Loading...
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/file.h>
47#include <linux/init.h>
48#include <linux/types.h>
49#include <linux/atomic.h>
50#include <linux/mm.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/err.h>
54#include <linux/kthread.h>
55#include <linux/kernel.h>
56#include <linux/syscalls.h>
57
58#include <linux/audit.h>
59
60#include <net/sock.h>
61#include <net/netlink.h>
62#include <linux/skbuff.h>
63#ifdef CONFIG_SECURITY
64#include <linux/security.h>
65#endif
66#include <linux/freezer.h>
67#include <linux/tty.h>
68#include <linux/pid_namespace.h>
69#include <net/netns/generic.h>
70
71#include "audit.h"
72
73/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75#define AUDIT_DISABLED -1
76#define AUDIT_UNINITIALIZED 0
77#define AUDIT_INITIALIZED 1
78static int audit_initialized;
79
80#define AUDIT_OFF 0
81#define AUDIT_ON 1
82#define AUDIT_LOCKED 2
83u32 audit_enabled;
84u32 audit_ever_enabled;
85
86EXPORT_SYMBOL_GPL(audit_enabled);
87
88/* Default state when kernel boots without any parameters. */
89static u32 audit_default;
90
91/* If auditing cannot proceed, audit_failure selects what happens. */
92static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94/*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99int audit_pid;
100static __u32 audit_nlk_portid;
101
102/* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105static u32 audit_rate_limit;
106
107/* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109static u32 audit_backlog_limit = 64;
110#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113
114/* The identity of the user shutting down the audit system. */
115kuid_t audit_sig_uid = INVALID_UID;
116pid_t audit_sig_pid = -1;
117u32 audit_sig_sid = 0;
118
119/* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
125*/
126static atomic_t audit_lost = ATOMIC_INIT(0);
127
128/* The netlink socket. */
129static struct sock *audit_sock;
130static int audit_net_id;
131
132/* Hash for inode-based rules */
133struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134
135/* The audit_freelist is a list of pre-allocated audit buffers (if more
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
138static DEFINE_SPINLOCK(audit_freelist_lock);
139static int audit_freelist_count;
140static LIST_HEAD(audit_freelist);
141
142static struct sk_buff_head audit_skb_queue;
143/* queue of skbs to send to auditd when/if it comes back */
144static struct sk_buff_head audit_skb_hold_queue;
145static struct task_struct *kauditd_task;
146static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148
149static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
153
154static char *audit_feature_names[2] = {
155 "only_unset_loginuid",
156 "loginuid_immutable",
157};
158
159
160/* Serialize requests from userspace. */
161DEFINE_MUTEX(audit_cmd_mutex);
162
163/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166#define AUDIT_BUFSIZ 1024
167
168/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170#define AUDIT_MAXFREE (2*NR_CPUS)
171
172/* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177struct audit_buffer {
178 struct list_head list;
179 struct sk_buff *skb; /* formatted skb ready to send */
180 struct audit_context *ctx; /* NULL or associated context */
181 gfp_t gfp_mask;
182};
183
184struct audit_reply {
185 __u32 portid;
186 struct net *net;
187 struct sk_buff *skb;
188};
189
190static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191{
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 nlh->nlmsg_pid = portid;
195 }
196}
197
198void audit_panic(const char *message)
199{
200 switch (audit_failure) {
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
204 if (printk_ratelimit())
205 pr_err("%s\n", message);
206 break;
207 case AUDIT_FAIL_PANIC:
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
211 break;
212 }
213}
214
215static inline int audit_rate_check(void)
216{
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
224
225 if (!audit_rate_limit) return 1;
226
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
237 }
238 }
239 spin_unlock_irqrestore(&lock, flags);
240
241 return retval;
242}
243
244/**
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
247 *
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
251*/
252void audit_log_lost(const char *message)
253{
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
259
260 atomic_inc(&audit_lost);
261
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
270 }
271 spin_unlock_irqrestore(&lock, flags);
272 }
273
274 if (print) {
275 if (printk_ratelimit())
276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282}
283
284static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 int allow_changes)
286{
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301}
302
303static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304{
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
307
308 /* check if we are locked */
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
311 else
312 allow_changes = 1;
313
314 if (audit_enabled != AUDIT_OFF) {
315 rc = audit_log_config_change(function_name, new, old, allow_changes);
316 if (rc)
317 allow_changes = 0;
318 }
319
320 /* If we are allowed, make the change */
321 if (allow_changes == 1)
322 *to_change = new;
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
327}
328
329static int audit_set_rate_limit(u32 limit)
330{
331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
332}
333
334static int audit_set_backlog_limit(u32 limit)
335{
336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
337}
338
339static int audit_set_backlog_wait_time(u32 timeout)
340{
341 return audit_do_config_change("audit_backlog_wait_time",
342 &audit_backlog_wait_time_master, timeout);
343}
344
345static int audit_set_enabled(u32 state)
346{
347 int rc;
348 if (state > AUDIT_LOCKED)
349 return -EINVAL;
350
351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
352 if (!rc)
353 audit_ever_enabled |= !!state;
354
355 return rc;
356}
357
358static int audit_set_failure(u32 state)
359{
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
364
365 return audit_do_config_change("audit_failure", &audit_failure, state);
366}
367
368/*
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
376 */
377static void audit_hold_skb(struct sk_buff *skb)
378{
379 if (audit_default &&
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
385}
386
387/*
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
390 */
391static void audit_printk_skb(struct sk_buff *skb)
392{
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 char *data = nlmsg_data(nlh);
395
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 else
400 audit_log_lost("printk limit exceeded");
401 }
402
403 audit_hold_skb(skb);
404}
405
406static void kauditd_send_skb(struct sk_buff *skb)
407{
408 int err;
409 int attempts = 0;
410#define AUDITD_RETRIES 5
411
412restart:
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 if (err < 0) {
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
419 if (audit_pid) {
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
423
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 __set_current_state(TASK_RUNNING);
434 goto restart;
435 }
436 }
437 /* we might get lucky and get this in the next auditd */
438 audit_hold_skb(skb);
439 } else
440 /* drop the extra reference if sent ok */
441 consume_skb(skb);
442}
443
444/*
445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
446 *
447 * This function doesn't consume an skb as might be expected since it has to
448 * copy it anyways.
449 */
450static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
451{
452 struct sk_buff *copy;
453 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
454 struct sock *sock = aunet->nlsk;
455
456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 return;
458
459 /*
460 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 * using skb_get() is necessary because non-standard mods are made to
462 * the skb by the original kaudit unicast socket send routine. The
463 * existing auditd daemon assumes this breakage. Fixing this would
464 * require co-ordinating a change in the established protocol between
465 * the kaudit kernel subsystem and the auditd userspace code. There is
466 * no reason for new multicast clients to continue with this
467 * non-compliance.
468 */
469 copy = skb_copy(skb, gfp_mask);
470 if (!copy)
471 return;
472
473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
474}
475
476/*
477 * flush_hold_queue - empty the hold queue if auditd appears
478 *
479 * If auditd just started, drain the queue of messages already
480 * sent to syslog/printk. Remember loss here is ok. We already
481 * called audit_log_lost() if it didn't go out normally. so the
482 * race between the skb_dequeue and the next check for audit_pid
483 * doesn't matter.
484 *
485 * If you ever find kauditd to be too slow we can get a perf win
486 * by doing our own locking and keeping better track if there
487 * are messages in this queue. I don't see the need now, but
488 * in 5 years when I want to play with this again I'll see this
489 * note and still have no friggin idea what i'm thinking today.
490 */
491static void flush_hold_queue(void)
492{
493 struct sk_buff *skb;
494
495 if (!audit_default || !audit_pid)
496 return;
497
498 skb = skb_dequeue(&audit_skb_hold_queue);
499 if (likely(!skb))
500 return;
501
502 while (skb && audit_pid) {
503 kauditd_send_skb(skb);
504 skb = skb_dequeue(&audit_skb_hold_queue);
505 }
506
507 /*
508 * if auditd just disappeared but we
509 * dequeued an skb we need to drop ref
510 */
511 consume_skb(skb);
512}
513
514static int kauditd_thread(void *dummy)
515{
516 set_freezable();
517 while (!kthread_should_stop()) {
518 struct sk_buff *skb;
519
520 flush_hold_queue();
521
522 skb = skb_dequeue(&audit_skb_queue);
523
524 if (skb) {
525 if (!audit_backlog_limit ||
526 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
527 wake_up(&audit_backlog_wait);
528 if (audit_pid)
529 kauditd_send_skb(skb);
530 else
531 audit_printk_skb(skb);
532 continue;
533 }
534
535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
536 }
537 return 0;
538}
539
540int audit_send_list(void *_dest)
541{
542 struct audit_netlink_list *dest = _dest;
543 struct sk_buff *skb;
544 struct net *net = dest->net;
545 struct audit_net *aunet = net_generic(net, audit_net_id);
546
547 /* wait for parent to finish and send an ACK */
548 mutex_lock(&audit_cmd_mutex);
549 mutex_unlock(&audit_cmd_mutex);
550
551 while ((skb = __skb_dequeue(&dest->q)) != NULL)
552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
553
554 put_net(net);
555 kfree(dest);
556
557 return 0;
558}
559
560struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
561 int multi, const void *payload, int size)
562{
563 struct sk_buff *skb;
564 struct nlmsghdr *nlh;
565 void *data;
566 int flags = multi ? NLM_F_MULTI : 0;
567 int t = done ? NLMSG_DONE : type;
568
569 skb = nlmsg_new(size, GFP_KERNEL);
570 if (!skb)
571 return NULL;
572
573 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
574 if (!nlh)
575 goto out_kfree_skb;
576 data = nlmsg_data(nlh);
577 memcpy(data, payload, size);
578 return skb;
579
580out_kfree_skb:
581 kfree_skb(skb);
582 return NULL;
583}
584
585static int audit_send_reply_thread(void *arg)
586{
587 struct audit_reply *reply = (struct audit_reply *)arg;
588 struct net *net = reply->net;
589 struct audit_net *aunet = net_generic(net, audit_net_id);
590
591 mutex_lock(&audit_cmd_mutex);
592 mutex_unlock(&audit_cmd_mutex);
593
594 /* Ignore failure. It'll only happen if the sender goes away,
595 because our timeout is set to infinite. */
596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
597 put_net(net);
598 kfree(reply);
599 return 0;
600}
601/**
602 * audit_send_reply - send an audit reply message via netlink
603 * @request_skb: skb of request we are replying to (used to target the reply)
604 * @seq: sequence number
605 * @type: audit message type
606 * @done: done (last) flag
607 * @multi: multi-part message flag
608 * @payload: payload data
609 * @size: payload size
610 *
611 * Allocates an skb, builds the netlink message, and sends it to the port id.
612 * No failure notifications.
613 */
614static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
615 int multi, const void *payload, int size)
616{
617 u32 portid = NETLINK_CB(request_skb).portid;
618 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
619 struct sk_buff *skb;
620 struct task_struct *tsk;
621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 GFP_KERNEL);
623
624 if (!reply)
625 return;
626
627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
628 if (!skb)
629 goto out;
630
631 reply->net = get_net(net);
632 reply->portid = portid;
633 reply->skb = skb;
634
635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
636 if (!IS_ERR(tsk))
637 return;
638 kfree_skb(skb);
639out:
640 kfree(reply);
641}
642
643/*
644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645 * control messages.
646 */
647static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
648{
649 int err = 0;
650
651 /* Only support initial user namespace for now. */
652 /*
653 * We return ECONNREFUSED because it tricks userspace into thinking
654 * that audit was not configured into the kernel. Lots of users
655 * configure their PAM stack (because that's what the distro does)
656 * to reject login if unable to send messages to audit. If we return
657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 * configured in and will let login proceed. If we return EPERM
659 * userspace will reject all logins. This should be removed when we
660 * support non init namespaces!!
661 */
662 if (current_user_ns() != &init_user_ns)
663 return -ECONNREFUSED;
664
665 switch (msg_type) {
666 case AUDIT_LIST:
667 case AUDIT_ADD:
668 case AUDIT_DEL:
669 return -EOPNOTSUPP;
670 case AUDIT_GET:
671 case AUDIT_SET:
672 case AUDIT_GET_FEATURE:
673 case AUDIT_SET_FEATURE:
674 case AUDIT_LIST_RULES:
675 case AUDIT_ADD_RULE:
676 case AUDIT_DEL_RULE:
677 case AUDIT_SIGNAL_INFO:
678 case AUDIT_TTY_GET:
679 case AUDIT_TTY_SET:
680 case AUDIT_TRIM:
681 case AUDIT_MAKE_EQUIV:
682 /* Only support auditd and auditctl in initial pid namespace
683 * for now. */
684 if (task_active_pid_ns(current) != &init_pid_ns)
685 return -EPERM;
686
687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
688 err = -EPERM;
689 break;
690 case AUDIT_USER:
691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
693 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
694 err = -EPERM;
695 break;
696 default: /* bad msg */
697 err = -EINVAL;
698 }
699
700 return err;
701}
702
703static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
704{
705 uid_t uid = from_kuid(&init_user_ns, current_uid());
706 pid_t pid = task_tgid_nr(current);
707
708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
709 *ab = NULL;
710 return;
711 }
712
713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
714 if (unlikely(!*ab))
715 return;
716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
717 audit_log_session_info(*ab);
718 audit_log_task_context(*ab);
719}
720
721int is_audit_feature_set(int i)
722{
723 return af.features & AUDIT_FEATURE_TO_MASK(i);
724}
725
726
727static int audit_get_feature(struct sk_buff *skb)
728{
729 u32 seq;
730
731 seq = nlmsg_hdr(skb)->nlmsg_seq;
732
733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
734
735 return 0;
736}
737
738static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 u32 old_lock, u32 new_lock, int res)
740{
741 struct audit_buffer *ab;
742
743 if (audit_enabled == AUDIT_OFF)
744 return;
745
746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
747 audit_log_task_info(ab, current);
748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
749 audit_feature_names[which], !!old_feature, !!new_feature,
750 !!old_lock, !!new_lock, res);
751 audit_log_end(ab);
752}
753
754static int audit_set_feature(struct sk_buff *skb)
755{
756 struct audit_features *uaf;
757 int i;
758
759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
760 uaf = nlmsg_data(nlmsg_hdr(skb));
761
762 /* if there is ever a version 2 we should handle that here */
763
764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 u32 old_feature, new_feature, old_lock, new_lock;
767
768 /* if we are not changing this feature, move along */
769 if (!(feature & uaf->mask))
770 continue;
771
772 old_feature = af.features & feature;
773 new_feature = uaf->features & feature;
774 new_lock = (uaf->lock | af.lock) & feature;
775 old_lock = af.lock & feature;
776
777 /* are we changing a locked feature? */
778 if (old_lock && (new_feature != old_feature)) {
779 audit_log_feature_change(i, old_feature, new_feature,
780 old_lock, new_lock, 0);
781 return -EPERM;
782 }
783 }
784 /* nothing invalid, do the changes */
785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 u32 old_feature, new_feature, old_lock, new_lock;
788
789 /* if we are not changing this feature, move along */
790 if (!(feature & uaf->mask))
791 continue;
792
793 old_feature = af.features & feature;
794 new_feature = uaf->features & feature;
795 old_lock = af.lock & feature;
796 new_lock = (uaf->lock | af.lock) & feature;
797
798 if (new_feature != old_feature)
799 audit_log_feature_change(i, old_feature, new_feature,
800 old_lock, new_lock, 1);
801
802 if (new_feature)
803 af.features |= feature;
804 else
805 af.features &= ~feature;
806 af.lock |= new_lock;
807 }
808
809 return 0;
810}
811
812static int audit_replace(pid_t pid)
813{
814 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
815 &pid, sizeof(pid));
816
817 if (!skb)
818 return -ENOMEM;
819 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
820}
821
822static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
823{
824 u32 seq;
825 void *data;
826 int err;
827 struct audit_buffer *ab;
828 u16 msg_type = nlh->nlmsg_type;
829 struct audit_sig_info *sig_data;
830 char *ctx = NULL;
831 u32 len;
832
833 err = audit_netlink_ok(skb, msg_type);
834 if (err)
835 return err;
836
837 /* As soon as there's any sign of userspace auditd,
838 * start kauditd to talk to it */
839 if (!kauditd_task) {
840 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
841 if (IS_ERR(kauditd_task)) {
842 err = PTR_ERR(kauditd_task);
843 kauditd_task = NULL;
844 return err;
845 }
846 }
847 seq = nlh->nlmsg_seq;
848 data = nlmsg_data(nlh);
849
850 switch (msg_type) {
851 case AUDIT_GET: {
852 struct audit_status s;
853 memset(&s, 0, sizeof(s));
854 s.enabled = audit_enabled;
855 s.failure = audit_failure;
856 s.pid = audit_pid;
857 s.rate_limit = audit_rate_limit;
858 s.backlog_limit = audit_backlog_limit;
859 s.lost = atomic_read(&audit_lost);
860 s.backlog = skb_queue_len(&audit_skb_queue);
861 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
862 s.backlog_wait_time = audit_backlog_wait_time_master;
863 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
864 break;
865 }
866 case AUDIT_SET: {
867 struct audit_status s;
868 memset(&s, 0, sizeof(s));
869 /* guard against past and future API changes */
870 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
871 if (s.mask & AUDIT_STATUS_ENABLED) {
872 err = audit_set_enabled(s.enabled);
873 if (err < 0)
874 return err;
875 }
876 if (s.mask & AUDIT_STATUS_FAILURE) {
877 err = audit_set_failure(s.failure);
878 if (err < 0)
879 return err;
880 }
881 if (s.mask & AUDIT_STATUS_PID) {
882 int new_pid = s.pid;
883 pid_t requesting_pid = task_tgid_vnr(current);
884
885 if ((!new_pid) && (requesting_pid != audit_pid)) {
886 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
887 return -EACCES;
888 }
889 if (audit_pid && new_pid &&
890 audit_replace(requesting_pid) != -ECONNREFUSED) {
891 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
892 return -EEXIST;
893 }
894 if (audit_enabled != AUDIT_OFF)
895 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
896 audit_pid = new_pid;
897 audit_nlk_portid = NETLINK_CB(skb).portid;
898 audit_sock = skb->sk;
899 }
900 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
901 err = audit_set_rate_limit(s.rate_limit);
902 if (err < 0)
903 return err;
904 }
905 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
906 err = audit_set_backlog_limit(s.backlog_limit);
907 if (err < 0)
908 return err;
909 }
910 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
911 if (sizeof(s) > (size_t)nlh->nlmsg_len)
912 return -EINVAL;
913 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
914 return -EINVAL;
915 err = audit_set_backlog_wait_time(s.backlog_wait_time);
916 if (err < 0)
917 return err;
918 }
919 break;
920 }
921 case AUDIT_GET_FEATURE:
922 err = audit_get_feature(skb);
923 if (err)
924 return err;
925 break;
926 case AUDIT_SET_FEATURE:
927 err = audit_set_feature(skb);
928 if (err)
929 return err;
930 break;
931 case AUDIT_USER:
932 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
933 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
934 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
935 return 0;
936
937 err = audit_filter_user(msg_type);
938 if (err == 1) { /* match or error */
939 err = 0;
940 if (msg_type == AUDIT_USER_TTY) {
941 err = tty_audit_push();
942 if (err)
943 break;
944 }
945 mutex_unlock(&audit_cmd_mutex);
946 audit_log_common_recv_msg(&ab, msg_type);
947 if (msg_type != AUDIT_USER_TTY)
948 audit_log_format(ab, " msg='%.*s'",
949 AUDIT_MESSAGE_TEXT_MAX,
950 (char *)data);
951 else {
952 int size;
953
954 audit_log_format(ab, " data=");
955 size = nlmsg_len(nlh);
956 if (size > 0 &&
957 ((unsigned char *)data)[size - 1] == '\0')
958 size--;
959 audit_log_n_untrustedstring(ab, data, size);
960 }
961 audit_set_portid(ab, NETLINK_CB(skb).portid);
962 audit_log_end(ab);
963 mutex_lock(&audit_cmd_mutex);
964 }
965 break;
966 case AUDIT_ADD_RULE:
967 case AUDIT_DEL_RULE:
968 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
969 return -EINVAL;
970 if (audit_enabled == AUDIT_LOCKED) {
971 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
972 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
973 audit_log_end(ab);
974 return -EPERM;
975 }
976 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
977 seq, data, nlmsg_len(nlh));
978 break;
979 case AUDIT_LIST_RULES:
980 err = audit_list_rules_send(skb, seq);
981 break;
982 case AUDIT_TRIM:
983 audit_trim_trees();
984 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
985 audit_log_format(ab, " op=trim res=1");
986 audit_log_end(ab);
987 break;
988 case AUDIT_MAKE_EQUIV: {
989 void *bufp = data;
990 u32 sizes[2];
991 size_t msglen = nlmsg_len(nlh);
992 char *old, *new;
993
994 err = -EINVAL;
995 if (msglen < 2 * sizeof(u32))
996 break;
997 memcpy(sizes, bufp, 2 * sizeof(u32));
998 bufp += 2 * sizeof(u32);
999 msglen -= 2 * sizeof(u32);
1000 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1001 if (IS_ERR(old)) {
1002 err = PTR_ERR(old);
1003 break;
1004 }
1005 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1006 if (IS_ERR(new)) {
1007 err = PTR_ERR(new);
1008 kfree(old);
1009 break;
1010 }
1011 /* OK, here comes... */
1012 err = audit_tag_tree(old, new);
1013
1014 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015
1016 audit_log_format(ab, " op=make_equiv old=");
1017 audit_log_untrustedstring(ab, old);
1018 audit_log_format(ab, " new=");
1019 audit_log_untrustedstring(ab, new);
1020 audit_log_format(ab, " res=%d", !err);
1021 audit_log_end(ab);
1022 kfree(old);
1023 kfree(new);
1024 break;
1025 }
1026 case AUDIT_SIGNAL_INFO:
1027 len = 0;
1028 if (audit_sig_sid) {
1029 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1030 if (err)
1031 return err;
1032 }
1033 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1034 if (!sig_data) {
1035 if (audit_sig_sid)
1036 security_release_secctx(ctx, len);
1037 return -ENOMEM;
1038 }
1039 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1040 sig_data->pid = audit_sig_pid;
1041 if (audit_sig_sid) {
1042 memcpy(sig_data->ctx, ctx, len);
1043 security_release_secctx(ctx, len);
1044 }
1045 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1046 sig_data, sizeof(*sig_data) + len);
1047 kfree(sig_data);
1048 break;
1049 case AUDIT_TTY_GET: {
1050 struct audit_tty_status s;
1051 unsigned int t;
1052
1053 t = READ_ONCE(current->signal->audit_tty);
1054 s.enabled = t & AUDIT_TTY_ENABLE;
1055 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1056
1057 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1058 break;
1059 }
1060 case AUDIT_TTY_SET: {
1061 struct audit_tty_status s, old;
1062 struct audit_buffer *ab;
1063 unsigned int t;
1064
1065 memset(&s, 0, sizeof(s));
1066 /* guard against past and future API changes */
1067 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1068 /* check if new data is valid */
1069 if ((s.enabled != 0 && s.enabled != 1) ||
1070 (s.log_passwd != 0 && s.log_passwd != 1))
1071 err = -EINVAL;
1072
1073 if (err)
1074 t = READ_ONCE(current->signal->audit_tty);
1075 else {
1076 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1077 t = xchg(¤t->signal->audit_tty, t);
1078 }
1079 old.enabled = t & AUDIT_TTY_ENABLE;
1080 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1081
1082 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1083 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1084 " old-log_passwd=%d new-log_passwd=%d res=%d",
1085 old.enabled, s.enabled, old.log_passwd,
1086 s.log_passwd, !err);
1087 audit_log_end(ab);
1088 break;
1089 }
1090 default:
1091 err = -EINVAL;
1092 break;
1093 }
1094
1095 return err < 0 ? err : 0;
1096}
1097
1098/*
1099 * Get message from skb. Each message is processed by audit_receive_msg.
1100 * Malformed skbs with wrong length are discarded silently.
1101 */
1102static void audit_receive_skb(struct sk_buff *skb)
1103{
1104 struct nlmsghdr *nlh;
1105 /*
1106 * len MUST be signed for nlmsg_next to be able to dec it below 0
1107 * if the nlmsg_len was not aligned
1108 */
1109 int len;
1110 int err;
1111
1112 nlh = nlmsg_hdr(skb);
1113 len = skb->len;
1114
1115 while (nlmsg_ok(nlh, len)) {
1116 err = audit_receive_msg(skb, nlh);
1117 /* if err or if this message says it wants a response */
1118 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1119 netlink_ack(skb, nlh, err);
1120
1121 nlh = nlmsg_next(nlh, &len);
1122 }
1123}
1124
1125/* Receive messages from netlink socket. */
1126static void audit_receive(struct sk_buff *skb)
1127{
1128 mutex_lock(&audit_cmd_mutex);
1129 audit_receive_skb(skb);
1130 mutex_unlock(&audit_cmd_mutex);
1131}
1132
1133/* Run custom bind function on netlink socket group connect or bind requests. */
1134static int audit_bind(struct net *net, int group)
1135{
1136 if (!capable(CAP_AUDIT_READ))
1137 return -EPERM;
1138
1139 return 0;
1140}
1141
1142static int __net_init audit_net_init(struct net *net)
1143{
1144 struct netlink_kernel_cfg cfg = {
1145 .input = audit_receive,
1146 .bind = audit_bind,
1147 .flags = NL_CFG_F_NONROOT_RECV,
1148 .groups = AUDIT_NLGRP_MAX,
1149 };
1150
1151 struct audit_net *aunet = net_generic(net, audit_net_id);
1152
1153 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1154 if (aunet->nlsk == NULL) {
1155 audit_panic("cannot initialize netlink socket in namespace");
1156 return -ENOMEM;
1157 }
1158 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1159 return 0;
1160}
1161
1162static void __net_exit audit_net_exit(struct net *net)
1163{
1164 struct audit_net *aunet = net_generic(net, audit_net_id);
1165 struct sock *sock = aunet->nlsk;
1166 if (sock == audit_sock) {
1167 audit_pid = 0;
1168 audit_sock = NULL;
1169 }
1170
1171 RCU_INIT_POINTER(aunet->nlsk, NULL);
1172 synchronize_net();
1173 netlink_kernel_release(sock);
1174}
1175
1176static struct pernet_operations audit_net_ops __net_initdata = {
1177 .init = audit_net_init,
1178 .exit = audit_net_exit,
1179 .id = &audit_net_id,
1180 .size = sizeof(struct audit_net),
1181};
1182
1183/* Initialize audit support at boot time. */
1184static int __init audit_init(void)
1185{
1186 int i;
1187
1188 if (audit_initialized == AUDIT_DISABLED)
1189 return 0;
1190
1191 pr_info("initializing netlink subsys (%s)\n",
1192 audit_default ? "enabled" : "disabled");
1193 register_pernet_subsys(&audit_net_ops);
1194
1195 skb_queue_head_init(&audit_skb_queue);
1196 skb_queue_head_init(&audit_skb_hold_queue);
1197 audit_initialized = AUDIT_INITIALIZED;
1198 audit_enabled = audit_default;
1199 audit_ever_enabled |= !!audit_default;
1200
1201 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1202
1203 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1204 INIT_LIST_HEAD(&audit_inode_hash[i]);
1205
1206 return 0;
1207}
1208__initcall(audit_init);
1209
1210/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1211static int __init audit_enable(char *str)
1212{
1213 audit_default = !!simple_strtol(str, NULL, 0);
1214 if (!audit_default)
1215 audit_initialized = AUDIT_DISABLED;
1216
1217 pr_info("%s\n", audit_default ?
1218 "enabled (after initialization)" : "disabled (until reboot)");
1219
1220 return 1;
1221}
1222__setup("audit=", audit_enable);
1223
1224/* Process kernel command-line parameter at boot time.
1225 * audit_backlog_limit=<n> */
1226static int __init audit_backlog_limit_set(char *str)
1227{
1228 u32 audit_backlog_limit_arg;
1229
1230 pr_info("audit_backlog_limit: ");
1231 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1232 pr_cont("using default of %u, unable to parse %s\n",
1233 audit_backlog_limit, str);
1234 return 1;
1235 }
1236
1237 audit_backlog_limit = audit_backlog_limit_arg;
1238 pr_cont("%d\n", audit_backlog_limit);
1239
1240 return 1;
1241}
1242__setup("audit_backlog_limit=", audit_backlog_limit_set);
1243
1244static void audit_buffer_free(struct audit_buffer *ab)
1245{
1246 unsigned long flags;
1247
1248 if (!ab)
1249 return;
1250
1251 kfree_skb(ab->skb);
1252 spin_lock_irqsave(&audit_freelist_lock, flags);
1253 if (audit_freelist_count > AUDIT_MAXFREE)
1254 kfree(ab);
1255 else {
1256 audit_freelist_count++;
1257 list_add(&ab->list, &audit_freelist);
1258 }
1259 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1260}
1261
1262static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1263 gfp_t gfp_mask, int type)
1264{
1265 unsigned long flags;
1266 struct audit_buffer *ab = NULL;
1267 struct nlmsghdr *nlh;
1268
1269 spin_lock_irqsave(&audit_freelist_lock, flags);
1270 if (!list_empty(&audit_freelist)) {
1271 ab = list_entry(audit_freelist.next,
1272 struct audit_buffer, list);
1273 list_del(&ab->list);
1274 --audit_freelist_count;
1275 }
1276 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1277
1278 if (!ab) {
1279 ab = kmalloc(sizeof(*ab), gfp_mask);
1280 if (!ab)
1281 goto err;
1282 }
1283
1284 ab->ctx = ctx;
1285 ab->gfp_mask = gfp_mask;
1286
1287 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1288 if (!ab->skb)
1289 goto err;
1290
1291 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1292 if (!nlh)
1293 goto out_kfree_skb;
1294
1295 return ab;
1296
1297out_kfree_skb:
1298 kfree_skb(ab->skb);
1299 ab->skb = NULL;
1300err:
1301 audit_buffer_free(ab);
1302 return NULL;
1303}
1304
1305/**
1306 * audit_serial - compute a serial number for the audit record
1307 *
1308 * Compute a serial number for the audit record. Audit records are
1309 * written to user-space as soon as they are generated, so a complete
1310 * audit record may be written in several pieces. The timestamp of the
1311 * record and this serial number are used by the user-space tools to
1312 * determine which pieces belong to the same audit record. The
1313 * (timestamp,serial) tuple is unique for each syscall and is live from
1314 * syscall entry to syscall exit.
1315 *
1316 * NOTE: Another possibility is to store the formatted records off the
1317 * audit context (for those records that have a context), and emit them
1318 * all at syscall exit. However, this could delay the reporting of
1319 * significant errors until syscall exit (or never, if the system
1320 * halts).
1321 */
1322unsigned int audit_serial(void)
1323{
1324 static atomic_t serial = ATOMIC_INIT(0);
1325
1326 return atomic_add_return(1, &serial);
1327}
1328
1329static inline void audit_get_stamp(struct audit_context *ctx,
1330 struct timespec *t, unsigned int *serial)
1331{
1332 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1333 *t = CURRENT_TIME;
1334 *serial = audit_serial();
1335 }
1336}
1337
1338/*
1339 * Wait for auditd to drain the queue a little
1340 */
1341static long wait_for_auditd(long sleep_time)
1342{
1343 DECLARE_WAITQUEUE(wait, current);
1344 set_current_state(TASK_UNINTERRUPTIBLE);
1345 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346
1347 if (audit_backlog_limit &&
1348 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1349 sleep_time = schedule_timeout(sleep_time);
1350
1351 __set_current_state(TASK_RUNNING);
1352 remove_wait_queue(&audit_backlog_wait, &wait);
1353
1354 return sleep_time;
1355}
1356
1357/**
1358 * audit_log_start - obtain an audit buffer
1359 * @ctx: audit_context (may be NULL)
1360 * @gfp_mask: type of allocation
1361 * @type: audit message type
1362 *
1363 * Returns audit_buffer pointer on success or NULL on error.
1364 *
1365 * Obtain an audit buffer. This routine does locking to obtain the
1366 * audit buffer, but then no locking is required for calls to
1367 * audit_log_*format. If the task (ctx) is a task that is currently in a
1368 * syscall, then the syscall is marked as auditable and an audit record
1369 * will be written at syscall exit. If there is no associated task, then
1370 * task context (ctx) should be NULL.
1371 */
1372struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1373 int type)
1374{
1375 struct audit_buffer *ab = NULL;
1376 struct timespec t;
1377 unsigned int uninitialized_var(serial);
1378 int reserve = 5; /* Allow atomic callers to go up to five
1379 entries over the normal backlog limit */
1380 unsigned long timeout_start = jiffies;
1381
1382 if (audit_initialized != AUDIT_INITIALIZED)
1383 return NULL;
1384
1385 if (unlikely(audit_filter_type(type)))
1386 return NULL;
1387
1388 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1389 if (audit_pid && audit_pid == current->tgid)
1390 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1391 else
1392 reserve = 0;
1393 }
1394
1395 while (audit_backlog_limit
1396 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1397 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1398 long sleep_time;
1399
1400 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1401 if (sleep_time > 0) {
1402 sleep_time = wait_for_auditd(sleep_time);
1403 if (sleep_time > 0)
1404 continue;
1405 }
1406 }
1407 if (audit_rate_check() && printk_ratelimit())
1408 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1409 skb_queue_len(&audit_skb_queue),
1410 audit_backlog_limit);
1411 audit_log_lost("backlog limit exceeded");
1412 audit_backlog_wait_time = 0;
1413 wake_up(&audit_backlog_wait);
1414 return NULL;
1415 }
1416
1417 if (!reserve && !audit_backlog_wait_time)
1418 audit_backlog_wait_time = audit_backlog_wait_time_master;
1419
1420 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1421 if (!ab) {
1422 audit_log_lost("out of memory in audit_log_start");
1423 return NULL;
1424 }
1425
1426 audit_get_stamp(ab->ctx, &t, &serial);
1427
1428 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1429 t.tv_sec, t.tv_nsec/1000000, serial);
1430 return ab;
1431}
1432
1433/**
1434 * audit_expand - expand skb in the audit buffer
1435 * @ab: audit_buffer
1436 * @extra: space to add at tail of the skb
1437 *
1438 * Returns 0 (no space) on failed expansion, or available space if
1439 * successful.
1440 */
1441static inline int audit_expand(struct audit_buffer *ab, int extra)
1442{
1443 struct sk_buff *skb = ab->skb;
1444 int oldtail = skb_tailroom(skb);
1445 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1446 int newtail = skb_tailroom(skb);
1447
1448 if (ret < 0) {
1449 audit_log_lost("out of memory in audit_expand");
1450 return 0;
1451 }
1452
1453 skb->truesize += newtail - oldtail;
1454 return newtail;
1455}
1456
1457/*
1458 * Format an audit message into the audit buffer. If there isn't enough
1459 * room in the audit buffer, more room will be allocated and vsnprint
1460 * will be called a second time. Currently, we assume that a printk
1461 * can't format message larger than 1024 bytes, so we don't either.
1462 */
1463static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1464 va_list args)
1465{
1466 int len, avail;
1467 struct sk_buff *skb;
1468 va_list args2;
1469
1470 if (!ab)
1471 return;
1472
1473 BUG_ON(!ab->skb);
1474 skb = ab->skb;
1475 avail = skb_tailroom(skb);
1476 if (avail == 0) {
1477 avail = audit_expand(ab, AUDIT_BUFSIZ);
1478 if (!avail)
1479 goto out;
1480 }
1481 va_copy(args2, args);
1482 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1483 if (len >= avail) {
1484 /* The printk buffer is 1024 bytes long, so if we get
1485 * here and AUDIT_BUFSIZ is at least 1024, then we can
1486 * log everything that printk could have logged. */
1487 avail = audit_expand(ab,
1488 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1489 if (!avail)
1490 goto out_va_end;
1491 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1492 }
1493 if (len > 0)
1494 skb_put(skb, len);
1495out_va_end:
1496 va_end(args2);
1497out:
1498 return;
1499}
1500
1501/**
1502 * audit_log_format - format a message into the audit buffer.
1503 * @ab: audit_buffer
1504 * @fmt: format string
1505 * @...: optional parameters matching @fmt string
1506 *
1507 * All the work is done in audit_log_vformat.
1508 */
1509void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1510{
1511 va_list args;
1512
1513 if (!ab)
1514 return;
1515 va_start(args, fmt);
1516 audit_log_vformat(ab, fmt, args);
1517 va_end(args);
1518}
1519
1520/**
1521 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1522 * @ab: the audit_buffer
1523 * @buf: buffer to convert to hex
1524 * @len: length of @buf to be converted
1525 *
1526 * No return value; failure to expand is silently ignored.
1527 *
1528 * This function will take the passed buf and convert it into a string of
1529 * ascii hex digits. The new string is placed onto the skb.
1530 */
1531void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1532 size_t len)
1533{
1534 int i, avail, new_len;
1535 unsigned char *ptr;
1536 struct sk_buff *skb;
1537
1538 if (!ab)
1539 return;
1540
1541 BUG_ON(!ab->skb);
1542 skb = ab->skb;
1543 avail = skb_tailroom(skb);
1544 new_len = len<<1;
1545 if (new_len >= avail) {
1546 /* Round the buffer request up to the next multiple */
1547 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1548 avail = audit_expand(ab, new_len);
1549 if (!avail)
1550 return;
1551 }
1552
1553 ptr = skb_tail_pointer(skb);
1554 for (i = 0; i < len; i++)
1555 ptr = hex_byte_pack_upper(ptr, buf[i]);
1556 *ptr = 0;
1557 skb_put(skb, len << 1); /* new string is twice the old string */
1558}
1559
1560/*
1561 * Format a string of no more than slen characters into the audit buffer,
1562 * enclosed in quote marks.
1563 */
1564void audit_log_n_string(struct audit_buffer *ab, const char *string,
1565 size_t slen)
1566{
1567 int avail, new_len;
1568 unsigned char *ptr;
1569 struct sk_buff *skb;
1570
1571 if (!ab)
1572 return;
1573
1574 BUG_ON(!ab->skb);
1575 skb = ab->skb;
1576 avail = skb_tailroom(skb);
1577 new_len = slen + 3; /* enclosing quotes + null terminator */
1578 if (new_len > avail) {
1579 avail = audit_expand(ab, new_len);
1580 if (!avail)
1581 return;
1582 }
1583 ptr = skb_tail_pointer(skb);
1584 *ptr++ = '"';
1585 memcpy(ptr, string, slen);
1586 ptr += slen;
1587 *ptr++ = '"';
1588 *ptr = 0;
1589 skb_put(skb, slen + 2); /* don't include null terminator */
1590}
1591
1592/**
1593 * audit_string_contains_control - does a string need to be logged in hex
1594 * @string: string to be checked
1595 * @len: max length of the string to check
1596 */
1597bool audit_string_contains_control(const char *string, size_t len)
1598{
1599 const unsigned char *p;
1600 for (p = string; p < (const unsigned char *)string + len; p++) {
1601 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1602 return true;
1603 }
1604 return false;
1605}
1606
1607/**
1608 * audit_log_n_untrustedstring - log a string that may contain random characters
1609 * @ab: audit_buffer
1610 * @len: length of string (not including trailing null)
1611 * @string: string to be logged
1612 *
1613 * This code will escape a string that is passed to it if the string
1614 * contains a control character, unprintable character, double quote mark,
1615 * or a space. Unescaped strings will start and end with a double quote mark.
1616 * Strings that are escaped are printed in hex (2 digits per char).
1617 *
1618 * The caller specifies the number of characters in the string to log, which may
1619 * or may not be the entire string.
1620 */
1621void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1622 size_t len)
1623{
1624 if (audit_string_contains_control(string, len))
1625 audit_log_n_hex(ab, string, len);
1626 else
1627 audit_log_n_string(ab, string, len);
1628}
1629
1630/**
1631 * audit_log_untrustedstring - log a string that may contain random characters
1632 * @ab: audit_buffer
1633 * @string: string to be logged
1634 *
1635 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1636 * determine string length.
1637 */
1638void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1639{
1640 audit_log_n_untrustedstring(ab, string, strlen(string));
1641}
1642
1643/* This is a helper-function to print the escaped d_path */
1644void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1645 const struct path *path)
1646{
1647 char *p, *pathname;
1648
1649 if (prefix)
1650 audit_log_format(ab, "%s", prefix);
1651
1652 /* We will allow 11 spaces for ' (deleted)' to be appended */
1653 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1654 if (!pathname) {
1655 audit_log_string(ab, "<no_memory>");
1656 return;
1657 }
1658 p = d_path(path, pathname, PATH_MAX+11);
1659 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1660 /* FIXME: can we save some information here? */
1661 audit_log_string(ab, "<too_long>");
1662 } else
1663 audit_log_untrustedstring(ab, p);
1664 kfree(pathname);
1665}
1666
1667void audit_log_session_info(struct audit_buffer *ab)
1668{
1669 unsigned int sessionid = audit_get_sessionid(current);
1670 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1671
1672 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1673}
1674
1675void audit_log_key(struct audit_buffer *ab, char *key)
1676{
1677 audit_log_format(ab, " key=");
1678 if (key)
1679 audit_log_untrustedstring(ab, key);
1680 else
1681 audit_log_format(ab, "(null)");
1682}
1683
1684void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1685{
1686 int i;
1687
1688 audit_log_format(ab, " %s=", prefix);
1689 CAP_FOR_EACH_U32(i) {
1690 audit_log_format(ab, "%08x",
1691 cap->cap[CAP_LAST_U32 - i]);
1692 }
1693}
1694
1695static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1696{
1697 kernel_cap_t *perm = &name->fcap.permitted;
1698 kernel_cap_t *inh = &name->fcap.inheritable;
1699 int log = 0;
1700
1701 if (!cap_isclear(*perm)) {
1702 audit_log_cap(ab, "cap_fp", perm);
1703 log = 1;
1704 }
1705 if (!cap_isclear(*inh)) {
1706 audit_log_cap(ab, "cap_fi", inh);
1707 log = 1;
1708 }
1709
1710 if (log)
1711 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1712 name->fcap.fE, name->fcap_ver);
1713}
1714
1715static inline int audit_copy_fcaps(struct audit_names *name,
1716 const struct dentry *dentry)
1717{
1718 struct cpu_vfs_cap_data caps;
1719 int rc;
1720
1721 if (!dentry)
1722 return 0;
1723
1724 rc = get_vfs_caps_from_disk(dentry, &caps);
1725 if (rc)
1726 return rc;
1727
1728 name->fcap.permitted = caps.permitted;
1729 name->fcap.inheritable = caps.inheritable;
1730 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1731 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1732 VFS_CAP_REVISION_SHIFT;
1733
1734 return 0;
1735}
1736
1737/* Copy inode data into an audit_names. */
1738void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1739 struct inode *inode)
1740{
1741 name->ino = inode->i_ino;
1742 name->dev = inode->i_sb->s_dev;
1743 name->mode = inode->i_mode;
1744 name->uid = inode->i_uid;
1745 name->gid = inode->i_gid;
1746 name->rdev = inode->i_rdev;
1747 security_inode_getsecid(inode, &name->osid);
1748 audit_copy_fcaps(name, dentry);
1749}
1750
1751/**
1752 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1753 * @context: audit_context for the task
1754 * @n: audit_names structure with reportable details
1755 * @path: optional path to report instead of audit_names->name
1756 * @record_num: record number to report when handling a list of names
1757 * @call_panic: optional pointer to int that will be updated if secid fails
1758 */
1759void audit_log_name(struct audit_context *context, struct audit_names *n,
1760 struct path *path, int record_num, int *call_panic)
1761{
1762 struct audit_buffer *ab;
1763 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1764 if (!ab)
1765 return;
1766
1767 audit_log_format(ab, "item=%d", record_num);
1768
1769 if (path)
1770 audit_log_d_path(ab, " name=", path);
1771 else if (n->name) {
1772 switch (n->name_len) {
1773 case AUDIT_NAME_FULL:
1774 /* log the full path */
1775 audit_log_format(ab, " name=");
1776 audit_log_untrustedstring(ab, n->name->name);
1777 break;
1778 case 0:
1779 /* name was specified as a relative path and the
1780 * directory component is the cwd */
1781 audit_log_d_path(ab, " name=", &context->pwd);
1782 break;
1783 default:
1784 /* log the name's directory component */
1785 audit_log_format(ab, " name=");
1786 audit_log_n_untrustedstring(ab, n->name->name,
1787 n->name_len);
1788 }
1789 } else
1790 audit_log_format(ab, " name=(null)");
1791
1792 if (n->ino != AUDIT_INO_UNSET)
1793 audit_log_format(ab, " inode=%lu"
1794 " dev=%02x:%02x mode=%#ho"
1795 " ouid=%u ogid=%u rdev=%02x:%02x",
1796 n->ino,
1797 MAJOR(n->dev),
1798 MINOR(n->dev),
1799 n->mode,
1800 from_kuid(&init_user_ns, n->uid),
1801 from_kgid(&init_user_ns, n->gid),
1802 MAJOR(n->rdev),
1803 MINOR(n->rdev));
1804 if (n->osid != 0) {
1805 char *ctx = NULL;
1806 u32 len;
1807 if (security_secid_to_secctx(
1808 n->osid, &ctx, &len)) {
1809 audit_log_format(ab, " osid=%u", n->osid);
1810 if (call_panic)
1811 *call_panic = 2;
1812 } else {
1813 audit_log_format(ab, " obj=%s", ctx);
1814 security_release_secctx(ctx, len);
1815 }
1816 }
1817
1818 /* log the audit_names record type */
1819 audit_log_format(ab, " nametype=");
1820 switch(n->type) {
1821 case AUDIT_TYPE_NORMAL:
1822 audit_log_format(ab, "NORMAL");
1823 break;
1824 case AUDIT_TYPE_PARENT:
1825 audit_log_format(ab, "PARENT");
1826 break;
1827 case AUDIT_TYPE_CHILD_DELETE:
1828 audit_log_format(ab, "DELETE");
1829 break;
1830 case AUDIT_TYPE_CHILD_CREATE:
1831 audit_log_format(ab, "CREATE");
1832 break;
1833 default:
1834 audit_log_format(ab, "UNKNOWN");
1835 break;
1836 }
1837
1838 audit_log_fcaps(ab, n);
1839 audit_log_end(ab);
1840}
1841
1842int audit_log_task_context(struct audit_buffer *ab)
1843{
1844 char *ctx = NULL;
1845 unsigned len;
1846 int error;
1847 u32 sid;
1848
1849 security_task_getsecid(current, &sid);
1850 if (!sid)
1851 return 0;
1852
1853 error = security_secid_to_secctx(sid, &ctx, &len);
1854 if (error) {
1855 if (error != -EINVAL)
1856 goto error_path;
1857 return 0;
1858 }
1859
1860 audit_log_format(ab, " subj=%s", ctx);
1861 security_release_secctx(ctx, len);
1862 return 0;
1863
1864error_path:
1865 audit_panic("error in audit_log_task_context");
1866 return error;
1867}
1868EXPORT_SYMBOL(audit_log_task_context);
1869
1870void audit_log_d_path_exe(struct audit_buffer *ab,
1871 struct mm_struct *mm)
1872{
1873 struct file *exe_file;
1874
1875 if (!mm)
1876 goto out_null;
1877
1878 exe_file = get_mm_exe_file(mm);
1879 if (!exe_file)
1880 goto out_null;
1881
1882 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1883 fput(exe_file);
1884 return;
1885out_null:
1886 audit_log_format(ab, " exe=(null)");
1887}
1888
1889void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1890{
1891 const struct cred *cred;
1892 char comm[sizeof(tsk->comm)];
1893 char *tty;
1894
1895 if (!ab)
1896 return;
1897
1898 /* tsk == current */
1899 cred = current_cred();
1900
1901 spin_lock_irq(&tsk->sighand->siglock);
1902 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1903 tty = tsk->signal->tty->name;
1904 else
1905 tty = "(none)";
1906 spin_unlock_irq(&tsk->sighand->siglock);
1907
1908 audit_log_format(ab,
1909 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1910 " euid=%u suid=%u fsuid=%u"
1911 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1912 task_ppid_nr(tsk),
1913 task_pid_nr(tsk),
1914 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1915 from_kuid(&init_user_ns, cred->uid),
1916 from_kgid(&init_user_ns, cred->gid),
1917 from_kuid(&init_user_ns, cred->euid),
1918 from_kuid(&init_user_ns, cred->suid),
1919 from_kuid(&init_user_ns, cred->fsuid),
1920 from_kgid(&init_user_ns, cred->egid),
1921 from_kgid(&init_user_ns, cred->sgid),
1922 from_kgid(&init_user_ns, cred->fsgid),
1923 tty, audit_get_sessionid(tsk));
1924
1925 audit_log_format(ab, " comm=");
1926 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1927
1928 audit_log_d_path_exe(ab, tsk->mm);
1929 audit_log_task_context(ab);
1930}
1931EXPORT_SYMBOL(audit_log_task_info);
1932
1933/**
1934 * audit_log_link_denied - report a link restriction denial
1935 * @operation: specific link operation
1936 * @link: the path that triggered the restriction
1937 */
1938void audit_log_link_denied(const char *operation, struct path *link)
1939{
1940 struct audit_buffer *ab;
1941 struct audit_names *name;
1942
1943 name = kzalloc(sizeof(*name), GFP_NOFS);
1944 if (!name)
1945 return;
1946
1947 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1948 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1949 AUDIT_ANOM_LINK);
1950 if (!ab)
1951 goto out;
1952 audit_log_format(ab, "op=%s", operation);
1953 audit_log_task_info(ab, current);
1954 audit_log_format(ab, " res=0");
1955 audit_log_end(ab);
1956
1957 /* Generate AUDIT_PATH record with object. */
1958 name->type = AUDIT_TYPE_NORMAL;
1959 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1960 audit_log_name(current->audit_context, name, link, 0, NULL);
1961out:
1962 kfree(name);
1963}
1964
1965/**
1966 * audit_log_end - end one audit record
1967 * @ab: the audit_buffer
1968 *
1969 * netlink_unicast() cannot be called inside an irq context because it blocks
1970 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1971 * on a queue and a tasklet is scheduled to remove them from the queue outside
1972 * the irq context. May be called in any context.
1973 */
1974void audit_log_end(struct audit_buffer *ab)
1975{
1976 if (!ab)
1977 return;
1978 if (!audit_rate_check()) {
1979 audit_log_lost("rate limit exceeded");
1980 } else {
1981 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1982
1983 nlh->nlmsg_len = ab->skb->len;
1984 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1985
1986 /*
1987 * The original kaudit unicast socket sends up messages with
1988 * nlmsg_len set to the payload length rather than the entire
1989 * message length. This breaks the standard set by netlink.
1990 * The existing auditd daemon assumes this breakage. Fixing
1991 * this would require co-ordinating a change in the established
1992 * protocol between the kaudit kernel subsystem and the auditd
1993 * userspace code.
1994 */
1995 nlh->nlmsg_len -= NLMSG_HDRLEN;
1996
1997 if (audit_pid) {
1998 skb_queue_tail(&audit_skb_queue, ab->skb);
1999 wake_up_interruptible(&kauditd_wait);
2000 } else {
2001 audit_printk_skb(ab->skb);
2002 }
2003 ab->skb = NULL;
2004 }
2005 audit_buffer_free(ab);
2006}
2007
2008/**
2009 * audit_log - Log an audit record
2010 * @ctx: audit context
2011 * @gfp_mask: type of allocation
2012 * @type: audit message type
2013 * @fmt: format string to use
2014 * @...: variable parameters matching the format string
2015 *
2016 * This is a convenience function that calls audit_log_start,
2017 * audit_log_vformat, and audit_log_end. It may be called
2018 * in any context.
2019 */
2020void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2021 const char *fmt, ...)
2022{
2023 struct audit_buffer *ab;
2024 va_list args;
2025
2026 ab = audit_log_start(ctx, gfp_mask, type);
2027 if (ab) {
2028 va_start(args, fmt);
2029 audit_log_vformat(ab, fmt, args);
2030 va_end(args);
2031 audit_log_end(ab);
2032 }
2033}
2034
2035#ifdef CONFIG_SECURITY
2036/**
2037 * audit_log_secctx - Converts and logs SELinux context
2038 * @ab: audit_buffer
2039 * @secid: security number
2040 *
2041 * This is a helper function that calls security_secid_to_secctx to convert
2042 * secid to secctx and then adds the (converted) SELinux context to the audit
2043 * log by calling audit_log_format, thus also preventing leak of internal secid
2044 * to userspace. If secid cannot be converted audit_panic is called.
2045 */
2046void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2047{
2048 u32 len;
2049 char *secctx;
2050
2051 if (security_secid_to_secctx(secid, &secctx, &len)) {
2052 audit_panic("Cannot convert secid to context");
2053 } else {
2054 audit_log_format(ab, " obj=%s", secctx);
2055 security_release_secctx(secctx, len);
2056 }
2057}
2058EXPORT_SYMBOL(audit_log_secctx);
2059#endif
2060
2061EXPORT_SYMBOL(audit_log_start);
2062EXPORT_SYMBOL(audit_log_end);
2063EXPORT_SYMBOL(audit_log_format);
2064EXPORT_SYMBOL(audit_log);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/file.h>
35#include <linux/init.h>
36#include <linux/types.h>
37#include <linux/atomic.h>
38#include <linux/mm.h>
39#include <linux/export.h>
40#include <linux/slab.h>
41#include <linux/err.h>
42#include <linux/kthread.h>
43#include <linux/kernel.h>
44#include <linux/syscalls.h>
45#include <linux/spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/mutex.h>
48#include <linux/gfp.h>
49#include <linux/pid.h>
50
51#include <linux/audit.h>
52
53#include <net/sock.h>
54#include <net/netlink.h>
55#include <linux/skbuff.h>
56#ifdef CONFIG_SECURITY
57#include <linux/security.h>
58#endif
59#include <linux/freezer.h>
60#include <linux/pid_namespace.h>
61#include <net/netns/generic.h>
62
63#include "audit.h"
64
65/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66 * (Initialization happens after skb_init is called.) */
67#define AUDIT_DISABLED -1
68#define AUDIT_UNINITIALIZED 0
69#define AUDIT_INITIALIZED 1
70static int audit_initialized = AUDIT_UNINITIALIZED;
71
72u32 audit_enabled = AUDIT_OFF;
73bool audit_ever_enabled = !!AUDIT_OFF;
74
75EXPORT_SYMBOL_GPL(audit_enabled);
76
77/* Default state when kernel boots without any parameters. */
78static u32 audit_default = AUDIT_OFF;
79
80/* If auditing cannot proceed, audit_failure selects what happens. */
81static u32 audit_failure = AUDIT_FAIL_PRINTK;
82
83/* private audit network namespace index */
84static unsigned int audit_net_id;
85
86/**
87 * struct audit_net - audit private network namespace data
88 * @sk: communication socket
89 */
90struct audit_net {
91 struct sock *sk;
92};
93
94/**
95 * struct auditd_connection - kernel/auditd connection state
96 * @pid: auditd PID
97 * @portid: netlink portid
98 * @net: the associated network namespace
99 * @rcu: RCU head
100 *
101 * Description:
102 * This struct is RCU protected; you must either hold the RCU lock for reading
103 * or the associated spinlock for writing.
104 */
105struct auditd_connection {
106 struct pid *pid;
107 u32 portid;
108 struct net *net;
109 struct rcu_head rcu;
110};
111static struct auditd_connection __rcu *auditd_conn;
112static DEFINE_SPINLOCK(auditd_conn_lock);
113
114/* If audit_rate_limit is non-zero, limit the rate of sending audit records
115 * to that number per second. This prevents DoS attacks, but results in
116 * audit records being dropped. */
117static u32 audit_rate_limit;
118
119/* Number of outstanding audit_buffers allowed.
120 * When set to zero, this means unlimited. */
121static u32 audit_backlog_limit = 64;
122#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124
125/* The identity of the user shutting down the audit system. */
126static kuid_t audit_sig_uid = INVALID_UID;
127static pid_t audit_sig_pid = -1;
128static u32 audit_sig_sid;
129
130/* Records can be lost in several ways:
131 0) [suppressed in audit_alloc]
132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133 2) out of memory in audit_log_move [alloc_skb]
134 3) suppressed due to audit_rate_limit
135 4) suppressed due to audit_backlog_limit
136*/
137static atomic_t audit_lost = ATOMIC_INIT(0);
138
139/* Monotonically increasing sum of time the kernel has spent
140 * waiting while the backlog limit is exceeded.
141 */
142static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
143
144/* Hash for inode-based rules */
145struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
146
147static struct kmem_cache *audit_buffer_cache;
148
149/* queue msgs to send via kauditd_task */
150static struct sk_buff_head audit_queue;
151/* queue msgs due to temporary unicast send problems */
152static struct sk_buff_head audit_retry_queue;
153/* queue msgs waiting for new auditd connection */
154static struct sk_buff_head audit_hold_queue;
155
156/* queue servicing thread */
157static struct task_struct *kauditd_task;
158static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
159
160/* waitqueue for callers who are blocked on the audit backlog */
161static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
162
163static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
164 .mask = -1,
165 .features = 0,
166 .lock = 0,};
167
168static char *audit_feature_names[2] = {
169 "only_unset_loginuid",
170 "loginuid_immutable",
171};
172
173/**
174 * struct audit_ctl_mutex - serialize requests from userspace
175 * @lock: the mutex used for locking
176 * @owner: the task which owns the lock
177 *
178 * Description:
179 * This is the lock struct used to ensure we only process userspace requests
180 * in an orderly fashion. We can't simply use a mutex/lock here because we
181 * need to track lock ownership so we don't end up blocking the lock owner in
182 * audit_log_start() or similar.
183 */
184static struct audit_ctl_mutex {
185 struct mutex lock;
186 void *owner;
187} audit_cmd_mutex;
188
189/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
190 * audit records. Since printk uses a 1024 byte buffer, this buffer
191 * should be at least that large. */
192#define AUDIT_BUFSIZ 1024
193
194/* The audit_buffer is used when formatting an audit record. The caller
195 * locks briefly to get the record off the freelist or to allocate the
196 * buffer, and locks briefly to send the buffer to the netlink layer or
197 * to place it on a transmit queue. Multiple audit_buffers can be in
198 * use simultaneously. */
199struct audit_buffer {
200 struct sk_buff *skb; /* formatted skb ready to send */
201 struct audit_context *ctx; /* NULL or associated context */
202 gfp_t gfp_mask;
203};
204
205struct audit_reply {
206 __u32 portid;
207 struct net *net;
208 struct sk_buff *skb;
209};
210
211/**
212 * auditd_test_task - Check to see if a given task is an audit daemon
213 * @task: the task to check
214 *
215 * Description:
216 * Return 1 if the task is a registered audit daemon, 0 otherwise.
217 */
218int auditd_test_task(struct task_struct *task)
219{
220 int rc;
221 struct auditd_connection *ac;
222
223 rcu_read_lock();
224 ac = rcu_dereference(auditd_conn);
225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
226 rcu_read_unlock();
227
228 return rc;
229}
230
231/**
232 * audit_ctl_lock - Take the audit control lock
233 */
234void audit_ctl_lock(void)
235{
236 mutex_lock(&audit_cmd_mutex.lock);
237 audit_cmd_mutex.owner = current;
238}
239
240/**
241 * audit_ctl_unlock - Drop the audit control lock
242 */
243void audit_ctl_unlock(void)
244{
245 audit_cmd_mutex.owner = NULL;
246 mutex_unlock(&audit_cmd_mutex.lock);
247}
248
249/**
250 * audit_ctl_owner_current - Test to see if the current task owns the lock
251 *
252 * Description:
253 * Return true if the current task owns the audit control lock, false if it
254 * doesn't own the lock.
255 */
256static bool audit_ctl_owner_current(void)
257{
258 return (current == audit_cmd_mutex.owner);
259}
260
261/**
262 * auditd_pid_vnr - Return the auditd PID relative to the namespace
263 *
264 * Description:
265 * Returns the PID in relation to the namespace, 0 on failure.
266 */
267static pid_t auditd_pid_vnr(void)
268{
269 pid_t pid;
270 const struct auditd_connection *ac;
271
272 rcu_read_lock();
273 ac = rcu_dereference(auditd_conn);
274 if (!ac || !ac->pid)
275 pid = 0;
276 else
277 pid = pid_vnr(ac->pid);
278 rcu_read_unlock();
279
280 return pid;
281}
282
283/**
284 * audit_get_sk - Return the audit socket for the given network namespace
285 * @net: the destination network namespace
286 *
287 * Description:
288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
289 * that a reference is held for the network namespace while the sock is in use.
290 */
291static struct sock *audit_get_sk(const struct net *net)
292{
293 struct audit_net *aunet;
294
295 if (!net)
296 return NULL;
297
298 aunet = net_generic(net, audit_net_id);
299 return aunet->sk;
300}
301
302void audit_panic(const char *message)
303{
304 switch (audit_failure) {
305 case AUDIT_FAIL_SILENT:
306 break;
307 case AUDIT_FAIL_PRINTK:
308 if (printk_ratelimit())
309 pr_err("%s\n", message);
310 break;
311 case AUDIT_FAIL_PANIC:
312 panic("audit: %s\n", message);
313 break;
314 }
315}
316
317static inline int audit_rate_check(void)
318{
319 static unsigned long last_check = 0;
320 static int messages = 0;
321 static DEFINE_SPINLOCK(lock);
322 unsigned long flags;
323 unsigned long now;
324 unsigned long elapsed;
325 int retval = 0;
326
327 if (!audit_rate_limit) return 1;
328
329 spin_lock_irqsave(&lock, flags);
330 if (++messages < audit_rate_limit) {
331 retval = 1;
332 } else {
333 now = jiffies;
334 elapsed = now - last_check;
335 if (elapsed > HZ) {
336 last_check = now;
337 messages = 0;
338 retval = 1;
339 }
340 }
341 spin_unlock_irqrestore(&lock, flags);
342
343 return retval;
344}
345
346/**
347 * audit_log_lost - conditionally log lost audit message event
348 * @message: the message stating reason for lost audit message
349 *
350 * Emit at least 1 message per second, even if audit_rate_check is
351 * throttling.
352 * Always increment the lost messages counter.
353*/
354void audit_log_lost(const char *message)
355{
356 static unsigned long last_msg = 0;
357 static DEFINE_SPINLOCK(lock);
358 unsigned long flags;
359 unsigned long now;
360 int print;
361
362 atomic_inc(&audit_lost);
363
364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
365
366 if (!print) {
367 spin_lock_irqsave(&lock, flags);
368 now = jiffies;
369 if (now - last_msg > HZ) {
370 print = 1;
371 last_msg = now;
372 }
373 spin_unlock_irqrestore(&lock, flags);
374 }
375
376 if (print) {
377 if (printk_ratelimit())
378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
379 atomic_read(&audit_lost),
380 audit_rate_limit,
381 audit_backlog_limit);
382 audit_panic(message);
383 }
384}
385
386static int audit_log_config_change(char *function_name, u32 new, u32 old,
387 int allow_changes)
388{
389 struct audit_buffer *ab;
390 int rc = 0;
391
392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
393 if (unlikely(!ab))
394 return rc;
395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
396 audit_log_session_info(ab);
397 rc = audit_log_task_context(ab);
398 if (rc)
399 allow_changes = 0; /* Something weird, deny request */
400 audit_log_format(ab, " res=%d", allow_changes);
401 audit_log_end(ab);
402 return rc;
403}
404
405static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
406{
407 int allow_changes, rc = 0;
408 u32 old = *to_change;
409
410 /* check if we are locked */
411 if (audit_enabled == AUDIT_LOCKED)
412 allow_changes = 0;
413 else
414 allow_changes = 1;
415
416 if (audit_enabled != AUDIT_OFF) {
417 rc = audit_log_config_change(function_name, new, old, allow_changes);
418 if (rc)
419 allow_changes = 0;
420 }
421
422 /* If we are allowed, make the change */
423 if (allow_changes == 1)
424 *to_change = new;
425 /* Not allowed, update reason */
426 else if (rc == 0)
427 rc = -EPERM;
428 return rc;
429}
430
431static int audit_set_rate_limit(u32 limit)
432{
433 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
434}
435
436static int audit_set_backlog_limit(u32 limit)
437{
438 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
439}
440
441static int audit_set_backlog_wait_time(u32 timeout)
442{
443 return audit_do_config_change("audit_backlog_wait_time",
444 &audit_backlog_wait_time, timeout);
445}
446
447static int audit_set_enabled(u32 state)
448{
449 int rc;
450 if (state > AUDIT_LOCKED)
451 return -EINVAL;
452
453 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
454 if (!rc)
455 audit_ever_enabled |= !!state;
456
457 return rc;
458}
459
460static int audit_set_failure(u32 state)
461{
462 if (state != AUDIT_FAIL_SILENT
463 && state != AUDIT_FAIL_PRINTK
464 && state != AUDIT_FAIL_PANIC)
465 return -EINVAL;
466
467 return audit_do_config_change("audit_failure", &audit_failure, state);
468}
469
470/**
471 * auditd_conn_free - RCU helper to release an auditd connection struct
472 * @rcu: RCU head
473 *
474 * Description:
475 * Drop any references inside the auditd connection tracking struct and free
476 * the memory.
477 */
478static void auditd_conn_free(struct rcu_head *rcu)
479{
480 struct auditd_connection *ac;
481
482 ac = container_of(rcu, struct auditd_connection, rcu);
483 put_pid(ac->pid);
484 put_net(ac->net);
485 kfree(ac);
486}
487
488/**
489 * auditd_set - Set/Reset the auditd connection state
490 * @pid: auditd PID
491 * @portid: auditd netlink portid
492 * @net: auditd network namespace pointer
493 *
494 * Description:
495 * This function will obtain and drop network namespace references as
496 * necessary. Returns zero on success, negative values on failure.
497 */
498static int auditd_set(struct pid *pid, u32 portid, struct net *net)
499{
500 unsigned long flags;
501 struct auditd_connection *ac_old, *ac_new;
502
503 if (!pid || !net)
504 return -EINVAL;
505
506 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
507 if (!ac_new)
508 return -ENOMEM;
509 ac_new->pid = get_pid(pid);
510 ac_new->portid = portid;
511 ac_new->net = get_net(net);
512
513 spin_lock_irqsave(&auditd_conn_lock, flags);
514 ac_old = rcu_dereference_protected(auditd_conn,
515 lockdep_is_held(&auditd_conn_lock));
516 rcu_assign_pointer(auditd_conn, ac_new);
517 spin_unlock_irqrestore(&auditd_conn_lock, flags);
518
519 if (ac_old)
520 call_rcu(&ac_old->rcu, auditd_conn_free);
521
522 return 0;
523}
524
525/**
526 * kauditd_printk_skb - Print the audit record to the ring buffer
527 * @skb: audit record
528 *
529 * Whatever the reason, this packet may not make it to the auditd connection
530 * so write it via printk so the information isn't completely lost.
531 */
532static void kauditd_printk_skb(struct sk_buff *skb)
533{
534 struct nlmsghdr *nlh = nlmsg_hdr(skb);
535 char *data = nlmsg_data(nlh);
536
537 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
538 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
539}
540
541/**
542 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
543 * @skb: audit record
544 *
545 * Description:
546 * This should only be used by the kauditd_thread when it fails to flush the
547 * hold queue.
548 */
549static void kauditd_rehold_skb(struct sk_buff *skb)
550{
551 /* put the record back in the queue at the same place */
552 skb_queue_head(&audit_hold_queue, skb);
553}
554
555/**
556 * kauditd_hold_skb - Queue an audit record, waiting for auditd
557 * @skb: audit record
558 *
559 * Description:
560 * Queue the audit record, waiting for an instance of auditd. When this
561 * function is called we haven't given up yet on sending the record, but things
562 * are not looking good. The first thing we want to do is try to write the
563 * record via printk and then see if we want to try and hold on to the record
564 * and queue it, if we have room. If we want to hold on to the record, but we
565 * don't have room, record a record lost message.
566 */
567static void kauditd_hold_skb(struct sk_buff *skb)
568{
569 /* at this point it is uncertain if we will ever send this to auditd so
570 * try to send the message via printk before we go any further */
571 kauditd_printk_skb(skb);
572
573 /* can we just silently drop the message? */
574 if (!audit_default) {
575 kfree_skb(skb);
576 return;
577 }
578
579 /* if we have room, queue the message */
580 if (!audit_backlog_limit ||
581 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
582 skb_queue_tail(&audit_hold_queue, skb);
583 return;
584 }
585
586 /* we have no other options - drop the message */
587 audit_log_lost("kauditd hold queue overflow");
588 kfree_skb(skb);
589}
590
591/**
592 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
593 * @skb: audit record
594 *
595 * Description:
596 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
597 * but for some reason we are having problems sending it audit records so
598 * queue the given record and attempt to resend.
599 */
600static void kauditd_retry_skb(struct sk_buff *skb)
601{
602 /* NOTE: because records should only live in the retry queue for a
603 * short period of time, before either being sent or moved to the hold
604 * queue, we don't currently enforce a limit on this queue */
605 skb_queue_tail(&audit_retry_queue, skb);
606}
607
608/**
609 * auditd_reset - Disconnect the auditd connection
610 * @ac: auditd connection state
611 *
612 * Description:
613 * Break the auditd/kauditd connection and move all the queued records into the
614 * hold queue in case auditd reconnects. It is important to note that the @ac
615 * pointer should never be dereferenced inside this function as it may be NULL
616 * or invalid, you can only compare the memory address! If @ac is NULL then
617 * the connection will always be reset.
618 */
619static void auditd_reset(const struct auditd_connection *ac)
620{
621 unsigned long flags;
622 struct sk_buff *skb;
623 struct auditd_connection *ac_old;
624
625 /* if it isn't already broken, break the connection */
626 spin_lock_irqsave(&auditd_conn_lock, flags);
627 ac_old = rcu_dereference_protected(auditd_conn,
628 lockdep_is_held(&auditd_conn_lock));
629 if (ac && ac != ac_old) {
630 /* someone already registered a new auditd connection */
631 spin_unlock_irqrestore(&auditd_conn_lock, flags);
632 return;
633 }
634 rcu_assign_pointer(auditd_conn, NULL);
635 spin_unlock_irqrestore(&auditd_conn_lock, flags);
636
637 if (ac_old)
638 call_rcu(&ac_old->rcu, auditd_conn_free);
639
640 /* flush the retry queue to the hold queue, but don't touch the main
641 * queue since we need to process that normally for multicast */
642 while ((skb = skb_dequeue(&audit_retry_queue)))
643 kauditd_hold_skb(skb);
644}
645
646/**
647 * auditd_send_unicast_skb - Send a record via unicast to auditd
648 * @skb: audit record
649 *
650 * Description:
651 * Send a skb to the audit daemon, returns positive/zero values on success and
652 * negative values on failure; in all cases the skb will be consumed by this
653 * function. If the send results in -ECONNREFUSED the connection with auditd
654 * will be reset. This function may sleep so callers should not hold any locks
655 * where this would cause a problem.
656 */
657static int auditd_send_unicast_skb(struct sk_buff *skb)
658{
659 int rc;
660 u32 portid;
661 struct net *net;
662 struct sock *sk;
663 struct auditd_connection *ac;
664
665 /* NOTE: we can't call netlink_unicast while in the RCU section so
666 * take a reference to the network namespace and grab local
667 * copies of the namespace, the sock, and the portid; the
668 * namespace and sock aren't going to go away while we hold a
669 * reference and if the portid does become invalid after the RCU
670 * section netlink_unicast() should safely return an error */
671
672 rcu_read_lock();
673 ac = rcu_dereference(auditd_conn);
674 if (!ac) {
675 rcu_read_unlock();
676 kfree_skb(skb);
677 rc = -ECONNREFUSED;
678 goto err;
679 }
680 net = get_net(ac->net);
681 sk = audit_get_sk(net);
682 portid = ac->portid;
683 rcu_read_unlock();
684
685 rc = netlink_unicast(sk, skb, portid, 0);
686 put_net(net);
687 if (rc < 0)
688 goto err;
689
690 return rc;
691
692err:
693 if (ac && rc == -ECONNREFUSED)
694 auditd_reset(ac);
695 return rc;
696}
697
698/**
699 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
700 * @sk: the sending sock
701 * @portid: the netlink destination
702 * @queue: the skb queue to process
703 * @retry_limit: limit on number of netlink unicast failures
704 * @skb_hook: per-skb hook for additional processing
705 * @err_hook: hook called if the skb fails the netlink unicast send
706 *
707 * Description:
708 * Run through the given queue and attempt to send the audit records to auditd,
709 * returns zero on success, negative values on failure. It is up to the caller
710 * to ensure that the @sk is valid for the duration of this function.
711 *
712 */
713static int kauditd_send_queue(struct sock *sk, u32 portid,
714 struct sk_buff_head *queue,
715 unsigned int retry_limit,
716 void (*skb_hook)(struct sk_buff *skb),
717 void (*err_hook)(struct sk_buff *skb))
718{
719 int rc = 0;
720 struct sk_buff *skb;
721 static unsigned int failed = 0;
722
723 /* NOTE: kauditd_thread takes care of all our locking, we just use
724 * the netlink info passed to us (e.g. sk and portid) */
725
726 while ((skb = skb_dequeue(queue))) {
727 /* call the skb_hook for each skb we touch */
728 if (skb_hook)
729 (*skb_hook)(skb);
730
731 /* can we send to anyone via unicast? */
732 if (!sk) {
733 if (err_hook)
734 (*err_hook)(skb);
735 continue;
736 }
737
738 /* grab an extra skb reference in case of error */
739 skb_get(skb);
740 rc = netlink_unicast(sk, skb, portid, 0);
741 if (rc < 0) {
742 /* fatal failure for our queue flush attempt? */
743 if (++failed >= retry_limit ||
744 rc == -ECONNREFUSED || rc == -EPERM) {
745 /* yes - error processing for the queue */
746 sk = NULL;
747 if (err_hook)
748 (*err_hook)(skb);
749 if (!skb_hook)
750 goto out;
751 /* keep processing with the skb_hook */
752 continue;
753 } else
754 /* no - requeue to preserve ordering */
755 skb_queue_head(queue, skb);
756 } else {
757 /* it worked - drop the extra reference and continue */
758 consume_skb(skb);
759 failed = 0;
760 }
761 }
762
763out:
764 return (rc >= 0 ? 0 : rc);
765}
766
767/*
768 * kauditd_send_multicast_skb - Send a record to any multicast listeners
769 * @skb: audit record
770 *
771 * Description:
772 * Write a multicast message to anyone listening in the initial network
773 * namespace. This function doesn't consume an skb as might be expected since
774 * it has to copy it anyways.
775 */
776static void kauditd_send_multicast_skb(struct sk_buff *skb)
777{
778 struct sk_buff *copy;
779 struct sock *sock = audit_get_sk(&init_net);
780 struct nlmsghdr *nlh;
781
782 /* NOTE: we are not taking an additional reference for init_net since
783 * we don't have to worry about it going away */
784
785 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
786 return;
787
788 /*
789 * The seemingly wasteful skb_copy() rather than bumping the refcount
790 * using skb_get() is necessary because non-standard mods are made to
791 * the skb by the original kaudit unicast socket send routine. The
792 * existing auditd daemon assumes this breakage. Fixing this would
793 * require co-ordinating a change in the established protocol between
794 * the kaudit kernel subsystem and the auditd userspace code. There is
795 * no reason for new multicast clients to continue with this
796 * non-compliance.
797 */
798 copy = skb_copy(skb, GFP_KERNEL);
799 if (!copy)
800 return;
801 nlh = nlmsg_hdr(copy);
802 nlh->nlmsg_len = skb->len;
803
804 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
805}
806
807/**
808 * kauditd_thread - Worker thread to send audit records to userspace
809 * @dummy: unused
810 */
811static int kauditd_thread(void *dummy)
812{
813 int rc;
814 u32 portid = 0;
815 struct net *net = NULL;
816 struct sock *sk = NULL;
817 struct auditd_connection *ac;
818
819#define UNICAST_RETRIES 5
820
821 set_freezable();
822 while (!kthread_should_stop()) {
823 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
824 rcu_read_lock();
825 ac = rcu_dereference(auditd_conn);
826 if (!ac) {
827 rcu_read_unlock();
828 goto main_queue;
829 }
830 net = get_net(ac->net);
831 sk = audit_get_sk(net);
832 portid = ac->portid;
833 rcu_read_unlock();
834
835 /* attempt to flush the hold queue */
836 rc = kauditd_send_queue(sk, portid,
837 &audit_hold_queue, UNICAST_RETRIES,
838 NULL, kauditd_rehold_skb);
839 if (rc < 0) {
840 sk = NULL;
841 auditd_reset(ac);
842 goto main_queue;
843 }
844
845 /* attempt to flush the retry queue */
846 rc = kauditd_send_queue(sk, portid,
847 &audit_retry_queue, UNICAST_RETRIES,
848 NULL, kauditd_hold_skb);
849 if (rc < 0) {
850 sk = NULL;
851 auditd_reset(ac);
852 goto main_queue;
853 }
854
855main_queue:
856 /* process the main queue - do the multicast send and attempt
857 * unicast, dump failed record sends to the retry queue; if
858 * sk == NULL due to previous failures we will just do the
859 * multicast send and move the record to the hold queue */
860 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
861 kauditd_send_multicast_skb,
862 (sk ?
863 kauditd_retry_skb : kauditd_hold_skb));
864 if (ac && rc < 0)
865 auditd_reset(ac);
866 sk = NULL;
867
868 /* drop our netns reference, no auditd sends past this line */
869 if (net) {
870 put_net(net);
871 net = NULL;
872 }
873
874 /* we have processed all the queues so wake everyone */
875 wake_up(&audit_backlog_wait);
876
877 /* NOTE: we want to wake up if there is anything on the queue,
878 * regardless of if an auditd is connected, as we need to
879 * do the multicast send and rotate records from the
880 * main queue to the retry/hold queues */
881 wait_event_freezable(kauditd_wait,
882 (skb_queue_len(&audit_queue) ? 1 : 0));
883 }
884
885 return 0;
886}
887
888int audit_send_list_thread(void *_dest)
889{
890 struct audit_netlink_list *dest = _dest;
891 struct sk_buff *skb;
892 struct sock *sk = audit_get_sk(dest->net);
893
894 /* wait for parent to finish and send an ACK */
895 audit_ctl_lock();
896 audit_ctl_unlock();
897
898 while ((skb = __skb_dequeue(&dest->q)) != NULL)
899 netlink_unicast(sk, skb, dest->portid, 0);
900
901 put_net(dest->net);
902 kfree(dest);
903
904 return 0;
905}
906
907struct sk_buff *audit_make_reply(int seq, int type, int done,
908 int multi, const void *payload, int size)
909{
910 struct sk_buff *skb;
911 struct nlmsghdr *nlh;
912 void *data;
913 int flags = multi ? NLM_F_MULTI : 0;
914 int t = done ? NLMSG_DONE : type;
915
916 skb = nlmsg_new(size, GFP_KERNEL);
917 if (!skb)
918 return NULL;
919
920 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
921 if (!nlh)
922 goto out_kfree_skb;
923 data = nlmsg_data(nlh);
924 memcpy(data, payload, size);
925 return skb;
926
927out_kfree_skb:
928 kfree_skb(skb);
929 return NULL;
930}
931
932static void audit_free_reply(struct audit_reply *reply)
933{
934 if (!reply)
935 return;
936
937 kfree_skb(reply->skb);
938 if (reply->net)
939 put_net(reply->net);
940 kfree(reply);
941}
942
943static int audit_send_reply_thread(void *arg)
944{
945 struct audit_reply *reply = (struct audit_reply *)arg;
946
947 audit_ctl_lock();
948 audit_ctl_unlock();
949
950 /* Ignore failure. It'll only happen if the sender goes away,
951 because our timeout is set to infinite. */
952 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
953 reply->skb = NULL;
954 audit_free_reply(reply);
955 return 0;
956}
957
958/**
959 * audit_send_reply - send an audit reply message via netlink
960 * @request_skb: skb of request we are replying to (used to target the reply)
961 * @seq: sequence number
962 * @type: audit message type
963 * @done: done (last) flag
964 * @multi: multi-part message flag
965 * @payload: payload data
966 * @size: payload size
967 *
968 * Allocates a skb, builds the netlink message, and sends it to the port id.
969 */
970static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
971 int multi, const void *payload, int size)
972{
973 struct task_struct *tsk;
974 struct audit_reply *reply;
975
976 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
977 if (!reply)
978 return;
979
980 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
981 if (!reply->skb)
982 goto err;
983 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
984 reply->portid = NETLINK_CB(request_skb).portid;
985
986 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
987 if (IS_ERR(tsk))
988 goto err;
989
990 return;
991
992err:
993 audit_free_reply(reply);
994}
995
996/*
997 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
998 * control messages.
999 */
1000static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1001{
1002 int err = 0;
1003
1004 /* Only support initial user namespace for now. */
1005 /*
1006 * We return ECONNREFUSED because it tricks userspace into thinking
1007 * that audit was not configured into the kernel. Lots of users
1008 * configure their PAM stack (because that's what the distro does)
1009 * to reject login if unable to send messages to audit. If we return
1010 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1011 * configured in and will let login proceed. If we return EPERM
1012 * userspace will reject all logins. This should be removed when we
1013 * support non init namespaces!!
1014 */
1015 if (current_user_ns() != &init_user_ns)
1016 return -ECONNREFUSED;
1017
1018 switch (msg_type) {
1019 case AUDIT_LIST:
1020 case AUDIT_ADD:
1021 case AUDIT_DEL:
1022 return -EOPNOTSUPP;
1023 case AUDIT_GET:
1024 case AUDIT_SET:
1025 case AUDIT_GET_FEATURE:
1026 case AUDIT_SET_FEATURE:
1027 case AUDIT_LIST_RULES:
1028 case AUDIT_ADD_RULE:
1029 case AUDIT_DEL_RULE:
1030 case AUDIT_SIGNAL_INFO:
1031 case AUDIT_TTY_GET:
1032 case AUDIT_TTY_SET:
1033 case AUDIT_TRIM:
1034 case AUDIT_MAKE_EQUIV:
1035 /* Only support auditd and auditctl in initial pid namespace
1036 * for now. */
1037 if (task_active_pid_ns(current) != &init_pid_ns)
1038 return -EPERM;
1039
1040 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1041 err = -EPERM;
1042 break;
1043 case AUDIT_USER:
1044 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1045 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1046 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1047 err = -EPERM;
1048 break;
1049 default: /* bad msg */
1050 err = -EINVAL;
1051 }
1052
1053 return err;
1054}
1055
1056static void audit_log_common_recv_msg(struct audit_context *context,
1057 struct audit_buffer **ab, u16 msg_type)
1058{
1059 uid_t uid = from_kuid(&init_user_ns, current_uid());
1060 pid_t pid = task_tgid_nr(current);
1061
1062 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1063 *ab = NULL;
1064 return;
1065 }
1066
1067 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1068 if (unlikely(!*ab))
1069 return;
1070 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1071 audit_log_session_info(*ab);
1072 audit_log_task_context(*ab);
1073}
1074
1075static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1076 u16 msg_type)
1077{
1078 audit_log_common_recv_msg(NULL, ab, msg_type);
1079}
1080
1081int is_audit_feature_set(int i)
1082{
1083 return af.features & AUDIT_FEATURE_TO_MASK(i);
1084}
1085
1086
1087static int audit_get_feature(struct sk_buff *skb)
1088{
1089 u32 seq;
1090
1091 seq = nlmsg_hdr(skb)->nlmsg_seq;
1092
1093 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1094
1095 return 0;
1096}
1097
1098static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1099 u32 old_lock, u32 new_lock, int res)
1100{
1101 struct audit_buffer *ab;
1102
1103 if (audit_enabled == AUDIT_OFF)
1104 return;
1105
1106 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1107 if (!ab)
1108 return;
1109 audit_log_task_info(ab);
1110 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1111 audit_feature_names[which], !!old_feature, !!new_feature,
1112 !!old_lock, !!new_lock, res);
1113 audit_log_end(ab);
1114}
1115
1116static int audit_set_feature(struct audit_features *uaf)
1117{
1118 int i;
1119
1120 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1121
1122 /* if there is ever a version 2 we should handle that here */
1123
1124 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1125 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1126 u32 old_feature, new_feature, old_lock, new_lock;
1127
1128 /* if we are not changing this feature, move along */
1129 if (!(feature & uaf->mask))
1130 continue;
1131
1132 old_feature = af.features & feature;
1133 new_feature = uaf->features & feature;
1134 new_lock = (uaf->lock | af.lock) & feature;
1135 old_lock = af.lock & feature;
1136
1137 /* are we changing a locked feature? */
1138 if (old_lock && (new_feature != old_feature)) {
1139 audit_log_feature_change(i, old_feature, new_feature,
1140 old_lock, new_lock, 0);
1141 return -EPERM;
1142 }
1143 }
1144 /* nothing invalid, do the changes */
1145 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1146 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1147 u32 old_feature, new_feature, old_lock, new_lock;
1148
1149 /* if we are not changing this feature, move along */
1150 if (!(feature & uaf->mask))
1151 continue;
1152
1153 old_feature = af.features & feature;
1154 new_feature = uaf->features & feature;
1155 old_lock = af.lock & feature;
1156 new_lock = (uaf->lock | af.lock) & feature;
1157
1158 if (new_feature != old_feature)
1159 audit_log_feature_change(i, old_feature, new_feature,
1160 old_lock, new_lock, 1);
1161
1162 if (new_feature)
1163 af.features |= feature;
1164 else
1165 af.features &= ~feature;
1166 af.lock |= new_lock;
1167 }
1168
1169 return 0;
1170}
1171
1172static int audit_replace(struct pid *pid)
1173{
1174 pid_t pvnr;
1175 struct sk_buff *skb;
1176
1177 pvnr = pid_vnr(pid);
1178 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1179 if (!skb)
1180 return -ENOMEM;
1181 return auditd_send_unicast_skb(skb);
1182}
1183
1184static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1185{
1186 u32 seq;
1187 void *data;
1188 int data_len;
1189 int err;
1190 struct audit_buffer *ab;
1191 u16 msg_type = nlh->nlmsg_type;
1192 struct audit_sig_info *sig_data;
1193 char *ctx = NULL;
1194 u32 len;
1195
1196 err = audit_netlink_ok(skb, msg_type);
1197 if (err)
1198 return err;
1199
1200 seq = nlh->nlmsg_seq;
1201 data = nlmsg_data(nlh);
1202 data_len = nlmsg_len(nlh);
1203
1204 switch (msg_type) {
1205 case AUDIT_GET: {
1206 struct audit_status s;
1207 memset(&s, 0, sizeof(s));
1208 s.enabled = audit_enabled;
1209 s.failure = audit_failure;
1210 /* NOTE: use pid_vnr() so the PID is relative to the current
1211 * namespace */
1212 s.pid = auditd_pid_vnr();
1213 s.rate_limit = audit_rate_limit;
1214 s.backlog_limit = audit_backlog_limit;
1215 s.lost = atomic_read(&audit_lost);
1216 s.backlog = skb_queue_len(&audit_queue);
1217 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1218 s.backlog_wait_time = audit_backlog_wait_time;
1219 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1220 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1221 break;
1222 }
1223 case AUDIT_SET: {
1224 struct audit_status s;
1225 memset(&s, 0, sizeof(s));
1226 /* guard against past and future API changes */
1227 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1228 if (s.mask & AUDIT_STATUS_ENABLED) {
1229 err = audit_set_enabled(s.enabled);
1230 if (err < 0)
1231 return err;
1232 }
1233 if (s.mask & AUDIT_STATUS_FAILURE) {
1234 err = audit_set_failure(s.failure);
1235 if (err < 0)
1236 return err;
1237 }
1238 if (s.mask & AUDIT_STATUS_PID) {
1239 /* NOTE: we are using the vnr PID functions below
1240 * because the s.pid value is relative to the
1241 * namespace of the caller; at present this
1242 * doesn't matter much since you can really only
1243 * run auditd from the initial pid namespace, but
1244 * something to keep in mind if this changes */
1245 pid_t new_pid = s.pid;
1246 pid_t auditd_pid;
1247 struct pid *req_pid = task_tgid(current);
1248
1249 /* Sanity check - PID values must match. Setting
1250 * pid to 0 is how auditd ends auditing. */
1251 if (new_pid && (new_pid != pid_vnr(req_pid)))
1252 return -EINVAL;
1253
1254 /* test the auditd connection */
1255 audit_replace(req_pid);
1256
1257 auditd_pid = auditd_pid_vnr();
1258 if (auditd_pid) {
1259 /* replacing a healthy auditd is not allowed */
1260 if (new_pid) {
1261 audit_log_config_change("audit_pid",
1262 new_pid, auditd_pid, 0);
1263 return -EEXIST;
1264 }
1265 /* only current auditd can unregister itself */
1266 if (pid_vnr(req_pid) != auditd_pid) {
1267 audit_log_config_change("audit_pid",
1268 new_pid, auditd_pid, 0);
1269 return -EACCES;
1270 }
1271 }
1272
1273 if (new_pid) {
1274 /* register a new auditd connection */
1275 err = auditd_set(req_pid,
1276 NETLINK_CB(skb).portid,
1277 sock_net(NETLINK_CB(skb).sk));
1278 if (audit_enabled != AUDIT_OFF)
1279 audit_log_config_change("audit_pid",
1280 new_pid,
1281 auditd_pid,
1282 err ? 0 : 1);
1283 if (err)
1284 return err;
1285
1286 /* try to process any backlog */
1287 wake_up_interruptible(&kauditd_wait);
1288 } else {
1289 if (audit_enabled != AUDIT_OFF)
1290 audit_log_config_change("audit_pid",
1291 new_pid,
1292 auditd_pid, 1);
1293
1294 /* unregister the auditd connection */
1295 auditd_reset(NULL);
1296 }
1297 }
1298 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1299 err = audit_set_rate_limit(s.rate_limit);
1300 if (err < 0)
1301 return err;
1302 }
1303 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1304 err = audit_set_backlog_limit(s.backlog_limit);
1305 if (err < 0)
1306 return err;
1307 }
1308 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1309 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1310 return -EINVAL;
1311 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1312 return -EINVAL;
1313 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1314 if (err < 0)
1315 return err;
1316 }
1317 if (s.mask == AUDIT_STATUS_LOST) {
1318 u32 lost = atomic_xchg(&audit_lost, 0);
1319
1320 audit_log_config_change("lost", 0, lost, 1);
1321 return lost;
1322 }
1323 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1324 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1325
1326 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1327 return actual;
1328 }
1329 break;
1330 }
1331 case AUDIT_GET_FEATURE:
1332 err = audit_get_feature(skb);
1333 if (err)
1334 return err;
1335 break;
1336 case AUDIT_SET_FEATURE:
1337 if (data_len < sizeof(struct audit_features))
1338 return -EINVAL;
1339 err = audit_set_feature(data);
1340 if (err)
1341 return err;
1342 break;
1343 case AUDIT_USER:
1344 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1345 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1346 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1347 return 0;
1348 /* exit early if there isn't at least one character to print */
1349 if (data_len < 2)
1350 return -EINVAL;
1351
1352 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1353 if (err == 1) { /* match or error */
1354 char *str = data;
1355
1356 err = 0;
1357 if (msg_type == AUDIT_USER_TTY) {
1358 err = tty_audit_push();
1359 if (err)
1360 break;
1361 }
1362 audit_log_user_recv_msg(&ab, msg_type);
1363 if (msg_type != AUDIT_USER_TTY) {
1364 /* ensure NULL termination */
1365 str[data_len - 1] = '\0';
1366 audit_log_format(ab, " msg='%.*s'",
1367 AUDIT_MESSAGE_TEXT_MAX,
1368 str);
1369 } else {
1370 audit_log_format(ab, " data=");
1371 if (data_len > 0 && str[data_len - 1] == '\0')
1372 data_len--;
1373 audit_log_n_untrustedstring(ab, str, data_len);
1374 }
1375 audit_log_end(ab);
1376 }
1377 break;
1378 case AUDIT_ADD_RULE:
1379 case AUDIT_DEL_RULE:
1380 if (data_len < sizeof(struct audit_rule_data))
1381 return -EINVAL;
1382 if (audit_enabled == AUDIT_LOCKED) {
1383 audit_log_common_recv_msg(audit_context(), &ab,
1384 AUDIT_CONFIG_CHANGE);
1385 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1386 msg_type == AUDIT_ADD_RULE ?
1387 "add_rule" : "remove_rule",
1388 audit_enabled);
1389 audit_log_end(ab);
1390 return -EPERM;
1391 }
1392 err = audit_rule_change(msg_type, seq, data, data_len);
1393 break;
1394 case AUDIT_LIST_RULES:
1395 err = audit_list_rules_send(skb, seq);
1396 break;
1397 case AUDIT_TRIM:
1398 audit_trim_trees();
1399 audit_log_common_recv_msg(audit_context(), &ab,
1400 AUDIT_CONFIG_CHANGE);
1401 audit_log_format(ab, " op=trim res=1");
1402 audit_log_end(ab);
1403 break;
1404 case AUDIT_MAKE_EQUIV: {
1405 void *bufp = data;
1406 u32 sizes[2];
1407 size_t msglen = data_len;
1408 char *old, *new;
1409
1410 err = -EINVAL;
1411 if (msglen < 2 * sizeof(u32))
1412 break;
1413 memcpy(sizes, bufp, 2 * sizeof(u32));
1414 bufp += 2 * sizeof(u32);
1415 msglen -= 2 * sizeof(u32);
1416 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1417 if (IS_ERR(old)) {
1418 err = PTR_ERR(old);
1419 break;
1420 }
1421 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1422 if (IS_ERR(new)) {
1423 err = PTR_ERR(new);
1424 kfree(old);
1425 break;
1426 }
1427 /* OK, here comes... */
1428 err = audit_tag_tree(old, new);
1429
1430 audit_log_common_recv_msg(audit_context(), &ab,
1431 AUDIT_CONFIG_CHANGE);
1432 audit_log_format(ab, " op=make_equiv old=");
1433 audit_log_untrustedstring(ab, old);
1434 audit_log_format(ab, " new=");
1435 audit_log_untrustedstring(ab, new);
1436 audit_log_format(ab, " res=%d", !err);
1437 audit_log_end(ab);
1438 kfree(old);
1439 kfree(new);
1440 break;
1441 }
1442 case AUDIT_SIGNAL_INFO:
1443 len = 0;
1444 if (audit_sig_sid) {
1445 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1446 if (err)
1447 return err;
1448 }
1449 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1450 if (!sig_data) {
1451 if (audit_sig_sid)
1452 security_release_secctx(ctx, len);
1453 return -ENOMEM;
1454 }
1455 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1456 sig_data->pid = audit_sig_pid;
1457 if (audit_sig_sid) {
1458 memcpy(sig_data->ctx, ctx, len);
1459 security_release_secctx(ctx, len);
1460 }
1461 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1462 sig_data, sizeof(*sig_data) + len);
1463 kfree(sig_data);
1464 break;
1465 case AUDIT_TTY_GET: {
1466 struct audit_tty_status s;
1467 unsigned int t;
1468
1469 t = READ_ONCE(current->signal->audit_tty);
1470 s.enabled = t & AUDIT_TTY_ENABLE;
1471 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1472
1473 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1474 break;
1475 }
1476 case AUDIT_TTY_SET: {
1477 struct audit_tty_status s, old;
1478 struct audit_buffer *ab;
1479 unsigned int t;
1480
1481 memset(&s, 0, sizeof(s));
1482 /* guard against past and future API changes */
1483 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1484 /* check if new data is valid */
1485 if ((s.enabled != 0 && s.enabled != 1) ||
1486 (s.log_passwd != 0 && s.log_passwd != 1))
1487 err = -EINVAL;
1488
1489 if (err)
1490 t = READ_ONCE(current->signal->audit_tty);
1491 else {
1492 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1493 t = xchg(¤t->signal->audit_tty, t);
1494 }
1495 old.enabled = t & AUDIT_TTY_ENABLE;
1496 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1497
1498 audit_log_common_recv_msg(audit_context(), &ab,
1499 AUDIT_CONFIG_CHANGE);
1500 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1501 " old-log_passwd=%d new-log_passwd=%d res=%d",
1502 old.enabled, s.enabled, old.log_passwd,
1503 s.log_passwd, !err);
1504 audit_log_end(ab);
1505 break;
1506 }
1507 default:
1508 err = -EINVAL;
1509 break;
1510 }
1511
1512 return err < 0 ? err : 0;
1513}
1514
1515/**
1516 * audit_receive - receive messages from a netlink control socket
1517 * @skb: the message buffer
1518 *
1519 * Parse the provided skb and deal with any messages that may be present,
1520 * malformed skbs are discarded.
1521 */
1522static void audit_receive(struct sk_buff *skb)
1523{
1524 struct nlmsghdr *nlh;
1525 /*
1526 * len MUST be signed for nlmsg_next to be able to dec it below 0
1527 * if the nlmsg_len was not aligned
1528 */
1529 int len;
1530 int err;
1531
1532 nlh = nlmsg_hdr(skb);
1533 len = skb->len;
1534
1535 audit_ctl_lock();
1536 while (nlmsg_ok(nlh, len)) {
1537 err = audit_receive_msg(skb, nlh);
1538 /* if err or if this message says it wants a response */
1539 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1540 netlink_ack(skb, nlh, err, NULL);
1541
1542 nlh = nlmsg_next(nlh, &len);
1543 }
1544 audit_ctl_unlock();
1545}
1546
1547/* Log information about who is connecting to the audit multicast socket */
1548static void audit_log_multicast(int group, const char *op, int err)
1549{
1550 const struct cred *cred;
1551 struct tty_struct *tty;
1552 char comm[sizeof(current->comm)];
1553 struct audit_buffer *ab;
1554
1555 if (!audit_enabled)
1556 return;
1557
1558 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1559 if (!ab)
1560 return;
1561
1562 cred = current_cred();
1563 tty = audit_get_tty();
1564 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1565 task_pid_nr(current),
1566 from_kuid(&init_user_ns, cred->uid),
1567 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1568 tty ? tty_name(tty) : "(none)",
1569 audit_get_sessionid(current));
1570 audit_put_tty(tty);
1571 audit_log_task_context(ab); /* subj= */
1572 audit_log_format(ab, " comm=");
1573 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1574 audit_log_d_path_exe(ab, current->mm); /* exe= */
1575 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1576 audit_log_end(ab);
1577}
1578
1579/* Run custom bind function on netlink socket group connect or bind requests. */
1580static int audit_multicast_bind(struct net *net, int group)
1581{
1582 int err = 0;
1583
1584 if (!capable(CAP_AUDIT_READ))
1585 err = -EPERM;
1586 audit_log_multicast(group, "connect", err);
1587 return err;
1588}
1589
1590static void audit_multicast_unbind(struct net *net, int group)
1591{
1592 audit_log_multicast(group, "disconnect", 0);
1593}
1594
1595static int __net_init audit_net_init(struct net *net)
1596{
1597 struct netlink_kernel_cfg cfg = {
1598 .input = audit_receive,
1599 .bind = audit_multicast_bind,
1600 .unbind = audit_multicast_unbind,
1601 .flags = NL_CFG_F_NONROOT_RECV,
1602 .groups = AUDIT_NLGRP_MAX,
1603 };
1604
1605 struct audit_net *aunet = net_generic(net, audit_net_id);
1606
1607 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1608 if (aunet->sk == NULL) {
1609 audit_panic("cannot initialize netlink socket in namespace");
1610 return -ENOMEM;
1611 }
1612 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1613
1614 return 0;
1615}
1616
1617static void __net_exit audit_net_exit(struct net *net)
1618{
1619 struct audit_net *aunet = net_generic(net, audit_net_id);
1620
1621 /* NOTE: you would think that we would want to check the auditd
1622 * connection and potentially reset it here if it lives in this
1623 * namespace, but since the auditd connection tracking struct holds a
1624 * reference to this namespace (see auditd_set()) we are only ever
1625 * going to get here after that connection has been released */
1626
1627 netlink_kernel_release(aunet->sk);
1628}
1629
1630static struct pernet_operations audit_net_ops __net_initdata = {
1631 .init = audit_net_init,
1632 .exit = audit_net_exit,
1633 .id = &audit_net_id,
1634 .size = sizeof(struct audit_net),
1635};
1636
1637/* Initialize audit support at boot time. */
1638static int __init audit_init(void)
1639{
1640 int i;
1641
1642 if (audit_initialized == AUDIT_DISABLED)
1643 return 0;
1644
1645 audit_buffer_cache = kmem_cache_create("audit_buffer",
1646 sizeof(struct audit_buffer),
1647 0, SLAB_PANIC, NULL);
1648
1649 skb_queue_head_init(&audit_queue);
1650 skb_queue_head_init(&audit_retry_queue);
1651 skb_queue_head_init(&audit_hold_queue);
1652
1653 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1654 INIT_LIST_HEAD(&audit_inode_hash[i]);
1655
1656 mutex_init(&audit_cmd_mutex.lock);
1657 audit_cmd_mutex.owner = NULL;
1658
1659 pr_info("initializing netlink subsys (%s)\n",
1660 audit_default ? "enabled" : "disabled");
1661 register_pernet_subsys(&audit_net_ops);
1662
1663 audit_initialized = AUDIT_INITIALIZED;
1664
1665 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1666 if (IS_ERR(kauditd_task)) {
1667 int err = PTR_ERR(kauditd_task);
1668 panic("audit: failed to start the kauditd thread (%d)\n", err);
1669 }
1670
1671 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1672 "state=initialized audit_enabled=%u res=1",
1673 audit_enabled);
1674
1675 return 0;
1676}
1677postcore_initcall(audit_init);
1678
1679/*
1680 * Process kernel command-line parameter at boot time.
1681 * audit={0|off} or audit={1|on}.
1682 */
1683static int __init audit_enable(char *str)
1684{
1685 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1686 audit_default = AUDIT_OFF;
1687 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1688 audit_default = AUDIT_ON;
1689 else {
1690 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1691 audit_default = AUDIT_ON;
1692 }
1693
1694 if (audit_default == AUDIT_OFF)
1695 audit_initialized = AUDIT_DISABLED;
1696 if (audit_set_enabled(audit_default))
1697 pr_err("audit: error setting audit state (%d)\n",
1698 audit_default);
1699
1700 pr_info("%s\n", audit_default ?
1701 "enabled (after initialization)" : "disabled (until reboot)");
1702
1703 return 1;
1704}
1705__setup("audit=", audit_enable);
1706
1707/* Process kernel command-line parameter at boot time.
1708 * audit_backlog_limit=<n> */
1709static int __init audit_backlog_limit_set(char *str)
1710{
1711 u32 audit_backlog_limit_arg;
1712
1713 pr_info("audit_backlog_limit: ");
1714 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1715 pr_cont("using default of %u, unable to parse %s\n",
1716 audit_backlog_limit, str);
1717 return 1;
1718 }
1719
1720 audit_backlog_limit = audit_backlog_limit_arg;
1721 pr_cont("%d\n", audit_backlog_limit);
1722
1723 return 1;
1724}
1725__setup("audit_backlog_limit=", audit_backlog_limit_set);
1726
1727static void audit_buffer_free(struct audit_buffer *ab)
1728{
1729 if (!ab)
1730 return;
1731
1732 kfree_skb(ab->skb);
1733 kmem_cache_free(audit_buffer_cache, ab);
1734}
1735
1736static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1737 gfp_t gfp_mask, int type)
1738{
1739 struct audit_buffer *ab;
1740
1741 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1742 if (!ab)
1743 return NULL;
1744
1745 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1746 if (!ab->skb)
1747 goto err;
1748 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1749 goto err;
1750
1751 ab->ctx = ctx;
1752 ab->gfp_mask = gfp_mask;
1753
1754 return ab;
1755
1756err:
1757 audit_buffer_free(ab);
1758 return NULL;
1759}
1760
1761/**
1762 * audit_serial - compute a serial number for the audit record
1763 *
1764 * Compute a serial number for the audit record. Audit records are
1765 * written to user-space as soon as they are generated, so a complete
1766 * audit record may be written in several pieces. The timestamp of the
1767 * record and this serial number are used by the user-space tools to
1768 * determine which pieces belong to the same audit record. The
1769 * (timestamp,serial) tuple is unique for each syscall and is live from
1770 * syscall entry to syscall exit.
1771 *
1772 * NOTE: Another possibility is to store the formatted records off the
1773 * audit context (for those records that have a context), and emit them
1774 * all at syscall exit. However, this could delay the reporting of
1775 * significant errors until syscall exit (or never, if the system
1776 * halts).
1777 */
1778unsigned int audit_serial(void)
1779{
1780 static atomic_t serial = ATOMIC_INIT(0);
1781
1782 return atomic_inc_return(&serial);
1783}
1784
1785static inline void audit_get_stamp(struct audit_context *ctx,
1786 struct timespec64 *t, unsigned int *serial)
1787{
1788 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1789 ktime_get_coarse_real_ts64(t);
1790 *serial = audit_serial();
1791 }
1792}
1793
1794/**
1795 * audit_log_start - obtain an audit buffer
1796 * @ctx: audit_context (may be NULL)
1797 * @gfp_mask: type of allocation
1798 * @type: audit message type
1799 *
1800 * Returns audit_buffer pointer on success or NULL on error.
1801 *
1802 * Obtain an audit buffer. This routine does locking to obtain the
1803 * audit buffer, but then no locking is required for calls to
1804 * audit_log_*format. If the task (ctx) is a task that is currently in a
1805 * syscall, then the syscall is marked as auditable and an audit record
1806 * will be written at syscall exit. If there is no associated task, then
1807 * task context (ctx) should be NULL.
1808 */
1809struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1810 int type)
1811{
1812 struct audit_buffer *ab;
1813 struct timespec64 t;
1814 unsigned int serial;
1815
1816 if (audit_initialized != AUDIT_INITIALIZED)
1817 return NULL;
1818
1819 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1820 return NULL;
1821
1822 /* NOTE: don't ever fail/sleep on these two conditions:
1823 * 1. auditd generated record - since we need auditd to drain the
1824 * queue; also, when we are checking for auditd, compare PIDs using
1825 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1826 * using a PID anchored in the caller's namespace
1827 * 2. generator holding the audit_cmd_mutex - we don't want to block
1828 * while holding the mutex */
1829 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1830 long stime = audit_backlog_wait_time;
1831
1832 while (audit_backlog_limit &&
1833 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1834 /* wake kauditd to try and flush the queue */
1835 wake_up_interruptible(&kauditd_wait);
1836
1837 /* sleep if we are allowed and we haven't exhausted our
1838 * backlog wait limit */
1839 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1840 long rtime = stime;
1841
1842 DECLARE_WAITQUEUE(wait, current);
1843
1844 add_wait_queue_exclusive(&audit_backlog_wait,
1845 &wait);
1846 set_current_state(TASK_UNINTERRUPTIBLE);
1847 stime = schedule_timeout(rtime);
1848 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1849 remove_wait_queue(&audit_backlog_wait, &wait);
1850 } else {
1851 if (audit_rate_check() && printk_ratelimit())
1852 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1853 skb_queue_len(&audit_queue),
1854 audit_backlog_limit);
1855 audit_log_lost("backlog limit exceeded");
1856 return NULL;
1857 }
1858 }
1859 }
1860
1861 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1862 if (!ab) {
1863 audit_log_lost("out of memory in audit_log_start");
1864 return NULL;
1865 }
1866
1867 audit_get_stamp(ab->ctx, &t, &serial);
1868 /* cancel dummy context to enable supporting records */
1869 if (ctx)
1870 ctx->dummy = 0;
1871 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1872 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1873
1874 return ab;
1875}
1876
1877/**
1878 * audit_expand - expand skb in the audit buffer
1879 * @ab: audit_buffer
1880 * @extra: space to add at tail of the skb
1881 *
1882 * Returns 0 (no space) on failed expansion, or available space if
1883 * successful.
1884 */
1885static inline int audit_expand(struct audit_buffer *ab, int extra)
1886{
1887 struct sk_buff *skb = ab->skb;
1888 int oldtail = skb_tailroom(skb);
1889 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1890 int newtail = skb_tailroom(skb);
1891
1892 if (ret < 0) {
1893 audit_log_lost("out of memory in audit_expand");
1894 return 0;
1895 }
1896
1897 skb->truesize += newtail - oldtail;
1898 return newtail;
1899}
1900
1901/*
1902 * Format an audit message into the audit buffer. If there isn't enough
1903 * room in the audit buffer, more room will be allocated and vsnprint
1904 * will be called a second time. Currently, we assume that a printk
1905 * can't format message larger than 1024 bytes, so we don't either.
1906 */
1907static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1908 va_list args)
1909{
1910 int len, avail;
1911 struct sk_buff *skb;
1912 va_list args2;
1913
1914 if (!ab)
1915 return;
1916
1917 BUG_ON(!ab->skb);
1918 skb = ab->skb;
1919 avail = skb_tailroom(skb);
1920 if (avail == 0) {
1921 avail = audit_expand(ab, AUDIT_BUFSIZ);
1922 if (!avail)
1923 goto out;
1924 }
1925 va_copy(args2, args);
1926 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1927 if (len >= avail) {
1928 /* The printk buffer is 1024 bytes long, so if we get
1929 * here and AUDIT_BUFSIZ is at least 1024, then we can
1930 * log everything that printk could have logged. */
1931 avail = audit_expand(ab,
1932 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1933 if (!avail)
1934 goto out_va_end;
1935 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1936 }
1937 if (len > 0)
1938 skb_put(skb, len);
1939out_va_end:
1940 va_end(args2);
1941out:
1942 return;
1943}
1944
1945/**
1946 * audit_log_format - format a message into the audit buffer.
1947 * @ab: audit_buffer
1948 * @fmt: format string
1949 * @...: optional parameters matching @fmt string
1950 *
1951 * All the work is done in audit_log_vformat.
1952 */
1953void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1954{
1955 va_list args;
1956
1957 if (!ab)
1958 return;
1959 va_start(args, fmt);
1960 audit_log_vformat(ab, fmt, args);
1961 va_end(args);
1962}
1963
1964/**
1965 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1966 * @ab: the audit_buffer
1967 * @buf: buffer to convert to hex
1968 * @len: length of @buf to be converted
1969 *
1970 * No return value; failure to expand is silently ignored.
1971 *
1972 * This function will take the passed buf and convert it into a string of
1973 * ascii hex digits. The new string is placed onto the skb.
1974 */
1975void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1976 size_t len)
1977{
1978 int i, avail, new_len;
1979 unsigned char *ptr;
1980 struct sk_buff *skb;
1981
1982 if (!ab)
1983 return;
1984
1985 BUG_ON(!ab->skb);
1986 skb = ab->skb;
1987 avail = skb_tailroom(skb);
1988 new_len = len<<1;
1989 if (new_len >= avail) {
1990 /* Round the buffer request up to the next multiple */
1991 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1992 avail = audit_expand(ab, new_len);
1993 if (!avail)
1994 return;
1995 }
1996
1997 ptr = skb_tail_pointer(skb);
1998 for (i = 0; i < len; i++)
1999 ptr = hex_byte_pack_upper(ptr, buf[i]);
2000 *ptr = 0;
2001 skb_put(skb, len << 1); /* new string is twice the old string */
2002}
2003
2004/*
2005 * Format a string of no more than slen characters into the audit buffer,
2006 * enclosed in quote marks.
2007 */
2008void audit_log_n_string(struct audit_buffer *ab, const char *string,
2009 size_t slen)
2010{
2011 int avail, new_len;
2012 unsigned char *ptr;
2013 struct sk_buff *skb;
2014
2015 if (!ab)
2016 return;
2017
2018 BUG_ON(!ab->skb);
2019 skb = ab->skb;
2020 avail = skb_tailroom(skb);
2021 new_len = slen + 3; /* enclosing quotes + null terminator */
2022 if (new_len > avail) {
2023 avail = audit_expand(ab, new_len);
2024 if (!avail)
2025 return;
2026 }
2027 ptr = skb_tail_pointer(skb);
2028 *ptr++ = '"';
2029 memcpy(ptr, string, slen);
2030 ptr += slen;
2031 *ptr++ = '"';
2032 *ptr = 0;
2033 skb_put(skb, slen + 2); /* don't include null terminator */
2034}
2035
2036/**
2037 * audit_string_contains_control - does a string need to be logged in hex
2038 * @string: string to be checked
2039 * @len: max length of the string to check
2040 */
2041bool audit_string_contains_control(const char *string, size_t len)
2042{
2043 const unsigned char *p;
2044 for (p = string; p < (const unsigned char *)string + len; p++) {
2045 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2046 return true;
2047 }
2048 return false;
2049}
2050
2051/**
2052 * audit_log_n_untrustedstring - log a string that may contain random characters
2053 * @ab: audit_buffer
2054 * @len: length of string (not including trailing null)
2055 * @string: string to be logged
2056 *
2057 * This code will escape a string that is passed to it if the string
2058 * contains a control character, unprintable character, double quote mark,
2059 * or a space. Unescaped strings will start and end with a double quote mark.
2060 * Strings that are escaped are printed in hex (2 digits per char).
2061 *
2062 * The caller specifies the number of characters in the string to log, which may
2063 * or may not be the entire string.
2064 */
2065void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2066 size_t len)
2067{
2068 if (audit_string_contains_control(string, len))
2069 audit_log_n_hex(ab, string, len);
2070 else
2071 audit_log_n_string(ab, string, len);
2072}
2073
2074/**
2075 * audit_log_untrustedstring - log a string that may contain random characters
2076 * @ab: audit_buffer
2077 * @string: string to be logged
2078 *
2079 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2080 * determine string length.
2081 */
2082void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2083{
2084 audit_log_n_untrustedstring(ab, string, strlen(string));
2085}
2086
2087/* This is a helper-function to print the escaped d_path */
2088void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2089 const struct path *path)
2090{
2091 char *p, *pathname;
2092
2093 if (prefix)
2094 audit_log_format(ab, "%s", prefix);
2095
2096 /* We will allow 11 spaces for ' (deleted)' to be appended */
2097 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2098 if (!pathname) {
2099 audit_log_format(ab, "\"<no_memory>\"");
2100 return;
2101 }
2102 p = d_path(path, pathname, PATH_MAX+11);
2103 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2104 /* FIXME: can we save some information here? */
2105 audit_log_format(ab, "\"<too_long>\"");
2106 } else
2107 audit_log_untrustedstring(ab, p);
2108 kfree(pathname);
2109}
2110
2111void audit_log_session_info(struct audit_buffer *ab)
2112{
2113 unsigned int sessionid = audit_get_sessionid(current);
2114 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2115
2116 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2117}
2118
2119void audit_log_key(struct audit_buffer *ab, char *key)
2120{
2121 audit_log_format(ab, " key=");
2122 if (key)
2123 audit_log_untrustedstring(ab, key);
2124 else
2125 audit_log_format(ab, "(null)");
2126}
2127
2128int audit_log_task_context(struct audit_buffer *ab)
2129{
2130 char *ctx = NULL;
2131 unsigned len;
2132 int error;
2133 u32 sid;
2134
2135 security_task_getsecid_subj(current, &sid);
2136 if (!sid)
2137 return 0;
2138
2139 error = security_secid_to_secctx(sid, &ctx, &len);
2140 if (error) {
2141 if (error != -EINVAL)
2142 goto error_path;
2143 return 0;
2144 }
2145
2146 audit_log_format(ab, " subj=%s", ctx);
2147 security_release_secctx(ctx, len);
2148 return 0;
2149
2150error_path:
2151 audit_panic("error in audit_log_task_context");
2152 return error;
2153}
2154EXPORT_SYMBOL(audit_log_task_context);
2155
2156void audit_log_d_path_exe(struct audit_buffer *ab,
2157 struct mm_struct *mm)
2158{
2159 struct file *exe_file;
2160
2161 if (!mm)
2162 goto out_null;
2163
2164 exe_file = get_mm_exe_file(mm);
2165 if (!exe_file)
2166 goto out_null;
2167
2168 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2169 fput(exe_file);
2170 return;
2171out_null:
2172 audit_log_format(ab, " exe=(null)");
2173}
2174
2175struct tty_struct *audit_get_tty(void)
2176{
2177 struct tty_struct *tty = NULL;
2178 unsigned long flags;
2179
2180 spin_lock_irqsave(¤t->sighand->siglock, flags);
2181 if (current->signal)
2182 tty = tty_kref_get(current->signal->tty);
2183 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2184 return tty;
2185}
2186
2187void audit_put_tty(struct tty_struct *tty)
2188{
2189 tty_kref_put(tty);
2190}
2191
2192void audit_log_task_info(struct audit_buffer *ab)
2193{
2194 const struct cred *cred;
2195 char comm[sizeof(current->comm)];
2196 struct tty_struct *tty;
2197
2198 if (!ab)
2199 return;
2200
2201 cred = current_cred();
2202 tty = audit_get_tty();
2203 audit_log_format(ab,
2204 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2205 " euid=%u suid=%u fsuid=%u"
2206 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2207 task_ppid_nr(current),
2208 task_tgid_nr(current),
2209 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2210 from_kuid(&init_user_ns, cred->uid),
2211 from_kgid(&init_user_ns, cred->gid),
2212 from_kuid(&init_user_ns, cred->euid),
2213 from_kuid(&init_user_ns, cred->suid),
2214 from_kuid(&init_user_ns, cred->fsuid),
2215 from_kgid(&init_user_ns, cred->egid),
2216 from_kgid(&init_user_ns, cred->sgid),
2217 from_kgid(&init_user_ns, cred->fsgid),
2218 tty ? tty_name(tty) : "(none)",
2219 audit_get_sessionid(current));
2220 audit_put_tty(tty);
2221 audit_log_format(ab, " comm=");
2222 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2223 audit_log_d_path_exe(ab, current->mm);
2224 audit_log_task_context(ab);
2225}
2226EXPORT_SYMBOL(audit_log_task_info);
2227
2228/**
2229 * audit_log_path_denied - report a path restriction denial
2230 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2231 * @operation: specific operation name
2232 */
2233void audit_log_path_denied(int type, const char *operation)
2234{
2235 struct audit_buffer *ab;
2236
2237 if (!audit_enabled || audit_dummy_context())
2238 return;
2239
2240 /* Generate log with subject, operation, outcome. */
2241 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2242 if (!ab)
2243 return;
2244 audit_log_format(ab, "op=%s", operation);
2245 audit_log_task_info(ab);
2246 audit_log_format(ab, " res=0");
2247 audit_log_end(ab);
2248}
2249
2250/* global counter which is incremented every time something logs in */
2251static atomic_t session_id = ATOMIC_INIT(0);
2252
2253static int audit_set_loginuid_perm(kuid_t loginuid)
2254{
2255 /* if we are unset, we don't need privs */
2256 if (!audit_loginuid_set(current))
2257 return 0;
2258 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2259 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2260 return -EPERM;
2261 /* it is set, you need permission */
2262 if (!capable(CAP_AUDIT_CONTROL))
2263 return -EPERM;
2264 /* reject if this is not an unset and we don't allow that */
2265 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2266 && uid_valid(loginuid))
2267 return -EPERM;
2268 return 0;
2269}
2270
2271static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2272 unsigned int oldsessionid,
2273 unsigned int sessionid, int rc)
2274{
2275 struct audit_buffer *ab;
2276 uid_t uid, oldloginuid, loginuid;
2277 struct tty_struct *tty;
2278
2279 if (!audit_enabled)
2280 return;
2281
2282 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2283 if (!ab)
2284 return;
2285
2286 uid = from_kuid(&init_user_ns, task_uid(current));
2287 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2288 loginuid = from_kuid(&init_user_ns, kloginuid);
2289 tty = audit_get_tty();
2290
2291 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2292 audit_log_task_context(ab);
2293 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2294 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2295 oldsessionid, sessionid, !rc);
2296 audit_put_tty(tty);
2297 audit_log_end(ab);
2298}
2299
2300/**
2301 * audit_set_loginuid - set current task's loginuid
2302 * @loginuid: loginuid value
2303 *
2304 * Returns 0.
2305 *
2306 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2307 */
2308int audit_set_loginuid(kuid_t loginuid)
2309{
2310 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2311 kuid_t oldloginuid;
2312 int rc;
2313
2314 oldloginuid = audit_get_loginuid(current);
2315 oldsessionid = audit_get_sessionid(current);
2316
2317 rc = audit_set_loginuid_perm(loginuid);
2318 if (rc)
2319 goto out;
2320
2321 /* are we setting or clearing? */
2322 if (uid_valid(loginuid)) {
2323 sessionid = (unsigned int)atomic_inc_return(&session_id);
2324 if (unlikely(sessionid == AUDIT_SID_UNSET))
2325 sessionid = (unsigned int)atomic_inc_return(&session_id);
2326 }
2327
2328 current->sessionid = sessionid;
2329 current->loginuid = loginuid;
2330out:
2331 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2332 return rc;
2333}
2334
2335/**
2336 * audit_signal_info - record signal info for shutting down audit subsystem
2337 * @sig: signal value
2338 * @t: task being signaled
2339 *
2340 * If the audit subsystem is being terminated, record the task (pid)
2341 * and uid that is doing that.
2342 */
2343int audit_signal_info(int sig, struct task_struct *t)
2344{
2345 kuid_t uid = current_uid(), auid;
2346
2347 if (auditd_test_task(t) &&
2348 (sig == SIGTERM || sig == SIGHUP ||
2349 sig == SIGUSR1 || sig == SIGUSR2)) {
2350 audit_sig_pid = task_tgid_nr(current);
2351 auid = audit_get_loginuid(current);
2352 if (uid_valid(auid))
2353 audit_sig_uid = auid;
2354 else
2355 audit_sig_uid = uid;
2356 security_task_getsecid_subj(current, &audit_sig_sid);
2357 }
2358
2359 return audit_signal_info_syscall(t);
2360}
2361
2362/**
2363 * audit_log_end - end one audit record
2364 * @ab: the audit_buffer
2365 *
2366 * We can not do a netlink send inside an irq context because it blocks (last
2367 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2368 * queue and a kthread is scheduled to remove them from the queue outside the
2369 * irq context. May be called in any context.
2370 */
2371void audit_log_end(struct audit_buffer *ab)
2372{
2373 struct sk_buff *skb;
2374 struct nlmsghdr *nlh;
2375
2376 if (!ab)
2377 return;
2378
2379 if (audit_rate_check()) {
2380 skb = ab->skb;
2381 ab->skb = NULL;
2382
2383 /* setup the netlink header, see the comments in
2384 * kauditd_send_multicast_skb() for length quirks */
2385 nlh = nlmsg_hdr(skb);
2386 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2387
2388 /* queue the netlink packet and poke the kauditd thread */
2389 skb_queue_tail(&audit_queue, skb);
2390 wake_up_interruptible(&kauditd_wait);
2391 } else
2392 audit_log_lost("rate limit exceeded");
2393
2394 audit_buffer_free(ab);
2395}
2396
2397/**
2398 * audit_log - Log an audit record
2399 * @ctx: audit context
2400 * @gfp_mask: type of allocation
2401 * @type: audit message type
2402 * @fmt: format string to use
2403 * @...: variable parameters matching the format string
2404 *
2405 * This is a convenience function that calls audit_log_start,
2406 * audit_log_vformat, and audit_log_end. It may be called
2407 * in any context.
2408 */
2409void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2410 const char *fmt, ...)
2411{
2412 struct audit_buffer *ab;
2413 va_list args;
2414
2415 ab = audit_log_start(ctx, gfp_mask, type);
2416 if (ab) {
2417 va_start(args, fmt);
2418 audit_log_vformat(ab, fmt, args);
2419 va_end(args);
2420 audit_log_end(ab);
2421 }
2422}
2423
2424EXPORT_SYMBOL(audit_log_start);
2425EXPORT_SYMBOL(audit_log_end);
2426EXPORT_SYMBOL(audit_log_format);
2427EXPORT_SYMBOL(audit_log);