;
 332	} else {
 333		now     = jiffies;
 334		elapsed = now - last_check;
 335		if (elapsed > HZ) {
 336			last_check = now;
 337			messages   = 0;
 338			retval     = 1;
 339		}
 340	}
 341	spin_unlock_irqrestore(&lock, flags);
 342
 343	return retval;
 344}
 345
 346/**
 347 * audit_log_lost - conditionally log lost audit message event
 348 * @message: the message stating reason for lost audit message
 349 *
 350 * Emit at least 1 message per second, even if audit_rate_check is
 351 * throttling.
 352 * Always increment the lost messages counter.
 353*/
 354void audit_log_lost(const char *message)
 355{
 356	static unsigned long	last_msg = 0;
 357	static DEFINE_SPINLOCK(lock);
 358	unsigned long		flags;
 359	unsigned long		now;
 360	int			print;
 361
 362	atomic_inc(&audit_lost);
 363
 364	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 365
 366	if (!print) {
 367		spin_lock_irqsave(&lock, flags);
 368		now = jiffies;
 369		if (now - last_msg > HZ) {
 370			print = 1;
 371			last_msg = now;
 372		}
 373		spin_unlock_irqrestore(&lock, flags);
 374	}
 375
 376	if (print) {
 377		if (printk_ratelimit())
 378			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 379				atomic_read(&audit_lost),
 380				audit_rate_limit,
 381				audit_backlog_limit);
 382		audit_panic(message);
 383	}
 384}
 385
 386static int audit_log_config_change(char *function_name, u32 new, u32 old,
 387				   int allow_changes)
 388{
 389	struct audit_buffer *ab;
 390	int rc = 0;
 391
 392	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 393	if (unlikely(!ab))
 394		return rc;
 395	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
 396	audit_log_session_info(ab);
 397	rc = audit_log_task_context(ab);
 398	if (rc)
 399		allow_changes = 0; /* Something weird, deny request */
 400	audit_log_format(ab, " res=%d", allow_changes);
 401	audit_log_end(ab);
 402	return rc;
 403}
 404
 405static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 406{
 407	int allow_changes, rc = 0;
 408	u32 old = *to_change;
 409
 410	/* check if we are locked */
 411	if (audit_enabled == AUDIT_LOCKED)
 412		allow_changes = 0;
 413	else
 414		allow_changes = 1;
 415
 416	if (audit_enabled != AUDIT_OFF) {
 417		rc = audit_log_config_change(function_name, new, old, allow_changes);
 418		if (rc)
 419			allow_changes = 0;
 420	}
 421
 422	/* If we are allowed, make the change */
 423	if (allow_changes == 1)
 424		*to_change = new;
 425	/* Not allowed, update reason */
 426	else if (rc == 0)
 427		rc = -EPERM;
 428	return rc;
 429}
 430
 431static int audit_set_rate_limit(u32 limit)
 432{
 433	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 434}
 435
 436static int audit_set_backlog_limit(u32 limit)
 437{
 438	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 439}
 440
 441static int audit_set_backlog_wait_time(u32 timeout)
 442{
 443	return audit_do_config_change("audit_backlog_wait_time",
 444				      &audit_backlog_wait_time, timeout);
 445}
 446
 447static int audit_set_enabled(u32 state)
 448{
 449	int rc;
 450	if (state > AUDIT_LOCKED)
 451		return -EINVAL;
 452
 453	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 454	if (!rc)
 455		audit_ever_enabled |= !!state;
 456
 457	return rc;
 458}
 459
 460static int audit_set_failure(u32 state)
 461{
 462	if (state != AUDIT_FAIL_SILENT
 463	    && state != AUDIT_FAIL_PRINTK
 464	    && state != AUDIT_FAIL_PANIC)
 465		return -EINVAL;
 466
 467	return audit_do_config_change("audit_failure", &audit_failure, state);
 468}
 469
 470/**
 471 * auditd_conn_free - RCU helper to release an auditd connection struct
 472 * @rcu: RCU head
 473 *
 474 * Description:
 475 * Drop any references inside the auditd connection tracking struct and free
 476 * the memory.
 477 */
 478static void auditd_conn_free(struct rcu_head *rcu)
 479{
 480	struct auditd_connection *ac;
 481
 482	ac = container_of(rcu, struct auditd_connection, rcu);
 483	put_pid(ac->pid);
 484	put_net(ac->net);
 485	kfree(ac);
 
 486}
 487
 488/**
 489 * auditd_set - Set/Reset the auditd connection state
 490 * @pid: auditd PID
 491 * @portid: auditd netlink portid
 492 * @net: auditd network namespace pointer
 493 *
 494 * Description:
 495 * This function will obtain and drop network namespace references as
 496 * necessary.  Returns zero on success, negative values on failure.
 497 */
 498static int auditd_set(struct pid *pid, u32 portid, struct net *net)
 499{
 500	unsigned long flags;
 501	struct auditd_connection *ac_old, *ac_new;
 502
 503	if (!pid || !net)
 504		return -EINVAL;
 505
 506	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
 507	if (!ac_new)
 508		return -ENOMEM;
 509	ac_new->pid = get_pid(pid);
 510	ac_new->portid = portid;
 511	ac_new->net = get_net(net);
 512
 513	spin_lock_irqsave(&auditd_conn_lock, flags);
 514	ac_old = rcu_dereference_protected(auditd_conn,
 515					   lockdep_is_held(&auditd_conn_lock));
 516	rcu_assign_pointer(auditd_conn, ac_new);
 517	spin_unlock_irqrestore(&auditd_conn_lock, flags);
 518
 519	if (ac_old)
 520		call_rcu(&ac_old->rcu, auditd_conn_free);
 521
 522	return 0;
 523}
 524
 525/**
 526 * kauditd_printk_skb - Print the audit record to the ring buffer
 527 * @skb: audit record
 528 *
 529 * Whatever the reason, this packet may not make it to the auditd connection
 530 * so write it via printk so the information isn't completely lost.
 531 */
 532static void kauditd_printk_skb(struct sk_buff *skb)
 533{
 534	struct nlmsghdr *nlh = nlmsg_hdr(skb);
 535	char *data = nlmsg_data(nlh);
 536
 537	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
 538		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 539}
 540
 541/**
 542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
 543 * @skb: audit record
 544 *
 545 * Description:
 546 * This should only be used by the kauditd_thread when it fails to flush the
 547 * hold queue.
 548 */
 549static void kauditd_rehold_skb(struct sk_buff *skb)
 550{
 551	/* put the record back in the queue at the same place */
 552	skb_queue_head(&audit_hold_queue, skb);
 553}
 554
 555/**
 556 * kauditd_hold_skb - Queue an audit record, waiting for auditd
 557 * @skb: audit record
 558 *
 559 * Description:
 560 * Queue the audit record, waiting for an instance of auditd.  When this
 561 * function is called we haven't given up yet on sending the record, but things
 562 * are not looking good.  The first thing we want to do is try to write the
 563 * record via printk and then see if we want to try and hold on to the record
 564 * and queue it, if we have room.  If we want to hold on to the record, but we
 565 * don't have room, record a record lost message.
 566 */
 567static void kauditd_hold_skb(struct sk_buff *skb)
 568{
 569	/* at this point it is uncertain if we will ever send this to auditd so
 570	 * try to send the message via printk before we go any further */
 571	kauditd_printk_skb(skb);
 572
 573	/* can we just silently drop the message? */
 574	if (!audit_default) {
 575		kfree_skb(skb);
 576		return;
 577	}
 578
 579	/* if we have room, queue the message */
 580	if (!audit_backlog_limit ||
 581	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
 582		skb_queue_tail(&audit_hold_queue, skb);
 583		return;
 584	}
 585
 586	/* we have no other options - drop the message */
 587	audit_log_lost("kauditd hold queue overflow");
 588	kfree_skb(skb);
 589}
 590
 591/**
 592 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
 593 * @skb: audit record
 594 *
 595 * Description:
 596 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
 597 * but for some reason we are having problems sending it audit records so
 598 * queue the given record and attempt to resend.
 599 */
 600static void kauditd_retry_skb(struct sk_buff *skb)
 601{
 602	/* NOTE: because records should only live in the retry queue for a
 603	 * short period of time, before either being sent or moved to the hold
 604	 * queue, we don't currently enforce a limit on this queue */
 605	skb_queue_tail(&audit_retry_queue, skb);
 606}
 607
 608/**
 609 * auditd_reset - Disconnect the auditd connection
 610 * @ac: auditd connection state
 611 *
 612 * Description:
 613 * Break the auditd/kauditd connection and move all the queued records into the
 614 * hold queue in case auditd reconnects.  It is important to note that the @ac
 615 * pointer should never be dereferenced inside this function as it may be NULL
 616 * or invalid, you can only compare the memory address!  If @ac is NULL then
 617 * the connection will always be reset.
 618 */
 619static void auditd_reset(const struct auditd_connection *ac)
 620{
 621	unsigned long flags;
 622	struct sk_buff *skb;
 623	struct auditd_connection *ac_old;
 624
 625	/* if it isn't already broken, break the connection */
 626	spin_lock_irqsave(&auditd_conn_lock, flags);
 627	ac_old = rcu_dereference_protected(auditd_conn,
 628					   lockdep_is_held(&auditd_conn_lock));
 629	if (ac && ac != ac_old) {
 630		/* someone already registered a new auditd connection */
 631		spin_unlock_irqrestore(&auditd_conn_lock, flags);
 632		return;
 633	}
 634	rcu_assign_pointer(auditd_conn, NULL);
 635	spin_unlock_irqrestore(&auditd_conn_lock, flags);
 636
 637	if (ac_old)
 638		call_rcu(&ac_old->rcu, auditd_conn_free);
 639
 640	/* flush the retry queue to the hold queue, but don't touch the main
 641	 * queue since we need to process that normally for multicast */
 642	while ((skb = skb_dequeue(&audit_retry_queue)))
 643		kauditd_hold_skb(skb);
 644}
 645
 646/**
 647 * auditd_send_unicast_skb - Send a record via unicast to auditd
 648 * @skb: audit record
 649 *
 650 * Description:
 651 * Send a skb to the audit daemon, returns positive/zero values on success and
 652 * negative values on failure; in all cases the skb will be consumed by this
 653 * function.  If the send results in -ECONNREFUSED the connection with auditd
 654 * will be reset.  This function may sleep so callers should not hold any locks
 655 * where this would cause a problem.
 656 */
 657static int auditd_send_unicast_skb(struct sk_buff *skb)
 658{
 659	int rc;
 660	u32 portid;
 661	struct net *net;
 662	struct sock *sk;
 663	struct auditd_connection *ac;
 664
 665	/* NOTE: we can't call netlink_unicast while in the RCU section so
 666	 *       take a reference to the network namespace and grab local
 667	 *       copies of the namespace, the sock, and the portid; the
 668	 *       namespace and sock aren't going to go away while we hold a
 669	 *       reference and if the portid does become invalid after the RCU
 670	 *       section netlink_unicast() should safely return an error */
 671
 672	rcu_read_lock();
 673	ac = rcu_dereference(auditd_conn);
 674	if (!ac) {
 675		rcu_read_unlock();
 676		kfree_skb(skb);
 677		rc = -ECONNREFUSED;
 678		goto err;
 679	}
 680	net = get_net(ac->net);
 681	sk = audit_get_sk(net);
 682	portid = ac->portid;
 683	rcu_read_unlock();
 684
 685	rc = netlink_unicast(sk, skb, portid, 0);
 686	put_net(net);
 687	if (rc < 0)
 688		goto err;
 689
 690	return rc;
 691
 692err:
 693	if (ac && rc == -ECONNREFUSED)
 694		auditd_reset(ac);
 695	return rc;
 696}
 697
 698/**
 699 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
 700 * @sk: the sending sock
 701 * @portid: the netlink destination
 702 * @queue: the skb queue to process
 703 * @retry_limit: limit on number of netlink unicast failures
 704 * @skb_hook: per-skb hook for additional processing
 705 * @err_hook: hook called if the skb fails the netlink unicast send
 706 *
 707 * Description:
 708 * Run through the given queue and attempt to send the audit records to auditd,
 709 * returns zero on success, negative values on failure.  It is up to the caller
 710 * to ensure that the @sk is valid for the duration of this function.
 711 *
 712 */
 713static int kauditd_send_queue(struct sock *sk, u32 portid,
 714			      struct sk_buff_head *queue,
 715			      unsigned int retry_limit,
 716			      void (*skb_hook)(struct sk_buff *skb),
 717			      void (*err_hook)(struct sk_buff *skb))
 718{
 719	int rc = 0;
 720	struct sk_buff *skb;
 721	static unsigned int failed = 0;
 722
 723	/* NOTE: kauditd_thread takes care of all our locking, we just use
 724	 *       the netlink info passed to us (e.g. sk and portid) */
 725
 726	while ((skb = skb_dequeue(queue))) {
 727		/* call the skb_hook for each skb we touch */
 728		if (skb_hook)
 729			(*skb_hook)(skb);
 730
 731		/* can we send to anyone via unicast? */
 732		if (!sk) {
 733			if (err_hook)
 734				(*err_hook)(skb);
 735			continue;
 736		}
 737
 738		/* grab an extra skb reference in case of error */
 739		skb_get(skb);
 740		rc = netlink_unicast(sk, skb, portid, 0);
 741		if (rc < 0) {
 742			/* fatal failure for our queue flush attempt? */
 743			if (++failed >= retry_limit ||
 744			    rc == -ECONNREFUSED || rc == -EPERM) {
 745				/* yes - error processing for the queue */
 746				sk = NULL;
 747				if (err_hook)
 748					(*err_hook)(skb);
 749				if (!skb_hook)
 750					goto out;
 751				/* keep processing with the skb_hook */
 752				continue;
 753			} else
 754				/* no - requeue to preserve ordering */
 755				skb_queue_head(queue, skb);
 756		} else {
 757			/* it worked - drop the extra reference and continue */
 758			consume_skb(skb);
 759			failed = 0;
 760		}
 761	}
 762
 763out:
 764	return (rc >= 0 ? 0 : rc);
 765}
 766
 767/*
 768 * kauditd_send_multicast_skb - Send a record to any multicast listeners
 769 * @skb: audit record
 770 *
 771 * Description:
 772 * Write a multicast message to anyone listening in the initial network
 773 * namespace.  This function doesn't consume an skb as might be expected since
 774 * it has to copy it anyways.
 775 */
 776static void kauditd_send_multicast_skb(struct sk_buff *skb)
 777{
 778	struct sk_buff *copy;
 779	struct sock *sock = audit_get_sk(&init_net);
 780	struct nlmsghdr *nlh;
 781
 782	/* NOTE: we are not taking an additional reference for init_net since
 783	 *       we don't have to worry about it going away */
 784
 785	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 786		return;
 787
 788	/*
 789	 * The seemingly wasteful skb_copy() rather than bumping the refcount
 790	 * using skb_get() is necessary because non-standard mods are made to
 791	 * the skb by the original kaudit unicast socket send routine.  The
 792	 * existing auditd daemon assumes this breakage.  Fixing this would
 793	 * require co-ordinating a change in the established protocol between
 794	 * the kaudit kernel subsystem and the auditd userspace code.  There is
 795	 * no reason for new multicast clients to continue with this
 796	 * non-compliance.
 797	 */
 798	copy = skb_copy(skb, GFP_KERNEL);
 799	if (!copy)
 800		return;
 801	nlh = nlmsg_hdr(copy);
 802	nlh->nlmsg_len = skb->len;
 803
 804	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
 805}
 806
 807/**
 808 * kauditd_thread - Worker thread to send audit records to userspace
 809 * @dummy: unused
 
 
 
 
 
 
 
 
 
 
 
 810 */
 811static int kauditd_thread(void *dummy)
 812{
 813	int rc;
 814	u32 portid = 0;
 815	struct net *net = NULL;
 816	struct sock *sk = NULL;
 817	struct auditd_connection *ac;
 
 
 
 818
 819#define UNICAST_RETRIES 5
 
 
 
 820
 
 
 
 
 
 
 
 
 
 821	set_freezable();
 822	while (!kthread_should_stop()) {
 823		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
 824		rcu_read_lock();
 825		ac = rcu_dereference(auditd_conn);
 826		if (!ac) {
 827			rcu_read_unlock();
 828			goto main_queue;
 829		}
 830		net = get_net(ac->net);
 831		sk = audit_get_sk(net);
 832		portid = ac->portid;
 833		rcu_read_unlock();
 834
 835		/* attempt to flush the hold queue */
 836		rc = kauditd_send_queue(sk, portid,
 837					&audit_hold_queue, UNICAST_RETRIES,
 838					NULL, kauditd_rehold_skb);
 839		if (rc < 0) {
 840			sk = NULL;
 841			auditd_reset(ac);
 842			goto main_queue;
 843		}
 844
 845		/* attempt to flush the retry queue */
 846		rc = kauditd_send_queue(sk, portid,
 847					&audit_retry_queue, UNICAST_RETRIES,
 848					NULL, kauditd_hold_skb);
 849		if (rc < 0) {
 850			sk = NULL;
 851			auditd_reset(ac);
 852			goto main_queue;
 853		}
 854
 855main_queue:
 856		/* process the main queue - do the multicast send and attempt
 857		 * unicast, dump failed record sends to the retry queue; if
 858		 * sk == NULL due to previous failures we will just do the
 859		 * multicast send and move the record to the hold queue */
 860		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
 861					kauditd_send_multicast_skb,
 862					(sk ?
 863					 kauditd_retry_skb : kauditd_hold_skb));
 864		if (ac && rc < 0)
 865			auditd_reset(ac);
 866		sk = NULL;
 867
 868		/* drop our netns reference, no auditd sends past this line */
 869		if (net) {
 870			put_net(net);
 871			net = NULL;
 872		}
 873
 874		/* we have processed all the queues so wake everyone */
 875		wake_up(&audit_backlog_wait);
 876
 877		/* NOTE: we want to wake up if there is anything on the queue,
 878		 *       regardless of if an auditd is connected, as we need to
 879		 *       do the multicast send and rotate records from the
 880		 *       main queue to the retry/hold queues */
 881		wait_event_freezable(kauditd_wait,
 882				     (skb_queue_len(&audit_queue) ? 1 : 0));
 883	}
 884
 885	return 0;
 886}
 887
 888int audit_send_list_thread(void *_dest)
 889{
 890	struct audit_netlink_list *dest = _dest;
 891	struct sk_buff *skb;
 892	struct sock *sk = audit_get_sk(dest->net);
 
 893
 894	/* wait for parent to finish and send an ACK */
 895	audit_ctl_lock();
 896	audit_ctl_unlock();
 897
 898	while ((skb = __skb_dequeue(&dest->q)) != NULL)
 899		netlink_unicast(sk, skb, dest->portid, 0);
 900
 901	put_net(dest->net);
 902	kfree(dest);
 903
 904	return 0;
 905}
 906
 907struct sk_buff *audit_make_reply(int seq, int type, int done,
 908				 int multi, const void *payload, int size)
 909{
 910	struct sk_buff	*skb;
 911	struct nlmsghdr	*nlh;
 912	void		*data;
 913	int		flags = multi ? NLM_F_MULTI : 0;
 914	int		t     = done  ? NLMSG_DONE  : type;
 915
 916	skb = nlmsg_new(size, GFP_KERNEL);
 917	if (!skb)
 918		return NULL;
 919
 920	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
 921	if (!nlh)
 922		goto out_kfree_skb;
 923	data = nlmsg_data(nlh);
 924	memcpy(data, payload, size);
 925	return skb;
 926
 927out_kfree_skb:
 928	kfree_skb(skb);
 929	return NULL;
 930}
 931
 932static void audit_free_reply(struct audit_reply *reply)
 933{
 934	if (!reply)
 935		return;
 936
 937	kfree_skb(reply->skb);
 938	if (reply->net)
 939		put_net(reply->net);
 940	kfree(reply);
 941}
 942
 943static int audit_send_reply_thread(void *arg)
 944{
 945	struct audit_reply *reply = (struct audit_reply *)arg;
 
 
 946
 947	audit_ctl_lock();
 948	audit_ctl_unlock();
 949
 950	/* Ignore failure. It'll only happen if the sender goes away,
 951	   because our timeout is set to infinite. */
 952	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
 953	reply->skb = NULL;
 954	audit_free_reply(reply);
 955	return 0;
 956}
 957
 958/**
 959 * audit_send_reply - send an audit reply message via netlink
 960 * @request_skb: skb of request we are replying to (used to target the reply)
 961 * @seq: sequence number
 962 * @type: audit message type
 963 * @done: done (last) flag
 964 * @multi: multi-part message flag
 965 * @payload: payload data
 966 * @size: payload size
 967 *
 968 * Allocates a skb, builds the netlink message, and sends it to the port id.
 
 969 */
 970static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 971			     int multi, const void *payload, int size)
 972{
 
 
 
 973	struct task_struct *tsk;
 974	struct audit_reply *reply;
 
 975
 976	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
 977	if (!reply)
 978		return;
 979
 980	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
 981	if (!reply->skb)
 982		goto err;
 983	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
 984	reply->portid = NETLINK_CB(request_skb).portid;
 
 
 985
 986	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 987	if (IS_ERR(tsk))
 988		goto err;
 989
 990	return;
 991
 992err:
 993	audit_free_reply(reply);
 994}
 995
 996/*
 997 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 998 * control messages.
 999 */
1000static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1001{
1002	int err = 0;
1003
1004	/* Only support initial user namespace for now. */
1005	/*
1006	 * We return ECONNREFUSED because it tricks userspace into thinking
1007	 * that audit was not configured into the kernel.  Lots of users
1008	 * configure their PAM stack (because that's what the distro does)
1009	 * to reject login if unable to send messages to audit.  If we return
1010	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1011	 * configured in and will let login proceed.  If we return EPERM
1012	 * userspace will reject all logins.  This should be removed when we
1013	 * support non init namespaces!!
1014	 */
1015	if (current_user_ns() != &init_user_ns)
1016		return -ECONNREFUSED;
1017
1018	switch (msg_type) {
1019	case AUDIT_LIST:
1020	case AUDIT_ADD:
1021	case AUDIT_DEL:
1022		return -EOPNOTSUPP;
1023	case AUDIT_GET:
1024	case AUDIT_SET:
1025	case AUDIT_GET_FEATURE:
1026	case AUDIT_SET_FEATURE:
1027	case AUDIT_LIST_RULES:
1028	case AUDIT_ADD_RULE:
1029	case AUDIT_DEL_RULE:
1030	case AUDIT_SIGNAL_INFO:
1031	case AUDIT_TTY_GET:
1032	case AUDIT_TTY_SET:
1033	case AUDIT_TRIM:
1034	case AUDIT_MAKE_EQUIV:
1035		/* Only support auditd and auditctl in initial pid namespace
1036		 * for now. */
1037		if (task_active_pid_ns(current) != &init_pid_ns)
1038			return -EPERM;
1039
1040		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1041			err = -EPERM;
1042		break;
1043	case AUDIT_USER:
1044	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1045	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1046		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1047			err = -EPERM;
1048		break;
1049	default:  /* bad msg */
1050		err = -EINVAL;
1051	}
1052
1053	return err;
1054}
1055
1056static void audit_log_common_recv_msg(struct audit_context *context,
1057					struct audit_buffer **ab, u16 msg_type)
1058{
1059	uid_t uid = from_kuid(&init_user_ns, current_uid());
1060	pid_t pid = task_tgid_nr(current);
1061
1062	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1063		*ab = NULL;
1064		return;
1065	}
1066
1067	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1068	if (unlikely(!*ab))
1069		return;
1070	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1071	audit_log_session_info(*ab);
1072	audit_log_task_context(*ab);
1073}
1074
1075static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1076					   u16 msg_type)
1077{
1078	audit_log_common_recv_msg(NULL, ab, msg_type);
1079}
1080
1081int is_audit_feature_set(int i)
1082{
1083	return af.features & AUDIT_FEATURE_TO_MASK(i);
1084}
1085
1086
1087static int audit_get_feature(struct sk_buff *skb)
1088{
1089	u32 seq;
1090
1091	seq = nlmsg_hdr(skb)->nlmsg_seq;
1092
1093	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1094
1095	return 0;
1096}
1097
1098static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1099				     u32 old_lock, u32 new_lock, int res)
1100{
1101	struct audit_buffer *ab;
1102
1103	if (audit_enabled == AUDIT_OFF)
1104		return;
1105
1106	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1107	if (!ab)
1108		return;
1109	audit_log_task_info(ab);
1110	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1111			 audit_feature_names[which], !!old_feature, !!new_feature,
1112			 !!old_lock, !!new_lock, res);
1113	audit_log_end(ab);
1114}
1115
1116static int audit_set_feature(struct audit_features *uaf)
1117{
 
1118	int i;
1119
1120	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 
1121
1122	/* if there is ever a version 2 we should handle that here */
1123
1124	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1125		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1126		u32 old_feature, new_feature, old_lock, new_lock;
1127
1128		/* if we are not changing this feature, move along */
1129		if (!(feature & uaf->mask))
1130			continue;
1131
1132		old_feature = af.features & feature;
1133		new_feature = uaf->features & feature;
1134		new_lock = (uaf->lock | af.lock) & feature;
1135		old_lock = af.lock & feature;
1136
1137		/* are we changing a locked feature? */
1138		if (old_lock && (new_feature != old_feature)) {
1139			audit_log_feature_change(i, old_feature, new_feature,
1140						 old_lock, new_lock, 0);
1141			return -EPERM;
1142		}
1143	}
1144	/* nothing invalid, do the changes */
1145	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1146		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1147		u32 old_feature, new_feature, old_lock, new_lock;
1148
1149		/* if we are not changing this feature, move along */
1150		if (!(feature & uaf->mask))
1151			continue;
1152
1153		old_feature = af.features & feature;
1154		new_feature = uaf->features & feature;
1155		old_lock = af.lock & feature;
1156		new_lock = (uaf->lock | af.lock) & feature;
1157
1158		if (new_feature != old_feature)
1159			audit_log_feature_change(i, old_feature, new_feature,
1160						 old_lock, new_lock, 1);
1161
1162		if (new_feature)
1163			af.features |= feature;
1164		else
1165			af.features &= ~feature;
1166		af.lock |= new_lock;
1167	}
1168
1169	return 0;
1170}
1171
1172static int audit_replace(struct pid *pid)
1173{
1174	pid_t pvnr;
1175	struct sk_buff *skb;
1176
1177	pvnr = pid_vnr(pid);
1178	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1179	if (!skb)
1180		return -ENOMEM;
1181	return auditd_send_unicast_skb(skb);
1182}
1183
1184static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1185{
1186	u32			seq;
1187	void			*data;
1188	int			data_len;
1189	int			err;
1190	struct audit_buffer	*ab;
1191	u16			msg_type = nlh->nlmsg_type;
1192	struct audit_sig_info   *sig_data;
1193	char			*ctx = NULL;
1194	u32			len;
1195
1196	err = audit_netlink_ok(skb, msg_type);
1197	if (err)
1198		return err;
1199
 
 
 
 
 
 
 
 
 
 
1200	seq  = nlh->nlmsg_seq;
1201	data = nlmsg_data(nlh);
1202	data_len = nlmsg_len(nlh);
1203
1204	switch (msg_type) {
1205	case AUDIT_GET: {
1206		struct audit_status	s;
1207		memset(&s, 0, sizeof(s));
1208		s.enabled		   = audit_enabled;
1209		s.failure		   = audit_failure;
1210		/* NOTE: use pid_vnr() so the PID is relative to the current
1211		 *       namespace */
1212		s.pid			   = auditd_pid_vnr();
1213		s.rate_limit		   = audit_rate_limit;
1214		s.backlog_limit		   = audit_backlog_limit;
1215		s.lost			   = atomic_read(&audit_lost);
1216		s.backlog		   = skb_queue_len(&audit_queue);
1217		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1218		s.backlog_wait_time	   = audit_backlog_wait_time;
1219		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1220		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1221		break;
1222	}
1223	case AUDIT_SET: {
1224		struct audit_status	s;
1225		memset(&s, 0, sizeof(s));
1226		/* guard against past and future API changes */
1227		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1228		if (s.mask & AUDIT_STATUS_ENABLED) {
1229			err = audit_set_enabled(s.enabled);
1230			if (err < 0)
1231				return err;
1232		}
1233		if (s.mask & AUDIT_STATUS_FAILURE) {
1234			err = audit_set_failure(s.failure);
1235			if (err < 0)
1236				return err;
1237		}
1238		if (s.mask & AUDIT_STATUS_PID) {
1239			/* NOTE: we are using the vnr PID functions below
1240			 *       because the s.pid value is relative to the
1241			 *       namespace of the caller; at present this
1242			 *       doesn't matter much since you can really only
1243			 *       run auditd from the initial pid namespace, but
1244			 *       something to keep in mind if this changes */
1245			pid_t new_pid = s.pid;
1246			pid_t auditd_pid;
1247			struct pid *req_pid = task_tgid(current);
1248
1249			/* Sanity check - PID values must match. Setting
1250			 * pid to 0 is how auditd ends auditing. */
1251			if (new_pid && (new_pid != pid_vnr(req_pid)))
1252				return -EINVAL;
1253
1254			/* test the auditd connection */
1255			audit_replace(req_pid);
1256
1257			auditd_pid = auditd_pid_vnr();
1258			if (auditd_pid) {
1259				/* replacing a healthy auditd is not allowed */
1260				if (new_pid) {
1261					audit_log_config_change("audit_pid",
1262							new_pid, auditd_pid, 0);
1263					return -EEXIST;
1264				}
1265				/* only current auditd can unregister itself */
1266				if (pid_vnr(req_pid) != auditd_pid) {
1267					audit_log_config_change("audit_pid",
1268							new_pid, auditd_pid, 0);
1269					return -EACCES;
1270				}
1271			}
1272
1273			if (new_pid) {
1274				/* register a new auditd connection */
1275				err = auditd_set(req_pid,
1276						 NETLINK_CB(skb).portid,
1277						 sock_net(NETLINK_CB(skb).sk));
1278				if (audit_enabled != AUDIT_OFF)
1279					audit_log_config_change("audit_pid",
1280								new_pid,
1281								auditd_pid,
1282								err ? 0 : 1);
1283				if (err)
1284					return err;
1285
1286				/* try to process any backlog */
1287				wake_up_interruptible(&kauditd_wait);
1288			} else {
1289				if (audit_enabled != AUDIT_OFF)
1290					audit_log_config_change("audit_pid",
1291								new_pid,
1292								auditd_pid, 1);
1293
1294				/* unregister the auditd connection */
1295				auditd_reset(NULL);
1296			}
 
 
 
 
 
1297		}
1298		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1299			err = audit_set_rate_limit(s.rate_limit);
1300			if (err < 0)
1301				return err;
1302		}
1303		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1304			err = audit_set_backlog_limit(s.backlog_limit);
1305			if (err < 0)
1306				return err;
1307		}
1308		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1309			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1310				return -EINVAL;
1311			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1312				return -EINVAL;
1313			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1314			if (err < 0)
1315				return err;
1316		}
1317		if (s.mask == AUDIT_STATUS_LOST) {
1318			u32 lost = atomic_xchg(&audit_lost, 0);
1319
1320			audit_log_config_change("lost", 0, lost, 1);
1321			return lost;
1322		}
1323		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1324			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1325
1326			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1327			return actual;
1328		}
1329		break;
1330	}
1331	case AUDIT_GET_FEATURE:
1332		err = audit_get_feature(skb);
1333		if (err)
1334			return err;
1335		break;
1336	case AUDIT_SET_FEATURE:
1337		if (data_len < sizeof(struct audit_features))
1338			return -EINVAL;
1339		err = audit_set_feature(data);
1340		if (err)
1341			return err;
1342		break;
1343	case AUDIT_USER:
1344	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1345	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1346		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1347			return 0;
1348		/* exit early if there isn't at least one character to print */
1349		if (data_len < 2)
1350			return -EINVAL;
1351
1352		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1353		if (err == 1) { /* match or error */
1354			char *str = data;
1355
1356			err = 0;
1357			if (msg_type == AUDIT_USER_TTY) {
1358				err = tty_audit_push();
1359				if (err)
1360					break;
1361			}
1362			audit_log_user_recv_msg(&ab, msg_type);
1363			if (msg_type != AUDIT_USER_TTY) {
1364				/* ensure NULL termination */
1365				str[data_len - 1] = '\0';
1366				audit_log_format(ab, " msg='%.*s'",
1367						 AUDIT_MESSAGE_TEXT_MAX,
1368						 str);
1369			} else {
 
 
1370				audit_log_format(ab, " data=");
1371				if (data_len > 0 && str[data_len - 1] == '\0')
1372					data_len--;
1373				audit_log_n_untrustedstring(ab, str, data_len);
 
 
1374			}
 
1375			audit_log_end(ab);
 
1376		}
1377		break;
1378	case AUDIT_ADD_RULE:
1379	case AUDIT_DEL_RULE:
1380		if (data_len < sizeof(struct audit_rule_data))
1381			return -EINVAL;
1382		if (audit_enabled == AUDIT_LOCKED) {
1383			audit_log_common_recv_msg(audit_context(), &ab,
1384						  AUDIT_CONFIG_CHANGE);
1385			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1386					 msg_type == AUDIT_ADD_RULE ?
1387						"add_rule" : "remove_rule",
1388					 audit_enabled);
1389			audit_log_end(ab);
1390			return -EPERM;
1391		}
1392		err = audit_rule_change(msg_type, seq, data, data_len);
 
1393		break;
1394	case AUDIT_LIST_RULES:
1395		err = audit_list_rules_send(skb, seq);
1396		break;
1397	case AUDIT_TRIM:
1398		audit_trim_trees();
1399		audit_log_common_recv_msg(audit_context(), &ab,
1400					  AUDIT_CONFIG_CHANGE);
1401		audit_log_format(ab, " op=trim res=1");
1402		audit_log_end(ab);
1403		break;
1404	case AUDIT_MAKE_EQUIV: {
1405		void *bufp = data;
1406		u32 sizes[2];
1407		size_t msglen = data_len;
1408		char *old, *new;
1409
1410		err = -EINVAL;
1411		if (msglen < 2 * sizeof(u32))
1412			break;
1413		memcpy(sizes, bufp, 2 * sizeof(u32));
1414		bufp += 2 * sizeof(u32);
1415		msglen -= 2 * sizeof(u32);
1416		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1417		if (IS_ERR(old)) {
1418			err = PTR_ERR(old);
1419			break;
1420		}
1421		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1422		if (IS_ERR(new)) {
1423			err = PTR_ERR(new);
1424			kfree(old);
1425			break;
1426		}
1427		/* OK, here comes... */
1428		err = audit_tag_tree(old, new);
1429
1430		audit_log_common_recv_msg(audit_context(), &ab,
1431					  AUDIT_CONFIG_CHANGE);
1432		audit_log_format(ab, " op=make_equiv old=");
1433		audit_log_untrustedstring(ab, old);
1434		audit_log_format(ab, " new=");
1435		audit_log_untrustedstring(ab, new);
1436		audit_log_format(ab, " res=%d", !err);
1437		audit_log_end(ab);
1438		kfree(old);
1439		kfree(new);
1440		break;
1441	}
1442	case AUDIT_SIGNAL_INFO:
1443		len = 0;
1444		if (audit_sig_sid) {
1445			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1446			if (err)
1447				return err;
1448		}
1449		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1450		if (!sig_data) {
1451			if (audit_sig_sid)
1452				security_release_secctx(ctx, len);
1453			return -ENOMEM;
1454		}
1455		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1456		sig_data->pid = audit_sig_pid;
1457		if (audit_sig_sid) {
1458			memcpy(sig_data->ctx, ctx, len);
1459			security_release_secctx(ctx, len);
1460		}
1461		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1462				 sig_data, sizeof(*sig_data) + len);
1463		kfree(sig_data);
1464		break;
1465	case AUDIT_TTY_GET: {
1466		struct audit_tty_status s;
1467		unsigned int t;
1468
1469		t = READ_ONCE(current->signal->audit_tty);
1470		s.enabled = t & AUDIT_TTY_ENABLE;
1471		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1472
1473		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1474		break;
1475	}
1476	case AUDIT_TTY_SET: {
1477		struct audit_tty_status s, old;
1478		struct audit_buffer	*ab;
1479		unsigned int t;
1480
1481		memset(&s, 0, sizeof(s));
1482		/* guard against past and future API changes */
1483		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1484		/* check if new data is valid */
1485		if ((s.enabled != 0 && s.enabled != 1) ||
1486		    (s.log_passwd != 0 && s.log_passwd != 1))
1487			err = -EINVAL;
1488
1489		if (err)
1490			t = READ_ONCE(current->signal->audit_tty);
1491		else {
1492			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1493			t = xchg(&current->signal->audit_tty, t);
1494		}
1495		old.enabled = t & AUDIT_TTY_ENABLE;
1496		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1497
1498		audit_log_common_recv_msg(audit_context(), &ab,
1499					  AUDIT_CONFIG_CHANGE);
1500		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1501				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1502				 old.enabled, s.enabled, old.log_passwd,
1503				 s.log_passwd, !err);
1504		audit_log_end(ab);
1505		break;
1506	}
1507	default:
1508		err = -EINVAL;
1509		break;
1510	}
1511
1512	return err < 0 ? err : 0;
1513}
1514
1515/**
1516 * audit_receive - receive messages from a netlink control socket
1517 * @skb: the message buffer
1518 *
1519 * Parse the provided skb and deal with any messages that may be present,
1520 * malformed skbs are discarded.
1521 */
1522static void audit_receive(struct sk_buff  *skb)
1523{
1524	struct nlmsghdr *nlh;
1525	/*
1526	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1527	 * if the nlmsg_len was not aligned
1528	 */
1529	int len;
1530	int err;
1531
1532	nlh = nlmsg_hdr(skb);
1533	len = skb->len;
1534
1535	audit_ctl_lock();
1536	while (nlmsg_ok(nlh, len)) {
1537		err = audit_receive_msg(skb, nlh);
1538		/* if err or if this message says it wants a response */
1539		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1540			netlink_ack(skb, nlh, err, NULL);
1541
1542		nlh = nlmsg_next(nlh, &len);
1543	}
1544	audit_ctl_unlock();
1545}
1546
1547/* Log information about who is connecting to the audit multicast socket */
1548static void audit_log_multicast(int group, const char *op, int err)
1549{
1550	const struct cred *cred;
1551	struct tty_struct *tty;
1552	char comm[sizeof(current->comm)];
1553	struct audit_buffer *ab;
1554
1555	if (!audit_enabled)
1556		return;
1557
1558	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1559	if (!ab)
1560		return;
1561
1562	cred = current_cred();
1563	tty = audit_get_tty();
1564	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1565			 task_pid_nr(current),
1566			 from_kuid(&init_user_ns, cred->uid),
1567			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1568			 tty ? tty_name(tty) : "(none)",
1569			 audit_get_sessionid(current));
1570	audit_put_tty(tty);
1571	audit_log_task_context(ab); /* subj= */
1572	audit_log_format(ab, " comm=");
1573	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1574	audit_log_d_path_exe(ab, current->mm); /* exe= */
1575	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1576	audit_log_end(ab);
1577}
1578
1579/* Run custom bind function on netlink socket group connect or bind requests. */
1580static int audit_multicast_bind(struct net *net, int group)
1581{
1582	int err = 0;
1583
1584	if (!capable(CAP_AUDIT_READ))
1585		err = -EPERM;
1586	audit_log_multicast(group, "connect", err);
1587	return err;
1588}
1589
1590static void audit_multicast_unbind(struct net *net, int group)
1591{
1592	audit_log_multicast(group, "disconnect", 0);
1593}
1594
1595static int __net_init audit_net_init(struct net *net)
1596{
1597	struct netlink_kernel_cfg cfg = {
1598		.input	= audit_receive,
1599		.bind	= audit_multicast_bind,
1600		.unbind	= audit_multicast_unbind,
1601		.flags	= NL_CFG_F_NONROOT_RECV,
1602		.groups	= AUDIT_NLGRP_MAX,
1603	};
1604
1605	struct audit_net *aunet = net_generic(net, audit_net_id);
1606
1607	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1608	if (aunet->sk == NULL) {
1609		audit_panic("cannot initialize netlink socket in namespace");
1610		return -ENOMEM;
1611	}
1612	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1613
1614	return 0;
1615}
1616
1617static void __net_exit audit_net_exit(struct net *net)
1618{
1619	struct audit_net *aunet = net_generic(net, audit_net_id);
 
 
 
 
 
1620
1621	/* NOTE: you would think that we would want to check the auditd
1622	 * connection and potentially reset it here if it lives in this
1623	 * namespace, but since the auditd connection tracking struct holds a
1624	 * reference to this namespace (see auditd_set()) we are only ever
1625	 * going to get here after that connection has been released */
1626
1627	netlink_kernel_release(aunet->sk);
1628}
1629
1630static struct pernet_operations audit_net_ops __net_initdata = {
1631	.init = audit_net_init,
1632	.exit = audit_net_exit,
1633	.id = &audit_net_id,
1634	.size = sizeof(struct audit_net),
1635};
1636
1637/* Initialize audit support at boot time. */
1638static int __init audit_init(void)
1639{
1640	int i;
1641
1642	if (audit_initialized == AUDIT_DISABLED)
1643		return 0;
1644
1645	audit_buffer_cache = kmem_cache_create("audit_buffer",
1646					       sizeof(struct audit_buffer),
1647					       0, SLAB_PANIC, NULL);
1648
1649	skb_queue_head_init(&audit_queue);
1650	skb_queue_head_init(&audit_retry_queue);
1651	skb_queue_head_init(&audit_hold_queue);
1652
1653	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1654		INIT_LIST_HEAD(&audit_inode_hash[i]);
1655
1656	mutex_init(&audit_cmd_mutex.lock);
1657	audit_cmd_mutex.owner = NULL;
1658
1659	pr_info("initializing netlink subsys (%s)\n",
1660		audit_default ? "enabled" : "disabled");
1661	register_pernet_subsys(&audit_net_ops);
1662
 
 
1663	audit_initialized = AUDIT_INITIALIZED;
 
 
1664
1665	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1666	if (IS_ERR(kauditd_task)) {
1667		int err = PTR_ERR(kauditd_task);
1668		panic("audit: failed to start the kauditd thread (%d)\n", err);
1669	}
1670
1671	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1672		"state=initialized audit_enabled=%u res=1",
1673		 audit_enabled);
1674
1675	return 0;
1676}
1677postcore_initcall(audit_init);
1678
1679/*
1680 * Process kernel command-line parameter at boot time.
1681 * audit={0|off} or audit={1|on}.
1682 */
1683static int __init audit_enable(char *str)
1684{
1685	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1686		audit_default = AUDIT_OFF;
1687	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1688		audit_default = AUDIT_ON;
1689	else {
1690		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1691		audit_default = AUDIT_ON;
1692	}
1693
1694	if (audit_default == AUDIT_OFF)
1695		audit_initialized = AUDIT_DISABLED;
1696	if (audit_set_enabled(audit_default))
1697		pr_err("audit: error setting audit state (%d)\n",
1698		       audit_default);
1699
1700	pr_info("%s\n", audit_default ?
1701		"enabled (after initialization)" : "disabled (until reboot)");
1702
1703	return 1;
1704}
1705__setup("audit=", audit_enable);
1706
1707/* Process kernel command-line parameter at boot time.
1708 * audit_backlog_limit=<n> */
1709static int __init audit_backlog_limit_set(char *str)
1710{
1711	u32 audit_backlog_limit_arg;
1712
1713	pr_info("audit_backlog_limit: ");
1714	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1715		pr_cont("using default of %u, unable to parse %s\n",
1716			audit_backlog_limit, str);
1717		return 1;
1718	}
1719
1720	audit_backlog_limit = audit_backlog_limit_arg;
1721	pr_cont("%d\n", audit_backlog_limit);
1722
1723	return 1;
1724}
1725__setup("audit_backlog_limit=", audit_backlog_limit_set);
1726
1727static void audit_buffer_free(struct audit_buffer *ab)
1728{
 
 
1729	if (!ab)
1730		return;
1731
1732	kfree_skb(ab->skb);
1733	kmem_cache_free(audit_buffer_cache, ab);
 
 
 
 
 
 
 
1734}
1735
1736static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1737					       gfp_t gfp_mask, int type)
1738{
1739	struct audit_buffer *ab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740
1741	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1742	if (!ab)
1743		return NULL;
1744
1745	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1746	if (!ab->skb)
1747		goto err;
1748	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1749		goto err;
1750
1751	ab->ctx = ctx;
1752	ab->gfp_mask = gfp_mask;
 
1753
1754	return ab;
1755
 
 
 
1756err:
1757	audit_buffer_free(ab);
1758	return NULL;
1759}
1760
1761/**
1762 * audit_serial - compute a serial number for the audit record
1763 *
1764 * Compute a serial number for the audit record.  Audit records are
1765 * written to user-space as soon as they are generated, so a complete
1766 * audit record may be written in several pieces.  The timestamp of the
1767 * record and this serial number are used by the user-space tools to
1768 * determine which pieces belong to the same audit record.  The
1769 * (timestamp,serial) tuple is unique for each syscall and is live from
1770 * syscall entry to syscall exit.
1771 *
1772 * NOTE: Another possibility is to store the formatted records off the
1773 * audit context (for those records that have a context), and emit them
1774 * all at syscall exit.  However, this could delay the reporting of
1775 * significant errors until syscall exit (or never, if the system
1776 * halts).
1777 */
1778unsigned int audit_serial(void)
1779{
1780	static atomic_t serial = ATOMIC_INIT(0);
1781
1782	return atomic_inc_return(&serial);
1783}
1784
1785static inline void audit_get_stamp(struct audit_context *ctx,
1786				   struct timespec64 *t, unsigned int *serial)
1787{
1788	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1789		ktime_get_coarse_real_ts64(t);
1790		*serial = audit_serial();
1791	}
1792}
1793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794/**
1795 * audit_log_start - obtain an audit buffer
1796 * @ctx: audit_context (may be NULL)
1797 * @gfp_mask: type of allocation
1798 * @type: audit message type
1799 *
1800 * Returns audit_buffer pointer on success or NULL on error.
1801 *
1802 * Obtain an audit buffer.  This routine does locking to obtain the
1803 * audit buffer, but then no locking is required for calls to
1804 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1805 * syscall, then the syscall is marked as auditable and an audit record
1806 * will be written at syscall exit.  If there is no associated task, then
1807 * task context (ctx) should be NULL.
1808 */
1809struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1810				     int type)
1811{
1812	struct audit_buffer *ab;
1813	struct timespec64 t;
1814	unsigned int serial;
 
 
 
1815
1816	if (audit_initialized != AUDIT_INITIALIZED)
1817		return NULL;
1818
1819	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1820		return NULL;
1821
1822	/* NOTE: don't ever fail/sleep on these two conditions:
1823	 * 1. auditd generated record - since we need auditd to drain the
1824	 *    queue; also, when we are checking for auditd, compare PIDs using
1825	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1826	 *    using a PID anchored in the caller's namespace
1827	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1828	 *    while holding the mutex */
1829	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1830		long stime = audit_backlog_wait_time;
1831
1832		while (audit_backlog_limit &&
1833		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1834			/* wake kauditd to try and flush the queue */
1835			wake_up_interruptible(&kauditd_wait);
1836
1837			/* sleep if we are allowed and we haven't exhausted our
1838			 * backlog wait limit */
1839			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1840				long rtime = stime;
1841
1842				DECLARE_WAITQUEUE(wait, current);
1843
1844				add_wait_queue_exclusive(&audit_backlog_wait,
1845							 &wait);
1846				set_current_state(TASK_UNINTERRUPTIBLE);
1847				stime = schedule_timeout(rtime);
1848				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1849				remove_wait_queue(&audit_backlog_wait, &wait);
1850			} else {
1851				if (audit_rate_check() && printk_ratelimit())
1852					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1853						skb_queue_len(&audit_queue),
1854						audit_backlog_limit);
1855				audit_log_lost("backlog limit exceeded");
1856				return NULL;
1857			}
1858		}
 
 
 
 
 
 
 
 
1859	}
1860
 
 
 
1861	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1862	if (!ab) {
1863		audit_log_lost("out of memory in audit_log_start");
1864		return NULL;
1865	}
1866
1867	audit_get_stamp(ab->ctx, &t, &serial);
1868	/* cancel dummy context to enable supporting records */
1869	if (ctx)
1870		ctx->dummy = 0;
1871	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1872			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1873
 
 
1874	return ab;
1875}
1876
1877/**
1878 * audit_expand - expand skb in the audit buffer
1879 * @ab: audit_buffer
1880 * @extra: space to add at tail of the skb
1881 *
1882 * Returns 0 (no space) on failed expansion, or available space if
1883 * successful.
1884 */
1885static inline int audit_expand(struct audit_buffer *ab, int extra)
1886{
1887	struct sk_buff *skb = ab->skb;
1888	int oldtail = skb_tailroom(skb);
1889	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1890	int newtail = skb_tailroom(skb);
1891
1892	if (ret < 0) {
1893		audit_log_lost("out of memory in audit_expand");
1894		return 0;
1895	}
1896
1897	skb->truesize += newtail - oldtail;
1898	return newtail;
1899}
1900
1901/*
1902 * Format an audit message into the audit buffer.  If there isn't enough
1903 * room in the audit buffer, more room will be allocated and vsnprint
1904 * will be called a second time.  Currently, we assume that a printk
1905 * can't format message larger than 1024 bytes, so we don't either.
1906 */
1907static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1908			      va_list args)
1909{
1910	int len, avail;
1911	struct sk_buff *skb;
1912	va_list args2;
1913
1914	if (!ab)
1915		return;
1916
1917	BUG_ON(!ab->skb);
1918	skb = ab->skb;
1919	avail = skb_tailroom(skb);
1920	if (avail == 0) {
1921		avail = audit_expand(ab, AUDIT_BUFSIZ);
1922		if (!avail)
1923			goto out;
1924	}
1925	va_copy(args2, args);
1926	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1927	if (len >= avail) {
1928		/* The printk buffer is 1024 bytes long, so if we get
1929		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1930		 * log everything that printk could have logged. */
1931		avail = audit_expand(ab,
1932			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1933		if (!avail)
1934			goto out_va_end;
1935		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1936	}
1937	if (len > 0)
1938		skb_put(skb, len);
1939out_va_end:
1940	va_end(args2);
1941out:
1942	return;
1943}
1944
1945/**
1946 * audit_log_format - format a message into the audit buffer.
1947 * @ab: audit_buffer
1948 * @fmt: format string
1949 * @...: optional parameters matching @fmt string
1950 *
1951 * All the work is done in audit_log_vformat.
1952 */
1953void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1954{
1955	va_list args;
1956
1957	if (!ab)
1958		return;
1959	va_start(args, fmt);
1960	audit_log_vformat(ab, fmt, args);
1961	va_end(args);
1962}
1963
1964/**
1965 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1966 * @ab: the audit_buffer
1967 * @buf: buffer to convert to hex
1968 * @len: length of @buf to be converted
1969 *
1970 * No return value; failure to expand is silently ignored.
1971 *
1972 * This function will take the passed buf and convert it into a string of
1973 * ascii hex digits. The new string is placed onto the skb.
1974 */
1975void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1976		size_t len)
1977{
1978	int i, avail, new_len;
1979	unsigned char *ptr;
1980	struct sk_buff *skb;
1981
1982	if (!ab)
1983		return;
1984
1985	BUG_ON(!ab->skb);
1986	skb = ab->skb;
1987	avail = skb_tailroom(skb);
1988	new_len = len<<1;
1989	if (new_len >= avail) {
1990		/* Round the buffer request up to the next multiple */
1991		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1992		avail = audit_expand(ab, new_len);
1993		if (!avail)
1994			return;
1995	}
1996
1997	ptr = skb_tail_pointer(skb);
1998	for (i = 0; i < len; i++)
1999		ptr = hex_byte_pack_upper(ptr, buf[i]);
2000	*ptr = 0;
2001	skb_put(skb, len << 1); /* new string is twice the old string */
2002}
2003
2004/*
2005 * Format a string of no more than slen characters into the audit buffer,
2006 * enclosed in quote marks.
2007 */
2008void audit_log_n_string(struct audit_buffer *ab, const char *string,
2009			size_t slen)
2010{
2011	int avail, new_len;
2012	unsigned char *ptr;
2013	struct sk_buff *skb;
2014
2015	if (!ab)
2016		return;
2017
2018	BUG_ON(!ab->skb);
2019	skb = ab->skb;
2020	avail = skb_tailroom(skb);
2021	new_len = slen + 3;	/* enclosing quotes + null terminator */
2022	if (new_len > avail) {
2023		avail = audit_expand(ab, new_len);
2024		if (!avail)
2025			return;
2026	}
2027	ptr = skb_tail_pointer(skb);
2028	*ptr++ = '"';
2029	memcpy(ptr, string, slen);
2030	ptr += slen;
2031	*ptr++ = '"';
2032	*ptr = 0;
2033	skb_put(skb, slen + 2);	/* don't include null terminator */
2034}
2035
2036/**
2037 * audit_string_contains_control - does a string need to be logged in hex
2038 * @string: string to be checked
2039 * @len: max length of the string to check
2040 */
2041bool audit_string_contains_control(const char *string, size_t len)
2042{
2043	const unsigned char *p;
2044	for (p = string; p < (const unsigned char *)string + len; p++) {
2045		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2046			return true;
2047	}
2048	return false;
2049}
2050
2051/**
2052 * audit_log_n_untrustedstring - log a string that may contain random characters
2053 * @ab: audit_buffer
2054 * @len: length of string (not including trailing null)
2055 * @string: string to be logged
2056 *
2057 * This code will escape a string that is passed to it if the string
2058 * contains a control character, unprintable character, double quote mark,
2059 * or a space. Unescaped strings will start and end with a double quote mark.
2060 * Strings that are escaped are printed in hex (2 digits per char).
2061 *
2062 * The caller specifies the number of characters in the string to log, which may
2063 * or may not be the entire string.
2064 */
2065void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2066				 size_t len)
2067{
2068	if (audit_string_contains_control(string, len))
2069		audit_log_n_hex(ab, string, len);
2070	else
2071		audit_log_n_string(ab, string, len);
2072}
2073
2074/**
2075 * audit_log_untrustedstring - log a string that may contain random characters
2076 * @ab: audit_buffer
2077 * @string: string to be logged
2078 *
2079 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2080 * determine string length.
2081 */
2082void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2083{
2084	audit_log_n_untrustedstring(ab, string, strlen(string));
2085}
2086
2087/* This is a helper-function to print the escaped d_path */
2088void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2089		      const struct path *path)
2090{
2091	char *p, *pathname;
2092
2093	if (prefix)
2094		audit_log_format(ab, "%s", prefix);
2095
2096	/* We will allow 11 spaces for ' (deleted)' to be appended */
2097	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2098	if (!pathname) {
2099		audit_log_format(ab, "\"<no_memory>\"");
2100		return;
2101	}
2102	p = d_path(path, pathname, PATH_MAX+11);
2103	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2104		/* FIXME: can we save some information here? */
2105		audit_log_format(ab, "\"<too_long>\"");
2106	} else
2107		audit_log_untrustedstring(ab, p);
2108	kfree(pathname);
2109}
2110
2111void audit_log_session_info(struct audit_buffer *ab)
2112{
2113	unsigned int sessionid = audit_get_sessionid(current);
2114	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2115
2116	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2117}
2118
2119void audit_log_key(struct audit_buffer *ab, char *key)
2120{
2121	audit_log_format(ab, " key=");
2122	if (key)
2123		audit_log_untrustedstring(ab, key);
2124	else
2125		audit_log_format(ab, "(null)");
2126}
2127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128int audit_log_task_context(struct audit_buffer *ab)
2129{
2130	char *ctx = NULL;
2131	unsigned len;
2132	int error;
2133	u32 sid;
2134
2135	security_task_getsecid_subj(current, &sid);
2136	if (!sid)
2137		return 0;
2138
2139	error = security_secid_to_secctx(sid, &ctx, &len);
2140	if (error) {
2141		if (error != -EINVAL)
2142			goto error_path;
2143		return 0;
2144	}
2145
2146	audit_log_format(ab, " subj=%s", ctx);
2147	security_release_secctx(ctx, len);
2148	return 0;
2149
2150error_path:
2151	audit_panic("error in audit_log_task_context");
2152	return error;
2153}
2154EXPORT_SYMBOL(audit_log_task_context);
2155
2156void audit_log_d_path_exe(struct audit_buffer *ab,
2157			  struct mm_struct *mm)
2158{
2159	struct file *exe_file;
2160
2161	if (!mm)
2162		goto out_null;
2163
2164	exe_file = get_mm_exe_file(mm);
2165	if (!exe_file)
2166		goto out_null;
2167
2168	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2169	fput(exe_file);
2170	return;
2171out_null:
2172	audit_log_format(ab, " exe=(null)");
2173}
2174
2175struct tty_struct *audit_get_tty(void)
2176{
2177	struct tty_struct *tty = NULL;
2178	unsigned long flags;
2179
2180	spin_lock_irqsave(&current->sighand->siglock, flags);
2181	if (current->signal)
2182		tty = tty_kref_get(current->signal->tty);
2183	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2184	return tty;
2185}
2186
2187void audit_put_tty(struct tty_struct *tty)
2188{
2189	tty_kref_put(tty);
2190}
2191
2192void audit_log_task_info(struct audit_buffer *ab)
2193{
2194	const struct cred *cred;
2195	char comm[sizeof(current->comm)];
2196	struct tty_struct *tty;
2197
2198	if (!ab)
2199		return;
2200
 
2201	cred = current_cred();
2202	tty = audit_get_tty();
 
 
 
 
 
 
 
2203	audit_log_format(ab,
2204			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2205			 " euid=%u suid=%u fsuid=%u"
2206			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2207			 task_ppid_nr(current),
2208			 task_tgid_nr(current),
2209			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2210			 from_kuid(&init_user_ns, cred->uid),
2211			 from_kgid(&init_user_ns, cred->gid),
2212			 from_kuid(&init_user_ns, cred->euid),
2213			 from_kuid(&init_user_ns, cred->suid),
2214			 from_kuid(&init_user_ns, cred->fsuid),
2215			 from_kgid(&init_user_ns, cred->egid),
2216			 from_kgid(&init_user_ns, cred->sgid),
2217			 from_kgid(&init_user_ns, cred->fsgid),
2218			 tty ? tty_name(tty) : "(none)",
2219			 audit_get_sessionid(current));
2220	audit_put_tty(tty);
2221	audit_log_format(ab, " comm=");
2222	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2223	audit_log_d_path_exe(ab, current->mm);
 
2224	audit_log_task_context(ab);
2225}
2226EXPORT_SYMBOL(audit_log_task_info);
2227
2228/**
2229 * audit_log_path_denied - report a path restriction denial
2230 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2231 * @operation: specific operation name
2232 */
2233void audit_log_path_denied(int type, const char *operation)
2234{
2235	struct audit_buffer *ab;
 
2236
2237	if (!audit_enabled || audit_dummy_context())
 
2238		return;
2239
2240	/* Generate log with subject, operation, outcome. */
2241	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
 
2242	if (!ab)
2243		return;
2244	audit_log_format(ab, "op=%s", operation);
2245	audit_log_task_info(ab);
2246	audit_log_format(ab, " res=0");
2247	audit_log_end(ab);
2248}
2249
2250/* global counter which is incremented every time something logs in */
2251static atomic_t session_id = ATOMIC_INIT(0);
2252
2253static int audit_set_loginuid_perm(kuid_t loginuid)
2254{
2255	/* if we are unset, we don't need privs */
2256	if (!audit_loginuid_set(current))
2257		return 0;
2258	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2259	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2260		return -EPERM;
2261	/* it is set, you need permission */
2262	if (!capable(CAP_AUDIT_CONTROL))
2263		return -EPERM;
2264	/* reject if this is not an unset and we don't allow that */
2265	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2266				 && uid_valid(loginuid))
2267		return -EPERM;
2268	return 0;
2269}
2270
2271static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2272				   unsigned int oldsessionid,
2273				   unsigned int sessionid, int rc)
2274{
2275	struct audit_buffer *ab;
2276	uid_t uid, oldloginuid, loginuid;
2277	struct tty_struct *tty;
2278
2279	if (!audit_enabled)
2280		return;
2281
2282	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2283	if (!ab)
2284		return;
2285
2286	uid = from_kuid(&init_user_ns, task_uid(current));
2287	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2288	loginuid = from_kuid(&init_user_ns, kloginuid);
2289	tty = audit_get_tty();
2290
2291	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2292	audit_log_task_context(ab);
2293	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2294			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2295			 oldsessionid, sessionid, !rc);
2296	audit_put_tty(tty);
2297	audit_log_end(ab);
2298}
2299
2300/**
2301 * audit_set_loginuid - set current task's loginuid
2302 * @loginuid: loginuid value
2303 *
2304 * Returns 0.
2305 *
2306 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2307 */
2308int audit_set_loginuid(kuid_t loginuid)
2309{
2310	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2311	kuid_t oldloginuid;
2312	int rc;
2313
2314	oldloginuid = audit_get_loginuid(current);
2315	oldsessionid = audit_get_sessionid(current);
2316
2317	rc = audit_set_loginuid_perm(loginuid);
2318	if (rc)
2319		goto out;
2320
2321	/* are we setting or clearing? */
2322	if (uid_valid(loginuid)) {
2323		sessionid = (unsigned int)atomic_inc_return(&session_id);
2324		if (unlikely(sessionid == AUDIT_SID_UNSET))
2325			sessionid = (unsigned int)atomic_inc_return(&session_id);
2326	}
2327
2328	current->sessionid = sessionid;
2329	current->loginuid = loginuid;
2330out:
2331	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2332	return rc;
2333}
2334
2335/**
2336 * audit_signal_info - record signal info for shutting down audit subsystem
2337 * @sig: signal value
2338 * @t: task being signaled
2339 *
2340 * If the audit subsystem is being terminated, record the task (pid)
2341 * and uid that is doing that.
2342 */
2343int audit_signal_info(int sig, struct task_struct *t)
2344{
2345	kuid_t uid = current_uid(), auid;
2346
2347	if (auditd_test_task(t) &&
2348	    (sig == SIGTERM || sig == SIGHUP ||
2349	     sig == SIGUSR1 || sig == SIGUSR2)) {
2350		audit_sig_pid = task_tgid_nr(current);
2351		auid = audit_get_loginuid(current);
2352		if (uid_valid(auid))
2353			audit_sig_uid = auid;
2354		else
2355			audit_sig_uid = uid;
2356		security_task_getsecid_subj(current, &audit_sig_sid);
2357	}
2358
2359	return audit_signal_info_syscall(t);
2360}
2361
2362/**
2363 * audit_log_end - end one audit record
2364 * @ab: the audit_buffer
2365 *
2366 * We can not do a netlink send inside an irq context because it blocks (last
2367 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2368 * queue and a kthread is scheduled to remove them from the queue outside the
2369 * irq context.  May be called in any context.
2370 */
2371void audit_log_end(struct audit_buffer *ab)
2372{
2373	struct sk_buff *skb;
2374	struct nlmsghdr *nlh;
2375
2376	if (!ab)
2377		return;
 
 
 
 
2378
2379	if (audit_rate_check()) {
2380		skb = ab->skb;
2381		ab->skb = NULL;
2382
2383		/* setup the netlink header, see the comments in
2384		 * kauditd_send_multicast_skb() for length quirks */
2385		nlh = nlmsg_hdr(skb);
2386		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2387
2388		/* queue the netlink packet and poke the kauditd thread */
2389		skb_queue_tail(&audit_queue, skb);
2390		wake_up_interruptible(&kauditd_wait);
2391	} else
2392		audit_log_lost("rate limit exceeded");
2393
 
 
 
 
 
 
 
 
2394	audit_buffer_free(ab);
2395}
2396
2397/**
2398 * audit_log - Log an audit record
2399 * @ctx: audit context
2400 * @gfp_mask: type of allocation
2401 * @type: audit message type
2402 * @fmt: format string to use
2403 * @...: variable parameters matching the format string
2404 *
2405 * This is a convenience function that calls audit_log_start,
2406 * audit_log_vformat, and audit_log_end.  It may be called
2407 * in any context.
2408 */
2409void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2410	       const char *fmt, ...)
2411{
2412	struct audit_buffer *ab;
2413	va_list args;
2414
2415	ab = audit_log_start(ctx, gfp_mask, type);
2416	if (ab) {
2417		va_start(args, fmt);
2418		audit_log_vformat(ab, fmt, args);
2419		va_end(args);
2420		audit_log_end(ab);
2421	}
2422}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2423
2424EXPORT_SYMBOL(audit_log_start);
2425EXPORT_SYMBOL(audit_log_end);
2426EXPORT_SYMBOL(audit_log_format);
2427EXPORT_SYMBOL(audit_log);