Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * drivers/usb/core/usb.c
   3 *
   4 * (C) Copyright Linus Torvalds 1999
   5 * (C) Copyright Johannes Erdfelt 1999-2001
   6 * (C) Copyright Andreas Gal 1999
   7 * (C) Copyright Gregory P. Smith 1999
   8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
   9 * (C) Copyright Randy Dunlap 2000
  10 * (C) Copyright David Brownell 2000-2004
  11 * (C) Copyright Yggdrasil Computing, Inc. 2000
  12 *     (usb_device_id matching changes by Adam J. Richter)
  13 * (C) Copyright Greg Kroah-Hartman 2002-2003
  14 *
 
 
  15 * NOTE! This is not actually a driver at all, rather this is
  16 * just a collection of helper routines that implement the
  17 * generic USB things that the real drivers can use..
  18 *
  19 * Think of this as a "USB library" rather than anything else.
  20 * It should be considered a slave, with no callbacks. Callbacks
  21 * are evil.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/moduleparam.h>
  26#include <linux/string.h>
  27#include <linux/bitops.h>
  28#include <linux/slab.h>
  29#include <linux/interrupt.h>  /* for in_interrupt() */
  30#include <linux/kmod.h>
  31#include <linux/init.h>
  32#include <linux/spinlock.h>
  33#include <linux/errno.h>
  34#include <linux/usb.h>
  35#include <linux/usb/hcd.h>
  36#include <linux/mutex.h>
  37#include <linux/workqueue.h>
  38#include <linux/debugfs.h>
  39#include <linux/usb/of.h>
  40
  41#include <asm/io.h>
  42#include <linux/scatterlist.h>
  43#include <linux/mm.h>
  44#include <linux/dma-mapping.h>
  45
  46#include "usb.h"
  47
  48
  49const char *usbcore_name = "usbcore";
  50
  51static bool nousb;	/* Disable USB when built into kernel image */
  52
  53module_param(nousb, bool, 0444);
  54
  55/*
  56 * for external read access to <nousb>
  57 */
  58int usb_disabled(void)
  59{
  60	return nousb;
  61}
  62EXPORT_SYMBOL_GPL(usb_disabled);
  63
  64#ifdef	CONFIG_PM
  65static int usb_autosuspend_delay = 2;		/* Default delay value,
  66						 * in seconds */
  67module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  68MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  69
  70#else
  71#define usb_autosuspend_delay		0
  72#endif
  73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74
  75/**
  76 * usb_find_alt_setting() - Given a configuration, find the alternate setting
  77 * for the given interface.
  78 * @config: the configuration to search (not necessarily the current config).
  79 * @iface_num: interface number to search in
  80 * @alt_num: alternate interface setting number to search for.
  81 *
  82 * Search the configuration's interface cache for the given alt setting.
  83 *
  84 * Return: The alternate setting, if found. %NULL otherwise.
  85 */
  86struct usb_host_interface *usb_find_alt_setting(
  87		struct usb_host_config *config,
  88		unsigned int iface_num,
  89		unsigned int alt_num)
  90{
  91	struct usb_interface_cache *intf_cache = NULL;
  92	int i;
  93
 
 
  94	for (i = 0; i < config->desc.bNumInterfaces; i++) {
  95		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
  96				== iface_num) {
  97			intf_cache = config->intf_cache[i];
  98			break;
  99		}
 100	}
 101	if (!intf_cache)
 102		return NULL;
 103	for (i = 0; i < intf_cache->num_altsetting; i++)
 104		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 105			return &intf_cache->altsetting[i];
 106
 107	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 108			"config %u\n", alt_num, iface_num,
 109			config->desc.bConfigurationValue);
 110	return NULL;
 111}
 112EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 113
 114/**
 115 * usb_ifnum_to_if - get the interface object with a given interface number
 116 * @dev: the device whose current configuration is considered
 117 * @ifnum: the desired interface
 118 *
 119 * This walks the device descriptor for the currently active configuration
 120 * to find the interface object with the particular interface number.
 121 *
 122 * Note that configuration descriptors are not required to assign interface
 123 * numbers sequentially, so that it would be incorrect to assume that
 124 * the first interface in that descriptor corresponds to interface zero.
 125 * This routine helps device drivers avoid such mistakes.
 126 * However, you should make sure that you do the right thing with any
 127 * alternate settings available for this interfaces.
 128 *
 129 * Don't call this function unless you are bound to one of the interfaces
 130 * on this device or you have locked the device!
 131 *
 132 * Return: A pointer to the interface that has @ifnum as interface number,
 133 * if found. %NULL otherwise.
 134 */
 135struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 136				      unsigned ifnum)
 137{
 138	struct usb_host_config *config = dev->actconfig;
 139	int i;
 140
 141	if (!config)
 142		return NULL;
 143	for (i = 0; i < config->desc.bNumInterfaces; i++)
 144		if (config->interface[i]->altsetting[0]
 145				.desc.bInterfaceNumber == ifnum)
 146			return config->interface[i];
 147
 148	return NULL;
 149}
 150EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 151
 152/**
 153 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 154 * @intf: the interface containing the altsetting in question
 155 * @altnum: the desired alternate setting number
 156 *
 157 * This searches the altsetting array of the specified interface for
 158 * an entry with the correct bAlternateSetting value.
 159 *
 160 * Note that altsettings need not be stored sequentially by number, so
 161 * it would be incorrect to assume that the first altsetting entry in
 162 * the array corresponds to altsetting zero.  This routine helps device
 163 * drivers avoid such mistakes.
 164 *
 165 * Don't call this function unless you are bound to the intf interface
 166 * or you have locked the device!
 167 *
 168 * Return: A pointer to the entry of the altsetting array of @intf that
 169 * has @altnum as the alternate setting number. %NULL if not found.
 170 */
 171struct usb_host_interface *usb_altnum_to_altsetting(
 172					const struct usb_interface *intf,
 173					unsigned int altnum)
 174{
 175	int i;
 176
 177	for (i = 0; i < intf->num_altsetting; i++) {
 178		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 179			return &intf->altsetting[i];
 180	}
 181	return NULL;
 182}
 183EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 184
 185struct find_interface_arg {
 186	int minor;
 187	struct device_driver *drv;
 188};
 189
 190static int __find_interface(struct device *dev, void *data)
 191{
 192	struct find_interface_arg *arg = data;
 193	struct usb_interface *intf;
 194
 195	if (!is_usb_interface(dev))
 196		return 0;
 197
 198	if (dev->driver != arg->drv)
 199		return 0;
 200	intf = to_usb_interface(dev);
 201	return intf->minor == arg->minor;
 202}
 203
 204/**
 205 * usb_find_interface - find usb_interface pointer for driver and device
 206 * @drv: the driver whose current configuration is considered
 207 * @minor: the minor number of the desired device
 208 *
 209 * This walks the bus device list and returns a pointer to the interface
 210 * with the matching minor and driver.  Note, this only works for devices
 211 * that share the USB major number.
 212 *
 213 * Return: A pointer to the interface with the matching major and @minor.
 214 */
 215struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 216{
 217	struct find_interface_arg argb;
 218	struct device *dev;
 219
 220	argb.minor = minor;
 221	argb.drv = &drv->drvwrap.driver;
 222
 223	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 224
 225	/* Drop reference count from bus_find_device */
 226	put_device(dev);
 227
 228	return dev ? to_usb_interface(dev) : NULL;
 229}
 230EXPORT_SYMBOL_GPL(usb_find_interface);
 231
 232struct each_dev_arg {
 233	void *data;
 234	int (*fn)(struct usb_device *, void *);
 235};
 236
 237static int __each_dev(struct device *dev, void *data)
 238{
 239	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 240
 241	/* There are struct usb_interface on the same bus, filter them out */
 242	if (!is_usb_device(dev))
 243		return 0;
 244
 245	return arg->fn(to_usb_device(dev), arg->data);
 246}
 247
 248/**
 249 * usb_for_each_dev - iterate over all USB devices in the system
 250 * @data: data pointer that will be handed to the callback function
 251 * @fn: callback function to be called for each USB device
 252 *
 253 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 254 * returns anything other than 0, we break the iteration prematurely and return
 255 * that value.
 256 */
 257int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 258{
 259	struct each_dev_arg arg = {data, fn};
 260
 261	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 262}
 263EXPORT_SYMBOL_GPL(usb_for_each_dev);
 264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265/**
 266 * usb_release_dev - free a usb device structure when all users of it are finished.
 267 * @dev: device that's been disconnected
 268 *
 269 * Will be called only by the device core when all users of this usb device are
 270 * done.
 271 */
 272static void usb_release_dev(struct device *dev)
 273{
 274	struct usb_device *udev;
 275	struct usb_hcd *hcd;
 276
 277	udev = to_usb_device(dev);
 278	hcd = bus_to_hcd(udev->bus);
 279
 280	usb_destroy_configuration(udev);
 281	usb_release_bos_descriptor(udev);
 
 282	usb_put_hcd(hcd);
 283	kfree(udev->product);
 284	kfree(udev->manufacturer);
 285	kfree(udev->serial);
 286	kfree(udev);
 287}
 288
 289static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 290{
 291	struct usb_device *usb_dev;
 292
 293	usb_dev = to_usb_device(dev);
 294
 295	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 296		return -ENOMEM;
 297
 298	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 299		return -ENOMEM;
 300
 301	return 0;
 302}
 303
 304#ifdef	CONFIG_PM
 305
 306/* USB device Power-Management thunks.
 307 * There's no need to distinguish here between quiescing a USB device
 308 * and powering it down; the generic_suspend() routine takes care of
 309 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 310 * USB interfaces there's no difference at all.
 311 */
 312
 313static int usb_dev_prepare(struct device *dev)
 314{
 315	return 0;		/* Implement eventually? */
 316}
 317
 318static void usb_dev_complete(struct device *dev)
 319{
 320	/* Currently used only for rebinding interfaces */
 321	usb_resume_complete(dev);
 322}
 323
 324static int usb_dev_suspend(struct device *dev)
 325{
 326	return usb_suspend(dev, PMSG_SUSPEND);
 327}
 328
 329static int usb_dev_resume(struct device *dev)
 330{
 331	return usb_resume(dev, PMSG_RESUME);
 332}
 333
 334static int usb_dev_freeze(struct device *dev)
 335{
 336	return usb_suspend(dev, PMSG_FREEZE);
 337}
 338
 339static int usb_dev_thaw(struct device *dev)
 340{
 341	return usb_resume(dev, PMSG_THAW);
 342}
 343
 344static int usb_dev_poweroff(struct device *dev)
 345{
 346	return usb_suspend(dev, PMSG_HIBERNATE);
 347}
 348
 349static int usb_dev_restore(struct device *dev)
 350{
 351	return usb_resume(dev, PMSG_RESTORE);
 352}
 353
 354static const struct dev_pm_ops usb_device_pm_ops = {
 355	.prepare =	usb_dev_prepare,
 356	.complete =	usb_dev_complete,
 357	.suspend =	usb_dev_suspend,
 358	.resume =	usb_dev_resume,
 359	.freeze =	usb_dev_freeze,
 360	.thaw =		usb_dev_thaw,
 361	.poweroff =	usb_dev_poweroff,
 362	.restore =	usb_dev_restore,
 363	.runtime_suspend =	usb_runtime_suspend,
 364	.runtime_resume =	usb_runtime_resume,
 365	.runtime_idle =		usb_runtime_idle,
 366};
 367
 368#endif	/* CONFIG_PM */
 369
 370
 371static char *usb_devnode(struct device *dev,
 372			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 373{
 374	struct usb_device *usb_dev;
 375
 376	usb_dev = to_usb_device(dev);
 377	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 378			 usb_dev->bus->busnum, usb_dev->devnum);
 379}
 380
 381struct device_type usb_device_type = {
 382	.name =		"usb_device",
 383	.release =	usb_release_dev,
 384	.uevent =	usb_dev_uevent,
 385	.devnode = 	usb_devnode,
 386#ifdef CONFIG_PM
 387	.pm =		&usb_device_pm_ops,
 388#endif
 389};
 390
 391
 392/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 393static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 394{
 395	struct usb_hcd *hcd = bus_to_hcd(bus);
 396	return hcd->wireless;
 397}
 398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399
 400/**
 401 * usb_alloc_dev - usb device constructor (usbcore-internal)
 402 * @parent: hub to which device is connected; null to allocate a root hub
 403 * @bus: bus used to access the device
 404 * @port1: one-based index of port; ignored for root hubs
 405 * Context: !in_interrupt()
 
 406 *
 407 * Only hub drivers (including virtual root hub drivers for host
 408 * controllers) should ever call this.
 409 *
 410 * This call may not be used in a non-sleeping context.
 411 *
 412 * Return: On success, a pointer to the allocated usb device. %NULL on
 413 * failure.
 414 */
 415struct usb_device *usb_alloc_dev(struct usb_device *parent,
 416				 struct usb_bus *bus, unsigned port1)
 417{
 418	struct usb_device *dev;
 419	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 420	unsigned root_hub = 0;
 421	unsigned raw_port = port1;
 422
 423	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 424	if (!dev)
 425		return NULL;
 426
 427	if (!usb_get_hcd(usb_hcd)) {
 428		kfree(dev);
 429		return NULL;
 430	}
 431	/* Root hubs aren't true devices, so don't allocate HCD resources */
 432	if (usb_hcd->driver->alloc_dev && parent &&
 433		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 434		usb_put_hcd(bus_to_hcd(bus));
 435		kfree(dev);
 436		return NULL;
 437	}
 438
 439	device_initialize(&dev->dev);
 440	dev->dev.bus = &usb_bus_type;
 441	dev->dev.type = &usb_device_type;
 442	dev->dev.groups = usb_device_groups;
 443	dev->dev.dma_mask = bus->controller->dma_mask;
 444	set_dev_node(&dev->dev, dev_to_node(bus->controller));
 445	dev->state = USB_STATE_ATTACHED;
 446	dev->lpm_disable_count = 1;
 447	atomic_set(&dev->urbnum, 0);
 448
 449	INIT_LIST_HEAD(&dev->ep0.urb_list);
 450	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 451	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 452	/* ep0 maxpacket comes later, from device descriptor */
 453	usb_enable_endpoint(dev, &dev->ep0, false);
 454	dev->can_submit = 1;
 455
 456	/* Save readable and stable topology id, distinguishing devices
 457	 * by location for diagnostics, tools, driver model, etc.  The
 458	 * string is a path along hub ports, from the root.  Each device's
 459	 * dev->devpath will be stable until USB is re-cabled, and hubs
 460	 * are often labeled with these port numbers.  The name isn't
 461	 * as stable:  bus->busnum changes easily from modprobe order,
 462	 * cardbus or pci hotplugging, and so on.
 463	 */
 464	if (unlikely(!parent)) {
 465		dev->devpath[0] = '0';
 466		dev->route = 0;
 467
 468		dev->dev.parent = bus->controller;
 469		dev->dev.of_node = bus->controller->of_node;
 470		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 471		root_hub = 1;
 472	} else {
 473		/* match any labeling on the hubs; it's one-based */
 474		if (parent->devpath[0] == '0') {
 475			snprintf(dev->devpath, sizeof dev->devpath,
 476				"%d", port1);
 477			/* Root ports are not counted in route string */
 478			dev->route = 0;
 479		} else {
 480			snprintf(dev->devpath, sizeof dev->devpath,
 481				"%s.%d", parent->devpath, port1);
 482			/* Route string assumes hubs have less than 16 ports */
 483			if (port1 < 15)
 484				dev->route = parent->route +
 485					(port1 << ((parent->level - 1)*4));
 486			else
 487				dev->route = parent->route +
 488					(15 << ((parent->level - 1)*4));
 489		}
 490
 491		dev->dev.parent = &parent->dev;
 492		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 493
 494		if (!parent->parent) {
 495			/* device under root hub's port */
 496			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 497				port1);
 498		}
 499		dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
 500				raw_port);
 501
 502		/* hub driver sets up TT records */
 503	}
 504
 505	dev->portnum = port1;
 506	dev->bus = bus;
 507	dev->parent = parent;
 508	INIT_LIST_HEAD(&dev->filelist);
 509
 510#ifdef	CONFIG_PM
 511	pm_runtime_set_autosuspend_delay(&dev->dev,
 512			usb_autosuspend_delay * 1000);
 513	dev->connect_time = jiffies;
 514	dev->active_duration = -jiffies;
 515#endif
 516	if (root_hub)	/* Root hub always ok [and always wired] */
 517		dev->authorized = 1;
 518	else {
 519		dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
 520		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 521	}
 522	return dev;
 523}
 524EXPORT_SYMBOL_GPL(usb_alloc_dev);
 525
 526/**
 527 * usb_get_dev - increments the reference count of the usb device structure
 528 * @dev: the device being referenced
 529 *
 530 * Each live reference to a device should be refcounted.
 531 *
 532 * Drivers for USB interfaces should normally record such references in
 533 * their probe() methods, when they bind to an interface, and release
 534 * them by calling usb_put_dev(), in their disconnect() methods.
 535 *
 536 * Return: A pointer to the device with the incremented reference counter.
 537 */
 538struct usb_device *usb_get_dev(struct usb_device *dev)
 539{
 540	if (dev)
 541		get_device(&dev->dev);
 542	return dev;
 543}
 544EXPORT_SYMBOL_GPL(usb_get_dev);
 545
 546/**
 547 * usb_put_dev - release a use of the usb device structure
 548 * @dev: device that's been disconnected
 549 *
 550 * Must be called when a user of a device is finished with it.  When the last
 551 * user of the device calls this function, the memory of the device is freed.
 552 */
 553void usb_put_dev(struct usb_device *dev)
 554{
 555	if (dev)
 556		put_device(&dev->dev);
 557}
 558EXPORT_SYMBOL_GPL(usb_put_dev);
 559
 560/**
 561 * usb_get_intf - increments the reference count of the usb interface structure
 562 * @intf: the interface being referenced
 563 *
 564 * Each live reference to a interface must be refcounted.
 565 *
 566 * Drivers for USB interfaces should normally record such references in
 567 * their probe() methods, when they bind to an interface, and release
 568 * them by calling usb_put_intf(), in their disconnect() methods.
 569 *
 570 * Return: A pointer to the interface with the incremented reference counter.
 571 */
 572struct usb_interface *usb_get_intf(struct usb_interface *intf)
 573{
 574	if (intf)
 575		get_device(&intf->dev);
 576	return intf;
 577}
 578EXPORT_SYMBOL_GPL(usb_get_intf);
 579
 580/**
 581 * usb_put_intf - release a use of the usb interface structure
 582 * @intf: interface that's been decremented
 583 *
 584 * Must be called when a user of an interface is finished with it.  When the
 585 * last user of the interface calls this function, the memory of the interface
 586 * is freed.
 587 */
 588void usb_put_intf(struct usb_interface *intf)
 589{
 590	if (intf)
 591		put_device(&intf->dev);
 592}
 593EXPORT_SYMBOL_GPL(usb_put_intf);
 594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595/*			USB device locking
 596 *
 597 * USB devices and interfaces are locked using the semaphore in their
 598 * embedded struct device.  The hub driver guarantees that whenever a
 599 * device is connected or disconnected, drivers are called with the
 600 * USB device locked as well as their particular interface.
 601 *
 602 * Complications arise when several devices are to be locked at the same
 603 * time.  Only hub-aware drivers that are part of usbcore ever have to
 604 * do this; nobody else needs to worry about it.  The rule for locking
 605 * is simple:
 606 *
 607 *	When locking both a device and its parent, always lock the
 608 *	the parent first.
 609 */
 610
 611/**
 612 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 613 * @udev: device that's being locked
 614 * @iface: interface bound to the driver making the request (optional)
 615 *
 616 * Attempts to acquire the device lock, but fails if the device is
 617 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 618 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 619 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 620 * disconnect; in some drivers (such as usb-storage) the disconnect()
 621 * or suspend() method will block waiting for a device reset to complete.
 622 *
 623 * Return: A negative error code for failure, otherwise 0.
 624 */
 625int usb_lock_device_for_reset(struct usb_device *udev,
 626			      const struct usb_interface *iface)
 627{
 628	unsigned long jiffies_expire = jiffies + HZ;
 629
 630	if (udev->state == USB_STATE_NOTATTACHED)
 631		return -ENODEV;
 632	if (udev->state == USB_STATE_SUSPENDED)
 633		return -EHOSTUNREACH;
 634	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 635			iface->condition == USB_INTERFACE_UNBOUND))
 636		return -EINTR;
 637
 638	while (!usb_trylock_device(udev)) {
 639
 640		/* If we can't acquire the lock after waiting one second,
 641		 * we're probably deadlocked */
 642		if (time_after(jiffies, jiffies_expire))
 643			return -EBUSY;
 644
 645		msleep(15);
 646		if (udev->state == USB_STATE_NOTATTACHED)
 647			return -ENODEV;
 648		if (udev->state == USB_STATE_SUSPENDED)
 649			return -EHOSTUNREACH;
 650		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 651				iface->condition == USB_INTERFACE_UNBOUND))
 652			return -EINTR;
 653	}
 654	return 0;
 655}
 656EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 657
 658/**
 659 * usb_get_current_frame_number - return current bus frame number
 660 * @dev: the device whose bus is being queried
 661 *
 662 * Return: The current frame number for the USB host controller used
 663 * with the given USB device. This can be used when scheduling
 664 * isochronous requests.
 665 *
 666 * Note: Different kinds of host controller have different "scheduling
 667 * horizons". While one type might support scheduling only 32 frames
 668 * into the future, others could support scheduling up to 1024 frames
 669 * into the future.
 670 *
 671 */
 672int usb_get_current_frame_number(struct usb_device *dev)
 673{
 674	return usb_hcd_get_frame_number(dev);
 675}
 676EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 677
 678/*-------------------------------------------------------------------*/
 679/*
 680 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 681 * extra field of the interface and endpoint descriptor structs.
 682 */
 683
 684int __usb_get_extra_descriptor(char *buffer, unsigned size,
 685			       unsigned char type, void **ptr)
 686{
 687	struct usb_descriptor_header *header;
 688
 689	while (size >= sizeof(struct usb_descriptor_header)) {
 690		header = (struct usb_descriptor_header *)buffer;
 691
 692		if (header->bLength < 2) {
 693			printk(KERN_ERR
 694				"%s: bogus descriptor, type %d length %d\n",
 695				usbcore_name,
 696				header->bDescriptorType,
 697				header->bLength);
 698			return -1;
 699		}
 700
 701		if (header->bDescriptorType == type) {
 702			*ptr = header;
 703			return 0;
 704		}
 705
 706		buffer += header->bLength;
 707		size -= header->bLength;
 708	}
 709	return -1;
 710}
 711EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 712
 713/**
 714 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 715 * @dev: device the buffer will be used with
 716 * @size: requested buffer size
 717 * @mem_flags: affect whether allocation may block
 718 * @dma: used to return DMA address of buffer
 719 *
 720 * Return: Either null (indicating no buffer could be allocated), or the
 721 * cpu-space pointer to a buffer that may be used to perform DMA to the
 722 * specified device.  Such cpu-space buffers are returned along with the DMA
 723 * address (through the pointer provided).
 724 *
 725 * Note:
 726 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 727 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 728 * hardware during URB completion/resubmit.  The implementation varies between
 729 * platforms, depending on details of how DMA will work to this device.
 730 * Using these buffers also eliminates cacheline sharing problems on
 731 * architectures where CPU caches are not DMA-coherent.  On systems without
 732 * bus-snooping caches, these buffers are uncached.
 733 *
 734 * When the buffer is no longer used, free it with usb_free_coherent().
 735 */
 736void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 737			 dma_addr_t *dma)
 738{
 739	if (!dev || !dev->bus)
 740		return NULL;
 741	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 742}
 743EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 744
 745/**
 746 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 747 * @dev: device the buffer was used with
 748 * @size: requested buffer size
 749 * @addr: CPU address of buffer
 750 * @dma: DMA address of buffer
 751 *
 752 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 753 * been allocated using usb_alloc_coherent(), and the parameters must match
 754 * those provided in that allocation request.
 755 */
 756void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 757		       dma_addr_t dma)
 758{
 759	if (!dev || !dev->bus)
 760		return;
 761	if (!addr)
 762		return;
 763	hcd_buffer_free(dev->bus, size, addr, dma);
 764}
 765EXPORT_SYMBOL_GPL(usb_free_coherent);
 766
 767/**
 768 * usb_buffer_map - create DMA mapping(s) for an urb
 769 * @urb: urb whose transfer_buffer/setup_packet will be mapped
 770 *
 771 * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
 772 * succeeds. If the device is connected to this system through a non-DMA
 773 * controller, this operation always succeeds.
 774 *
 775 * This call would normally be used for an urb which is reused, perhaps
 776 * as the target of a large periodic transfer, with usb_buffer_dmasync()
 777 * calls to synchronize memory and dma state.
 778 *
 779 * Reverse the effect of this call with usb_buffer_unmap().
 780 *
 781 * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
 782 *
 783 */
 784#if 0
 785struct urb *usb_buffer_map(struct urb *urb)
 786{
 787	struct usb_bus		*bus;
 788	struct device		*controller;
 789
 790	if (!urb
 791			|| !urb->dev
 792			|| !(bus = urb->dev->bus)
 793			|| !(controller = bus->controller))
 794		return NULL;
 795
 796	if (controller->dma_mask) {
 797		urb->transfer_dma = dma_map_single(controller,
 798			urb->transfer_buffer, urb->transfer_buffer_length,
 799			usb_pipein(urb->pipe)
 800				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 801	/* FIXME generic api broken like pci, can't report errors */
 802	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
 803	} else
 804		urb->transfer_dma = ~0;
 805	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 806	return urb;
 807}
 808EXPORT_SYMBOL_GPL(usb_buffer_map);
 809#endif  /*  0  */
 810
 811/* XXX DISABLED, no users currently.  If you wish to re-enable this
 812 * XXX please determine whether the sync is to transfer ownership of
 813 * XXX the buffer from device to cpu or vice verse, and thusly use the
 814 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 815 */
 816#if 0
 817
 818/**
 819 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
 820 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
 821 */
 822void usb_buffer_dmasync(struct urb *urb)
 823{
 824	struct usb_bus		*bus;
 825	struct device		*controller;
 826
 827	if (!urb
 828			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 829			|| !urb->dev
 830			|| !(bus = urb->dev->bus)
 831			|| !(controller = bus->controller))
 832		return;
 833
 834	if (controller->dma_mask) {
 835		dma_sync_single_for_cpu(controller,
 836			urb->transfer_dma, urb->transfer_buffer_length,
 837			usb_pipein(urb->pipe)
 838				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 839		if (usb_pipecontrol(urb->pipe))
 840			dma_sync_single_for_cpu(controller,
 841					urb->setup_dma,
 842					sizeof(struct usb_ctrlrequest),
 843					DMA_TO_DEVICE);
 844	}
 845}
 846EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
 847#endif
 848
 849/**
 850 * usb_buffer_unmap - free DMA mapping(s) for an urb
 851 * @urb: urb whose transfer_buffer will be unmapped
 852 *
 853 * Reverses the effect of usb_buffer_map().
 854 */
 855#if 0
 856void usb_buffer_unmap(struct urb *urb)
 857{
 858	struct usb_bus		*bus;
 859	struct device		*controller;
 860
 861	if (!urb
 862			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
 863			|| !urb->dev
 864			|| !(bus = urb->dev->bus)
 865			|| !(controller = bus->controller))
 866		return;
 867
 868	if (controller->dma_mask) {
 869		dma_unmap_single(controller,
 870			urb->transfer_dma, urb->transfer_buffer_length,
 871			usb_pipein(urb->pipe)
 872				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 873	}
 874	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
 875}
 876EXPORT_SYMBOL_GPL(usb_buffer_unmap);
 877#endif  /*  0  */
 878
 879#if 0
 880/**
 881 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
 882 * @dev: device to which the scatterlist will be mapped
 883 * @is_in: mapping transfer direction
 884 * @sg: the scatterlist to map
 885 * @nents: the number of entries in the scatterlist
 886 *
 887 * Return: Either < 0 (indicating no buffers could be mapped), or the
 888 * number of DMA mapping array entries in the scatterlist.
 889 *
 890 * Note:
 891 * The caller is responsible for placing the resulting DMA addresses from
 892 * the scatterlist into URB transfer buffer pointers, and for setting the
 893 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
 894 *
 895 * Top I/O rates come from queuing URBs, instead of waiting for each one
 896 * to complete before starting the next I/O.   This is particularly easy
 897 * to do with scatterlists.  Just allocate and submit one URB for each DMA
 898 * mapping entry returned, stopping on the first error or when all succeed.
 899 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
 900 *
 901 * This call would normally be used when translating scatterlist requests,
 902 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
 903 * may be able to coalesce mappings for improved I/O efficiency.
 904 *
 905 * Reverse the effect of this call with usb_buffer_unmap_sg().
 906 */
 907int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
 908		      struct scatterlist *sg, int nents)
 909{
 910	struct usb_bus		*bus;
 911	struct device		*controller;
 912
 913	if (!dev
 914			|| !(bus = dev->bus)
 915			|| !(controller = bus->controller)
 916			|| !controller->dma_mask)
 917		return -EINVAL;
 918
 919	/* FIXME generic api broken like pci, can't report errors */
 920	return dma_map_sg(controller, sg, nents,
 921			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
 922}
 923EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
 924#endif
 925
 926/* XXX DISABLED, no users currently.  If you wish to re-enable this
 927 * XXX please determine whether the sync is to transfer ownership of
 928 * XXX the buffer from device to cpu or vice verse, and thusly use the
 929 * XXX appropriate _for_{cpu,device}() method.  -DaveM
 930 */
 931#if 0
 932
 933/**
 934 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
 935 * @dev: device to which the scatterlist will be mapped
 936 * @is_in: mapping transfer direction
 937 * @sg: the scatterlist to synchronize
 938 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 939 *
 940 * Use this when you are re-using a scatterlist's data buffers for
 941 * another USB request.
 942 */
 943void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
 944			   struct scatterlist *sg, int n_hw_ents)
 945{
 946	struct usb_bus		*bus;
 947	struct device		*controller;
 948
 949	if (!dev
 950			|| !(bus = dev->bus)
 951			|| !(controller = bus->controller)
 952			|| !controller->dma_mask)
 953		return;
 954
 955	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
 956			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 957}
 958EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
 959#endif
 960
 961#if 0
 962/**
 963 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
 964 * @dev: device to which the scatterlist will be mapped
 965 * @is_in: mapping transfer direction
 966 * @sg: the scatterlist to unmap
 967 * @n_hw_ents: the positive return value from usb_buffer_map_sg
 968 *
 969 * Reverses the effect of usb_buffer_map_sg().
 970 */
 971void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
 972			 struct scatterlist *sg, int n_hw_ents)
 973{
 974	struct usb_bus		*bus;
 975	struct device		*controller;
 976
 977	if (!dev
 978			|| !(bus = dev->bus)
 979			|| !(controller = bus->controller)
 980			|| !controller->dma_mask)
 981		return;
 982
 983	dma_unmap_sg(controller, sg, n_hw_ents,
 984			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
 985}
 986EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
 987#endif
 988
 989/*
 990 * Notifications of device and interface registration
 991 */
 992static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
 993		void *data)
 994{
 995	struct device *dev = data;
 996
 997	switch (action) {
 998	case BUS_NOTIFY_ADD_DEVICE:
 999		if (dev->type == &usb_device_type)
1000			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1001		else if (dev->type == &usb_if_device_type)
1002			usb_create_sysfs_intf_files(to_usb_interface(dev));
1003		break;
1004
1005	case BUS_NOTIFY_DEL_DEVICE:
1006		if (dev->type == &usb_device_type)
1007			usb_remove_sysfs_dev_files(to_usb_device(dev));
1008		else if (dev->type == &usb_if_device_type)
1009			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1010		break;
1011	}
1012	return 0;
1013}
1014
1015static struct notifier_block usb_bus_nb = {
1016	.notifier_call = usb_bus_notify,
1017};
1018
1019struct dentry *usb_debug_root;
1020EXPORT_SYMBOL_GPL(usb_debug_root);
1021
1022static struct dentry *usb_debug_devices;
1023
1024static int usb_debugfs_init(void)
1025{
1026	usb_debug_root = debugfs_create_dir("usb", NULL);
1027	if (!usb_debug_root)
1028		return -ENOENT;
1029
1030	usb_debug_devices = debugfs_create_file("devices", 0444,
1031						usb_debug_root, NULL,
1032						&usbfs_devices_fops);
1033	if (!usb_debug_devices) {
1034		debugfs_remove(usb_debug_root);
1035		usb_debug_root = NULL;
1036		return -ENOENT;
1037	}
1038
1039	return 0;
1040}
1041
1042static void usb_debugfs_cleanup(void)
1043{
1044	debugfs_remove(usb_debug_devices);
1045	debugfs_remove(usb_debug_root);
1046}
1047
1048/*
1049 * Init
1050 */
1051static int __init usb_init(void)
1052{
1053	int retval;
1054	if (usb_disabled()) {
1055		pr_info("%s: USB support disabled\n", usbcore_name);
1056		return 0;
1057	}
1058	usb_init_pool_max();
1059
1060	retval = usb_debugfs_init();
1061	if (retval)
1062		goto out;
1063
1064	usb_acpi_register();
1065	retval = bus_register(&usb_bus_type);
1066	if (retval)
1067		goto bus_register_failed;
1068	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1069	if (retval)
1070		goto bus_notifier_failed;
1071	retval = usb_major_init();
1072	if (retval)
1073		goto major_init_failed;
1074	retval = usb_register(&usbfs_driver);
1075	if (retval)
1076		goto driver_register_failed;
1077	retval = usb_devio_init();
1078	if (retval)
1079		goto usb_devio_init_failed;
1080	retval = usb_hub_init();
1081	if (retval)
1082		goto hub_init_failed;
1083	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1084	if (!retval)
1085		goto out;
1086
1087	usb_hub_cleanup();
1088hub_init_failed:
1089	usb_devio_cleanup();
1090usb_devio_init_failed:
1091	usb_deregister(&usbfs_driver);
1092driver_register_failed:
1093	usb_major_cleanup();
1094major_init_failed:
1095	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1096bus_notifier_failed:
1097	bus_unregister(&usb_bus_type);
1098bus_register_failed:
1099	usb_acpi_unregister();
1100	usb_debugfs_cleanup();
1101out:
1102	return retval;
1103}
1104
1105/*
1106 * Cleanup
1107 */
1108static void __exit usb_exit(void)
1109{
1110	/* This will matter if shutdown/reboot does exitcalls. */
1111	if (usb_disabled())
1112		return;
1113
 
1114	usb_deregister_device_driver(&usb_generic_driver);
1115	usb_major_cleanup();
1116	usb_deregister(&usbfs_driver);
1117	usb_devio_cleanup();
1118	usb_hub_cleanup();
1119	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1120	bus_unregister(&usb_bus_type);
1121	usb_acpi_unregister();
1122	usb_debugfs_cleanup();
1123	idr_destroy(&usb_bus_idr);
1124}
1125
1126subsys_initcall(usb_init);
1127module_exit(usb_exit);
1128MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/usb/core/usb.c
   4 *
   5 * (C) Copyright Linus Torvalds 1999
   6 * (C) Copyright Johannes Erdfelt 1999-2001
   7 * (C) Copyright Andreas Gal 1999
   8 * (C) Copyright Gregory P. Smith 1999
   9 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
  10 * (C) Copyright Randy Dunlap 2000
  11 * (C) Copyright David Brownell 2000-2004
  12 * (C) Copyright Yggdrasil Computing, Inc. 2000
  13 *     (usb_device_id matching changes by Adam J. Richter)
  14 * (C) Copyright Greg Kroah-Hartman 2002-2003
  15 *
  16 * Released under the GPLv2 only.
  17 *
  18 * NOTE! This is not actually a driver at all, rather this is
  19 * just a collection of helper routines that implement the
  20 * generic USB things that the real drivers can use..
  21 *
  22 * Think of this as a "USB library" rather than anything else,
  23 * with no callbacks.  Callbacks are evil.
 
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/string.h>
  29#include <linux/bitops.h>
  30#include <linux/slab.h>
 
  31#include <linux/kmod.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/errno.h>
  35#include <linux/usb.h>
  36#include <linux/usb/hcd.h>
  37#include <linux/mutex.h>
  38#include <linux/workqueue.h>
  39#include <linux/debugfs.h>
  40#include <linux/usb/of.h>
  41
  42#include <asm/io.h>
  43#include <linux/scatterlist.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46
  47#include "hub.h"
 
  48
  49const char *usbcore_name = "usbcore";
  50
  51static bool nousb;	/* Disable USB when built into kernel image */
  52
  53module_param(nousb, bool, 0444);
  54
  55/*
  56 * for external read access to <nousb>
  57 */
  58int usb_disabled(void)
  59{
  60	return nousb;
  61}
  62EXPORT_SYMBOL_GPL(usb_disabled);
  63
  64#ifdef	CONFIG_PM
  65/* Default delay value, in seconds */
  66static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
  67module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
  68MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
  69
  70#else
  71#define usb_autosuspend_delay		0
  72#endif
  73
  74static bool match_endpoint(struct usb_endpoint_descriptor *epd,
  75		struct usb_endpoint_descriptor **bulk_in,
  76		struct usb_endpoint_descriptor **bulk_out,
  77		struct usb_endpoint_descriptor **int_in,
  78		struct usb_endpoint_descriptor **int_out)
  79{
  80	switch (usb_endpoint_type(epd)) {
  81	case USB_ENDPOINT_XFER_BULK:
  82		if (usb_endpoint_dir_in(epd)) {
  83			if (bulk_in && !*bulk_in) {
  84				*bulk_in = epd;
  85				break;
  86			}
  87		} else {
  88			if (bulk_out && !*bulk_out) {
  89				*bulk_out = epd;
  90				break;
  91			}
  92		}
  93
  94		return false;
  95	case USB_ENDPOINT_XFER_INT:
  96		if (usb_endpoint_dir_in(epd)) {
  97			if (int_in && !*int_in) {
  98				*int_in = epd;
  99				break;
 100			}
 101		} else {
 102			if (int_out && !*int_out) {
 103				*int_out = epd;
 104				break;
 105			}
 106		}
 107
 108		return false;
 109	default:
 110		return false;
 111	}
 112
 113	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
 114			(!int_in || *int_in) && (!int_out || *int_out);
 115}
 116
 117/**
 118 * usb_find_common_endpoints() -- look up common endpoint descriptors
 119 * @alt:	alternate setting to search
 120 * @bulk_in:	pointer to descriptor pointer, or NULL
 121 * @bulk_out:	pointer to descriptor pointer, or NULL
 122 * @int_in:	pointer to descriptor pointer, or NULL
 123 * @int_out:	pointer to descriptor pointer, or NULL
 124 *
 125 * Search the alternate setting's endpoint descriptors for the first bulk-in,
 126 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 127 * provided pointers (unless they are NULL).
 128 *
 129 * If a requested endpoint is not found, the corresponding pointer is set to
 130 * NULL.
 131 *
 132 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 133 */
 134int usb_find_common_endpoints(struct usb_host_interface *alt,
 135		struct usb_endpoint_descriptor **bulk_in,
 136		struct usb_endpoint_descriptor **bulk_out,
 137		struct usb_endpoint_descriptor **int_in,
 138		struct usb_endpoint_descriptor **int_out)
 139{
 140	struct usb_endpoint_descriptor *epd;
 141	int i;
 142
 143	if (bulk_in)
 144		*bulk_in = NULL;
 145	if (bulk_out)
 146		*bulk_out = NULL;
 147	if (int_in)
 148		*int_in = NULL;
 149	if (int_out)
 150		*int_out = NULL;
 151
 152	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
 153		epd = &alt->endpoint[i].desc;
 154
 155		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 156			return 0;
 157	}
 158
 159	return -ENXIO;
 160}
 161EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
 162
 163/**
 164 * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
 165 * @alt:	alternate setting to search
 166 * @bulk_in:	pointer to descriptor pointer, or NULL
 167 * @bulk_out:	pointer to descriptor pointer, or NULL
 168 * @int_in:	pointer to descriptor pointer, or NULL
 169 * @int_out:	pointer to descriptor pointer, or NULL
 170 *
 171 * Search the alternate setting's endpoint descriptors for the last bulk-in,
 172 * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
 173 * provided pointers (unless they are NULL).
 174 *
 175 * If a requested endpoint is not found, the corresponding pointer is set to
 176 * NULL.
 177 *
 178 * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
 179 */
 180int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
 181		struct usb_endpoint_descriptor **bulk_in,
 182		struct usb_endpoint_descriptor **bulk_out,
 183		struct usb_endpoint_descriptor **int_in,
 184		struct usb_endpoint_descriptor **int_out)
 185{
 186	struct usb_endpoint_descriptor *epd;
 187	int i;
 188
 189	if (bulk_in)
 190		*bulk_in = NULL;
 191	if (bulk_out)
 192		*bulk_out = NULL;
 193	if (int_in)
 194		*int_in = NULL;
 195	if (int_out)
 196		*int_out = NULL;
 197
 198	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
 199		epd = &alt->endpoint[i].desc;
 200
 201		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
 202			return 0;
 203	}
 204
 205	return -ENXIO;
 206}
 207EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
 208
 209/**
 210 * usb_find_alt_setting() - Given a configuration, find the alternate setting
 211 * for the given interface.
 212 * @config: the configuration to search (not necessarily the current config).
 213 * @iface_num: interface number to search in
 214 * @alt_num: alternate interface setting number to search for.
 215 *
 216 * Search the configuration's interface cache for the given alt setting.
 217 *
 218 * Return: The alternate setting, if found. %NULL otherwise.
 219 */
 220struct usb_host_interface *usb_find_alt_setting(
 221		struct usb_host_config *config,
 222		unsigned int iface_num,
 223		unsigned int alt_num)
 224{
 225	struct usb_interface_cache *intf_cache = NULL;
 226	int i;
 227
 228	if (!config)
 229		return NULL;
 230	for (i = 0; i < config->desc.bNumInterfaces; i++) {
 231		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
 232				== iface_num) {
 233			intf_cache = config->intf_cache[i];
 234			break;
 235		}
 236	}
 237	if (!intf_cache)
 238		return NULL;
 239	for (i = 0; i < intf_cache->num_altsetting; i++)
 240		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
 241			return &intf_cache->altsetting[i];
 242
 243	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
 244			"config %u\n", alt_num, iface_num,
 245			config->desc.bConfigurationValue);
 246	return NULL;
 247}
 248EXPORT_SYMBOL_GPL(usb_find_alt_setting);
 249
 250/**
 251 * usb_ifnum_to_if - get the interface object with a given interface number
 252 * @dev: the device whose current configuration is considered
 253 * @ifnum: the desired interface
 254 *
 255 * This walks the device descriptor for the currently active configuration
 256 * to find the interface object with the particular interface number.
 257 *
 258 * Note that configuration descriptors are not required to assign interface
 259 * numbers sequentially, so that it would be incorrect to assume that
 260 * the first interface in that descriptor corresponds to interface zero.
 261 * This routine helps device drivers avoid such mistakes.
 262 * However, you should make sure that you do the right thing with any
 263 * alternate settings available for this interfaces.
 264 *
 265 * Don't call this function unless you are bound to one of the interfaces
 266 * on this device or you have locked the device!
 267 *
 268 * Return: A pointer to the interface that has @ifnum as interface number,
 269 * if found. %NULL otherwise.
 270 */
 271struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 272				      unsigned ifnum)
 273{
 274	struct usb_host_config *config = dev->actconfig;
 275	int i;
 276
 277	if (!config)
 278		return NULL;
 279	for (i = 0; i < config->desc.bNumInterfaces; i++)
 280		if (config->interface[i]->altsetting[0]
 281				.desc.bInterfaceNumber == ifnum)
 282			return config->interface[i];
 283
 284	return NULL;
 285}
 286EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
 287
 288/**
 289 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
 290 * @intf: the interface containing the altsetting in question
 291 * @altnum: the desired alternate setting number
 292 *
 293 * This searches the altsetting array of the specified interface for
 294 * an entry with the correct bAlternateSetting value.
 295 *
 296 * Note that altsettings need not be stored sequentially by number, so
 297 * it would be incorrect to assume that the first altsetting entry in
 298 * the array corresponds to altsetting zero.  This routine helps device
 299 * drivers avoid such mistakes.
 300 *
 301 * Don't call this function unless you are bound to the intf interface
 302 * or you have locked the device!
 303 *
 304 * Return: A pointer to the entry of the altsetting array of @intf that
 305 * has @altnum as the alternate setting number. %NULL if not found.
 306 */
 307struct usb_host_interface *usb_altnum_to_altsetting(
 308					const struct usb_interface *intf,
 309					unsigned int altnum)
 310{
 311	int i;
 312
 313	for (i = 0; i < intf->num_altsetting; i++) {
 314		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
 315			return &intf->altsetting[i];
 316	}
 317	return NULL;
 318}
 319EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
 320
 321struct find_interface_arg {
 322	int minor;
 323	struct device_driver *drv;
 324};
 325
 326static int __find_interface(struct device *dev, const void *data)
 327{
 328	const struct find_interface_arg *arg = data;
 329	struct usb_interface *intf;
 330
 331	if (!is_usb_interface(dev))
 332		return 0;
 333
 334	if (dev->driver != arg->drv)
 335		return 0;
 336	intf = to_usb_interface(dev);
 337	return intf->minor == arg->minor;
 338}
 339
 340/**
 341 * usb_find_interface - find usb_interface pointer for driver and device
 342 * @drv: the driver whose current configuration is considered
 343 * @minor: the minor number of the desired device
 344 *
 345 * This walks the bus device list and returns a pointer to the interface
 346 * with the matching minor and driver.  Note, this only works for devices
 347 * that share the USB major number.
 348 *
 349 * Return: A pointer to the interface with the matching major and @minor.
 350 */
 351struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
 352{
 353	struct find_interface_arg argb;
 354	struct device *dev;
 355
 356	argb.minor = minor;
 357	argb.drv = &drv->drvwrap.driver;
 358
 359	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
 360
 361	/* Drop reference count from bus_find_device */
 362	put_device(dev);
 363
 364	return dev ? to_usb_interface(dev) : NULL;
 365}
 366EXPORT_SYMBOL_GPL(usb_find_interface);
 367
 368struct each_dev_arg {
 369	void *data;
 370	int (*fn)(struct usb_device *, void *);
 371};
 372
 373static int __each_dev(struct device *dev, void *data)
 374{
 375	struct each_dev_arg *arg = (struct each_dev_arg *)data;
 376
 377	/* There are struct usb_interface on the same bus, filter them out */
 378	if (!is_usb_device(dev))
 379		return 0;
 380
 381	return arg->fn(to_usb_device(dev), arg->data);
 382}
 383
 384/**
 385 * usb_for_each_dev - iterate over all USB devices in the system
 386 * @data: data pointer that will be handed to the callback function
 387 * @fn: callback function to be called for each USB device
 388 *
 389 * Iterate over all USB devices and call @fn for each, passing it @data. If it
 390 * returns anything other than 0, we break the iteration prematurely and return
 391 * that value.
 392 */
 393int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
 394{
 395	struct each_dev_arg arg = {data, fn};
 396
 397	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
 398}
 399EXPORT_SYMBOL_GPL(usb_for_each_dev);
 400
 401struct each_hub_arg {
 402	void *data;
 403	int (*fn)(struct device *, void *);
 404};
 405
 406static int __each_hub(struct usb_device *hdev, void *data)
 407{
 408	struct each_hub_arg *arg = (struct each_hub_arg *)data;
 409	struct usb_hub *hub;
 410	int ret = 0;
 411	int i;
 412
 413	hub = usb_hub_to_struct_hub(hdev);
 414	if (!hub)
 415		return 0;
 416
 417	mutex_lock(&usb_port_peer_mutex);
 418
 419	for (i = 0; i < hdev->maxchild; i++) {
 420		ret = arg->fn(&hub->ports[i]->dev, arg->data);
 421		if (ret)
 422			break;
 423	}
 424
 425	mutex_unlock(&usb_port_peer_mutex);
 426
 427	return ret;
 428}
 429
 430/**
 431 * usb_for_each_port - interate over all USB ports in the system
 432 * @data: data pointer that will be handed to the callback function
 433 * @fn: callback function to be called for each USB port
 434 *
 435 * Iterate over all USB ports and call @fn for each, passing it @data. If it
 436 * returns anything other than 0, we break the iteration prematurely and return
 437 * that value.
 438 */
 439int usb_for_each_port(void *data, int (*fn)(struct device *, void *))
 440{
 441	struct each_hub_arg arg = {data, fn};
 442
 443	return usb_for_each_dev(&arg, __each_hub);
 444}
 445EXPORT_SYMBOL_GPL(usb_for_each_port);
 446
 447/**
 448 * usb_release_dev - free a usb device structure when all users of it are finished.
 449 * @dev: device that's been disconnected
 450 *
 451 * Will be called only by the device core when all users of this usb device are
 452 * done.
 453 */
 454static void usb_release_dev(struct device *dev)
 455{
 456	struct usb_device *udev;
 457	struct usb_hcd *hcd;
 458
 459	udev = to_usb_device(dev);
 460	hcd = bus_to_hcd(udev->bus);
 461
 462	usb_destroy_configuration(udev);
 463	usb_release_bos_descriptor(udev);
 464	of_node_put(dev->of_node);
 465	usb_put_hcd(hcd);
 466	kfree(udev->product);
 467	kfree(udev->manufacturer);
 468	kfree(udev->serial);
 469	kfree(udev);
 470}
 471
 472static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
 473{
 474	struct usb_device *usb_dev;
 475
 476	usb_dev = to_usb_device(dev);
 477
 478	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
 479		return -ENOMEM;
 480
 481	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
 482		return -ENOMEM;
 483
 484	return 0;
 485}
 486
 487#ifdef	CONFIG_PM
 488
 489/* USB device Power-Management thunks.
 490 * There's no need to distinguish here between quiescing a USB device
 491 * and powering it down; the generic_suspend() routine takes care of
 492 * it by skipping the usb_port_suspend() call for a quiesce.  And for
 493 * USB interfaces there's no difference at all.
 494 */
 495
 496static int usb_dev_prepare(struct device *dev)
 497{
 498	return 0;		/* Implement eventually? */
 499}
 500
 501static void usb_dev_complete(struct device *dev)
 502{
 503	/* Currently used only for rebinding interfaces */
 504	usb_resume_complete(dev);
 505}
 506
 507static int usb_dev_suspend(struct device *dev)
 508{
 509	return usb_suspend(dev, PMSG_SUSPEND);
 510}
 511
 512static int usb_dev_resume(struct device *dev)
 513{
 514	return usb_resume(dev, PMSG_RESUME);
 515}
 516
 517static int usb_dev_freeze(struct device *dev)
 518{
 519	return usb_suspend(dev, PMSG_FREEZE);
 520}
 521
 522static int usb_dev_thaw(struct device *dev)
 523{
 524	return usb_resume(dev, PMSG_THAW);
 525}
 526
 527static int usb_dev_poweroff(struct device *dev)
 528{
 529	return usb_suspend(dev, PMSG_HIBERNATE);
 530}
 531
 532static int usb_dev_restore(struct device *dev)
 533{
 534	return usb_resume(dev, PMSG_RESTORE);
 535}
 536
 537static const struct dev_pm_ops usb_device_pm_ops = {
 538	.prepare =	usb_dev_prepare,
 539	.complete =	usb_dev_complete,
 540	.suspend =	usb_dev_suspend,
 541	.resume =	usb_dev_resume,
 542	.freeze =	usb_dev_freeze,
 543	.thaw =		usb_dev_thaw,
 544	.poweroff =	usb_dev_poweroff,
 545	.restore =	usb_dev_restore,
 546	.runtime_suspend =	usb_runtime_suspend,
 547	.runtime_resume =	usb_runtime_resume,
 548	.runtime_idle =		usb_runtime_idle,
 549};
 550
 551#endif	/* CONFIG_PM */
 552
 553
 554static char *usb_devnode(struct device *dev,
 555			 umode_t *mode, kuid_t *uid, kgid_t *gid)
 556{
 557	struct usb_device *usb_dev;
 558
 559	usb_dev = to_usb_device(dev);
 560	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
 561			 usb_dev->bus->busnum, usb_dev->devnum);
 562}
 563
 564struct device_type usb_device_type = {
 565	.name =		"usb_device",
 566	.release =	usb_release_dev,
 567	.uevent =	usb_dev_uevent,
 568	.devnode = 	usb_devnode,
 569#ifdef CONFIG_PM
 570	.pm =		&usb_device_pm_ops,
 571#endif
 572};
 573
 574
 575/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
 576static unsigned usb_bus_is_wusb(struct usb_bus *bus)
 577{
 578	struct usb_hcd *hcd = bus_to_hcd(bus);
 579	return hcd->wireless;
 580}
 581
 582static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
 583{
 584	struct usb_hub *hub;
 585
 586	if (!dev->parent)
 587		return true; /* Root hub always ok [and always wired] */
 588
 589	switch (hcd->dev_policy) {
 590	case USB_DEVICE_AUTHORIZE_NONE:
 591	default:
 592		return false;
 593
 594	case USB_DEVICE_AUTHORIZE_ALL:
 595		return true;
 596
 597	case USB_DEVICE_AUTHORIZE_INTERNAL:
 598		hub = usb_hub_to_struct_hub(dev->parent);
 599		return hub->ports[dev->portnum - 1]->connect_type ==
 600				USB_PORT_CONNECT_TYPE_HARD_WIRED;
 601	}
 602}
 603
 604/**
 605 * usb_alloc_dev - usb device constructor (usbcore-internal)
 606 * @parent: hub to which device is connected; null to allocate a root hub
 607 * @bus: bus used to access the device
 608 * @port1: one-based index of port; ignored for root hubs
 609 *
 610 * Context: task context, might sleep.
 611 *
 612 * Only hub drivers (including virtual root hub drivers for host
 613 * controllers) should ever call this.
 614 *
 615 * This call may not be used in a non-sleeping context.
 616 *
 617 * Return: On success, a pointer to the allocated usb device. %NULL on
 618 * failure.
 619 */
 620struct usb_device *usb_alloc_dev(struct usb_device *parent,
 621				 struct usb_bus *bus, unsigned port1)
 622{
 623	struct usb_device *dev;
 624	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
 625	unsigned root_hub = 0;
 626	unsigned raw_port = port1;
 627
 628	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 629	if (!dev)
 630		return NULL;
 631
 632	if (!usb_get_hcd(usb_hcd)) {
 633		kfree(dev);
 634		return NULL;
 635	}
 636	/* Root hubs aren't true devices, so don't allocate HCD resources */
 637	if (usb_hcd->driver->alloc_dev && parent &&
 638		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
 639		usb_put_hcd(bus_to_hcd(bus));
 640		kfree(dev);
 641		return NULL;
 642	}
 643
 644	device_initialize(&dev->dev);
 645	dev->dev.bus = &usb_bus_type;
 646	dev->dev.type = &usb_device_type;
 647	dev->dev.groups = usb_device_groups;
 648	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
 
 649	dev->state = USB_STATE_ATTACHED;
 650	dev->lpm_disable_count = 1;
 651	atomic_set(&dev->urbnum, 0);
 652
 653	INIT_LIST_HEAD(&dev->ep0.urb_list);
 654	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
 655	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
 656	/* ep0 maxpacket comes later, from device descriptor */
 657	usb_enable_endpoint(dev, &dev->ep0, false);
 658	dev->can_submit = 1;
 659
 660	/* Save readable and stable topology id, distinguishing devices
 661	 * by location for diagnostics, tools, driver model, etc.  The
 662	 * string is a path along hub ports, from the root.  Each device's
 663	 * dev->devpath will be stable until USB is re-cabled, and hubs
 664	 * are often labeled with these port numbers.  The name isn't
 665	 * as stable:  bus->busnum changes easily from modprobe order,
 666	 * cardbus or pci hotplugging, and so on.
 667	 */
 668	if (unlikely(!parent)) {
 669		dev->devpath[0] = '0';
 670		dev->route = 0;
 671
 672		dev->dev.parent = bus->controller;
 673		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
 674		dev_set_name(&dev->dev, "usb%d", bus->busnum);
 675		root_hub = 1;
 676	} else {
 677		/* match any labeling on the hubs; it's one-based */
 678		if (parent->devpath[0] == '0') {
 679			snprintf(dev->devpath, sizeof dev->devpath,
 680				"%d", port1);
 681			/* Root ports are not counted in route string */
 682			dev->route = 0;
 683		} else {
 684			snprintf(dev->devpath, sizeof dev->devpath,
 685				"%s.%d", parent->devpath, port1);
 686			/* Route string assumes hubs have less than 16 ports */
 687			if (port1 < 15)
 688				dev->route = parent->route +
 689					(port1 << ((parent->level - 1)*4));
 690			else
 691				dev->route = parent->route +
 692					(15 << ((parent->level - 1)*4));
 693		}
 694
 695		dev->dev.parent = &parent->dev;
 696		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
 697
 698		if (!parent->parent) {
 699			/* device under root hub's port */
 700			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
 701				port1);
 702		}
 703		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
 
 704
 705		/* hub driver sets up TT records */
 706	}
 707
 708	dev->portnum = port1;
 709	dev->bus = bus;
 710	dev->parent = parent;
 711	INIT_LIST_HEAD(&dev->filelist);
 712
 713#ifdef	CONFIG_PM
 714	pm_runtime_set_autosuspend_delay(&dev->dev,
 715			usb_autosuspend_delay * 1000);
 716	dev->connect_time = jiffies;
 717	dev->active_duration = -jiffies;
 718#endif
 719
 720	dev->authorized = usb_dev_authorized(dev, usb_hcd);
 721	if (!root_hub)
 
 722		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
 723
 724	return dev;
 725}
 726EXPORT_SYMBOL_GPL(usb_alloc_dev);
 727
 728/**
 729 * usb_get_dev - increments the reference count of the usb device structure
 730 * @dev: the device being referenced
 731 *
 732 * Each live reference to a device should be refcounted.
 733 *
 734 * Drivers for USB interfaces should normally record such references in
 735 * their probe() methods, when they bind to an interface, and release
 736 * them by calling usb_put_dev(), in their disconnect() methods.
 737 *
 738 * Return: A pointer to the device with the incremented reference counter.
 739 */
 740struct usb_device *usb_get_dev(struct usb_device *dev)
 741{
 742	if (dev)
 743		get_device(&dev->dev);
 744	return dev;
 745}
 746EXPORT_SYMBOL_GPL(usb_get_dev);
 747
 748/**
 749 * usb_put_dev - release a use of the usb device structure
 750 * @dev: device that's been disconnected
 751 *
 752 * Must be called when a user of a device is finished with it.  When the last
 753 * user of the device calls this function, the memory of the device is freed.
 754 */
 755void usb_put_dev(struct usb_device *dev)
 756{
 757	if (dev)
 758		put_device(&dev->dev);
 759}
 760EXPORT_SYMBOL_GPL(usb_put_dev);
 761
 762/**
 763 * usb_get_intf - increments the reference count of the usb interface structure
 764 * @intf: the interface being referenced
 765 *
 766 * Each live reference to a interface must be refcounted.
 767 *
 768 * Drivers for USB interfaces should normally record such references in
 769 * their probe() methods, when they bind to an interface, and release
 770 * them by calling usb_put_intf(), in their disconnect() methods.
 771 *
 772 * Return: A pointer to the interface with the incremented reference counter.
 773 */
 774struct usb_interface *usb_get_intf(struct usb_interface *intf)
 775{
 776	if (intf)
 777		get_device(&intf->dev);
 778	return intf;
 779}
 780EXPORT_SYMBOL_GPL(usb_get_intf);
 781
 782/**
 783 * usb_put_intf - release a use of the usb interface structure
 784 * @intf: interface that's been decremented
 785 *
 786 * Must be called when a user of an interface is finished with it.  When the
 787 * last user of the interface calls this function, the memory of the interface
 788 * is freed.
 789 */
 790void usb_put_intf(struct usb_interface *intf)
 791{
 792	if (intf)
 793		put_device(&intf->dev);
 794}
 795EXPORT_SYMBOL_GPL(usb_put_intf);
 796
 797/**
 798 * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
 799 * @intf: the usb interface
 800 *
 801 * While a USB device cannot perform DMA operations by itself, many USB
 802 * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
 803 * for the given USB interface, if any. The returned device structure must be
 804 * released with put_device().
 805 *
 806 * See also usb_get_dma_device().
 807 *
 808 * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
 809 *          exists.
 810 */
 811struct device *usb_intf_get_dma_device(struct usb_interface *intf)
 812{
 813	struct usb_device *udev = interface_to_usbdev(intf);
 814	struct device *dmadev;
 815
 816	if (!udev->bus)
 817		return NULL;
 818
 819	dmadev = get_device(udev->bus->sysdev);
 820	if (!dmadev || !dmadev->dma_mask) {
 821		put_device(dmadev);
 822		return NULL;
 823	}
 824
 825	return dmadev;
 826}
 827EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
 828
 829/*			USB device locking
 830 *
 831 * USB devices and interfaces are locked using the semaphore in their
 832 * embedded struct device.  The hub driver guarantees that whenever a
 833 * device is connected or disconnected, drivers are called with the
 834 * USB device locked as well as their particular interface.
 835 *
 836 * Complications arise when several devices are to be locked at the same
 837 * time.  Only hub-aware drivers that are part of usbcore ever have to
 838 * do this; nobody else needs to worry about it.  The rule for locking
 839 * is simple:
 840 *
 841 *	When locking both a device and its parent, always lock the
 842 *	the parent first.
 843 */
 844
 845/**
 846 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
 847 * @udev: device that's being locked
 848 * @iface: interface bound to the driver making the request (optional)
 849 *
 850 * Attempts to acquire the device lock, but fails if the device is
 851 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
 852 * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
 853 * lock, the routine polls repeatedly.  This is to prevent deadlock with
 854 * disconnect; in some drivers (such as usb-storage) the disconnect()
 855 * or suspend() method will block waiting for a device reset to complete.
 856 *
 857 * Return: A negative error code for failure, otherwise 0.
 858 */
 859int usb_lock_device_for_reset(struct usb_device *udev,
 860			      const struct usb_interface *iface)
 861{
 862	unsigned long jiffies_expire = jiffies + HZ;
 863
 864	if (udev->state == USB_STATE_NOTATTACHED)
 865		return -ENODEV;
 866	if (udev->state == USB_STATE_SUSPENDED)
 867		return -EHOSTUNREACH;
 868	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 869			iface->condition == USB_INTERFACE_UNBOUND))
 870		return -EINTR;
 871
 872	while (!usb_trylock_device(udev)) {
 873
 874		/* If we can't acquire the lock after waiting one second,
 875		 * we're probably deadlocked */
 876		if (time_after(jiffies, jiffies_expire))
 877			return -EBUSY;
 878
 879		msleep(15);
 880		if (udev->state == USB_STATE_NOTATTACHED)
 881			return -ENODEV;
 882		if (udev->state == USB_STATE_SUSPENDED)
 883			return -EHOSTUNREACH;
 884		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
 885				iface->condition == USB_INTERFACE_UNBOUND))
 886			return -EINTR;
 887	}
 888	return 0;
 889}
 890EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
 891
 892/**
 893 * usb_get_current_frame_number - return current bus frame number
 894 * @dev: the device whose bus is being queried
 895 *
 896 * Return: The current frame number for the USB host controller used
 897 * with the given USB device. This can be used when scheduling
 898 * isochronous requests.
 899 *
 900 * Note: Different kinds of host controller have different "scheduling
 901 * horizons". While one type might support scheduling only 32 frames
 902 * into the future, others could support scheduling up to 1024 frames
 903 * into the future.
 904 *
 905 */
 906int usb_get_current_frame_number(struct usb_device *dev)
 907{
 908	return usb_hcd_get_frame_number(dev);
 909}
 910EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
 911
 912/*-------------------------------------------------------------------*/
 913/*
 914 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
 915 * extra field of the interface and endpoint descriptor structs.
 916 */
 917
 918int __usb_get_extra_descriptor(char *buffer, unsigned size,
 919			       unsigned char type, void **ptr, size_t minsize)
 920{
 921	struct usb_descriptor_header *header;
 922
 923	while (size >= sizeof(struct usb_descriptor_header)) {
 924		header = (struct usb_descriptor_header *)buffer;
 925
 926		if (header->bLength < 2 || header->bLength > size) {
 927			printk(KERN_ERR
 928				"%s: bogus descriptor, type %d length %d\n",
 929				usbcore_name,
 930				header->bDescriptorType,
 931				header->bLength);
 932			return -1;
 933		}
 934
 935		if (header->bDescriptorType == type && header->bLength >= minsize) {
 936			*ptr = header;
 937			return 0;
 938		}
 939
 940		buffer += header->bLength;
 941		size -= header->bLength;
 942	}
 943	return -1;
 944}
 945EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
 946
 947/**
 948 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
 949 * @dev: device the buffer will be used with
 950 * @size: requested buffer size
 951 * @mem_flags: affect whether allocation may block
 952 * @dma: used to return DMA address of buffer
 953 *
 954 * Return: Either null (indicating no buffer could be allocated), or the
 955 * cpu-space pointer to a buffer that may be used to perform DMA to the
 956 * specified device.  Such cpu-space buffers are returned along with the DMA
 957 * address (through the pointer provided).
 958 *
 959 * Note:
 960 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
 961 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
 962 * hardware during URB completion/resubmit.  The implementation varies between
 963 * platforms, depending on details of how DMA will work to this device.
 964 * Using these buffers also eliminates cacheline sharing problems on
 965 * architectures where CPU caches are not DMA-coherent.  On systems without
 966 * bus-snooping caches, these buffers are uncached.
 967 *
 968 * When the buffer is no longer used, free it with usb_free_coherent().
 969 */
 970void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
 971			 dma_addr_t *dma)
 972{
 973	if (!dev || !dev->bus)
 974		return NULL;
 975	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
 976}
 977EXPORT_SYMBOL_GPL(usb_alloc_coherent);
 978
 979/**
 980 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
 981 * @dev: device the buffer was used with
 982 * @size: requested buffer size
 983 * @addr: CPU address of buffer
 984 * @dma: DMA address of buffer
 985 *
 986 * This reclaims an I/O buffer, letting it be reused.  The memory must have
 987 * been allocated using usb_alloc_coherent(), and the parameters must match
 988 * those provided in that allocation request.
 989 */
 990void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
 991		       dma_addr_t dma)
 992{
 993	if (!dev || !dev->bus)
 994		return;
 995	if (!addr)
 996		return;
 997	hcd_buffer_free(dev->bus, size, addr, dma);
 998}
 999EXPORT_SYMBOL_GPL(usb_free_coherent);
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001/*
1002 * Notifications of device and interface registration
1003 */
1004static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1005		void *data)
1006{
1007	struct device *dev = data;
1008
1009	switch (action) {
1010	case BUS_NOTIFY_ADD_DEVICE:
1011		if (dev->type == &usb_device_type)
1012			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1013		else if (dev->type == &usb_if_device_type)
1014			usb_create_sysfs_intf_files(to_usb_interface(dev));
1015		break;
1016
1017	case BUS_NOTIFY_DEL_DEVICE:
1018		if (dev->type == &usb_device_type)
1019			usb_remove_sysfs_dev_files(to_usb_device(dev));
1020		else if (dev->type == &usb_if_device_type)
1021			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1022		break;
1023	}
1024	return 0;
1025}
1026
1027static struct notifier_block usb_bus_nb = {
1028	.notifier_call = usb_bus_notify,
1029};
1030
1031static void usb_debugfs_init(void)
 
 
 
 
 
1032{
1033	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1034			    &usbfs_devices_fops);
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037static void usb_debugfs_cleanup(void)
1038{
1039	debugfs_remove(debugfs_lookup("devices", usb_debug_root));
 
1040}
1041
1042/*
1043 * Init
1044 */
1045static int __init usb_init(void)
1046{
1047	int retval;
1048	if (usb_disabled()) {
1049		pr_info("%s: USB support disabled\n", usbcore_name);
1050		return 0;
1051	}
1052	usb_init_pool_max();
1053
1054	usb_debugfs_init();
 
 
1055
1056	usb_acpi_register();
1057	retval = bus_register(&usb_bus_type);
1058	if (retval)
1059		goto bus_register_failed;
1060	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1061	if (retval)
1062		goto bus_notifier_failed;
1063	retval = usb_major_init();
1064	if (retval)
1065		goto major_init_failed;
1066	retval = usb_register(&usbfs_driver);
1067	if (retval)
1068		goto driver_register_failed;
1069	retval = usb_devio_init();
1070	if (retval)
1071		goto usb_devio_init_failed;
1072	retval = usb_hub_init();
1073	if (retval)
1074		goto hub_init_failed;
1075	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1076	if (!retval)
1077		goto out;
1078
1079	usb_hub_cleanup();
1080hub_init_failed:
1081	usb_devio_cleanup();
1082usb_devio_init_failed:
1083	usb_deregister(&usbfs_driver);
1084driver_register_failed:
1085	usb_major_cleanup();
1086major_init_failed:
1087	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1088bus_notifier_failed:
1089	bus_unregister(&usb_bus_type);
1090bus_register_failed:
1091	usb_acpi_unregister();
1092	usb_debugfs_cleanup();
1093out:
1094	return retval;
1095}
1096
1097/*
1098 * Cleanup
1099 */
1100static void __exit usb_exit(void)
1101{
1102	/* This will matter if shutdown/reboot does exitcalls. */
1103	if (usb_disabled())
1104		return;
1105
1106	usb_release_quirk_list();
1107	usb_deregister_device_driver(&usb_generic_driver);
1108	usb_major_cleanup();
1109	usb_deregister(&usbfs_driver);
1110	usb_devio_cleanup();
1111	usb_hub_cleanup();
1112	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1113	bus_unregister(&usb_bus_type);
1114	usb_acpi_unregister();
1115	usb_debugfs_cleanup();
1116	idr_destroy(&usb_bus_idr);
1117}
1118
1119subsys_initcall(usb_init);
1120module_exit(usb_exit);
1121MODULE_LICENSE("GPL");