Linux Audio

Check our new training course

Loading...
v4.6
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2015 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/sched.h>
  32#include <linux/netdevice.h>
  33
  34#include "ixgbe.h"
  35#include "ixgbe_common.h"
  36#include "ixgbe_phy.h"
  37
  38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  44					u16 count);
  45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  49
  50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  53					     u16 words, u16 *data);
  54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  55					     u16 words, u16 *data);
  56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  57						 u16 offset);
  58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  59
  60/* Base table for registers values that change by MAC */
  61const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  62	IXGBE_MVALS_INIT(8259X)
  63};
  64
  65/**
  66 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  67 *  control
  68 *  @hw: pointer to hardware structure
  69 *
  70 *  There are several phys that do not support autoneg flow control. This
  71 *  function check the device id to see if the associated phy supports
  72 *  autoneg flow control.
  73 **/
  74bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  75{
  76	bool supported = false;
  77	ixgbe_link_speed speed;
  78	bool link_up;
  79
  80	switch (hw->phy.media_type) {
  81	case ixgbe_media_type_fiber:
  82		hw->mac.ops.check_link(hw, &speed, &link_up, false);
  83		/* if link is down, assume supported */
  84		if (link_up)
  85			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  86				true : false;
  87		else
  88			supported = true;
 
 
 
 
 
 
 
 
  89		break;
  90	case ixgbe_media_type_backplane:
  91		supported = true;
 
 
 
  92		break;
  93	case ixgbe_media_type_copper:
  94		/* only some copper devices support flow control autoneg */
  95		switch (hw->device_id) {
  96		case IXGBE_DEV_ID_82599_T3_LOM:
  97		case IXGBE_DEV_ID_X540T:
  98		case IXGBE_DEV_ID_X540T1:
  99		case IXGBE_DEV_ID_X550T:
 
 100		case IXGBE_DEV_ID_X550EM_X_10G_T:
 
 
 
 101			supported = true;
 102			break;
 103		default:
 104			break;
 105		}
 
 106	default:
 107		break;
 108	}
 109
 
 
 
 
 110	return supported;
 111}
 112
 113/**
 114 *  ixgbe_setup_fc - Set up flow control
 115 *  @hw: pointer to hardware structure
 116 *
 117 *  Called at init time to set up flow control.
 118 **/
 119static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
 120{
 121	s32 ret_val = 0;
 122	u32 reg = 0, reg_bp = 0;
 123	u16 reg_cu = 0;
 124	bool locked = false;
 125
 126	/*
 127	 * Validate the requested mode.  Strict IEEE mode does not allow
 128	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 129	 */
 130	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 131		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 132		return IXGBE_ERR_INVALID_LINK_SETTINGS;
 133	}
 134
 135	/*
 136	 * 10gig parts do not have a word in the EEPROM to determine the
 137	 * default flow control setting, so we explicitly set it to full.
 138	 */
 139	if (hw->fc.requested_mode == ixgbe_fc_default)
 140		hw->fc.requested_mode = ixgbe_fc_full;
 141
 142	/*
 143	 * Set up the 1G and 10G flow control advertisement registers so the
 144	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 145	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 146	 */
 147	switch (hw->phy.media_type) {
 148	case ixgbe_media_type_backplane:
 149		/* some MAC's need RMW protection on AUTOC */
 150		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 151		if (ret_val)
 152			return ret_val;
 153
 154		/* only backplane uses autoc so fall though */
 155	case ixgbe_media_type_fiber:
 156		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 157
 158		break;
 159	case ixgbe_media_type_copper:
 160		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 161					MDIO_MMD_AN, &reg_cu);
 162		break;
 163	default:
 164		break;
 165	}
 166
 167	/*
 168	 * The possible values of fc.requested_mode are:
 169	 * 0: Flow control is completely disabled
 170	 * 1: Rx flow control is enabled (we can receive pause frames,
 171	 *    but not send pause frames).
 172	 * 2: Tx flow control is enabled (we can send pause frames but
 173	 *    we do not support receiving pause frames).
 174	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 175	 * other: Invalid.
 176	 */
 177	switch (hw->fc.requested_mode) {
 178	case ixgbe_fc_none:
 179		/* Flow control completely disabled by software override. */
 180		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 181		if (hw->phy.media_type == ixgbe_media_type_backplane)
 182			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 183				    IXGBE_AUTOC_ASM_PAUSE);
 184		else if (hw->phy.media_type == ixgbe_media_type_copper)
 185			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 186		break;
 187	case ixgbe_fc_tx_pause:
 188		/*
 189		 * Tx Flow control is enabled, and Rx Flow control is
 190		 * disabled by software override.
 191		 */
 192		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 193		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 194		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 195			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 196			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 197		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 198			reg_cu |= IXGBE_TAF_ASM_PAUSE;
 199			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 200		}
 201		break;
 202	case ixgbe_fc_rx_pause:
 203		/*
 204		 * Rx Flow control is enabled and Tx Flow control is
 205		 * disabled by software override. Since there really
 206		 * isn't a way to advertise that we are capable of RX
 207		 * Pause ONLY, we will advertise that we support both
 208		 * symmetric and asymmetric Rx PAUSE, as such we fall
 209		 * through to the fc_full statement.  Later, we will
 210		 * disable the adapter's ability to send PAUSE frames.
 211		 */
 212	case ixgbe_fc_full:
 213		/* Flow control (both Rx and Tx) is enabled by SW override. */
 214		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 215		if (hw->phy.media_type == ixgbe_media_type_backplane)
 216			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 217				  IXGBE_AUTOC_ASM_PAUSE;
 218		else if (hw->phy.media_type == ixgbe_media_type_copper)
 219			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 220		break;
 221	default:
 222		hw_dbg(hw, "Flow control param set incorrectly\n");
 223		return IXGBE_ERR_CONFIG;
 224	}
 225
 226	if (hw->mac.type != ixgbe_mac_X540) {
 227		/*
 228		 * Enable auto-negotiation between the MAC & PHY;
 229		 * the MAC will advertise clause 37 flow control.
 230		 */
 231		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 232		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 233
 234		/* Disable AN timeout */
 235		if (hw->fc.strict_ieee)
 236			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 237
 238		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 239		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 240	}
 241
 242	/*
 243	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 244	 * and copper. There is no need to set the PCS1GCTL register.
 245	 *
 246	 */
 247	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 248		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
 249		 * LESM is on, likewise reset_pipeline requries the lock as
 250		 * it also writes AUTOC.
 251		 */
 252		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 253		if (ret_val)
 254			return ret_val;
 255
 256	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 257		   ixgbe_device_supports_autoneg_fc(hw)) {
 258		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 259				      MDIO_MMD_AN, reg_cu);
 260	}
 261
 262	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 263	return ret_val;
 264}
 265
 266/**
 267 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 268 *  @hw: pointer to hardware structure
 269 *
 270 *  Starts the hardware by filling the bus info structure and media type, clears
 271 *  all on chip counters, initializes receive address registers, multicast
 272 *  table, VLAN filter table, calls routine to set up link and flow control
 273 *  settings, and leaves transmit and receive units disabled and uninitialized
 274 **/
 275s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 276{
 277	s32 ret_val;
 278	u32 ctrl_ext;
 
 279
 280	/* Set the media type */
 281	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 282
 283	/* Identify the PHY */
 284	hw->phy.ops.identify(hw);
 285
 286	/* Clear the VLAN filter table */
 287	hw->mac.ops.clear_vfta(hw);
 288
 289	/* Clear statistics registers */
 290	hw->mac.ops.clear_hw_cntrs(hw);
 291
 292	/* Set No Snoop Disable */
 293	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 294	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 295	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 296	IXGBE_WRITE_FLUSH(hw);
 297
 298	/* Setup flow control */
 299	ret_val = ixgbe_setup_fc(hw);
 300	if (ret_val)
 301		return ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	/* Clear adapter stopped flag */
 304	hw->adapter_stopped = false;
 305
 306	return 0;
 307}
 308
 309/**
 310 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 311 *  @hw: pointer to hw structure
 312 *
 313 * Performs the init sequence common to the second generation
 314 * of 10 GbE devices.
 315 * Devices in the second generation:
 316 *     82599
 317 *     X540
 318 **/
 319s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 320{
 321	u32 i;
 322
 323	/* Clear the rate limiters */
 324	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 325		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 326		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 327	}
 328	IXGBE_WRITE_FLUSH(hw);
 329
 330#ifndef CONFIG_SPARC
 331	/* Disable relaxed ordering */
 332	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 333		u32 regval;
 334
 335		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 336		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 337		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 338	}
 339
 340	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 341		u32 regval;
 342
 343		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 344		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 345			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 346		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 347	}
 348#endif
 349	return 0;
 350}
 351
 352/**
 353 *  ixgbe_init_hw_generic - Generic hardware initialization
 354 *  @hw: pointer to hardware structure
 355 *
 356 *  Initialize the hardware by resetting the hardware, filling the bus info
 357 *  structure and media type, clears all on chip counters, initializes receive
 358 *  address registers, multicast table, VLAN filter table, calls routine to set
 359 *  up link and flow control settings, and leaves transmit and receive units
 360 *  disabled and uninitialized
 361 **/
 362s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 363{
 364	s32 status;
 365
 366	/* Reset the hardware */
 367	status = hw->mac.ops.reset_hw(hw);
 368
 369	if (status == 0) {
 370		/* Start the HW */
 371		status = hw->mac.ops.start_hw(hw);
 372	}
 373
 
 
 
 
 374	return status;
 375}
 376
 377/**
 378 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 379 *  @hw: pointer to hardware structure
 380 *
 381 *  Clears all hardware statistics counters by reading them from the hardware
 382 *  Statistics counters are clear on read.
 383 **/
 384s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 385{
 386	u16 i = 0;
 387
 388	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 389	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 390	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 391	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 392	for (i = 0; i < 8; i++)
 393		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 394
 395	IXGBE_READ_REG(hw, IXGBE_MLFC);
 396	IXGBE_READ_REG(hw, IXGBE_MRFC);
 397	IXGBE_READ_REG(hw, IXGBE_RLEC);
 398	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 399	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 400	if (hw->mac.type >= ixgbe_mac_82599EB) {
 401		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 402		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 403	} else {
 404		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 405		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 406	}
 407
 408	for (i = 0; i < 8; i++) {
 409		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 410		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 411		if (hw->mac.type >= ixgbe_mac_82599EB) {
 412			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 413			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 414		} else {
 415			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 416			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 417		}
 418	}
 419	if (hw->mac.type >= ixgbe_mac_82599EB)
 420		for (i = 0; i < 8; i++)
 421			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 422	IXGBE_READ_REG(hw, IXGBE_PRC64);
 423	IXGBE_READ_REG(hw, IXGBE_PRC127);
 424	IXGBE_READ_REG(hw, IXGBE_PRC255);
 425	IXGBE_READ_REG(hw, IXGBE_PRC511);
 426	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 427	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 428	IXGBE_READ_REG(hw, IXGBE_GPRC);
 429	IXGBE_READ_REG(hw, IXGBE_BPRC);
 430	IXGBE_READ_REG(hw, IXGBE_MPRC);
 431	IXGBE_READ_REG(hw, IXGBE_GPTC);
 432	IXGBE_READ_REG(hw, IXGBE_GORCL);
 433	IXGBE_READ_REG(hw, IXGBE_GORCH);
 434	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 435	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 436	if (hw->mac.type == ixgbe_mac_82598EB)
 437		for (i = 0; i < 8; i++)
 438			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 439	IXGBE_READ_REG(hw, IXGBE_RUC);
 440	IXGBE_READ_REG(hw, IXGBE_RFC);
 441	IXGBE_READ_REG(hw, IXGBE_ROC);
 442	IXGBE_READ_REG(hw, IXGBE_RJC);
 443	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 444	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 445	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 446	IXGBE_READ_REG(hw, IXGBE_TORL);
 447	IXGBE_READ_REG(hw, IXGBE_TORH);
 448	IXGBE_READ_REG(hw, IXGBE_TPR);
 449	IXGBE_READ_REG(hw, IXGBE_TPT);
 450	IXGBE_READ_REG(hw, IXGBE_PTC64);
 451	IXGBE_READ_REG(hw, IXGBE_PTC127);
 452	IXGBE_READ_REG(hw, IXGBE_PTC255);
 453	IXGBE_READ_REG(hw, IXGBE_PTC511);
 454	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 455	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 456	IXGBE_READ_REG(hw, IXGBE_MPTC);
 457	IXGBE_READ_REG(hw, IXGBE_BPTC);
 458	for (i = 0; i < 16; i++) {
 459		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 460		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 461		if (hw->mac.type >= ixgbe_mac_82599EB) {
 462			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 463			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 464			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 465			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 466			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 467		} else {
 468			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 469			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 470		}
 471	}
 472
 473	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 474		if (hw->phy.id == 0)
 475			hw->phy.ops.identify(hw);
 476		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 477		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 478		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 479		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 480	}
 481
 482	return 0;
 483}
 484
 485/**
 486 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 487 *  @hw: pointer to hardware structure
 488 *  @pba_num: stores the part number string from the EEPROM
 489 *  @pba_num_size: part number string buffer length
 490 *
 491 *  Reads the part number string from the EEPROM.
 492 **/
 493s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 494				  u32 pba_num_size)
 495{
 496	s32 ret_val;
 497	u16 data;
 498	u16 pba_ptr;
 499	u16 offset;
 500	u16 length;
 501
 502	if (pba_num == NULL) {
 503		hw_dbg(hw, "PBA string buffer was null\n");
 504		return IXGBE_ERR_INVALID_ARGUMENT;
 505	}
 506
 507	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 508	if (ret_val) {
 509		hw_dbg(hw, "NVM Read Error\n");
 510		return ret_val;
 511	}
 512
 513	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 514	if (ret_val) {
 515		hw_dbg(hw, "NVM Read Error\n");
 516		return ret_val;
 517	}
 518
 519	/*
 520	 * if data is not ptr guard the PBA must be in legacy format which
 521	 * means pba_ptr is actually our second data word for the PBA number
 522	 * and we can decode it into an ascii string
 523	 */
 524	if (data != IXGBE_PBANUM_PTR_GUARD) {
 525		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 526
 527		/* we will need 11 characters to store the PBA */
 528		if (pba_num_size < 11) {
 529			hw_dbg(hw, "PBA string buffer too small\n");
 530			return IXGBE_ERR_NO_SPACE;
 531		}
 532
 533		/* extract hex string from data and pba_ptr */
 534		pba_num[0] = (data >> 12) & 0xF;
 535		pba_num[1] = (data >> 8) & 0xF;
 536		pba_num[2] = (data >> 4) & 0xF;
 537		pba_num[3] = data & 0xF;
 538		pba_num[4] = (pba_ptr >> 12) & 0xF;
 539		pba_num[5] = (pba_ptr >> 8) & 0xF;
 540		pba_num[6] = '-';
 541		pba_num[7] = 0;
 542		pba_num[8] = (pba_ptr >> 4) & 0xF;
 543		pba_num[9] = pba_ptr & 0xF;
 544
 545		/* put a null character on the end of our string */
 546		pba_num[10] = '\0';
 547
 548		/* switch all the data but the '-' to hex char */
 549		for (offset = 0; offset < 10; offset++) {
 550			if (pba_num[offset] < 0xA)
 551				pba_num[offset] += '0';
 552			else if (pba_num[offset] < 0x10)
 553				pba_num[offset] += 'A' - 0xA;
 554		}
 555
 556		return 0;
 557	}
 558
 559	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 560	if (ret_val) {
 561		hw_dbg(hw, "NVM Read Error\n");
 562		return ret_val;
 563	}
 564
 565	if (length == 0xFFFF || length == 0) {
 566		hw_dbg(hw, "NVM PBA number section invalid length\n");
 567		return IXGBE_ERR_PBA_SECTION;
 568	}
 569
 570	/* check if pba_num buffer is big enough */
 571	if (pba_num_size  < (((u32)length * 2) - 1)) {
 572		hw_dbg(hw, "PBA string buffer too small\n");
 573		return IXGBE_ERR_NO_SPACE;
 574	}
 575
 576	/* trim pba length from start of string */
 577	pba_ptr++;
 578	length--;
 579
 580	for (offset = 0; offset < length; offset++) {
 581		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 582		if (ret_val) {
 583			hw_dbg(hw, "NVM Read Error\n");
 584			return ret_val;
 585		}
 586		pba_num[offset * 2] = (u8)(data >> 8);
 587		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 588	}
 589	pba_num[offset * 2] = '\0';
 590
 591	return 0;
 592}
 593
 594/**
 595 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 596 *  @hw: pointer to hardware structure
 597 *  @mac_addr: Adapter MAC address
 598 *
 599 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 600 *  A reset of the adapter must be performed prior to calling this function
 601 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 602 **/
 603s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 604{
 605	u32 rar_high;
 606	u32 rar_low;
 607	u16 i;
 608
 609	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 610	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 611
 612	for (i = 0; i < 4; i++)
 613		mac_addr[i] = (u8)(rar_low >> (i*8));
 614
 615	for (i = 0; i < 2; i++)
 616		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 617
 618	return 0;
 619}
 620
 621enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 622{
 623	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 624	case IXGBE_PCI_LINK_WIDTH_1:
 625		return ixgbe_bus_width_pcie_x1;
 626	case IXGBE_PCI_LINK_WIDTH_2:
 627		return ixgbe_bus_width_pcie_x2;
 628	case IXGBE_PCI_LINK_WIDTH_4:
 629		return ixgbe_bus_width_pcie_x4;
 630	case IXGBE_PCI_LINK_WIDTH_8:
 631		return ixgbe_bus_width_pcie_x8;
 632	default:
 633		return ixgbe_bus_width_unknown;
 634	}
 635}
 636
 637enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 638{
 639	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 640	case IXGBE_PCI_LINK_SPEED_2500:
 641		return ixgbe_bus_speed_2500;
 642	case IXGBE_PCI_LINK_SPEED_5000:
 643		return ixgbe_bus_speed_5000;
 644	case IXGBE_PCI_LINK_SPEED_8000:
 645		return ixgbe_bus_speed_8000;
 646	default:
 647		return ixgbe_bus_speed_unknown;
 648	}
 649}
 650
 651/**
 652 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 653 *  @hw: pointer to hardware structure
 654 *
 655 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 656 **/
 657s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 658{
 659	u16 link_status;
 660
 661	hw->bus.type = ixgbe_bus_type_pci_express;
 662
 663	/* Get the negotiated link width and speed from PCI config space */
 664	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 665
 666	hw->bus.width = ixgbe_convert_bus_width(link_status);
 667	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 668
 669	hw->mac.ops.set_lan_id(hw);
 670
 671	return 0;
 672}
 673
 674/**
 675 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 676 *  @hw: pointer to the HW structure
 677 *
 678 *  Determines the LAN function id by reading memory-mapped registers
 679 *  and swaps the port value if requested.
 680 **/
 681void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 682{
 683	struct ixgbe_bus_info *bus = &hw->bus;
 
 684	u32 reg;
 685
 686	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 687	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 688	bus->lan_id = bus->func;
 689
 690	/* check for a port swap */
 691	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 692	if (reg & IXGBE_FACTPS_LFS)
 693		bus->func ^= 0x1;
 
 
 
 
 
 
 
 694}
 695
 696/**
 697 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 698 *  @hw: pointer to hardware structure
 699 *
 700 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 701 *  disables transmit and receive units. The adapter_stopped flag is used by
 702 *  the shared code and drivers to determine if the adapter is in a stopped
 703 *  state and should not touch the hardware.
 704 **/
 705s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 706{
 707	u32 reg_val;
 708	u16 i;
 709
 710	/*
 711	 * Set the adapter_stopped flag so other driver functions stop touching
 712	 * the hardware
 713	 */
 714	hw->adapter_stopped = true;
 715
 716	/* Disable the receive unit */
 717	hw->mac.ops.disable_rx(hw);
 718
 719	/* Clear interrupt mask to stop interrupts from being generated */
 720	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 721
 722	/* Clear any pending interrupts, flush previous writes */
 723	IXGBE_READ_REG(hw, IXGBE_EICR);
 724
 725	/* Disable the transmit unit.  Each queue must be disabled. */
 726	for (i = 0; i < hw->mac.max_tx_queues; i++)
 727		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 728
 729	/* Disable the receive unit by stopping each queue */
 730	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 731		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 732		reg_val &= ~IXGBE_RXDCTL_ENABLE;
 733		reg_val |= IXGBE_RXDCTL_SWFLSH;
 734		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 735	}
 736
 737	/* flush all queues disables */
 738	IXGBE_WRITE_FLUSH(hw);
 739	usleep_range(1000, 2000);
 740
 741	/*
 742	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 743	 * access and verify no pending requests
 744	 */
 745	return ixgbe_disable_pcie_master(hw);
 746}
 747
 748/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 749 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 750 *  @hw: pointer to hardware structure
 751 *  @index: led number to turn on
 752 **/
 753s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 754{
 755	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 756
 
 
 
 757	/* To turn on the LED, set mode to ON. */
 758	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 759	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 760	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 761	IXGBE_WRITE_FLUSH(hw);
 762
 763	return 0;
 764}
 765
 766/**
 767 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 768 *  @hw: pointer to hardware structure
 769 *  @index: led number to turn off
 770 **/
 771s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 772{
 773	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 774
 
 
 
 775	/* To turn off the LED, set mode to OFF. */
 776	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 777	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 778	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 779	IXGBE_WRITE_FLUSH(hw);
 780
 781	return 0;
 782}
 783
 784/**
 785 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 786 *  @hw: pointer to hardware structure
 787 *
 788 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 789 *  ixgbe_hw struct in order to set up EEPROM access.
 790 **/
 791s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 792{
 793	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 794	u32 eec;
 795	u16 eeprom_size;
 796
 797	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 798		eeprom->type = ixgbe_eeprom_none;
 799		/* Set default semaphore delay to 10ms which is a well
 800		 * tested value */
 801		eeprom->semaphore_delay = 10;
 802		/* Clear EEPROM page size, it will be initialized as needed */
 803		eeprom->word_page_size = 0;
 804
 805		/*
 806		 * Check for EEPROM present first.
 807		 * If not present leave as none
 808		 */
 809		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 810		if (eec & IXGBE_EEC_PRES) {
 811			eeprom->type = ixgbe_eeprom_spi;
 812
 813			/*
 814			 * SPI EEPROM is assumed here.  This code would need to
 815			 * change if a future EEPROM is not SPI.
 816			 */
 817			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 818					    IXGBE_EEC_SIZE_SHIFT);
 819			eeprom->word_size = 1 << (eeprom_size +
 820						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 821		}
 822
 823		if (eec & IXGBE_EEC_ADDR_SIZE)
 824			eeprom->address_bits = 16;
 825		else
 826			eeprom->address_bits = 8;
 827		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 828		       eeprom->type, eeprom->word_size, eeprom->address_bits);
 829	}
 830
 831	return 0;
 832}
 833
 834/**
 835 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 836 *  @hw: pointer to hardware structure
 837 *  @offset: offset within the EEPROM to write
 838 *  @words: number of words
 839 *  @data: 16 bit word(s) to write to EEPROM
 840 *
 841 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 842 **/
 843s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 844					       u16 words, u16 *data)
 845{
 846	s32 status;
 847	u16 i, count;
 848
 849	hw->eeprom.ops.init_params(hw);
 850
 851	if (words == 0)
 852		return IXGBE_ERR_INVALID_ARGUMENT;
 853
 854	if (offset + words > hw->eeprom.word_size)
 855		return IXGBE_ERR_EEPROM;
 856
 857	/*
 858	 * The EEPROM page size cannot be queried from the chip. We do lazy
 859	 * initialization. It is worth to do that when we write large buffer.
 860	 */
 861	if ((hw->eeprom.word_page_size == 0) &&
 862	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 863		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 864
 865	/*
 866	 * We cannot hold synchronization semaphores for too long
 867	 * to avoid other entity starvation. However it is more efficient
 868	 * to read in bursts than synchronizing access for each word.
 869	 */
 870	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 871		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 872			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 873		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 874							    count, &data[i]);
 875
 876		if (status != 0)
 877			break;
 878	}
 879
 880	return status;
 881}
 882
 883/**
 884 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 885 *  @hw: pointer to hardware structure
 886 *  @offset: offset within the EEPROM to be written to
 887 *  @words: number of word(s)
 888 *  @data: 16 bit word(s) to be written to the EEPROM
 889 *
 890 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 891 *  EEPROM will most likely contain an invalid checksum.
 892 **/
 893static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 894					      u16 words, u16 *data)
 895{
 896	s32 status;
 897	u16 word;
 898	u16 page_size;
 899	u16 i;
 900	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 901
 902	/* Prepare the EEPROM for writing  */
 903	status = ixgbe_acquire_eeprom(hw);
 904	if (status)
 905		return status;
 906
 907	if (ixgbe_ready_eeprom(hw) != 0) {
 908		ixgbe_release_eeprom(hw);
 909		return IXGBE_ERR_EEPROM;
 910	}
 911
 912	for (i = 0; i < words; i++) {
 913		ixgbe_standby_eeprom(hw);
 914
 915		/* Send the WRITE ENABLE command (8 bit opcode) */
 916		ixgbe_shift_out_eeprom_bits(hw,
 917					    IXGBE_EEPROM_WREN_OPCODE_SPI,
 918					    IXGBE_EEPROM_OPCODE_BITS);
 919
 920		ixgbe_standby_eeprom(hw);
 921
 922		/* Some SPI eeproms use the 8th address bit embedded
 923		 * in the opcode
 924		 */
 925		if ((hw->eeprom.address_bits == 8) &&
 926		    ((offset + i) >= 128))
 927			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 928
 929		/* Send the Write command (8-bit opcode + addr) */
 930		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 931					    IXGBE_EEPROM_OPCODE_BITS);
 932		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 933					    hw->eeprom.address_bits);
 934
 935		page_size = hw->eeprom.word_page_size;
 936
 937		/* Send the data in burst via SPI */
 938		do {
 939			word = data[i];
 940			word = (word >> 8) | (word << 8);
 941			ixgbe_shift_out_eeprom_bits(hw, word, 16);
 942
 943			if (page_size == 0)
 944				break;
 945
 946			/* do not wrap around page */
 947			if (((offset + i) & (page_size - 1)) ==
 948			    (page_size - 1))
 949				break;
 950		} while (++i < words);
 951
 952		ixgbe_standby_eeprom(hw);
 953		usleep_range(10000, 20000);
 954	}
 955	/* Done with writing - release the EEPROM */
 956	ixgbe_release_eeprom(hw);
 957
 958	return 0;
 959}
 960
 961/**
 962 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 963 *  @hw: pointer to hardware structure
 964 *  @offset: offset within the EEPROM to be written to
 965 *  @data: 16 bit word to be written to the EEPROM
 966 *
 967 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 968 *  EEPROM will most likely contain an invalid checksum.
 969 **/
 970s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 971{
 972	hw->eeprom.ops.init_params(hw);
 973
 974	if (offset >= hw->eeprom.word_size)
 975		return IXGBE_ERR_EEPROM;
 976
 977	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 978}
 979
 980/**
 981 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 982 *  @hw: pointer to hardware structure
 983 *  @offset: offset within the EEPROM to be read
 984 *  @words: number of word(s)
 985 *  @data: read 16 bit words(s) from EEPROM
 986 *
 987 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 988 **/
 989s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 990					      u16 words, u16 *data)
 991{
 992	s32 status;
 993	u16 i, count;
 994
 995	hw->eeprom.ops.init_params(hw);
 996
 997	if (words == 0)
 998		return IXGBE_ERR_INVALID_ARGUMENT;
 999
1000	if (offset + words > hw->eeprom.word_size)
1001		return IXGBE_ERR_EEPROM;
1002
1003	/*
1004	 * We cannot hold synchronization semaphores for too long
1005	 * to avoid other entity starvation. However it is more efficient
1006	 * to read in bursts than synchronizing access for each word.
1007	 */
1008	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1009		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1010			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1011
1012		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1013							   count, &data[i]);
1014
1015		if (status)
1016			return status;
1017	}
1018
1019	return 0;
1020}
1021
1022/**
1023 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1024 *  @hw: pointer to hardware structure
1025 *  @offset: offset within the EEPROM to be read
1026 *  @words: number of word(s)
1027 *  @data: read 16 bit word(s) from EEPROM
1028 *
1029 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1030 **/
1031static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1032					     u16 words, u16 *data)
1033{
1034	s32 status;
1035	u16 word_in;
1036	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1037	u16 i;
1038
1039	/* Prepare the EEPROM for reading  */
1040	status = ixgbe_acquire_eeprom(hw);
1041	if (status)
1042		return status;
1043
1044	if (ixgbe_ready_eeprom(hw) != 0) {
1045		ixgbe_release_eeprom(hw);
1046		return IXGBE_ERR_EEPROM;
1047	}
1048
1049	for (i = 0; i < words; i++) {
1050		ixgbe_standby_eeprom(hw);
1051		/* Some SPI eeproms use the 8th address bit embedded
1052		 * in the opcode
1053		 */
1054		if ((hw->eeprom.address_bits == 8) &&
1055		    ((offset + i) >= 128))
1056			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1057
1058		/* Send the READ command (opcode + addr) */
1059		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1060					    IXGBE_EEPROM_OPCODE_BITS);
1061		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1062					    hw->eeprom.address_bits);
1063
1064		/* Read the data. */
1065		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1066		data[i] = (word_in >> 8) | (word_in << 8);
1067	}
1068
1069	/* End this read operation */
1070	ixgbe_release_eeprom(hw);
1071
1072	return 0;
1073}
1074
1075/**
1076 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1077 *  @hw: pointer to hardware structure
1078 *  @offset: offset within the EEPROM to be read
1079 *  @data: read 16 bit value from EEPROM
1080 *
1081 *  Reads 16 bit value from EEPROM through bit-bang method
1082 **/
1083s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1084				       u16 *data)
1085{
1086	hw->eeprom.ops.init_params(hw);
1087
1088	if (offset >= hw->eeprom.word_size)
1089		return IXGBE_ERR_EEPROM;
1090
1091	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1092}
1093
1094/**
1095 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1096 *  @hw: pointer to hardware structure
1097 *  @offset: offset of word in the EEPROM to read
1098 *  @words: number of word(s)
1099 *  @data: 16 bit word(s) from the EEPROM
1100 *
1101 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1102 **/
1103s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1104				   u16 words, u16 *data)
1105{
1106	u32 eerd;
1107	s32 status;
1108	u32 i;
1109
1110	hw->eeprom.ops.init_params(hw);
1111
1112	if (words == 0)
1113		return IXGBE_ERR_INVALID_ARGUMENT;
1114
1115	if (offset >= hw->eeprom.word_size)
1116		return IXGBE_ERR_EEPROM;
1117
1118	for (i = 0; i < words; i++) {
1119		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1120		       IXGBE_EEPROM_RW_REG_START;
1121
1122		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1123		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1124
1125		if (status == 0) {
1126			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1127				   IXGBE_EEPROM_RW_REG_DATA);
1128		} else {
1129			hw_dbg(hw, "Eeprom read timed out\n");
1130			return status;
1131		}
1132	}
1133
1134	return 0;
1135}
1136
1137/**
1138 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1139 *  @hw: pointer to hardware structure
1140 *  @offset: offset within the EEPROM to be used as a scratch pad
1141 *
1142 *  Discover EEPROM page size by writing marching data at given offset.
1143 *  This function is called only when we are writing a new large buffer
1144 *  at given offset so the data would be overwritten anyway.
1145 **/
1146static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1147						 u16 offset)
1148{
1149	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1150	s32 status;
1151	u16 i;
1152
1153	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1154		data[i] = i;
1155
1156	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1157	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1158					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1159	hw->eeprom.word_page_size = 0;
1160	if (status)
1161		return status;
1162
1163	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1164	if (status)
1165		return status;
1166
1167	/*
1168	 * When writing in burst more than the actual page size
1169	 * EEPROM address wraps around current page.
1170	 */
1171	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1172
1173	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1174	       hw->eeprom.word_page_size);
1175	return 0;
1176}
1177
1178/**
1179 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1180 *  @hw: pointer to hardware structure
1181 *  @offset: offset of  word in the EEPROM to read
1182 *  @data: word read from the EEPROM
1183 *
1184 *  Reads a 16 bit word from the EEPROM using the EERD register.
1185 **/
1186s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1187{
1188	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1189}
1190
1191/**
1192 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1193 *  @hw: pointer to hardware structure
1194 *  @offset: offset of  word in the EEPROM to write
1195 *  @words: number of words
1196 *  @data: word(s) write to the EEPROM
1197 *
1198 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1199 **/
1200s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1201				    u16 words, u16 *data)
1202{
1203	u32 eewr;
1204	s32 status;
1205	u16 i;
1206
1207	hw->eeprom.ops.init_params(hw);
1208
1209	if (words == 0)
1210		return IXGBE_ERR_INVALID_ARGUMENT;
1211
1212	if (offset >= hw->eeprom.word_size)
1213		return IXGBE_ERR_EEPROM;
1214
1215	for (i = 0; i < words; i++) {
1216		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1217		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1218		       IXGBE_EEPROM_RW_REG_START;
1219
1220		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1221		if (status) {
1222			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1223			return status;
1224		}
1225
1226		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1227
1228		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1229		if (status) {
1230			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1231			return status;
1232		}
1233	}
1234
1235	return 0;
1236}
1237
1238/**
1239 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1240 *  @hw: pointer to hardware structure
1241 *  @offset: offset of  word in the EEPROM to write
1242 *  @data: word write to the EEPROM
1243 *
1244 *  Write a 16 bit word to the EEPROM using the EEWR register.
1245 **/
1246s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1247{
1248	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1249}
1250
1251/**
1252 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1253 *  @hw: pointer to hardware structure
1254 *  @ee_reg: EEPROM flag for polling
1255 *
1256 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1257 *  read or write is done respectively.
1258 **/
1259static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1260{
1261	u32 i;
1262	u32 reg;
1263
1264	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1265		if (ee_reg == IXGBE_NVM_POLL_READ)
1266			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1267		else
1268			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1269
1270		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1271			return 0;
1272		}
1273		udelay(5);
1274	}
1275	return IXGBE_ERR_EEPROM;
1276}
1277
1278/**
1279 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1280 *  @hw: pointer to hardware structure
1281 *
1282 *  Prepares EEPROM for access using bit-bang method. This function should
1283 *  be called before issuing a command to the EEPROM.
1284 **/
1285static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1286{
1287	u32 eec;
1288	u32 i;
1289
1290	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1291		return IXGBE_ERR_SWFW_SYNC;
1292
1293	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1294
1295	/* Request EEPROM Access */
1296	eec |= IXGBE_EEC_REQ;
1297	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1298
1299	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1300		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1301		if (eec & IXGBE_EEC_GNT)
1302			break;
1303		udelay(5);
1304	}
1305
1306	/* Release if grant not acquired */
1307	if (!(eec & IXGBE_EEC_GNT)) {
1308		eec &= ~IXGBE_EEC_REQ;
1309		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1310		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1311
1312		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1313		return IXGBE_ERR_EEPROM;
1314	}
1315
1316	/* Setup EEPROM for Read/Write */
1317	/* Clear CS and SK */
1318	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1319	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1320	IXGBE_WRITE_FLUSH(hw);
1321	udelay(1);
1322	return 0;
1323}
1324
1325/**
1326 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1327 *  @hw: pointer to hardware structure
1328 *
1329 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1330 **/
1331static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1332{
1333	u32 timeout = 2000;
1334	u32 i;
1335	u32 swsm;
1336
1337	/* Get SMBI software semaphore between device drivers first */
1338	for (i = 0; i < timeout; i++) {
1339		/*
1340		 * If the SMBI bit is 0 when we read it, then the bit will be
1341		 * set and we have the semaphore
1342		 */
1343		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1344		if (!(swsm & IXGBE_SWSM_SMBI))
1345			break;
1346		usleep_range(50, 100);
1347	}
1348
1349	if (i == timeout) {
1350		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1351		/* this release is particularly important because our attempts
1352		 * above to get the semaphore may have succeeded, and if there
1353		 * was a timeout, we should unconditionally clear the semaphore
1354		 * bits to free the driver to make progress
1355		 */
1356		ixgbe_release_eeprom_semaphore(hw);
1357
1358		usleep_range(50, 100);
1359		/* one last try
1360		 * If the SMBI bit is 0 when we read it, then the bit will be
1361		 * set and we have the semaphore
1362		 */
1363		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1364		if (swsm & IXGBE_SWSM_SMBI) {
1365			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1366			return IXGBE_ERR_EEPROM;
1367		}
1368	}
1369
1370	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1371	for (i = 0; i < timeout; i++) {
1372		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1373
1374		/* Set the SW EEPROM semaphore bit to request access */
1375		swsm |= IXGBE_SWSM_SWESMBI;
1376		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1377
1378		/* If we set the bit successfully then we got the
1379		 * semaphore.
1380		 */
1381		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1382		if (swsm & IXGBE_SWSM_SWESMBI)
1383			break;
1384
1385		usleep_range(50, 100);
1386	}
1387
1388	/* Release semaphores and return error if SW EEPROM semaphore
1389	 * was not granted because we don't have access to the EEPROM
1390	 */
1391	if (i >= timeout) {
1392		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1393		ixgbe_release_eeprom_semaphore(hw);
1394		return IXGBE_ERR_EEPROM;
1395	}
1396
1397	return 0;
1398}
1399
1400/**
1401 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1402 *  @hw: pointer to hardware structure
1403 *
1404 *  This function clears hardware semaphore bits.
1405 **/
1406static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1407{
1408	u32 swsm;
1409
1410	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1411
1412	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1413	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1414	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1415	IXGBE_WRITE_FLUSH(hw);
1416}
1417
1418/**
1419 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1420 *  @hw: pointer to hardware structure
1421 **/
1422static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1423{
1424	u16 i;
1425	u8 spi_stat_reg;
1426
1427	/*
1428	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1429	 * EEPROM will signal that the command has been completed by clearing
1430	 * bit 0 of the internal status register.  If it's not cleared within
1431	 * 5 milliseconds, then error out.
1432	 */
1433	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1434		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1435					    IXGBE_EEPROM_OPCODE_BITS);
1436		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1437		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1438			break;
1439
1440		udelay(5);
1441		ixgbe_standby_eeprom(hw);
1442	}
1443
1444	/*
1445	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1446	 * devices (and only 0-5mSec on 5V devices)
1447	 */
1448	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1449		hw_dbg(hw, "SPI EEPROM Status error\n");
1450		return IXGBE_ERR_EEPROM;
1451	}
1452
1453	return 0;
1454}
1455
1456/**
1457 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1458 *  @hw: pointer to hardware structure
1459 **/
1460static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1461{
1462	u32 eec;
1463
1464	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1465
1466	/* Toggle CS to flush commands */
1467	eec |= IXGBE_EEC_CS;
1468	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1469	IXGBE_WRITE_FLUSH(hw);
1470	udelay(1);
1471	eec &= ~IXGBE_EEC_CS;
1472	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1473	IXGBE_WRITE_FLUSH(hw);
1474	udelay(1);
1475}
1476
1477/**
1478 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1479 *  @hw: pointer to hardware structure
1480 *  @data: data to send to the EEPROM
1481 *  @count: number of bits to shift out
1482 **/
1483static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1484					u16 count)
1485{
1486	u32 eec;
1487	u32 mask;
1488	u32 i;
1489
1490	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1491
1492	/*
1493	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1494	 * one bit at a time.  Determine the starting bit based on count
1495	 */
1496	mask = 0x01 << (count - 1);
1497
1498	for (i = 0; i < count; i++) {
1499		/*
1500		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1501		 * "1", and then raising and then lowering the clock (the SK
1502		 * bit controls the clock input to the EEPROM).  A "0" is
1503		 * shifted out to the EEPROM by setting "DI" to "0" and then
1504		 * raising and then lowering the clock.
1505		 */
1506		if (data & mask)
1507			eec |= IXGBE_EEC_DI;
1508		else
1509			eec &= ~IXGBE_EEC_DI;
1510
1511		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512		IXGBE_WRITE_FLUSH(hw);
1513
1514		udelay(1);
1515
1516		ixgbe_raise_eeprom_clk(hw, &eec);
1517		ixgbe_lower_eeprom_clk(hw, &eec);
1518
1519		/*
1520		 * Shift mask to signify next bit of data to shift in to the
1521		 * EEPROM
1522		 */
1523		mask = mask >> 1;
1524	}
1525
1526	/* We leave the "DI" bit set to "0" when we leave this routine. */
1527	eec &= ~IXGBE_EEC_DI;
1528	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529	IXGBE_WRITE_FLUSH(hw);
1530}
1531
1532/**
1533 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1534 *  @hw: pointer to hardware structure
 
1535 **/
1536static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1537{
1538	u32 eec;
1539	u32 i;
1540	u16 data = 0;
1541
1542	/*
1543	 * In order to read a register from the EEPROM, we need to shift
1544	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1545	 * the clock input to the EEPROM (setting the SK bit), and then reading
1546	 * the value of the "DO" bit.  During this "shifting in" process the
1547	 * "DI" bit should always be clear.
1548	 */
1549	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1550
1551	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1552
1553	for (i = 0; i < count; i++) {
1554		data = data << 1;
1555		ixgbe_raise_eeprom_clk(hw, &eec);
1556
1557		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1558
1559		eec &= ~(IXGBE_EEC_DI);
1560		if (eec & IXGBE_EEC_DO)
1561			data |= 1;
1562
1563		ixgbe_lower_eeprom_clk(hw, &eec);
1564	}
1565
1566	return data;
1567}
1568
1569/**
1570 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1571 *  @hw: pointer to hardware structure
1572 *  @eec: EEC register's current value
1573 **/
1574static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1575{
1576	/*
1577	 * Raise the clock input to the EEPROM
1578	 * (setting the SK bit), then delay
1579	 */
1580	*eec = *eec | IXGBE_EEC_SK;
1581	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1582	IXGBE_WRITE_FLUSH(hw);
1583	udelay(1);
1584}
1585
1586/**
1587 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1588 *  @hw: pointer to hardware structure
1589 *  @eecd: EECD's current value
1590 **/
1591static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1592{
1593	/*
1594	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1595	 * delay
1596	 */
1597	*eec = *eec & ~IXGBE_EEC_SK;
1598	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1599	IXGBE_WRITE_FLUSH(hw);
1600	udelay(1);
1601}
1602
1603/**
1604 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1605 *  @hw: pointer to hardware structure
1606 **/
1607static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1608{
1609	u32 eec;
1610
1611	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1612
1613	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1614	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1615
1616	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1617	IXGBE_WRITE_FLUSH(hw);
1618
1619	udelay(1);
1620
1621	/* Stop requesting EEPROM access */
1622	eec &= ~IXGBE_EEC_REQ;
1623	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1624
1625	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1626
1627	/*
1628	 * Delay before attempt to obtain semaphore again to allow FW
1629	 * access. semaphore_delay is in ms we need us for usleep_range
1630	 */
1631	usleep_range(hw->eeprom.semaphore_delay * 1000,
1632		     hw->eeprom.semaphore_delay * 2000);
1633}
1634
1635/**
1636 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1637 *  @hw: pointer to hardware structure
1638 **/
1639s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1640{
1641	u16 i;
1642	u16 j;
1643	u16 checksum = 0;
1644	u16 length = 0;
1645	u16 pointer = 0;
1646	u16 word = 0;
1647
1648	/* Include 0x0-0x3F in the checksum */
1649	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1650		if (hw->eeprom.ops.read(hw, i, &word)) {
1651			hw_dbg(hw, "EEPROM read failed\n");
1652			break;
1653		}
1654		checksum += word;
1655	}
1656
1657	/* Include all data from pointers except for the fw pointer */
1658	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1659		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1660			hw_dbg(hw, "EEPROM read failed\n");
1661			return IXGBE_ERR_EEPROM;
1662		}
1663
1664		/* If the pointer seems invalid */
1665		if (pointer == 0xFFFF || pointer == 0)
1666			continue;
1667
1668		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1669			hw_dbg(hw, "EEPROM read failed\n");
1670			return IXGBE_ERR_EEPROM;
1671		}
1672
1673		if (length == 0xFFFF || length == 0)
1674			continue;
1675
1676		for (j = pointer + 1; j <= pointer + length; j++) {
1677			if (hw->eeprom.ops.read(hw, j, &word)) {
1678				hw_dbg(hw, "EEPROM read failed\n");
1679				return IXGBE_ERR_EEPROM;
1680			}
1681			checksum += word;
1682		}
1683	}
1684
1685	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1686
1687	return (s32)checksum;
1688}
1689
1690/**
1691 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1692 *  @hw: pointer to hardware structure
1693 *  @checksum_val: calculated checksum
1694 *
1695 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1696 *  caller does not need checksum_val, the value can be NULL.
1697 **/
1698s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1699					   u16 *checksum_val)
1700{
1701	s32 status;
1702	u16 checksum;
1703	u16 read_checksum = 0;
1704
1705	/*
1706	 * Read the first word from the EEPROM. If this times out or fails, do
1707	 * not continue or we could be in for a very long wait while every
1708	 * EEPROM read fails
1709	 */
1710	status = hw->eeprom.ops.read(hw, 0, &checksum);
1711	if (status) {
1712		hw_dbg(hw, "EEPROM read failed\n");
1713		return status;
1714	}
1715
1716	status = hw->eeprom.ops.calc_checksum(hw);
1717	if (status < 0)
1718		return status;
1719
1720	checksum = (u16)(status & 0xffff);
1721
1722	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1723	if (status) {
1724		hw_dbg(hw, "EEPROM read failed\n");
1725		return status;
1726	}
1727
1728	/* Verify read checksum from EEPROM is the same as
1729	 * calculated checksum
1730	 */
1731	if (read_checksum != checksum)
1732		status = IXGBE_ERR_EEPROM_CHECKSUM;
1733
1734	/* If the user cares, return the calculated checksum */
1735	if (checksum_val)
1736		*checksum_val = checksum;
1737
1738	return status;
1739}
1740
1741/**
1742 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1743 *  @hw: pointer to hardware structure
1744 **/
1745s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1746{
1747	s32 status;
1748	u16 checksum;
1749
1750	/*
1751	 * Read the first word from the EEPROM. If this times out or fails, do
1752	 * not continue or we could be in for a very long wait while every
1753	 * EEPROM read fails
1754	 */
1755	status = hw->eeprom.ops.read(hw, 0, &checksum);
1756	if (status) {
1757		hw_dbg(hw, "EEPROM read failed\n");
1758		return status;
1759	}
1760
1761	status = hw->eeprom.ops.calc_checksum(hw);
1762	if (status < 0)
1763		return status;
1764
1765	checksum = (u16)(status & 0xffff);
1766
1767	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1768
1769	return status;
1770}
1771
1772/**
1773 *  ixgbe_set_rar_generic - Set Rx address register
1774 *  @hw: pointer to hardware structure
1775 *  @index: Receive address register to write
1776 *  @addr: Address to put into receive address register
1777 *  @vmdq: VMDq "set" or "pool" index
1778 *  @enable_addr: set flag that address is active
1779 *
1780 *  Puts an ethernet address into a receive address register.
1781 **/
1782s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1783			  u32 enable_addr)
1784{
1785	u32 rar_low, rar_high;
1786	u32 rar_entries = hw->mac.num_rar_entries;
1787
1788	/* Make sure we are using a valid rar index range */
1789	if (index >= rar_entries) {
1790		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1791		return IXGBE_ERR_INVALID_ARGUMENT;
1792	}
1793
1794	/* setup VMDq pool selection before this RAR gets enabled */
1795	hw->mac.ops.set_vmdq(hw, index, vmdq);
1796
1797	/*
1798	 * HW expects these in little endian so we reverse the byte
1799	 * order from network order (big endian) to little endian
1800	 */
1801	rar_low = ((u32)addr[0] |
1802		   ((u32)addr[1] << 8) |
1803		   ((u32)addr[2] << 16) |
1804		   ((u32)addr[3] << 24));
1805	/*
1806	 * Some parts put the VMDq setting in the extra RAH bits,
1807	 * so save everything except the lower 16 bits that hold part
1808	 * of the address and the address valid bit.
1809	 */
1810	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1811	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1812	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1813
1814	if (enable_addr != 0)
1815		rar_high |= IXGBE_RAH_AV;
1816
 
 
 
 
1817	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
 
1818	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1819
1820	return 0;
1821}
1822
1823/**
1824 *  ixgbe_clear_rar_generic - Remove Rx address register
1825 *  @hw: pointer to hardware structure
1826 *  @index: Receive address register to write
1827 *
1828 *  Clears an ethernet address from a receive address register.
1829 **/
1830s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1831{
1832	u32 rar_high;
1833	u32 rar_entries = hw->mac.num_rar_entries;
1834
1835	/* Make sure we are using a valid rar index range */
1836	if (index >= rar_entries) {
1837		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1838		return IXGBE_ERR_INVALID_ARGUMENT;
1839	}
1840
1841	/*
1842	 * Some parts put the VMDq setting in the extra RAH bits,
1843	 * so save everything except the lower 16 bits that hold part
1844	 * of the address and the address valid bit.
1845	 */
1846	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1847	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1848
1849	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
 
 
 
1850	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
 
 
1851
1852	/* clear VMDq pool/queue selection for this RAR */
1853	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1854
1855	return 0;
1856}
1857
1858/**
1859 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1860 *  @hw: pointer to hardware structure
1861 *
1862 *  Places the MAC address in receive address register 0 and clears the rest
1863 *  of the receive address registers. Clears the multicast table. Assumes
1864 *  the receiver is in reset when the routine is called.
1865 **/
1866s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1867{
1868	u32 i;
1869	u32 rar_entries = hw->mac.num_rar_entries;
1870
1871	/*
1872	 * If the current mac address is valid, assume it is a software override
1873	 * to the permanent address.
1874	 * Otherwise, use the permanent address from the eeprom.
1875	 */
1876	if (!is_valid_ether_addr(hw->mac.addr)) {
1877		/* Get the MAC address from the RAR0 for later reference */
1878		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1879
1880		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1881	} else {
1882		/* Setup the receive address. */
1883		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1884		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1885
1886		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1887	}
1888
1889	/*  clear VMDq pool/queue selection for RAR 0 */
1890	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1891
1892	hw->addr_ctrl.overflow_promisc = 0;
1893
1894	hw->addr_ctrl.rar_used_count = 1;
1895
1896	/* Zero out the other receive addresses. */
1897	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1898	for (i = 1; i < rar_entries; i++) {
1899		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1900		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1901	}
1902
1903	/* Clear the MTA */
1904	hw->addr_ctrl.mta_in_use = 0;
1905	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1906
1907	hw_dbg(hw, " Clearing MTA\n");
1908	for (i = 0; i < hw->mac.mcft_size; i++)
1909		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1910
1911	if (hw->mac.ops.init_uta_tables)
1912		hw->mac.ops.init_uta_tables(hw);
1913
1914	return 0;
1915}
1916
1917/**
1918 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1919 *  @hw: pointer to hardware structure
1920 *  @mc_addr: the multicast address
1921 *
1922 *  Extracts the 12 bits, from a multicast address, to determine which
1923 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1924 *  incoming rx multicast addresses, to determine the bit-vector to check in
1925 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1926 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1927 *  to mc_filter_type.
1928 **/
1929static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1930{
1931	u32 vector = 0;
1932
1933	switch (hw->mac.mc_filter_type) {
1934	case 0:   /* use bits [47:36] of the address */
1935		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1936		break;
1937	case 1:   /* use bits [46:35] of the address */
1938		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1939		break;
1940	case 2:   /* use bits [45:34] of the address */
1941		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1942		break;
1943	case 3:   /* use bits [43:32] of the address */
1944		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1945		break;
1946	default:  /* Invalid mc_filter_type */
1947		hw_dbg(hw, "MC filter type param set incorrectly\n");
1948		break;
1949	}
1950
1951	/* vector can only be 12-bits or boundary will be exceeded */
1952	vector &= 0xFFF;
1953	return vector;
1954}
1955
1956/**
1957 *  ixgbe_set_mta - Set bit-vector in multicast table
1958 *  @hw: pointer to hardware structure
1959 *  @hash_value: Multicast address hash value
1960 *
1961 *  Sets the bit-vector in the multicast table.
1962 **/
1963static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1964{
1965	u32 vector;
1966	u32 vector_bit;
1967	u32 vector_reg;
1968
1969	hw->addr_ctrl.mta_in_use++;
1970
1971	vector = ixgbe_mta_vector(hw, mc_addr);
1972	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1973
1974	/*
1975	 * The MTA is a register array of 128 32-bit registers. It is treated
1976	 * like an array of 4096 bits.  We want to set bit
1977	 * BitArray[vector_value]. So we figure out what register the bit is
1978	 * in, read it, OR in the new bit, then write back the new value.  The
1979	 * register is determined by the upper 7 bits of the vector value and
1980	 * the bit within that register are determined by the lower 5 bits of
1981	 * the value.
1982	 */
1983	vector_reg = (vector >> 5) & 0x7F;
1984	vector_bit = vector & 0x1F;
1985	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1986}
1987
1988/**
1989 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1990 *  @hw: pointer to hardware structure
1991 *  @netdev: pointer to net device structure
1992 *
1993 *  The given list replaces any existing list. Clears the MC addrs from receive
1994 *  address registers and the multicast table. Uses unused receive address
1995 *  registers for the first multicast addresses, and hashes the rest into the
1996 *  multicast table.
1997 **/
1998s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1999				      struct net_device *netdev)
2000{
2001	struct netdev_hw_addr *ha;
2002	u32 i;
2003
2004	/*
2005	 * Set the new number of MC addresses that we are being requested to
2006	 * use.
2007	 */
2008	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2009	hw->addr_ctrl.mta_in_use = 0;
2010
2011	/* Clear mta_shadow */
2012	hw_dbg(hw, " Clearing MTA\n");
2013	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2014
2015	/* Update mta shadow */
2016	netdev_for_each_mc_addr(ha, netdev) {
2017		hw_dbg(hw, " Adding the multicast addresses:\n");
2018		ixgbe_set_mta(hw, ha->addr);
2019	}
2020
2021	/* Enable mta */
2022	for (i = 0; i < hw->mac.mcft_size; i++)
2023		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2024				      hw->mac.mta_shadow[i]);
2025
2026	if (hw->addr_ctrl.mta_in_use > 0)
2027		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2028				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2029
2030	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2031	return 0;
2032}
2033
2034/**
2035 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2036 *  @hw: pointer to hardware structure
2037 *
2038 *  Enables multicast address in RAR and the use of the multicast hash table.
2039 **/
2040s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2041{
2042	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2043
2044	if (a->mta_in_use > 0)
2045		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2046				hw->mac.mc_filter_type);
2047
2048	return 0;
2049}
2050
2051/**
2052 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2053 *  @hw: pointer to hardware structure
2054 *
2055 *  Disables multicast address in RAR and the use of the multicast hash table.
2056 **/
2057s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2058{
2059	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2060
2061	if (a->mta_in_use > 0)
2062		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2063
2064	return 0;
2065}
2066
2067/**
2068 *  ixgbe_fc_enable_generic - Enable flow control
2069 *  @hw: pointer to hardware structure
2070 *
2071 *  Enable flow control according to the current settings.
2072 **/
2073s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2074{
2075	u32 mflcn_reg, fccfg_reg;
2076	u32 reg;
2077	u32 fcrtl, fcrth;
2078	int i;
2079
2080	/* Validate the water mark configuration. */
2081	if (!hw->fc.pause_time)
2082		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2083
2084	/* Low water mark of zero causes XOFF floods */
2085	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2086		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2087		    hw->fc.high_water[i]) {
2088			if (!hw->fc.low_water[i] ||
2089			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2090				hw_dbg(hw, "Invalid water mark configuration\n");
2091				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2092			}
2093		}
2094	}
2095
2096	/* Negotiate the fc mode to use */
2097	ixgbe_fc_autoneg(hw);
2098
2099	/* Disable any previous flow control settings */
2100	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2101	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2102
2103	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2104	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2105
2106	/*
2107	 * The possible values of fc.current_mode are:
2108	 * 0: Flow control is completely disabled
2109	 * 1: Rx flow control is enabled (we can receive pause frames,
2110	 *    but not send pause frames).
2111	 * 2: Tx flow control is enabled (we can send pause frames but
2112	 *    we do not support receiving pause frames).
2113	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2114	 * other: Invalid.
2115	 */
2116	switch (hw->fc.current_mode) {
2117	case ixgbe_fc_none:
2118		/*
2119		 * Flow control is disabled by software override or autoneg.
2120		 * The code below will actually disable it in the HW.
2121		 */
2122		break;
2123	case ixgbe_fc_rx_pause:
2124		/*
2125		 * Rx Flow control is enabled and Tx Flow control is
2126		 * disabled by software override. Since there really
2127		 * isn't a way to advertise that we are capable of RX
2128		 * Pause ONLY, we will advertise that we support both
2129		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2130		 * disable the adapter's ability to send PAUSE frames.
2131		 */
2132		mflcn_reg |= IXGBE_MFLCN_RFCE;
2133		break;
2134	case ixgbe_fc_tx_pause:
2135		/*
2136		 * Tx Flow control is enabled, and Rx Flow control is
2137		 * disabled by software override.
2138		 */
2139		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2140		break;
2141	case ixgbe_fc_full:
2142		/* Flow control (both Rx and Tx) is enabled by SW override. */
2143		mflcn_reg |= IXGBE_MFLCN_RFCE;
2144		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2145		break;
2146	default:
2147		hw_dbg(hw, "Flow control param set incorrectly\n");
2148		return IXGBE_ERR_CONFIG;
2149	}
2150
2151	/* Set 802.3x based flow control settings. */
2152	mflcn_reg |= IXGBE_MFLCN_DPF;
2153	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2154	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2155
2156	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2157	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2158		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2159		    hw->fc.high_water[i]) {
2160			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2161			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2162			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2163		} else {
2164			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2165			/*
2166			 * In order to prevent Tx hangs when the internal Tx
2167			 * switch is enabled we must set the high water mark
2168			 * to the Rx packet buffer size - 24KB.  This allows
2169			 * the Tx switch to function even under heavy Rx
2170			 * workloads.
2171			 */
2172			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2173		}
2174
2175		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2176	}
2177
2178	/* Configure pause time (2 TCs per register) */
2179	reg = hw->fc.pause_time * 0x00010001;
2180	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2181		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2182
2183	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2184
2185	return 0;
2186}
2187
2188/**
2189 *  ixgbe_negotiate_fc - Negotiate flow control
2190 *  @hw: pointer to hardware structure
2191 *  @adv_reg: flow control advertised settings
2192 *  @lp_reg: link partner's flow control settings
2193 *  @adv_sym: symmetric pause bit in advertisement
2194 *  @adv_asm: asymmetric pause bit in advertisement
2195 *  @lp_sym: symmetric pause bit in link partner advertisement
2196 *  @lp_asm: asymmetric pause bit in link partner advertisement
2197 *
2198 *  Find the intersection between advertised settings and link partner's
2199 *  advertised settings
2200 **/
2201static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2202			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2203{
2204	if ((!(adv_reg)) ||  (!(lp_reg)))
2205		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2206
2207	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2208		/*
2209		 * Now we need to check if the user selected Rx ONLY
2210		 * of pause frames.  In this case, we had to advertise
2211		 * FULL flow control because we could not advertise RX
2212		 * ONLY. Hence, we must now check to see if we need to
2213		 * turn OFF the TRANSMISSION of PAUSE frames.
2214		 */
2215		if (hw->fc.requested_mode == ixgbe_fc_full) {
2216			hw->fc.current_mode = ixgbe_fc_full;
2217			hw_dbg(hw, "Flow Control = FULL.\n");
2218		} else {
2219			hw->fc.current_mode = ixgbe_fc_rx_pause;
2220			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2221		}
2222	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2223		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2224		hw->fc.current_mode = ixgbe_fc_tx_pause;
2225		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2226	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2227		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2228		hw->fc.current_mode = ixgbe_fc_rx_pause;
2229		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2230	} else {
2231		hw->fc.current_mode = ixgbe_fc_none;
2232		hw_dbg(hw, "Flow Control = NONE.\n");
2233	}
2234	return 0;
2235}
2236
2237/**
2238 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2239 *  @hw: pointer to hardware structure
2240 *
2241 *  Enable flow control according on 1 gig fiber.
2242 **/
2243static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2244{
2245	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2246	s32 ret_val;
2247
2248	/*
2249	 * On multispeed fiber at 1g, bail out if
2250	 * - link is up but AN did not complete, or if
2251	 * - link is up and AN completed but timed out
2252	 */
2253
2254	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2255	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2256	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2257		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2258
2259	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2260	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2261
2262	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2263			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2264			       IXGBE_PCS1GANA_ASM_PAUSE,
2265			       IXGBE_PCS1GANA_SYM_PAUSE,
2266			       IXGBE_PCS1GANA_ASM_PAUSE);
2267
2268	return ret_val;
2269}
2270
2271/**
2272 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2273 *  @hw: pointer to hardware structure
2274 *
2275 *  Enable flow control according to IEEE clause 37.
2276 **/
2277static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2278{
2279	u32 links2, anlp1_reg, autoc_reg, links;
2280	s32 ret_val;
2281
2282	/*
2283	 * On backplane, bail out if
2284	 * - backplane autoneg was not completed, or if
2285	 * - we are 82599 and link partner is not AN enabled
2286	 */
2287	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2288	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2289		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290
2291	if (hw->mac.type == ixgbe_mac_82599EB) {
2292		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2293		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2294			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2295	}
2296	/*
2297	 * Read the 10g AN autoc and LP ability registers and resolve
2298	 * local flow control settings accordingly
2299	 */
2300	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2301	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2302
2303	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2304		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2305		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2306
2307	return ret_val;
2308}
2309
2310/**
2311 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2312 *  @hw: pointer to hardware structure
2313 *
2314 *  Enable flow control according to IEEE clause 37.
2315 **/
2316static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2317{
2318	u16 technology_ability_reg = 0;
2319	u16 lp_technology_ability_reg = 0;
2320
2321	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2322			     MDIO_MMD_AN,
2323			     &technology_ability_reg);
2324	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2325			     MDIO_MMD_AN,
2326			     &lp_technology_ability_reg);
2327
2328	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2329				  (u32)lp_technology_ability_reg,
2330				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2331				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2332}
2333
2334/**
2335 *  ixgbe_fc_autoneg - Configure flow control
2336 *  @hw: pointer to hardware structure
2337 *
2338 *  Compares our advertised flow control capabilities to those advertised by
2339 *  our link partner, and determines the proper flow control mode to use.
2340 **/
2341void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2342{
2343	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2344	ixgbe_link_speed speed;
2345	bool link_up;
2346
2347	/*
2348	 * AN should have completed when the cable was plugged in.
2349	 * Look for reasons to bail out.  Bail out if:
2350	 * - FC autoneg is disabled, or if
2351	 * - link is not up.
2352	 *
2353	 * Since we're being called from an LSC, link is already known to be up.
2354	 * So use link_up_wait_to_complete=false.
2355	 */
2356	if (hw->fc.disable_fc_autoneg)
2357		goto out;
2358
2359	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2360	if (!link_up)
2361		goto out;
2362
2363	switch (hw->phy.media_type) {
2364	/* Autoneg flow control on fiber adapters */
2365	case ixgbe_media_type_fiber:
2366		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2367			ret_val = ixgbe_fc_autoneg_fiber(hw);
2368		break;
2369
2370	/* Autoneg flow control on backplane adapters */
2371	case ixgbe_media_type_backplane:
2372		ret_val = ixgbe_fc_autoneg_backplane(hw);
2373		break;
2374
2375	/* Autoneg flow control on copper adapters */
2376	case ixgbe_media_type_copper:
2377		if (ixgbe_device_supports_autoneg_fc(hw))
2378			ret_val = ixgbe_fc_autoneg_copper(hw);
2379		break;
2380
2381	default:
2382		break;
2383	}
2384
2385out:
2386	if (ret_val == 0) {
2387		hw->fc.fc_was_autonegged = true;
2388	} else {
2389		hw->fc.fc_was_autonegged = false;
2390		hw->fc.current_mode = hw->fc.requested_mode;
2391	}
2392}
2393
2394/**
2395 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2396 * @hw: pointer to hardware structure
2397 *
2398 * System-wide timeout range is encoded in PCIe Device Control2 register.
2399 *
2400 *  Add 10% to specified maximum and return the number of times to poll for
2401 *  completion timeout, in units of 100 microsec.  Never return less than
2402 *  800 = 80 millisec.
2403 **/
2404static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2405{
2406	s16 devctl2;
2407	u32 pollcnt;
2408
2409	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2410	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2411
2412	switch (devctl2) {
2413	case IXGBE_PCIDEVCTRL2_65_130ms:
2414		 pollcnt = 1300;         /* 130 millisec */
2415		break;
2416	case IXGBE_PCIDEVCTRL2_260_520ms:
2417		pollcnt = 5200;         /* 520 millisec */
2418		break;
2419	case IXGBE_PCIDEVCTRL2_1_2s:
2420		pollcnt = 20000;        /* 2 sec */
2421		break;
2422	case IXGBE_PCIDEVCTRL2_4_8s:
2423		pollcnt = 80000;        /* 8 sec */
2424		break;
2425	case IXGBE_PCIDEVCTRL2_17_34s:
2426		pollcnt = 34000;        /* 34 sec */
2427		break;
2428	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2429	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2430	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2431	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2432	default:
2433		pollcnt = 800;          /* 80 millisec minimum */
2434		break;
2435	}
2436
2437	/* add 10% to spec maximum */
2438	return (pollcnt * 11) / 10;
2439}
2440
2441/**
2442 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2443 *  @hw: pointer to hardware structure
2444 *
2445 *  Disables PCI-Express master access and verifies there are no pending
2446 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2447 *  bit hasn't caused the master requests to be disabled, else 0
2448 *  is returned signifying master requests disabled.
2449 **/
2450static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2451{
2452	u32 i, poll;
2453	u16 value;
2454
2455	/* Always set this bit to ensure any future transactions are blocked */
2456	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2457
2458	/* Poll for bit to read as set */
2459	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2460		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2461			break;
2462		usleep_range(100, 120);
2463	}
2464	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2465		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2466		goto gio_disable_fail;
2467	}
2468
2469	/* Exit if master requests are blocked */
2470	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2471	    ixgbe_removed(hw->hw_addr))
2472		return 0;
2473
2474	/* Poll for master request bit to clear */
2475	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2476		udelay(100);
2477		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2478			return 0;
2479	}
2480
2481	/*
2482	 * Two consecutive resets are required via CTRL.RST per datasheet
2483	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2484	 * of this need.  The first reset prevents new master requests from
2485	 * being issued by our device.  We then must wait 1usec or more for any
2486	 * remaining completions from the PCIe bus to trickle in, and then reset
2487	 * again to clear out any effects they may have had on our device.
2488	 */
2489	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2490gio_disable_fail:
2491	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2492
2493	if (hw->mac.type >= ixgbe_mac_X550)
2494		return 0;
2495
2496	/*
2497	 * Before proceeding, make sure that the PCIe block does not have
2498	 * transactions pending.
2499	 */
2500	poll = ixgbe_pcie_timeout_poll(hw);
2501	for (i = 0; i < poll; i++) {
2502		udelay(100);
2503		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2504		if (ixgbe_removed(hw->hw_addr))
2505			return 0;
2506		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2507			return 0;
2508	}
2509
2510	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2511	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2512}
2513
2514/**
2515 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2516 *  @hw: pointer to hardware structure
2517 *  @mask: Mask to specify which semaphore to acquire
2518 *
2519 *  Acquires the SWFW semaphore through the GSSR register for the specified
2520 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2521 **/
2522s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2523{
2524	u32 gssr = 0;
2525	u32 swmask = mask;
2526	u32 fwmask = mask << 5;
2527	u32 timeout = 200;
2528	u32 i;
2529
2530	for (i = 0; i < timeout; i++) {
2531		/*
2532		 * SW NVM semaphore bit is used for access to all
2533		 * SW_FW_SYNC bits (not just NVM)
2534		 */
2535		if (ixgbe_get_eeprom_semaphore(hw))
2536			return IXGBE_ERR_SWFW_SYNC;
2537
2538		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2539		if (!(gssr & (fwmask | swmask))) {
2540			gssr |= swmask;
2541			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2542			ixgbe_release_eeprom_semaphore(hw);
2543			return 0;
2544		} else {
2545			/* Resource is currently in use by FW or SW */
2546			ixgbe_release_eeprom_semaphore(hw);
2547			usleep_range(5000, 10000);
2548		}
2549	}
2550
2551	/* If time expired clear the bits holding the lock and retry */
2552	if (gssr & (fwmask | swmask))
2553		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2554
2555	usleep_range(5000, 10000);
2556	return IXGBE_ERR_SWFW_SYNC;
2557}
2558
2559/**
2560 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2561 *  @hw: pointer to hardware structure
2562 *  @mask: Mask to specify which semaphore to release
2563 *
2564 *  Releases the SWFW semaphore through the GSSR register for the specified
2565 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2566 **/
2567void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2568{
2569	u32 gssr;
2570	u32 swmask = mask;
2571
2572	ixgbe_get_eeprom_semaphore(hw);
2573
2574	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2575	gssr &= ~swmask;
2576	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2577
2578	ixgbe_release_eeprom_semaphore(hw);
2579}
2580
2581/**
2582 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2583 * @hw: pointer to hardware structure
2584 * @reg_val: Value we read from AUTOC
2585 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2586 *	    true in this the generic case.
2587 *
2588 * The default case requires no protection so just to the register read.
2589 **/
2590s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2591{
2592	*locked = false;
2593	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2594	return 0;
2595}
2596
2597/**
2598 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2599 * @hw: pointer to hardware structure
2600 * @reg_val: value to write to AUTOC
2601 * @locked: bool to indicate whether the SW/FW lock was already taken by
2602 *	    previous read.
2603 **/
2604s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2605{
2606	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2607	return 0;
2608}
2609
2610/**
2611 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2612 *  @hw: pointer to hardware structure
2613 *
2614 *  Stops the receive data path and waits for the HW to internally
2615 *  empty the Rx security block.
2616 **/
2617s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2618{
2619#define IXGBE_MAX_SECRX_POLL 40
2620	int i;
2621	int secrxreg;
2622
2623	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2624	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2625	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2626	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2627		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2628		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2629			break;
2630		else
2631			/* Use interrupt-safe sleep just in case */
2632			udelay(1000);
2633	}
2634
2635	/* For informational purposes only */
2636	if (i >= IXGBE_MAX_SECRX_POLL)
2637		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2638
2639	return 0;
2640
2641}
2642
2643/**
2644 *  ixgbe_enable_rx_buff - Enables the receive data path
2645 *  @hw: pointer to hardware structure
2646 *
2647 *  Enables the receive data path
2648 **/
2649s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2650{
2651	int secrxreg;
2652
2653	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2654	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2655	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2656	IXGBE_WRITE_FLUSH(hw);
2657
2658	return 0;
2659}
2660
2661/**
2662 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2663 *  @hw: pointer to hardware structure
2664 *  @regval: register value to write to RXCTRL
2665 *
2666 *  Enables the Rx DMA unit
2667 **/
2668s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2669{
2670	if (regval & IXGBE_RXCTRL_RXEN)
2671		hw->mac.ops.enable_rx(hw);
2672	else
2673		hw->mac.ops.disable_rx(hw);
2674
2675	return 0;
2676}
2677
2678/**
2679 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2680 *  @hw: pointer to hardware structure
2681 *  @index: led number to blink
2682 **/
2683s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2684{
2685	ixgbe_link_speed speed = 0;
2686	bool link_up = false;
2687	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2688	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2689	bool locked = false;
2690	s32 ret_val;
2691
 
 
 
2692	/*
2693	 * Link must be up to auto-blink the LEDs;
2694	 * Force it if link is down.
2695	 */
2696	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2697
2698	if (!link_up) {
2699		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2700		if (ret_val)
2701			return ret_val;
2702
2703		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2704		autoc_reg |= IXGBE_AUTOC_FLU;
2705
2706		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2707		if (ret_val)
2708			return ret_val;
2709
2710		IXGBE_WRITE_FLUSH(hw);
2711
2712		usleep_range(10000, 20000);
2713	}
2714
2715	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2716	led_reg |= IXGBE_LED_BLINK(index);
2717	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2718	IXGBE_WRITE_FLUSH(hw);
2719
2720	return 0;
2721}
2722
2723/**
2724 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2725 *  @hw: pointer to hardware structure
2726 *  @index: led number to stop blinking
2727 **/
2728s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2729{
2730	u32 autoc_reg = 0;
2731	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2732	bool locked = false;
2733	s32 ret_val;
2734
 
 
 
2735	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2736	if (ret_val)
2737		return ret_val;
2738
2739	autoc_reg &= ~IXGBE_AUTOC_FLU;
2740	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2741
2742	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2743	if (ret_val)
2744		return ret_val;
2745
2746	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2747	led_reg &= ~IXGBE_LED_BLINK(index);
2748	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2749	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2750	IXGBE_WRITE_FLUSH(hw);
2751
2752	return 0;
2753}
2754
2755/**
2756 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2757 *  @hw: pointer to hardware structure
2758 *  @san_mac_offset: SAN MAC address offset
2759 *
2760 *  This function will read the EEPROM location for the SAN MAC address
2761 *  pointer, and returns the value at that location.  This is used in both
2762 *  get and set mac_addr routines.
2763 **/
2764static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2765					u16 *san_mac_offset)
2766{
2767	s32 ret_val;
2768
2769	/*
2770	 * First read the EEPROM pointer to see if the MAC addresses are
2771	 * available.
2772	 */
2773	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2774				      san_mac_offset);
2775	if (ret_val)
2776		hw_err(hw, "eeprom read at offset %d failed\n",
2777		       IXGBE_SAN_MAC_ADDR_PTR);
2778
2779	return ret_val;
2780}
2781
2782/**
2783 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2784 *  @hw: pointer to hardware structure
2785 *  @san_mac_addr: SAN MAC address
2786 *
2787 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2788 *  per-port, so set_lan_id() must be called before reading the addresses.
2789 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2790 *  upon for non-SFP connections, so we must call it here.
2791 **/
2792s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2793{
2794	u16 san_mac_data, san_mac_offset;
2795	u8 i;
2796	s32 ret_val;
2797
2798	/*
2799	 * First read the EEPROM pointer to see if the MAC addresses are
2800	 * available.  If they're not, no point in calling set_lan_id() here.
2801	 */
2802	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2803	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2804
2805		goto san_mac_addr_clr;
2806
2807	/* make sure we know which port we need to program */
2808	hw->mac.ops.set_lan_id(hw);
2809	/* apply the port offset to the address offset */
2810	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2811			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2812	for (i = 0; i < 3; i++) {
2813		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2814					      &san_mac_data);
2815		if (ret_val) {
2816			hw_err(hw, "eeprom read at offset %d failed\n",
2817			       san_mac_offset);
2818			goto san_mac_addr_clr;
2819		}
2820		san_mac_addr[i * 2] = (u8)(san_mac_data);
2821		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2822		san_mac_offset++;
2823	}
2824	return 0;
2825
2826san_mac_addr_clr:
2827	/* No addresses available in this EEPROM.  It's not necessarily an
2828	 * error though, so just wipe the local address and return.
2829	 */
2830	for (i = 0; i < 6; i++)
2831		san_mac_addr[i] = 0xFF;
2832	return ret_val;
2833}
2834
2835/**
2836 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2837 *  @hw: pointer to hardware structure
2838 *
2839 *  Read PCIe configuration space, and get the MSI-X vector count from
2840 *  the capabilities table.
2841 **/
2842u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2843{
2844	u16 msix_count;
2845	u16 max_msix_count;
2846	u16 pcie_offset;
2847
2848	switch (hw->mac.type) {
2849	case ixgbe_mac_82598EB:
2850		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2851		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2852		break;
2853	case ixgbe_mac_82599EB:
2854	case ixgbe_mac_X540:
2855	case ixgbe_mac_X550:
2856	case ixgbe_mac_X550EM_x:
 
2857		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2858		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2859		break;
2860	default:
2861		return 1;
2862	}
2863
2864	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2865	if (ixgbe_removed(hw->hw_addr))
2866		msix_count = 0;
2867	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2868
2869	/* MSI-X count is zero-based in HW */
2870	msix_count++;
2871
2872	if (msix_count > max_msix_count)
2873		msix_count = max_msix_count;
2874
2875	return msix_count;
2876}
2877
2878/**
2879 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2880 *  @hw: pointer to hardware struct
2881 *  @rar: receive address register index to disassociate
2882 *  @vmdq: VMDq pool index to remove from the rar
2883 **/
2884s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2885{
2886	u32 mpsar_lo, mpsar_hi;
2887	u32 rar_entries = hw->mac.num_rar_entries;
2888
2889	/* Make sure we are using a valid rar index range */
2890	if (rar >= rar_entries) {
2891		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2892		return IXGBE_ERR_INVALID_ARGUMENT;
2893	}
2894
2895	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2896	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2897
2898	if (ixgbe_removed(hw->hw_addr))
2899		return 0;
2900
2901	if (!mpsar_lo && !mpsar_hi)
2902		return 0;
2903
2904	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2905		if (mpsar_lo) {
2906			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2907			mpsar_lo = 0;
2908		}
2909		if (mpsar_hi) {
2910			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2911			mpsar_hi = 0;
2912		}
2913	} else if (vmdq < 32) {
2914		mpsar_lo &= ~(1 << vmdq);
2915		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2916	} else {
2917		mpsar_hi &= ~(1 << (vmdq - 32));
2918		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2919	}
2920
2921	/* was that the last pool using this rar? */
2922	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
 
2923		hw->mac.ops.clear_rar(hw, rar);
 
2924	return 0;
2925}
2926
2927/**
2928 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2929 *  @hw: pointer to hardware struct
2930 *  @rar: receive address register index to associate with a VMDq index
2931 *  @vmdq: VMDq pool index
2932 **/
2933s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2934{
2935	u32 mpsar;
2936	u32 rar_entries = hw->mac.num_rar_entries;
2937
2938	/* Make sure we are using a valid rar index range */
2939	if (rar >= rar_entries) {
2940		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2941		return IXGBE_ERR_INVALID_ARGUMENT;
2942	}
2943
2944	if (vmdq < 32) {
2945		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2946		mpsar |= 1 << vmdq;
2947		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2948	} else {
2949		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2950		mpsar |= 1 << (vmdq - 32);
2951		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2952	}
2953	return 0;
2954}
2955
2956/**
 
 
 
 
2957 *  This function should only be involved in the IOV mode.
2958 *  In IOV mode, Default pool is next pool after the number of
2959 *  VFs advertized and not 0.
2960 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2961 *
2962 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2963 *  @hw: pointer to hardware struct
2964 *  @vmdq: VMDq pool index
2965 **/
2966s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2967{
2968	u32 rar = hw->mac.san_mac_rar_index;
2969
2970	if (vmdq < 32) {
2971		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2972		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2973	} else {
2974		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2975		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2976	}
2977
2978	return 0;
2979}
2980
2981/**
2982 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2983 *  @hw: pointer to hardware structure
2984 **/
2985s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2986{
2987	int i;
2988
2989	for (i = 0; i < 128; i++)
2990		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2991
2992	return 0;
2993}
2994
2995/**
2996 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2997 *  @hw: pointer to hardware structure
2998 *  @vlan: VLAN id to write to VLAN filter
 
 
2999 *
3000 *  return the VLVF index where this VLAN id should be placed
3001 *
3002 **/
3003static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3004{
3005	s32 regindex, first_empty_slot;
3006	u32 bits;
3007
3008	/* short cut the special case */
3009	if (vlan == 0)
3010		return 0;
3011
3012	/* if vlvf_bypass is set we don't want to use an empty slot, we
3013	 * will simply bypass the VLVF if there are no entries present in the
3014	 * VLVF that contain our VLAN
3015	 */
3016	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3017
3018	/* add VLAN enable bit for comparison */
3019	vlan |= IXGBE_VLVF_VIEN;
3020
3021	/* Search for the vlan id in the VLVF entries. Save off the first empty
3022	 * slot found along the way.
3023	 *
3024	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3025	 */
3026	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3027		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3028		if (bits == vlan)
3029			return regindex;
3030		if (!first_empty_slot && !bits)
3031			first_empty_slot = regindex;
3032	}
3033
3034	/* If we are here then we didn't find the VLAN.  Return first empty
3035	 * slot we found during our search, else error.
3036	 */
3037	if (!first_empty_slot)
3038		hw_dbg(hw, "No space in VLVF.\n");
3039
3040	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3041}
3042
3043/**
3044 *  ixgbe_set_vfta_generic - Set VLAN filter table
3045 *  @hw: pointer to hardware structure
3046 *  @vlan: VLAN id to write to VLAN filter
3047 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3048 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3049 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3050 *
3051 *  Turn on/off specified VLAN in the VLAN filter table.
3052 **/
3053s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3054			   bool vlan_on, bool vlvf_bypass)
3055{
3056	u32 regidx, vfta_delta, vfta, bits;
3057	s32 vlvf_index;
3058
3059	if ((vlan > 4095) || (vind > 63))
3060		return IXGBE_ERR_PARAM;
3061
3062	/*
3063	 * this is a 2 part operation - first the VFTA, then the
3064	 * VLVF and VLVFB if VT Mode is set
3065	 * We don't write the VFTA until we know the VLVF part succeeded.
3066	 */
3067
3068	/* Part 1
3069	 * The VFTA is a bitstring made up of 128 32-bit registers
3070	 * that enable the particular VLAN id, much like the MTA:
3071	 *    bits[11-5]: which register
3072	 *    bits[4-0]:  which bit in the register
3073	 */
3074	regidx = vlan / 32;
3075	vfta_delta = 1 << (vlan % 32);
3076	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3077
3078	/* vfta_delta represents the difference between the current value
3079	 * of vfta and the value we want in the register.  Since the diff
3080	 * is an XOR mask we can just update vfta using an XOR.
3081	 */
3082	vfta_delta &= vlan_on ? ~vfta : vfta;
3083	vfta ^= vfta_delta;
3084
3085	/* Part 2
3086	 * If VT Mode is set
3087	 *   Either vlan_on
3088	 *     make sure the vlan is in VLVF
3089	 *     set the vind bit in the matching VLVFB
3090	 *   Or !vlan_on
3091	 *     clear the pool bit and possibly the vind
3092	 */
3093	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3094		goto vfta_update;
3095
3096	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3097	if (vlvf_index < 0) {
3098		if (vlvf_bypass)
3099			goto vfta_update;
3100		return vlvf_index;
3101	}
3102
3103	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3104
3105	/* set the pool bit */
3106	bits |= 1 << (vind % 32);
3107	if (vlan_on)
3108		goto vlvf_update;
3109
3110	/* clear the pool bit */
3111	bits ^= 1 << (vind % 32);
3112
3113	if (!bits &&
3114	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3115		/* Clear VFTA first, then disable VLVF.  Otherwise
3116		 * we run the risk of stray packets leaking into
3117		 * the PF via the default pool
3118		 */
3119		if (vfta_delta)
3120			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3121
3122		/* disable VLVF and clear remaining bit from pool */
3123		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3124		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3125
3126		return 0;
3127	}
3128
3129	/* If there are still bits set in the VLVFB registers
3130	 * for the VLAN ID indicated we need to see if the
3131	 * caller is requesting that we clear the VFTA entry bit.
3132	 * If the caller has requested that we clear the VFTA
3133	 * entry bit but there are still pools/VFs using this VLAN
3134	 * ID entry then ignore the request.  We're not worried
3135	 * about the case where we're turning the VFTA VLAN ID
3136	 * entry bit on, only when requested to turn it off as
3137	 * there may be multiple pools and/or VFs using the
3138	 * VLAN ID entry.  In that case we cannot clear the
3139	 * VFTA bit until all pools/VFs using that VLAN ID have also
3140	 * been cleared.  This will be indicated by "bits" being
3141	 * zero.
3142	 */
3143	vfta_delta = 0;
3144
3145vlvf_update:
3146	/* record pool change and enable VLAN ID if not already enabled */
3147	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3148	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3149
3150vfta_update:
3151	/* Update VFTA now that we are ready for traffic */
3152	if (vfta_delta)
3153		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3154
3155	return 0;
3156}
3157
3158/**
3159 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3160 *  @hw: pointer to hardware structure
3161 *
3162 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3163 **/
3164s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3165{
3166	u32 offset;
3167
3168	for (offset = 0; offset < hw->mac.vft_size; offset++)
3169		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3170
3171	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3172		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3173		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3174		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3175	}
3176
3177	return 0;
3178}
3179
3180/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3181 *  ixgbe_check_mac_link_generic - Determine link and speed status
3182 *  @hw: pointer to hardware structure
3183 *  @speed: pointer to link speed
3184 *  @link_up: true when link is up
3185 *  @link_up_wait_to_complete: bool used to wait for link up or not
3186 *
3187 *  Reads the links register to determine if link is up and the current speed
3188 **/
3189s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3190				 bool *link_up, bool link_up_wait_to_complete)
3191{
3192	u32 links_reg, links_orig;
3193	u32 i;
3194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195	/* clear the old state */
3196	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3197
3198	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3199
3200	if (links_orig != links_reg) {
3201		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3202		       links_orig, links_reg);
3203	}
3204
3205	if (link_up_wait_to_complete) {
3206		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3207			if (links_reg & IXGBE_LINKS_UP) {
3208				*link_up = true;
3209				break;
3210			} else {
3211				*link_up = false;
3212			}
3213			msleep(100);
3214			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3215		}
3216	} else {
3217		if (links_reg & IXGBE_LINKS_UP)
3218			*link_up = true;
3219		else
3220			*link_up = false;
3221	}
3222
3223	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3224	case IXGBE_LINKS_SPEED_10G_82599:
3225		if ((hw->mac.type >= ixgbe_mac_X550) &&
3226		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3227			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3228		else
3229			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3230		break;
3231	case IXGBE_LINKS_SPEED_1G_82599:
3232		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3233		break;
3234	case IXGBE_LINKS_SPEED_100_82599:
3235		if ((hw->mac.type >= ixgbe_mac_X550) &&
3236		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3237			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3238		else
3239			*speed = IXGBE_LINK_SPEED_100_FULL;
3240		break;
 
 
 
 
 
 
 
3241	default:
3242		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3243	}
3244
3245	return 0;
3246}
3247
3248/**
3249 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3250 *  the EEPROM
3251 *  @hw: pointer to hardware structure
3252 *  @wwnn_prefix: the alternative WWNN prefix
3253 *  @wwpn_prefix: the alternative WWPN prefix
3254 *
3255 *  This function will read the EEPROM from the alternative SAN MAC address
3256 *  block to check the support for the alternative WWNN/WWPN prefix support.
3257 **/
3258s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3259					u16 *wwpn_prefix)
3260{
3261	u16 offset, caps;
3262	u16 alt_san_mac_blk_offset;
3263
3264	/* clear output first */
3265	*wwnn_prefix = 0xFFFF;
3266	*wwpn_prefix = 0xFFFF;
3267
3268	/* check if alternative SAN MAC is supported */
3269	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3270	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3271		goto wwn_prefix_err;
3272
3273	if ((alt_san_mac_blk_offset == 0) ||
3274	    (alt_san_mac_blk_offset == 0xFFFF))
3275		return 0;
3276
3277	/* check capability in alternative san mac address block */
3278	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3279	if (hw->eeprom.ops.read(hw, offset, &caps))
3280		goto wwn_prefix_err;
3281	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3282		return 0;
3283
3284	/* get the corresponding prefix for WWNN/WWPN */
3285	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3286	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3287		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3288
3289	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3290	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3291		goto wwn_prefix_err;
3292
3293	return 0;
3294
3295wwn_prefix_err:
3296	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3297	return 0;
3298}
3299
3300/**
3301 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3302 *  @hw: pointer to hardware structure
3303 *  @enable: enable or disable switch for anti-spoofing
3304 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3305 *
3306 **/
3307void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3308{
3309	int j;
3310	int pf_target_reg = pf >> 3;
3311	int pf_target_shift = pf % 8;
3312	u32 pfvfspoof = 0;
3313
3314	if (hw->mac.type == ixgbe_mac_82598EB)
3315		return;
3316
 
3317	if (enable)
3318		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3319
3320	/*
3321	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3322	 * MAC anti-spoof enables in each register array element.
3323	 */
3324	for (j = 0; j < pf_target_reg; j++)
3325		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3326
3327	/*
3328	 * The PF should be allowed to spoof so that it can support
3329	 * emulation mode NICs.  Do not set the bits assigned to the PF
3330	 */
3331	pfvfspoof &= (1 << pf_target_shift) - 1;
3332	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3333
3334	/*
3335	 * Remaining pools belong to the PF so they do not need to have
3336	 * anti-spoofing enabled.
3337	 */
3338	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3339		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3340}
3341
3342/**
3343 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3344 *  @hw: pointer to hardware structure
3345 *  @enable: enable or disable switch for VLAN anti-spoofing
3346 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3347 *
3348 **/
3349void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3350{
3351	int vf_target_reg = vf >> 3;
3352	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3353	u32 pfvfspoof;
3354
3355	if (hw->mac.type == ixgbe_mac_82598EB)
3356		return;
3357
3358	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3359	if (enable)
3360		pfvfspoof |= (1 << vf_target_shift);
3361	else
3362		pfvfspoof &= ~(1 << vf_target_shift);
3363	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3364}
3365
3366/**
3367 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3368 *  @hw: pointer to hardware structure
3369 *  @device_caps: the EEPROM word with the extra device capabilities
3370 *
3371 *  This function will read the EEPROM location for the device capabilities,
3372 *  and return the word through device_caps.
3373 **/
3374s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3375{
3376	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3377
3378	return 0;
3379}
3380
3381/**
3382 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3383 * @hw: pointer to hardware structure
3384 * @num_pb: number of packet buffers to allocate
3385 * @headroom: reserve n KB of headroom
3386 * @strategy: packet buffer allocation strategy
3387 **/
3388void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3389			     int num_pb,
3390			     u32 headroom,
3391			     int strategy)
3392{
3393	u32 pbsize = hw->mac.rx_pb_size;
3394	int i = 0;
3395	u32 rxpktsize, txpktsize, txpbthresh;
3396
3397	/* Reserve headroom */
3398	pbsize -= headroom;
3399
3400	if (!num_pb)
3401		num_pb = 1;
3402
3403	/* Divide remaining packet buffer space amongst the number
3404	 * of packet buffers requested using supplied strategy.
3405	 */
3406	switch (strategy) {
3407	case (PBA_STRATEGY_WEIGHTED):
3408		/* pba_80_48 strategy weight first half of packet buffer with
3409		 * 5/8 of the packet buffer space.
3410		 */
3411		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3412		pbsize -= rxpktsize * (num_pb / 2);
3413		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3414		for (; i < (num_pb / 2); i++)
3415			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3416		/* Fall through to configure remaining packet buffers */
3417	case (PBA_STRATEGY_EQUAL):
3418		/* Divide the remaining Rx packet buffer evenly among the TCs */
3419		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3420		for (; i < num_pb; i++)
3421			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3422		break;
3423	default:
3424		break;
3425	}
3426
3427	/*
3428	 * Setup Tx packet buffer and threshold equally for all TCs
3429	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3430	 * 10 since the largest packet we support is just over 9K.
3431	 */
3432	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3433	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3434	for (i = 0; i < num_pb; i++) {
3435		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3436		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3437	}
3438
3439	/* Clear unused TCs, if any, to zero buffer size*/
3440	for (; i < IXGBE_MAX_PB; i++) {
3441		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3442		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3443		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3444	}
3445}
3446
3447/**
3448 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3449 *  @buffer: pointer to EEPROM
3450 *  @length: size of EEPROM to calculate a checksum for
3451 *
3452 *  Calculates the checksum for some buffer on a specified length.  The
3453 *  checksum calculated is returned.
3454 **/
3455static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3456{
3457	u32 i;
3458	u8 sum = 0;
3459
3460	if (!buffer)
3461		return 0;
3462
3463	for (i = 0; i < length; i++)
3464		sum += buffer[i];
3465
3466	return (u8) (0 - sum);
3467}
3468
3469/**
3470 *  ixgbe_host_interface_command - Issue command to manageability block
3471 *  @hw: pointer to the HW structure
3472 *  @buffer: contains the command to write and where the return status will
3473 *           be placed
3474 *  @length: length of buffer, must be multiple of 4 bytes
3475 *  @timeout: time in ms to wait for command completion
3476 *  @return_data: read and return data from the buffer (true) or not (false)
3477 *  Needed because FW structures are big endian and decoding of
3478 *  these fields can be 8 bit or 16 bit based on command. Decoding
3479 *  is not easily understood without making a table of commands.
3480 *  So we will leave this up to the caller to read back the data
3481 *  in these cases.
3482 *
3483 *  Communicates with the manageability block.  On success return 0
3484 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
 
 
 
 
3485 **/
3486s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3487				 u32 length, u32 timeout,
3488				 bool return_data)
3489{
3490	u32 hicr, i, bi, fwsts;
3491	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3492	u16 buf_len, dword_len;
3493
3494	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3495		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3496		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3497	}
3498
3499	/* Set bit 9 of FWSTS clearing FW reset indication */
3500	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3501	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3502
3503	/* Check that the host interface is enabled. */
3504	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3505	if ((hicr & IXGBE_HICR_EN) == 0) {
3506		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3507		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3508	}
3509
3510	/* Calculate length in DWORDs. We must be DWORD aligned */
3511	if ((length % (sizeof(u32))) != 0) {
3512		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3513		return IXGBE_ERR_INVALID_ARGUMENT;
3514	}
3515
3516	dword_len = length >> 2;
3517
3518	/*
3519	 * The device driver writes the relevant command block
3520	 * into the ram area.
3521	 */
3522	for (i = 0; i < dword_len; i++)
3523		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3524				      i, cpu_to_le32(buffer[i]));
3525
3526	/* Setting this bit tells the ARC that a new command is pending. */
3527	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3528
3529	for (i = 0; i < timeout; i++) {
3530		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3531		if (!(hicr & IXGBE_HICR_C))
3532			break;
3533		usleep_range(1000, 2000);
3534	}
3535
3536	/* Check command successful completion. */
3537	if ((timeout != 0 && i == timeout) ||
3538	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3539		hw_dbg(hw, "Command has failed with no status valid.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3540		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3541	}
 
 
 
 
 
 
 
 
3542
3543	if (!return_data)
3544		return 0;
3545
3546	/* Calculate length in DWORDs */
3547	dword_len = hdr_size >> 2;
3548
3549	/* first pull in the header so we know the buffer length */
3550	for (bi = 0; bi < dword_len; bi++) {
3551		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3552		le32_to_cpus(&buffer[bi]);
3553	}
3554
3555	/* If there is any thing in data position pull it in */
3556	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3557	if (buf_len == 0)
3558		return 0;
3559
3560	if (length < (buf_len + hdr_size)) {
3561		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3562		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
 
3563	}
3564
3565	/* Calculate length in DWORDs, add 3 for odd lengths */
3566	dword_len = (buf_len + 3) >> 2;
3567
3568	/* Pull in the rest of the buffer (bi is where we left off)*/
3569	for (; bi <= dword_len; bi++) {
3570		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3571		le32_to_cpus(&buffer[bi]);
3572	}
3573
3574	return 0;
 
 
 
3575}
3576
3577/**
3578 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3579 *  @hw: pointer to the HW structure
3580 *  @maj: driver version major number
3581 *  @min: driver version minor number
3582 *  @build: driver version build number
3583 *  @sub: driver version sub build number
 
 
3584 *
3585 *  Sends driver version number to firmware through the manageability
3586 *  block.  On success return 0
3587 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3588 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3589 **/
3590s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3591				 u8 build, u8 sub)
 
3592{
3593	struct ixgbe_hic_drv_info fw_cmd;
3594	int i;
3595	s32 ret_val;
3596
3597	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3598		return IXGBE_ERR_SWFW_SYNC;
3599
3600	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3601	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3602	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3603	fw_cmd.port_num = (u8)hw->bus.func;
3604	fw_cmd.ver_maj = maj;
3605	fw_cmd.ver_min = min;
3606	fw_cmd.ver_build = build;
3607	fw_cmd.ver_sub = sub;
3608	fw_cmd.hdr.checksum = 0;
3609	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3610				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3611	fw_cmd.pad = 0;
3612	fw_cmd.pad2 = 0;
 
 
3613
3614	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3615		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3616						       sizeof(fw_cmd),
3617						       IXGBE_HI_COMMAND_TIMEOUT,
3618						       true);
3619		if (ret_val != 0)
3620			continue;
3621
3622		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3623		    FW_CEM_RESP_STATUS_SUCCESS)
3624			ret_val = 0;
3625		else
3626			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3627
3628		break;
3629	}
3630
3631	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3632	return ret_val;
3633}
3634
3635/**
3636 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3637 * @hw: pointer to the hardware structure
3638 *
3639 * The 82599 and x540 MACs can experience issues if TX work is still pending
3640 * when a reset occurs.  This function prevents this by flushing the PCIe
3641 * buffers on the system.
3642 **/
3643void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3644{
3645	u32 gcr_ext, hlreg0, i, poll;
3646	u16 value;
3647
3648	/*
3649	 * If double reset is not requested then all transactions should
3650	 * already be clear and as such there is no work to do
3651	 */
3652	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3653		return;
3654
3655	/*
3656	 * Set loopback enable to prevent any transmits from being sent
3657	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3658	 * has already been cleared.
3659	 */
3660	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3661	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3662
3663	/* wait for a last completion before clearing buffers */
3664	IXGBE_WRITE_FLUSH(hw);
3665	usleep_range(3000, 6000);
3666
3667	/* Before proceeding, make sure that the PCIe block does not have
3668	 * transactions pending.
3669	 */
3670	poll = ixgbe_pcie_timeout_poll(hw);
3671	for (i = 0; i < poll; i++) {
3672		usleep_range(100, 200);
3673		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3674		if (ixgbe_removed(hw->hw_addr))
3675			break;
3676		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3677			break;
3678	}
3679
3680	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3681	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3682	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3683			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3684
3685	/* Flush all writes and allow 20usec for all transactions to clear */
3686	IXGBE_WRITE_FLUSH(hw);
3687	udelay(20);
3688
3689	/* restore previous register values */
3690	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3691	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3692}
3693
3694static const u8 ixgbe_emc_temp_data[4] = {
3695	IXGBE_EMC_INTERNAL_DATA,
3696	IXGBE_EMC_DIODE1_DATA,
3697	IXGBE_EMC_DIODE2_DATA,
3698	IXGBE_EMC_DIODE3_DATA
3699};
3700static const u8 ixgbe_emc_therm_limit[4] = {
3701	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3702	IXGBE_EMC_DIODE1_THERM_LIMIT,
3703	IXGBE_EMC_DIODE2_THERM_LIMIT,
3704	IXGBE_EMC_DIODE3_THERM_LIMIT
3705};
3706
3707/**
3708 *  ixgbe_get_ets_data - Extracts the ETS bit data
3709 *  @hw: pointer to hardware structure
3710 *  @ets_cfg: extected ETS data
3711 *  @ets_offset: offset of ETS data
3712 *
3713 *  Returns error code.
3714 **/
3715static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3716			      u16 *ets_offset)
3717{
3718	s32 status;
3719
3720	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3721	if (status)
3722		return status;
3723
3724	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3725		return IXGBE_NOT_IMPLEMENTED;
3726
3727	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3728	if (status)
3729		return status;
3730
3731	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3732		return IXGBE_NOT_IMPLEMENTED;
3733
3734	return 0;
3735}
3736
3737/**
3738 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3739 *  @hw: pointer to hardware structure
3740 *
3741 *  Returns the thermal sensor data structure
3742 **/
3743s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3744{
3745	s32 status;
3746	u16 ets_offset;
3747	u16 ets_cfg;
3748	u16 ets_sensor;
3749	u8  num_sensors;
3750	u8  i;
3751	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3752
3753	/* Only support thermal sensors attached to physical port 0 */
3754	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3755		return IXGBE_NOT_IMPLEMENTED;
3756
3757	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3758	if (status)
3759		return status;
3760
3761	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3762	if (num_sensors > IXGBE_MAX_SENSORS)
3763		num_sensors = IXGBE_MAX_SENSORS;
3764
3765	for (i = 0; i < num_sensors; i++) {
3766		u8  sensor_index;
3767		u8  sensor_location;
3768
3769		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3770					     &ets_sensor);
3771		if (status)
3772			return status;
3773
3774		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3775				IXGBE_ETS_DATA_INDEX_SHIFT);
3776		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3777				   IXGBE_ETS_DATA_LOC_SHIFT);
3778
3779		if (sensor_location != 0) {
3780			status = hw->phy.ops.read_i2c_byte(hw,
3781					ixgbe_emc_temp_data[sensor_index],
3782					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3783					&data->sensor[i].temp);
3784			if (status)
3785				return status;
3786		}
3787	}
3788
3789	return 0;
3790}
3791
3792/**
3793 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3794 * @hw: pointer to hardware structure
3795 *
3796 * Inits the thermal sensor thresholds according to the NVM map
3797 * and save off the threshold and location values into mac.thermal_sensor_data
3798 **/
3799s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3800{
3801	s32 status;
3802	u16 ets_offset;
3803	u16 ets_cfg;
3804	u16 ets_sensor;
3805	u8  low_thresh_delta;
3806	u8  num_sensors;
3807	u8  therm_limit;
3808	u8  i;
3809	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3810
3811	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3812
3813	/* Only support thermal sensors attached to physical port 0 */
3814	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3815		return IXGBE_NOT_IMPLEMENTED;
3816
3817	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3818	if (status)
3819		return status;
3820
3821	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3822			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3823	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3824	if (num_sensors > IXGBE_MAX_SENSORS)
3825		num_sensors = IXGBE_MAX_SENSORS;
3826
3827	for (i = 0; i < num_sensors; i++) {
3828		u8  sensor_index;
3829		u8  sensor_location;
3830
3831		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3832			hw_err(hw, "eeprom read at offset %d failed\n",
3833			       ets_offset + 1 + i);
3834			continue;
3835		}
3836		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3837				IXGBE_ETS_DATA_INDEX_SHIFT);
3838		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3839				   IXGBE_ETS_DATA_LOC_SHIFT);
3840		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3841
3842		hw->phy.ops.write_i2c_byte(hw,
3843			ixgbe_emc_therm_limit[sensor_index],
3844			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3845
3846		if (sensor_location == 0)
3847			continue;
3848
3849		data->sensor[i].location = sensor_location;
3850		data->sensor[i].caution_thresh = therm_limit;
3851		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3852	}
3853
3854	return 0;
3855}
3856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3857void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3858{
3859	u32 rxctrl;
3860
3861	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3862	if (rxctrl & IXGBE_RXCTRL_RXEN) {
3863		if (hw->mac.type != ixgbe_mac_82598EB) {
3864			u32 pfdtxgswc;
3865
3866			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3867			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3868				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3869				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3870				hw->mac.set_lben = true;
3871			} else {
3872				hw->mac.set_lben = false;
3873			}
3874		}
3875		rxctrl &= ~IXGBE_RXCTRL_RXEN;
3876		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3877	}
3878}
3879
3880void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3881{
3882	u32 rxctrl;
3883
3884	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3885	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3886
3887	if (hw->mac.type != ixgbe_mac_82598EB) {
3888		if (hw->mac.set_lben) {
3889			u32 pfdtxgswc;
3890
3891			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3892			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3893			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3894			hw->mac.set_lben = false;
3895		}
3896	}
3897}
3898
3899/** ixgbe_mng_present - returns true when management capability is present
3900 * @hw: pointer to hardware structure
3901 **/
3902bool ixgbe_mng_present(struct ixgbe_hw *hw)
3903{
3904	u32 fwsm;
3905
3906	if (hw->mac.type < ixgbe_mac_82599EB)
3907		return false;
3908
3909	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3910	fwsm &= IXGBE_FWSM_MODE_MASK;
3911	return fwsm == IXGBE_FWSM_FW_MODE_PT;
3912}
3913
3914/**
3915 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
3916 *  @hw: pointer to hardware structure
3917 *  @speed: new link speed
3918 *  @autoneg_wait_to_complete: true when waiting for completion is needed
3919 *
3920 *  Set the link speed in the MAC and/or PHY register and restarts link.
3921 */
3922s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
3923					  ixgbe_link_speed speed,
3924					  bool autoneg_wait_to_complete)
3925{
3926	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3927	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3928	s32 status = 0;
3929	u32 speedcnt = 0;
3930	u32 i = 0;
3931	bool autoneg, link_up = false;
3932
3933	/* Mask off requested but non-supported speeds */
3934	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
3935	if (status)
3936		return status;
3937
3938	speed &= link_speed;
3939
3940	/* Try each speed one by one, highest priority first.  We do this in
3941	 * software because 10Gb fiber doesn't support speed autonegotiation.
3942	 */
3943	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
3944		speedcnt++;
3945		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
3946
3947		/* If we already have link at this speed, just jump out */
3948		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
3949						false);
3950		if (status)
3951			return status;
3952
3953		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
3954			goto out;
3955
3956		/* Set the module link speed */
3957		switch (hw->phy.media_type) {
3958		case ixgbe_media_type_fiber:
3959			hw->mac.ops.set_rate_select_speed(hw,
3960						    IXGBE_LINK_SPEED_10GB_FULL);
3961			break;
3962		case ixgbe_media_type_fiber_qsfp:
3963			/* QSFP module automatically detects MAC link speed */
3964			break;
3965		default:
3966			hw_dbg(hw, "Unexpected media type\n");
3967			break;
3968		}
3969
3970		/* Allow module to change analog characteristics (1G->10G) */
3971		msleep(40);
3972
3973		status = hw->mac.ops.setup_mac_link(hw,
3974						    IXGBE_LINK_SPEED_10GB_FULL,
3975						    autoneg_wait_to_complete);
3976		if (status)
3977			return status;
3978
3979		/* Flap the Tx laser if it has not already been done */
3980		if (hw->mac.ops.flap_tx_laser)
3981			hw->mac.ops.flap_tx_laser(hw);
3982
3983		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
3984		 * Section 73.10.2, we may have to wait up to 500ms if KR is
3985		 * attempted.  82599 uses the same timing for 10g SFI.
3986		 */
3987		for (i = 0; i < 5; i++) {
3988			/* Wait for the link partner to also set speed */
3989			msleep(100);
3990
3991			/* If we have link, just jump out */
3992			status = hw->mac.ops.check_link(hw, &link_speed,
3993							&link_up, false);
3994			if (status)
3995				return status;
3996
3997			if (link_up)
3998				goto out;
3999		}
4000	}
4001
4002	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4003		speedcnt++;
4004		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4005			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4006
4007		/* If we already have link at this speed, just jump out */
4008		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4009						false);
4010		if (status)
4011			return status;
4012
4013		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4014			goto out;
4015
4016		/* Set the module link speed */
4017		switch (hw->phy.media_type) {
4018		case ixgbe_media_type_fiber:
4019			hw->mac.ops.set_rate_select_speed(hw,
4020						     IXGBE_LINK_SPEED_1GB_FULL);
4021			break;
4022		case ixgbe_media_type_fiber_qsfp:
4023			/* QSFP module automatically detects link speed */
4024			break;
4025		default:
4026			hw_dbg(hw, "Unexpected media type\n");
4027			break;
4028		}
4029
4030		/* Allow module to change analog characteristics (10G->1G) */
4031		msleep(40);
4032
4033		status = hw->mac.ops.setup_mac_link(hw,
4034						    IXGBE_LINK_SPEED_1GB_FULL,
4035						    autoneg_wait_to_complete);
4036		if (status)
4037			return status;
4038
4039		/* Flap the Tx laser if it has not already been done */
4040		if (hw->mac.ops.flap_tx_laser)
4041			hw->mac.ops.flap_tx_laser(hw);
4042
4043		/* Wait for the link partner to also set speed */
4044		msleep(100);
4045
4046		/* If we have link, just jump out */
4047		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4048						false);
4049		if (status)
4050			return status;
4051
4052		if (link_up)
4053			goto out;
4054	}
4055
4056	/* We didn't get link.  Configure back to the highest speed we tried,
4057	 * (if there was more than one).  We call ourselves back with just the
4058	 * single highest speed that the user requested.
4059	 */
4060	if (speedcnt > 1)
4061		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4062						      highest_link_speed,
4063						      autoneg_wait_to_complete);
4064
4065out:
4066	/* Set autoneg_advertised value based on input link speed */
4067	hw->phy.autoneg_advertised = 0;
4068
4069	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4070		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4071
4072	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4073		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4074
4075	return status;
4076}
4077
4078/**
4079 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4080 *  @hw: pointer to hardware structure
4081 *  @speed: link speed to set
4082 *
4083 *  Set module link speed via the soft rate select.
4084 */
4085void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4086				      ixgbe_link_speed speed)
4087{
4088	s32 status;
4089	u8 rs, eeprom_data;
4090
4091	switch (speed) {
4092	case IXGBE_LINK_SPEED_10GB_FULL:
4093		/* one bit mask same as setting on */
4094		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4095		break;
4096	case IXGBE_LINK_SPEED_1GB_FULL:
4097		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4098		break;
4099	default:
4100		hw_dbg(hw, "Invalid fixed module speed\n");
4101		return;
4102	}
4103
4104	/* Set RS0 */
4105	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4106					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4107					   &eeprom_data);
4108	if (status) {
4109		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4110		return;
4111	}
4112
4113	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4114
4115	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4116					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4117					    eeprom_data);
4118	if (status) {
4119		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4120		return;
4121	}
4122}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/sched.h>
   7#include <linux/netdevice.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_common.h"
  11#include "ixgbe_phy.h"
  12
  13static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  14static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  16static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  19					u16 count);
  20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  24
  25static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  26static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  27static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  28					     u16 words, u16 *data);
  29static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  30					     u16 words, u16 *data);
  31static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  32						 u16 offset);
  33static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  34
  35/* Base table for registers values that change by MAC */
  36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  37	IXGBE_MVALS_INIT(8259X)
  38};
  39
  40/**
  41 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  42 *  control
  43 *  @hw: pointer to hardware structure
  44 *
  45 *  There are several phys that do not support autoneg flow control. This
  46 *  function check the device id to see if the associated phy supports
  47 *  autoneg flow control.
  48 **/
  49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  50{
  51	bool supported = false;
  52	ixgbe_link_speed speed;
  53	bool link_up;
  54
  55	switch (hw->phy.media_type) {
  56	case ixgbe_media_type_fiber:
  57		/* flow control autoneg black list */
  58		switch (hw->device_id) {
  59		case IXGBE_DEV_ID_X550EM_A_SFP:
  60		case IXGBE_DEV_ID_X550EM_A_SFP_N:
  61			supported = false;
  62			break;
  63		default:
  64			hw->mac.ops.check_link(hw, &speed, &link_up, false);
  65			/* if link is down, assume supported */
  66			if (link_up)
  67				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
  68			else
  69				supported = true;
  70		}
  71
  72		break;
  73	case ixgbe_media_type_backplane:
  74		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
  75			supported = false;
  76		else
  77			supported = true;
  78		break;
  79	case ixgbe_media_type_copper:
  80		/* only some copper devices support flow control autoneg */
  81		switch (hw->device_id) {
  82		case IXGBE_DEV_ID_82599_T3_LOM:
  83		case IXGBE_DEV_ID_X540T:
  84		case IXGBE_DEV_ID_X540T1:
  85		case IXGBE_DEV_ID_X550T:
  86		case IXGBE_DEV_ID_X550T1:
  87		case IXGBE_DEV_ID_X550EM_X_10G_T:
  88		case IXGBE_DEV_ID_X550EM_A_10G_T:
  89		case IXGBE_DEV_ID_X550EM_A_1G_T:
  90		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
  91			supported = true;
  92			break;
  93		default:
  94			break;
  95		}
  96		break;
  97	default:
  98		break;
  99	}
 100
 101	if (!supported)
 102		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
 103		       hw->device_id);
 104
 105	return supported;
 106}
 107
 108/**
 109 *  ixgbe_setup_fc_generic - Set up flow control
 110 *  @hw: pointer to hardware structure
 111 *
 112 *  Called at init time to set up flow control.
 113 **/
 114s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 115{
 116	s32 ret_val = 0;
 117	u32 reg = 0, reg_bp = 0;
 118	u16 reg_cu = 0;
 119	bool locked = false;
 120
 121	/*
 122	 * Validate the requested mode.  Strict IEEE mode does not allow
 123	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 124	 */
 125	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 126		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 127		return IXGBE_ERR_INVALID_LINK_SETTINGS;
 128	}
 129
 130	/*
 131	 * 10gig parts do not have a word in the EEPROM to determine the
 132	 * default flow control setting, so we explicitly set it to full.
 133	 */
 134	if (hw->fc.requested_mode == ixgbe_fc_default)
 135		hw->fc.requested_mode = ixgbe_fc_full;
 136
 137	/*
 138	 * Set up the 1G and 10G flow control advertisement registers so the
 139	 * HW will be able to do fc autoneg once the cable is plugged in.  If
 140	 * we link at 10G, the 1G advertisement is harmless and vice versa.
 141	 */
 142	switch (hw->phy.media_type) {
 143	case ixgbe_media_type_backplane:
 144		/* some MAC's need RMW protection on AUTOC */
 145		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 146		if (ret_val)
 147			return ret_val;
 148
 149		fallthrough; /* only backplane uses autoc */
 150	case ixgbe_media_type_fiber:
 151		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 152
 153		break;
 154	case ixgbe_media_type_copper:
 155		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 156					MDIO_MMD_AN, &reg_cu);
 157		break;
 158	default:
 159		break;
 160	}
 161
 162	/*
 163	 * The possible values of fc.requested_mode are:
 164	 * 0: Flow control is completely disabled
 165	 * 1: Rx flow control is enabled (we can receive pause frames,
 166	 *    but not send pause frames).
 167	 * 2: Tx flow control is enabled (we can send pause frames but
 168	 *    we do not support receiving pause frames).
 169	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 170	 * other: Invalid.
 171	 */
 172	switch (hw->fc.requested_mode) {
 173	case ixgbe_fc_none:
 174		/* Flow control completely disabled by software override. */
 175		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 176		if (hw->phy.media_type == ixgbe_media_type_backplane)
 177			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 178				    IXGBE_AUTOC_ASM_PAUSE);
 179		else if (hw->phy.media_type == ixgbe_media_type_copper)
 180			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 181		break;
 182	case ixgbe_fc_tx_pause:
 183		/*
 184		 * Tx Flow control is enabled, and Rx Flow control is
 185		 * disabled by software override.
 186		 */
 187		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 188		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 189		if (hw->phy.media_type == ixgbe_media_type_backplane) {
 190			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 191			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 192		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
 193			reg_cu |= IXGBE_TAF_ASM_PAUSE;
 194			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 195		}
 196		break;
 197	case ixgbe_fc_rx_pause:
 198		/*
 199		 * Rx Flow control is enabled and Tx Flow control is
 200		 * disabled by software override. Since there really
 201		 * isn't a way to advertise that we are capable of RX
 202		 * Pause ONLY, we will advertise that we support both
 203		 * symmetric and asymmetric Rx PAUSE, as such we fall
 204		 * through to the fc_full statement.  Later, we will
 205		 * disable the adapter's ability to send PAUSE frames.
 206		 */
 207	case ixgbe_fc_full:
 208		/* Flow control (both Rx and Tx) is enabled by SW override. */
 209		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 210		if (hw->phy.media_type == ixgbe_media_type_backplane)
 211			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 212				  IXGBE_AUTOC_ASM_PAUSE;
 213		else if (hw->phy.media_type == ixgbe_media_type_copper)
 214			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 215		break;
 216	default:
 217		hw_dbg(hw, "Flow control param set incorrectly\n");
 218		return IXGBE_ERR_CONFIG;
 219	}
 220
 221	if (hw->mac.type != ixgbe_mac_X540) {
 222		/*
 223		 * Enable auto-negotiation between the MAC & PHY;
 224		 * the MAC will advertise clause 37 flow control.
 225		 */
 226		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 227		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 228
 229		/* Disable AN timeout */
 230		if (hw->fc.strict_ieee)
 231			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 232
 233		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 234		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 235	}
 236
 237	/*
 238	 * AUTOC restart handles negotiation of 1G and 10G on backplane
 239	 * and copper. There is no need to set the PCS1GCTL register.
 240	 *
 241	 */
 242	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 243		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
 244		 * LESM is on, likewise reset_pipeline requries the lock as
 245		 * it also writes AUTOC.
 246		 */
 247		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 248		if (ret_val)
 249			return ret_val;
 250
 251	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 252		   ixgbe_device_supports_autoneg_fc(hw)) {
 253		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 254				      MDIO_MMD_AN, reg_cu);
 255	}
 256
 257	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 258	return ret_val;
 259}
 260
 261/**
 262 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 263 *  @hw: pointer to hardware structure
 264 *
 265 *  Starts the hardware by filling the bus info structure and media type, clears
 266 *  all on chip counters, initializes receive address registers, multicast
 267 *  table, VLAN filter table, calls routine to set up link and flow control
 268 *  settings, and leaves transmit and receive units disabled and uninitialized
 269 **/
 270s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 271{
 272	s32 ret_val;
 273	u32 ctrl_ext;
 274	u16 device_caps;
 275
 276	/* Set the media type */
 277	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 278
 279	/* Identify the PHY */
 280	hw->phy.ops.identify(hw);
 281
 282	/* Clear the VLAN filter table */
 283	hw->mac.ops.clear_vfta(hw);
 284
 285	/* Clear statistics registers */
 286	hw->mac.ops.clear_hw_cntrs(hw);
 287
 288	/* Set No Snoop Disable */
 289	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 290	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 291	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 292	IXGBE_WRITE_FLUSH(hw);
 293
 294	/* Setup flow control if method for doing so */
 295	if (hw->mac.ops.setup_fc) {
 296		ret_val = hw->mac.ops.setup_fc(hw);
 297		if (ret_val)
 298			return ret_val;
 299	}
 300
 301	/* Cashe bit indicating need for crosstalk fix */
 302	switch (hw->mac.type) {
 303	case ixgbe_mac_82599EB:
 304	case ixgbe_mac_X550EM_x:
 305	case ixgbe_mac_x550em_a:
 306		hw->mac.ops.get_device_caps(hw, &device_caps);
 307		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 308			hw->need_crosstalk_fix = false;
 309		else
 310			hw->need_crosstalk_fix = true;
 311		break;
 312	default:
 313		hw->need_crosstalk_fix = false;
 314		break;
 315	}
 316
 317	/* Clear adapter stopped flag */
 318	hw->adapter_stopped = false;
 319
 320	return 0;
 321}
 322
 323/**
 324 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 325 *  @hw: pointer to hw structure
 326 *
 327 * Performs the init sequence common to the second generation
 328 * of 10 GbE devices.
 329 * Devices in the second generation:
 330 *     82599
 331 *     X540
 332 **/
 333s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 334{
 335	u32 i;
 336
 337	/* Clear the rate limiters */
 338	for (i = 0; i < hw->mac.max_tx_queues; i++) {
 339		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 340		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 341	}
 342	IXGBE_WRITE_FLUSH(hw);
 343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344	return 0;
 345}
 346
 347/**
 348 *  ixgbe_init_hw_generic - Generic hardware initialization
 349 *  @hw: pointer to hardware structure
 350 *
 351 *  Initialize the hardware by resetting the hardware, filling the bus info
 352 *  structure and media type, clears all on chip counters, initializes receive
 353 *  address registers, multicast table, VLAN filter table, calls routine to set
 354 *  up link and flow control settings, and leaves transmit and receive units
 355 *  disabled and uninitialized
 356 **/
 357s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 358{
 359	s32 status;
 360
 361	/* Reset the hardware */
 362	status = hw->mac.ops.reset_hw(hw);
 363
 364	if (status == 0) {
 365		/* Start the HW */
 366		status = hw->mac.ops.start_hw(hw);
 367	}
 368
 369	/* Initialize the LED link active for LED blink support */
 370	if (hw->mac.ops.init_led_link_act)
 371		hw->mac.ops.init_led_link_act(hw);
 372
 373	return status;
 374}
 375
 376/**
 377 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 378 *  @hw: pointer to hardware structure
 379 *
 380 *  Clears all hardware statistics counters by reading them from the hardware
 381 *  Statistics counters are clear on read.
 382 **/
 383s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 384{
 385	u16 i = 0;
 386
 387	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 388	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 389	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 390	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 391	for (i = 0; i < 8; i++)
 392		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 393
 394	IXGBE_READ_REG(hw, IXGBE_MLFC);
 395	IXGBE_READ_REG(hw, IXGBE_MRFC);
 396	IXGBE_READ_REG(hw, IXGBE_RLEC);
 397	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 398	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 399	if (hw->mac.type >= ixgbe_mac_82599EB) {
 400		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 401		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 402	} else {
 403		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 404		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 405	}
 406
 407	for (i = 0; i < 8; i++) {
 408		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 409		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 410		if (hw->mac.type >= ixgbe_mac_82599EB) {
 411			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 412			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 413		} else {
 414			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 415			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 416		}
 417	}
 418	if (hw->mac.type >= ixgbe_mac_82599EB)
 419		for (i = 0; i < 8; i++)
 420			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 421	IXGBE_READ_REG(hw, IXGBE_PRC64);
 422	IXGBE_READ_REG(hw, IXGBE_PRC127);
 423	IXGBE_READ_REG(hw, IXGBE_PRC255);
 424	IXGBE_READ_REG(hw, IXGBE_PRC511);
 425	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 426	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 427	IXGBE_READ_REG(hw, IXGBE_GPRC);
 428	IXGBE_READ_REG(hw, IXGBE_BPRC);
 429	IXGBE_READ_REG(hw, IXGBE_MPRC);
 430	IXGBE_READ_REG(hw, IXGBE_GPTC);
 431	IXGBE_READ_REG(hw, IXGBE_GORCL);
 432	IXGBE_READ_REG(hw, IXGBE_GORCH);
 433	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 434	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 435	if (hw->mac.type == ixgbe_mac_82598EB)
 436		for (i = 0; i < 8; i++)
 437			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 438	IXGBE_READ_REG(hw, IXGBE_RUC);
 439	IXGBE_READ_REG(hw, IXGBE_RFC);
 440	IXGBE_READ_REG(hw, IXGBE_ROC);
 441	IXGBE_READ_REG(hw, IXGBE_RJC);
 442	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 443	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 444	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 445	IXGBE_READ_REG(hw, IXGBE_TORL);
 446	IXGBE_READ_REG(hw, IXGBE_TORH);
 447	IXGBE_READ_REG(hw, IXGBE_TPR);
 448	IXGBE_READ_REG(hw, IXGBE_TPT);
 449	IXGBE_READ_REG(hw, IXGBE_PTC64);
 450	IXGBE_READ_REG(hw, IXGBE_PTC127);
 451	IXGBE_READ_REG(hw, IXGBE_PTC255);
 452	IXGBE_READ_REG(hw, IXGBE_PTC511);
 453	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 454	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 455	IXGBE_READ_REG(hw, IXGBE_MPTC);
 456	IXGBE_READ_REG(hw, IXGBE_BPTC);
 457	for (i = 0; i < 16; i++) {
 458		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 459		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 460		if (hw->mac.type >= ixgbe_mac_82599EB) {
 461			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 462			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 463			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 464			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 465			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 466		} else {
 467			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 468			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 469		}
 470	}
 471
 472	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 473		if (hw->phy.id == 0)
 474			hw->phy.ops.identify(hw);
 475		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 476		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 477		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 478		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 479	}
 480
 481	return 0;
 482}
 483
 484/**
 485 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 486 *  @hw: pointer to hardware structure
 487 *  @pba_num: stores the part number string from the EEPROM
 488 *  @pba_num_size: part number string buffer length
 489 *
 490 *  Reads the part number string from the EEPROM.
 491 **/
 492s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 493				  u32 pba_num_size)
 494{
 495	s32 ret_val;
 496	u16 data;
 497	u16 pba_ptr;
 498	u16 offset;
 499	u16 length;
 500
 501	if (pba_num == NULL) {
 502		hw_dbg(hw, "PBA string buffer was null\n");
 503		return IXGBE_ERR_INVALID_ARGUMENT;
 504	}
 505
 506	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 507	if (ret_val) {
 508		hw_dbg(hw, "NVM Read Error\n");
 509		return ret_val;
 510	}
 511
 512	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 513	if (ret_val) {
 514		hw_dbg(hw, "NVM Read Error\n");
 515		return ret_val;
 516	}
 517
 518	/*
 519	 * if data is not ptr guard the PBA must be in legacy format which
 520	 * means pba_ptr is actually our second data word for the PBA number
 521	 * and we can decode it into an ascii string
 522	 */
 523	if (data != IXGBE_PBANUM_PTR_GUARD) {
 524		hw_dbg(hw, "NVM PBA number is not stored as string\n");
 525
 526		/* we will need 11 characters to store the PBA */
 527		if (pba_num_size < 11) {
 528			hw_dbg(hw, "PBA string buffer too small\n");
 529			return IXGBE_ERR_NO_SPACE;
 530		}
 531
 532		/* extract hex string from data and pba_ptr */
 533		pba_num[0] = (data >> 12) & 0xF;
 534		pba_num[1] = (data >> 8) & 0xF;
 535		pba_num[2] = (data >> 4) & 0xF;
 536		pba_num[3] = data & 0xF;
 537		pba_num[4] = (pba_ptr >> 12) & 0xF;
 538		pba_num[5] = (pba_ptr >> 8) & 0xF;
 539		pba_num[6] = '-';
 540		pba_num[7] = 0;
 541		pba_num[8] = (pba_ptr >> 4) & 0xF;
 542		pba_num[9] = pba_ptr & 0xF;
 543
 544		/* put a null character on the end of our string */
 545		pba_num[10] = '\0';
 546
 547		/* switch all the data but the '-' to hex char */
 548		for (offset = 0; offset < 10; offset++) {
 549			if (pba_num[offset] < 0xA)
 550				pba_num[offset] += '0';
 551			else if (pba_num[offset] < 0x10)
 552				pba_num[offset] += 'A' - 0xA;
 553		}
 554
 555		return 0;
 556	}
 557
 558	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 559	if (ret_val) {
 560		hw_dbg(hw, "NVM Read Error\n");
 561		return ret_val;
 562	}
 563
 564	if (length == 0xFFFF || length == 0) {
 565		hw_dbg(hw, "NVM PBA number section invalid length\n");
 566		return IXGBE_ERR_PBA_SECTION;
 567	}
 568
 569	/* check if pba_num buffer is big enough */
 570	if (pba_num_size  < (((u32)length * 2) - 1)) {
 571		hw_dbg(hw, "PBA string buffer too small\n");
 572		return IXGBE_ERR_NO_SPACE;
 573	}
 574
 575	/* trim pba length from start of string */
 576	pba_ptr++;
 577	length--;
 578
 579	for (offset = 0; offset < length; offset++) {
 580		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 581		if (ret_val) {
 582			hw_dbg(hw, "NVM Read Error\n");
 583			return ret_val;
 584		}
 585		pba_num[offset * 2] = (u8)(data >> 8);
 586		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 587	}
 588	pba_num[offset * 2] = '\0';
 589
 590	return 0;
 591}
 592
 593/**
 594 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 595 *  @hw: pointer to hardware structure
 596 *  @mac_addr: Adapter MAC address
 597 *
 598 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 599 *  A reset of the adapter must be performed prior to calling this function
 600 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 601 **/
 602s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 603{
 604	u32 rar_high;
 605	u32 rar_low;
 606	u16 i;
 607
 608	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 609	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 610
 611	for (i = 0; i < 4; i++)
 612		mac_addr[i] = (u8)(rar_low >> (i*8));
 613
 614	for (i = 0; i < 2; i++)
 615		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 616
 617	return 0;
 618}
 619
 620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 621{
 622	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 623	case IXGBE_PCI_LINK_WIDTH_1:
 624		return ixgbe_bus_width_pcie_x1;
 625	case IXGBE_PCI_LINK_WIDTH_2:
 626		return ixgbe_bus_width_pcie_x2;
 627	case IXGBE_PCI_LINK_WIDTH_4:
 628		return ixgbe_bus_width_pcie_x4;
 629	case IXGBE_PCI_LINK_WIDTH_8:
 630		return ixgbe_bus_width_pcie_x8;
 631	default:
 632		return ixgbe_bus_width_unknown;
 633	}
 634}
 635
 636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 637{
 638	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 639	case IXGBE_PCI_LINK_SPEED_2500:
 640		return ixgbe_bus_speed_2500;
 641	case IXGBE_PCI_LINK_SPEED_5000:
 642		return ixgbe_bus_speed_5000;
 643	case IXGBE_PCI_LINK_SPEED_8000:
 644		return ixgbe_bus_speed_8000;
 645	default:
 646		return ixgbe_bus_speed_unknown;
 647	}
 648}
 649
 650/**
 651 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 652 *  @hw: pointer to hardware structure
 653 *
 654 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 655 **/
 656s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 657{
 658	u16 link_status;
 659
 660	hw->bus.type = ixgbe_bus_type_pci_express;
 661
 662	/* Get the negotiated link width and speed from PCI config space */
 663	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 664
 665	hw->bus.width = ixgbe_convert_bus_width(link_status);
 666	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 667
 668	hw->mac.ops.set_lan_id(hw);
 669
 670	return 0;
 671}
 672
 673/**
 674 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 675 *  @hw: pointer to the HW structure
 676 *
 677 *  Determines the LAN function id by reading memory-mapped registers
 678 *  and swaps the port value if requested.
 679 **/
 680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 681{
 682	struct ixgbe_bus_info *bus = &hw->bus;
 683	u16 ee_ctrl_4;
 684	u32 reg;
 685
 686	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 687	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 688	bus->lan_id = bus->func;
 689
 690	/* check for a port swap */
 691	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 692	if (reg & IXGBE_FACTPS_LFS)
 693		bus->func ^= 0x1;
 694
 695	/* Get MAC instance from EEPROM for configuring CS4227 */
 696	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
 697		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
 698		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
 699				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
 700	}
 701}
 702
 703/**
 704 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 705 *  @hw: pointer to hardware structure
 706 *
 707 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 708 *  disables transmit and receive units. The adapter_stopped flag is used by
 709 *  the shared code and drivers to determine if the adapter is in a stopped
 710 *  state and should not touch the hardware.
 711 **/
 712s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 713{
 714	u32 reg_val;
 715	u16 i;
 716
 717	/*
 718	 * Set the adapter_stopped flag so other driver functions stop touching
 719	 * the hardware
 720	 */
 721	hw->adapter_stopped = true;
 722
 723	/* Disable the receive unit */
 724	hw->mac.ops.disable_rx(hw);
 725
 726	/* Clear interrupt mask to stop interrupts from being generated */
 727	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 728
 729	/* Clear any pending interrupts, flush previous writes */
 730	IXGBE_READ_REG(hw, IXGBE_EICR);
 731
 732	/* Disable the transmit unit.  Each queue must be disabled. */
 733	for (i = 0; i < hw->mac.max_tx_queues; i++)
 734		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 735
 736	/* Disable the receive unit by stopping each queue */
 737	for (i = 0; i < hw->mac.max_rx_queues; i++) {
 738		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 739		reg_val &= ~IXGBE_RXDCTL_ENABLE;
 740		reg_val |= IXGBE_RXDCTL_SWFLSH;
 741		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 742	}
 743
 744	/* flush all queues disables */
 745	IXGBE_WRITE_FLUSH(hw);
 746	usleep_range(1000, 2000);
 747
 748	/*
 749	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 750	 * access and verify no pending requests
 751	 */
 752	return ixgbe_disable_pcie_master(hw);
 753}
 754
 755/**
 756 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
 757 *  @hw: pointer to hardware structure
 758 *
 759 *  Store the index for the link active LED. This will be used to support
 760 *  blinking the LED.
 761 **/
 762s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
 763{
 764	struct ixgbe_mac_info *mac = &hw->mac;
 765	u32 led_reg, led_mode;
 766	u16 i;
 767
 768	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 769
 770	/* Get LED link active from the LEDCTL register */
 771	for (i = 0; i < 4; i++) {
 772		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
 773
 774		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
 775		    IXGBE_LED_LINK_ACTIVE) {
 776			mac->led_link_act = i;
 777			return 0;
 778		}
 779	}
 780
 781	/* If LEDCTL register does not have the LED link active set, then use
 782	 * known MAC defaults.
 783	 */
 784	switch (hw->mac.type) {
 785	case ixgbe_mac_x550em_a:
 786		mac->led_link_act = 0;
 787		break;
 788	case ixgbe_mac_X550EM_x:
 789		mac->led_link_act = 1;
 790		break;
 791	default:
 792		mac->led_link_act = 2;
 793	}
 794
 795	return 0;
 796}
 797
 798/**
 799 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 800 *  @hw: pointer to hardware structure
 801 *  @index: led number to turn on
 802 **/
 803s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 804{
 805	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 806
 807	if (index > 3)
 808		return IXGBE_ERR_PARAM;
 809
 810	/* To turn on the LED, set mode to ON. */
 811	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 812	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 813	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 814	IXGBE_WRITE_FLUSH(hw);
 815
 816	return 0;
 817}
 818
 819/**
 820 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 821 *  @hw: pointer to hardware structure
 822 *  @index: led number to turn off
 823 **/
 824s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 825{
 826	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 827
 828	if (index > 3)
 829		return IXGBE_ERR_PARAM;
 830
 831	/* To turn off the LED, set mode to OFF. */
 832	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 833	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 834	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 835	IXGBE_WRITE_FLUSH(hw);
 836
 837	return 0;
 838}
 839
 840/**
 841 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 842 *  @hw: pointer to hardware structure
 843 *
 844 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 845 *  ixgbe_hw struct in order to set up EEPROM access.
 846 **/
 847s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 848{
 849	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 850	u32 eec;
 851	u16 eeprom_size;
 852
 853	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 854		eeprom->type = ixgbe_eeprom_none;
 855		/* Set default semaphore delay to 10ms which is a well
 856		 * tested value */
 857		eeprom->semaphore_delay = 10;
 858		/* Clear EEPROM page size, it will be initialized as needed */
 859		eeprom->word_page_size = 0;
 860
 861		/*
 862		 * Check for EEPROM present first.
 863		 * If not present leave as none
 864		 */
 865		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 866		if (eec & IXGBE_EEC_PRES) {
 867			eeprom->type = ixgbe_eeprom_spi;
 868
 869			/*
 870			 * SPI EEPROM is assumed here.  This code would need to
 871			 * change if a future EEPROM is not SPI.
 872			 */
 873			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 874					    IXGBE_EEC_SIZE_SHIFT);
 875			eeprom->word_size = BIT(eeprom_size +
 876						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
 877		}
 878
 879		if (eec & IXGBE_EEC_ADDR_SIZE)
 880			eeprom->address_bits = 16;
 881		else
 882			eeprom->address_bits = 8;
 883		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 884		       eeprom->type, eeprom->word_size, eeprom->address_bits);
 885	}
 886
 887	return 0;
 888}
 889
 890/**
 891 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 892 *  @hw: pointer to hardware structure
 893 *  @offset: offset within the EEPROM to write
 894 *  @words: number of words
 895 *  @data: 16 bit word(s) to write to EEPROM
 896 *
 897 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 898 **/
 899s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 900					       u16 words, u16 *data)
 901{
 902	s32 status;
 903	u16 i, count;
 904
 905	hw->eeprom.ops.init_params(hw);
 906
 907	if (words == 0)
 908		return IXGBE_ERR_INVALID_ARGUMENT;
 909
 910	if (offset + words > hw->eeprom.word_size)
 911		return IXGBE_ERR_EEPROM;
 912
 913	/*
 914	 * The EEPROM page size cannot be queried from the chip. We do lazy
 915	 * initialization. It is worth to do that when we write large buffer.
 916	 */
 917	if ((hw->eeprom.word_page_size == 0) &&
 918	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 919		ixgbe_detect_eeprom_page_size_generic(hw, offset);
 920
 921	/*
 922	 * We cannot hold synchronization semaphores for too long
 923	 * to avoid other entity starvation. However it is more efficient
 924	 * to read in bursts than synchronizing access for each word.
 925	 */
 926	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 927		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 928			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 929		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 930							    count, &data[i]);
 931
 932		if (status != 0)
 933			break;
 934	}
 935
 936	return status;
 937}
 938
 939/**
 940 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 941 *  @hw: pointer to hardware structure
 942 *  @offset: offset within the EEPROM to be written to
 943 *  @words: number of word(s)
 944 *  @data: 16 bit word(s) to be written to the EEPROM
 945 *
 946 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 947 *  EEPROM will most likely contain an invalid checksum.
 948 **/
 949static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 950					      u16 words, u16 *data)
 951{
 952	s32 status;
 953	u16 word;
 954	u16 page_size;
 955	u16 i;
 956	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 957
 958	/* Prepare the EEPROM for writing  */
 959	status = ixgbe_acquire_eeprom(hw);
 960	if (status)
 961		return status;
 962
 963	if (ixgbe_ready_eeprom(hw) != 0) {
 964		ixgbe_release_eeprom(hw);
 965		return IXGBE_ERR_EEPROM;
 966	}
 967
 968	for (i = 0; i < words; i++) {
 969		ixgbe_standby_eeprom(hw);
 970
 971		/* Send the WRITE ENABLE command (8 bit opcode) */
 972		ixgbe_shift_out_eeprom_bits(hw,
 973					    IXGBE_EEPROM_WREN_OPCODE_SPI,
 974					    IXGBE_EEPROM_OPCODE_BITS);
 975
 976		ixgbe_standby_eeprom(hw);
 977
 978		/* Some SPI eeproms use the 8th address bit embedded
 979		 * in the opcode
 980		 */
 981		if ((hw->eeprom.address_bits == 8) &&
 982		    ((offset + i) >= 128))
 983			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 984
 985		/* Send the Write command (8-bit opcode + addr) */
 986		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 987					    IXGBE_EEPROM_OPCODE_BITS);
 988		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 989					    hw->eeprom.address_bits);
 990
 991		page_size = hw->eeprom.word_page_size;
 992
 993		/* Send the data in burst via SPI */
 994		do {
 995			word = data[i];
 996			word = (word >> 8) | (word << 8);
 997			ixgbe_shift_out_eeprom_bits(hw, word, 16);
 998
 999			if (page_size == 0)
1000				break;
1001
1002			/* do not wrap around page */
1003			if (((offset + i) & (page_size - 1)) ==
1004			    (page_size - 1))
1005				break;
1006		} while (++i < words);
1007
1008		ixgbe_standby_eeprom(hw);
1009		usleep_range(10000, 20000);
1010	}
1011	/* Done with writing - release the EEPROM */
1012	ixgbe_release_eeprom(hw);
1013
1014	return 0;
1015}
1016
1017/**
1018 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1019 *  @hw: pointer to hardware structure
1020 *  @offset: offset within the EEPROM to be written to
1021 *  @data: 16 bit word to be written to the EEPROM
1022 *
1023 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1024 *  EEPROM will most likely contain an invalid checksum.
1025 **/
1026s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1027{
1028	hw->eeprom.ops.init_params(hw);
1029
1030	if (offset >= hw->eeprom.word_size)
1031		return IXGBE_ERR_EEPROM;
1032
1033	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1034}
1035
1036/**
1037 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1038 *  @hw: pointer to hardware structure
1039 *  @offset: offset within the EEPROM to be read
1040 *  @words: number of word(s)
1041 *  @data: read 16 bit words(s) from EEPROM
1042 *
1043 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1044 **/
1045s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1046					      u16 words, u16 *data)
1047{
1048	s32 status;
1049	u16 i, count;
1050
1051	hw->eeprom.ops.init_params(hw);
1052
1053	if (words == 0)
1054		return IXGBE_ERR_INVALID_ARGUMENT;
1055
1056	if (offset + words > hw->eeprom.word_size)
1057		return IXGBE_ERR_EEPROM;
1058
1059	/*
1060	 * We cannot hold synchronization semaphores for too long
1061	 * to avoid other entity starvation. However it is more efficient
1062	 * to read in bursts than synchronizing access for each word.
1063	 */
1064	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1065		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1066			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1067
1068		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1069							   count, &data[i]);
1070
1071		if (status)
1072			return status;
1073	}
1074
1075	return 0;
1076}
1077
1078/**
1079 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1080 *  @hw: pointer to hardware structure
1081 *  @offset: offset within the EEPROM to be read
1082 *  @words: number of word(s)
1083 *  @data: read 16 bit word(s) from EEPROM
1084 *
1085 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1086 **/
1087static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1088					     u16 words, u16 *data)
1089{
1090	s32 status;
1091	u16 word_in;
1092	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1093	u16 i;
1094
1095	/* Prepare the EEPROM for reading  */
1096	status = ixgbe_acquire_eeprom(hw);
1097	if (status)
1098		return status;
1099
1100	if (ixgbe_ready_eeprom(hw) != 0) {
1101		ixgbe_release_eeprom(hw);
1102		return IXGBE_ERR_EEPROM;
1103	}
1104
1105	for (i = 0; i < words; i++) {
1106		ixgbe_standby_eeprom(hw);
1107		/* Some SPI eeproms use the 8th address bit embedded
1108		 * in the opcode
1109		 */
1110		if ((hw->eeprom.address_bits == 8) &&
1111		    ((offset + i) >= 128))
1112			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1113
1114		/* Send the READ command (opcode + addr) */
1115		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1116					    IXGBE_EEPROM_OPCODE_BITS);
1117		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1118					    hw->eeprom.address_bits);
1119
1120		/* Read the data. */
1121		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1122		data[i] = (word_in >> 8) | (word_in << 8);
1123	}
1124
1125	/* End this read operation */
1126	ixgbe_release_eeprom(hw);
1127
1128	return 0;
1129}
1130
1131/**
1132 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1133 *  @hw: pointer to hardware structure
1134 *  @offset: offset within the EEPROM to be read
1135 *  @data: read 16 bit value from EEPROM
1136 *
1137 *  Reads 16 bit value from EEPROM through bit-bang method
1138 **/
1139s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1140				       u16 *data)
1141{
1142	hw->eeprom.ops.init_params(hw);
1143
1144	if (offset >= hw->eeprom.word_size)
1145		return IXGBE_ERR_EEPROM;
1146
1147	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1148}
1149
1150/**
1151 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1152 *  @hw: pointer to hardware structure
1153 *  @offset: offset of word in the EEPROM to read
1154 *  @words: number of word(s)
1155 *  @data: 16 bit word(s) from the EEPROM
1156 *
1157 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1158 **/
1159s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1160				   u16 words, u16 *data)
1161{
1162	u32 eerd;
1163	s32 status;
1164	u32 i;
1165
1166	hw->eeprom.ops.init_params(hw);
1167
1168	if (words == 0)
1169		return IXGBE_ERR_INVALID_ARGUMENT;
1170
1171	if (offset >= hw->eeprom.word_size)
1172		return IXGBE_ERR_EEPROM;
1173
1174	for (i = 0; i < words; i++) {
1175		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1176		       IXGBE_EEPROM_RW_REG_START;
1177
1178		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1179		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1180
1181		if (status == 0) {
1182			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1183				   IXGBE_EEPROM_RW_REG_DATA);
1184		} else {
1185			hw_dbg(hw, "Eeprom read timed out\n");
1186			return status;
1187		}
1188	}
1189
1190	return 0;
1191}
1192
1193/**
1194 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1195 *  @hw: pointer to hardware structure
1196 *  @offset: offset within the EEPROM to be used as a scratch pad
1197 *
1198 *  Discover EEPROM page size by writing marching data at given offset.
1199 *  This function is called only when we are writing a new large buffer
1200 *  at given offset so the data would be overwritten anyway.
1201 **/
1202static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1203						 u16 offset)
1204{
1205	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1206	s32 status;
1207	u16 i;
1208
1209	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1210		data[i] = i;
1211
1212	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1213	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1214					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1215	hw->eeprom.word_page_size = 0;
1216	if (status)
1217		return status;
1218
1219	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1220	if (status)
1221		return status;
1222
1223	/*
1224	 * When writing in burst more than the actual page size
1225	 * EEPROM address wraps around current page.
1226	 */
1227	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1228
1229	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1230	       hw->eeprom.word_page_size);
1231	return 0;
1232}
1233
1234/**
1235 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1236 *  @hw: pointer to hardware structure
1237 *  @offset: offset of  word in the EEPROM to read
1238 *  @data: word read from the EEPROM
1239 *
1240 *  Reads a 16 bit word from the EEPROM using the EERD register.
1241 **/
1242s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1243{
1244	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1245}
1246
1247/**
1248 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1249 *  @hw: pointer to hardware structure
1250 *  @offset: offset of  word in the EEPROM to write
1251 *  @words: number of words
1252 *  @data: word(s) write to the EEPROM
1253 *
1254 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1255 **/
1256s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1257				    u16 words, u16 *data)
1258{
1259	u32 eewr;
1260	s32 status;
1261	u16 i;
1262
1263	hw->eeprom.ops.init_params(hw);
1264
1265	if (words == 0)
1266		return IXGBE_ERR_INVALID_ARGUMENT;
1267
1268	if (offset >= hw->eeprom.word_size)
1269		return IXGBE_ERR_EEPROM;
1270
1271	for (i = 0; i < words; i++) {
1272		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1273		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1274		       IXGBE_EEPROM_RW_REG_START;
1275
1276		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1277		if (status) {
1278			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1279			return status;
1280		}
1281
1282		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1283
1284		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1285		if (status) {
1286			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1287			return status;
1288		}
1289	}
1290
1291	return 0;
1292}
1293
1294/**
1295 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1296 *  @hw: pointer to hardware structure
1297 *  @offset: offset of  word in the EEPROM to write
1298 *  @data: word write to the EEPROM
1299 *
1300 *  Write a 16 bit word to the EEPROM using the EEWR register.
1301 **/
1302s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1303{
1304	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1305}
1306
1307/**
1308 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1309 *  @hw: pointer to hardware structure
1310 *  @ee_reg: EEPROM flag for polling
1311 *
1312 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1313 *  read or write is done respectively.
1314 **/
1315static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1316{
1317	u32 i;
1318	u32 reg;
1319
1320	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1321		if (ee_reg == IXGBE_NVM_POLL_READ)
1322			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1323		else
1324			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1325
1326		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1327			return 0;
1328		}
1329		udelay(5);
1330	}
1331	return IXGBE_ERR_EEPROM;
1332}
1333
1334/**
1335 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1336 *  @hw: pointer to hardware structure
1337 *
1338 *  Prepares EEPROM for access using bit-bang method. This function should
1339 *  be called before issuing a command to the EEPROM.
1340 **/
1341static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1342{
1343	u32 eec;
1344	u32 i;
1345
1346	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1347		return IXGBE_ERR_SWFW_SYNC;
1348
1349	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1350
1351	/* Request EEPROM Access */
1352	eec |= IXGBE_EEC_REQ;
1353	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354
1355	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1356		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1357		if (eec & IXGBE_EEC_GNT)
1358			break;
1359		udelay(5);
1360	}
1361
1362	/* Release if grant not acquired */
1363	if (!(eec & IXGBE_EEC_GNT)) {
1364		eec &= ~IXGBE_EEC_REQ;
1365		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1366		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1367
1368		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1369		return IXGBE_ERR_EEPROM;
1370	}
1371
1372	/* Setup EEPROM for Read/Write */
1373	/* Clear CS and SK */
1374	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1375	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1376	IXGBE_WRITE_FLUSH(hw);
1377	udelay(1);
1378	return 0;
1379}
1380
1381/**
1382 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1383 *  @hw: pointer to hardware structure
1384 *
1385 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1386 **/
1387static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1388{
1389	u32 timeout = 2000;
1390	u32 i;
1391	u32 swsm;
1392
1393	/* Get SMBI software semaphore between device drivers first */
1394	for (i = 0; i < timeout; i++) {
1395		/*
1396		 * If the SMBI bit is 0 when we read it, then the bit will be
1397		 * set and we have the semaphore
1398		 */
1399		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1400		if (!(swsm & IXGBE_SWSM_SMBI))
1401			break;
1402		usleep_range(50, 100);
1403	}
1404
1405	if (i == timeout) {
1406		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1407		/* this release is particularly important because our attempts
1408		 * above to get the semaphore may have succeeded, and if there
1409		 * was a timeout, we should unconditionally clear the semaphore
1410		 * bits to free the driver to make progress
1411		 */
1412		ixgbe_release_eeprom_semaphore(hw);
1413
1414		usleep_range(50, 100);
1415		/* one last try
1416		 * If the SMBI bit is 0 when we read it, then the bit will be
1417		 * set and we have the semaphore
1418		 */
1419		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420		if (swsm & IXGBE_SWSM_SMBI) {
1421			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1422			return IXGBE_ERR_EEPROM;
1423		}
1424	}
1425
1426	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1427	for (i = 0; i < timeout; i++) {
1428		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1429
1430		/* Set the SW EEPROM semaphore bit to request access */
1431		swsm |= IXGBE_SWSM_SWESMBI;
1432		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1433
1434		/* If we set the bit successfully then we got the
1435		 * semaphore.
1436		 */
1437		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1438		if (swsm & IXGBE_SWSM_SWESMBI)
1439			break;
1440
1441		usleep_range(50, 100);
1442	}
1443
1444	/* Release semaphores and return error if SW EEPROM semaphore
1445	 * was not granted because we don't have access to the EEPROM
1446	 */
1447	if (i >= timeout) {
1448		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1449		ixgbe_release_eeprom_semaphore(hw);
1450		return IXGBE_ERR_EEPROM;
1451	}
1452
1453	return 0;
1454}
1455
1456/**
1457 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1458 *  @hw: pointer to hardware structure
1459 *
1460 *  This function clears hardware semaphore bits.
1461 **/
1462static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1463{
1464	u32 swsm;
1465
1466	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1467
1468	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1469	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1470	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1471	IXGBE_WRITE_FLUSH(hw);
1472}
1473
1474/**
1475 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1476 *  @hw: pointer to hardware structure
1477 **/
1478static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1479{
1480	u16 i;
1481	u8 spi_stat_reg;
1482
1483	/*
1484	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1485	 * EEPROM will signal that the command has been completed by clearing
1486	 * bit 0 of the internal status register.  If it's not cleared within
1487	 * 5 milliseconds, then error out.
1488	 */
1489	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1490		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1491					    IXGBE_EEPROM_OPCODE_BITS);
1492		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1493		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1494			break;
1495
1496		udelay(5);
1497		ixgbe_standby_eeprom(hw);
1498	}
1499
1500	/*
1501	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1502	 * devices (and only 0-5mSec on 5V devices)
1503	 */
1504	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1505		hw_dbg(hw, "SPI EEPROM Status error\n");
1506		return IXGBE_ERR_EEPROM;
1507	}
1508
1509	return 0;
1510}
1511
1512/**
1513 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1514 *  @hw: pointer to hardware structure
1515 **/
1516static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1517{
1518	u32 eec;
1519
1520	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1521
1522	/* Toggle CS to flush commands */
1523	eec |= IXGBE_EEC_CS;
1524	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1525	IXGBE_WRITE_FLUSH(hw);
1526	udelay(1);
1527	eec &= ~IXGBE_EEC_CS;
1528	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529	IXGBE_WRITE_FLUSH(hw);
1530	udelay(1);
1531}
1532
1533/**
1534 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1535 *  @hw: pointer to hardware structure
1536 *  @data: data to send to the EEPROM
1537 *  @count: number of bits to shift out
1538 **/
1539static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1540					u16 count)
1541{
1542	u32 eec;
1543	u32 mask;
1544	u32 i;
1545
1546	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547
1548	/*
1549	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1550	 * one bit at a time.  Determine the starting bit based on count
1551	 */
1552	mask = BIT(count - 1);
1553
1554	for (i = 0; i < count; i++) {
1555		/*
1556		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1557		 * "1", and then raising and then lowering the clock (the SK
1558		 * bit controls the clock input to the EEPROM).  A "0" is
1559		 * shifted out to the EEPROM by setting "DI" to "0" and then
1560		 * raising and then lowering the clock.
1561		 */
1562		if (data & mask)
1563			eec |= IXGBE_EEC_DI;
1564		else
1565			eec &= ~IXGBE_EEC_DI;
1566
1567		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1568		IXGBE_WRITE_FLUSH(hw);
1569
1570		udelay(1);
1571
1572		ixgbe_raise_eeprom_clk(hw, &eec);
1573		ixgbe_lower_eeprom_clk(hw, &eec);
1574
1575		/*
1576		 * Shift mask to signify next bit of data to shift in to the
1577		 * EEPROM
1578		 */
1579		mask = mask >> 1;
1580	}
1581
1582	/* We leave the "DI" bit set to "0" when we leave this routine. */
1583	eec &= ~IXGBE_EEC_DI;
1584	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1585	IXGBE_WRITE_FLUSH(hw);
1586}
1587
1588/**
1589 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1590 *  @hw: pointer to hardware structure
1591 *  @count: number of bits to shift
1592 **/
1593static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1594{
1595	u32 eec;
1596	u32 i;
1597	u16 data = 0;
1598
1599	/*
1600	 * In order to read a register from the EEPROM, we need to shift
1601	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1602	 * the clock input to the EEPROM (setting the SK bit), and then reading
1603	 * the value of the "DO" bit.  During this "shifting in" process the
1604	 * "DI" bit should always be clear.
1605	 */
1606	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1607
1608	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1609
1610	for (i = 0; i < count; i++) {
1611		data = data << 1;
1612		ixgbe_raise_eeprom_clk(hw, &eec);
1613
1614		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1615
1616		eec &= ~(IXGBE_EEC_DI);
1617		if (eec & IXGBE_EEC_DO)
1618			data |= 1;
1619
1620		ixgbe_lower_eeprom_clk(hw, &eec);
1621	}
1622
1623	return data;
1624}
1625
1626/**
1627 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1628 *  @hw: pointer to hardware structure
1629 *  @eec: EEC register's current value
1630 **/
1631static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1632{
1633	/*
1634	 * Raise the clock input to the EEPROM
1635	 * (setting the SK bit), then delay
1636	 */
1637	*eec = *eec | IXGBE_EEC_SK;
1638	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1639	IXGBE_WRITE_FLUSH(hw);
1640	udelay(1);
1641}
1642
1643/**
1644 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1645 *  @hw: pointer to hardware structure
1646 *  @eec: EEC's current value
1647 **/
1648static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1649{
1650	/*
1651	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1652	 * delay
1653	 */
1654	*eec = *eec & ~IXGBE_EEC_SK;
1655	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1656	IXGBE_WRITE_FLUSH(hw);
1657	udelay(1);
1658}
1659
1660/**
1661 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1662 *  @hw: pointer to hardware structure
1663 **/
1664static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1665{
1666	u32 eec;
1667
1668	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1669
1670	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1671	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1672
1673	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1674	IXGBE_WRITE_FLUSH(hw);
1675
1676	udelay(1);
1677
1678	/* Stop requesting EEPROM access */
1679	eec &= ~IXGBE_EEC_REQ;
1680	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1681
1682	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1683
1684	/*
1685	 * Delay before attempt to obtain semaphore again to allow FW
1686	 * access. semaphore_delay is in ms we need us for usleep_range
1687	 */
1688	usleep_range(hw->eeprom.semaphore_delay * 1000,
1689		     hw->eeprom.semaphore_delay * 2000);
1690}
1691
1692/**
1693 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1694 *  @hw: pointer to hardware structure
1695 **/
1696s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1697{
1698	u16 i;
1699	u16 j;
1700	u16 checksum = 0;
1701	u16 length = 0;
1702	u16 pointer = 0;
1703	u16 word = 0;
1704
1705	/* Include 0x0-0x3F in the checksum */
1706	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1707		if (hw->eeprom.ops.read(hw, i, &word)) {
1708			hw_dbg(hw, "EEPROM read failed\n");
1709			break;
1710		}
1711		checksum += word;
1712	}
1713
1714	/* Include all data from pointers except for the fw pointer */
1715	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1716		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1717			hw_dbg(hw, "EEPROM read failed\n");
1718			return IXGBE_ERR_EEPROM;
1719		}
1720
1721		/* If the pointer seems invalid */
1722		if (pointer == 0xFFFF || pointer == 0)
1723			continue;
1724
1725		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1726			hw_dbg(hw, "EEPROM read failed\n");
1727			return IXGBE_ERR_EEPROM;
1728		}
1729
1730		if (length == 0xFFFF || length == 0)
1731			continue;
1732
1733		for (j = pointer + 1; j <= pointer + length; j++) {
1734			if (hw->eeprom.ops.read(hw, j, &word)) {
1735				hw_dbg(hw, "EEPROM read failed\n");
1736				return IXGBE_ERR_EEPROM;
1737			}
1738			checksum += word;
1739		}
1740	}
1741
1742	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1743
1744	return (s32)checksum;
1745}
1746
1747/**
1748 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1749 *  @hw: pointer to hardware structure
1750 *  @checksum_val: calculated checksum
1751 *
1752 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1753 *  caller does not need checksum_val, the value can be NULL.
1754 **/
1755s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1756					   u16 *checksum_val)
1757{
1758	s32 status;
1759	u16 checksum;
1760	u16 read_checksum = 0;
1761
1762	/*
1763	 * Read the first word from the EEPROM. If this times out or fails, do
1764	 * not continue or we could be in for a very long wait while every
1765	 * EEPROM read fails
1766	 */
1767	status = hw->eeprom.ops.read(hw, 0, &checksum);
1768	if (status) {
1769		hw_dbg(hw, "EEPROM read failed\n");
1770		return status;
1771	}
1772
1773	status = hw->eeprom.ops.calc_checksum(hw);
1774	if (status < 0)
1775		return status;
1776
1777	checksum = (u16)(status & 0xffff);
1778
1779	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1780	if (status) {
1781		hw_dbg(hw, "EEPROM read failed\n");
1782		return status;
1783	}
1784
1785	/* Verify read checksum from EEPROM is the same as
1786	 * calculated checksum
1787	 */
1788	if (read_checksum != checksum)
1789		status = IXGBE_ERR_EEPROM_CHECKSUM;
1790
1791	/* If the user cares, return the calculated checksum */
1792	if (checksum_val)
1793		*checksum_val = checksum;
1794
1795	return status;
1796}
1797
1798/**
1799 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1800 *  @hw: pointer to hardware structure
1801 **/
1802s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1803{
1804	s32 status;
1805	u16 checksum;
1806
1807	/*
1808	 * Read the first word from the EEPROM. If this times out or fails, do
1809	 * not continue or we could be in for a very long wait while every
1810	 * EEPROM read fails
1811	 */
1812	status = hw->eeprom.ops.read(hw, 0, &checksum);
1813	if (status) {
1814		hw_dbg(hw, "EEPROM read failed\n");
1815		return status;
1816	}
1817
1818	status = hw->eeprom.ops.calc_checksum(hw);
1819	if (status < 0)
1820		return status;
1821
1822	checksum = (u16)(status & 0xffff);
1823
1824	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1825
1826	return status;
1827}
1828
1829/**
1830 *  ixgbe_set_rar_generic - Set Rx address register
1831 *  @hw: pointer to hardware structure
1832 *  @index: Receive address register to write
1833 *  @addr: Address to put into receive address register
1834 *  @vmdq: VMDq "set" or "pool" index
1835 *  @enable_addr: set flag that address is active
1836 *
1837 *  Puts an ethernet address into a receive address register.
1838 **/
1839s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1840			  u32 enable_addr)
1841{
1842	u32 rar_low, rar_high;
1843	u32 rar_entries = hw->mac.num_rar_entries;
1844
1845	/* Make sure we are using a valid rar index range */
1846	if (index >= rar_entries) {
1847		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1848		return IXGBE_ERR_INVALID_ARGUMENT;
1849	}
1850
1851	/* setup VMDq pool selection before this RAR gets enabled */
1852	hw->mac.ops.set_vmdq(hw, index, vmdq);
1853
1854	/*
1855	 * HW expects these in little endian so we reverse the byte
1856	 * order from network order (big endian) to little endian
1857	 */
1858	rar_low = ((u32)addr[0] |
1859		   ((u32)addr[1] << 8) |
1860		   ((u32)addr[2] << 16) |
1861		   ((u32)addr[3] << 24));
1862	/*
1863	 * Some parts put the VMDq setting in the extra RAH bits,
1864	 * so save everything except the lower 16 bits that hold part
1865	 * of the address and the address valid bit.
1866	 */
1867	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1868	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1869	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1870
1871	if (enable_addr != 0)
1872		rar_high |= IXGBE_RAH_AV;
1873
1874	/* Record lower 32 bits of MAC address and then make
1875	 * sure that write is flushed to hardware before writing
1876	 * the upper 16 bits and setting the valid bit.
1877	 */
1878	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1879	IXGBE_WRITE_FLUSH(hw);
1880	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1881
1882	return 0;
1883}
1884
1885/**
1886 *  ixgbe_clear_rar_generic - Remove Rx address register
1887 *  @hw: pointer to hardware structure
1888 *  @index: Receive address register to write
1889 *
1890 *  Clears an ethernet address from a receive address register.
1891 **/
1892s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1893{
1894	u32 rar_high;
1895	u32 rar_entries = hw->mac.num_rar_entries;
1896
1897	/* Make sure we are using a valid rar index range */
1898	if (index >= rar_entries) {
1899		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1900		return IXGBE_ERR_INVALID_ARGUMENT;
1901	}
1902
1903	/*
1904	 * Some parts put the VMDq setting in the extra RAH bits,
1905	 * so save everything except the lower 16 bits that hold part
1906	 * of the address and the address valid bit.
1907	 */
1908	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1909	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1910
1911	/* Clear the address valid bit and upper 16 bits of the address
1912	 * before clearing the lower bits. This way we aren't updating
1913	 * a live filter.
1914	 */
1915	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1916	IXGBE_WRITE_FLUSH(hw);
1917	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1918
1919	/* clear VMDq pool/queue selection for this RAR */
1920	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1921
1922	return 0;
1923}
1924
1925/**
1926 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1927 *  @hw: pointer to hardware structure
1928 *
1929 *  Places the MAC address in receive address register 0 and clears the rest
1930 *  of the receive address registers. Clears the multicast table. Assumes
1931 *  the receiver is in reset when the routine is called.
1932 **/
1933s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1934{
1935	u32 i;
1936	u32 rar_entries = hw->mac.num_rar_entries;
1937
1938	/*
1939	 * If the current mac address is valid, assume it is a software override
1940	 * to the permanent address.
1941	 * Otherwise, use the permanent address from the eeprom.
1942	 */
1943	if (!is_valid_ether_addr(hw->mac.addr)) {
1944		/* Get the MAC address from the RAR0 for later reference */
1945		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1946
1947		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1948	} else {
1949		/* Setup the receive address. */
1950		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1951		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1952
1953		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1954	}
1955
1956	/*  clear VMDq pool/queue selection for RAR 0 */
1957	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1958
1959	hw->addr_ctrl.overflow_promisc = 0;
1960
1961	hw->addr_ctrl.rar_used_count = 1;
1962
1963	/* Zero out the other receive addresses. */
1964	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1965	for (i = 1; i < rar_entries; i++) {
1966		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1967		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1968	}
1969
1970	/* Clear the MTA */
1971	hw->addr_ctrl.mta_in_use = 0;
1972	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1973
1974	hw_dbg(hw, " Clearing MTA\n");
1975	for (i = 0; i < hw->mac.mcft_size; i++)
1976		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1977
1978	if (hw->mac.ops.init_uta_tables)
1979		hw->mac.ops.init_uta_tables(hw);
1980
1981	return 0;
1982}
1983
1984/**
1985 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1986 *  @hw: pointer to hardware structure
1987 *  @mc_addr: the multicast address
1988 *
1989 *  Extracts the 12 bits, from a multicast address, to determine which
1990 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1991 *  incoming rx multicast addresses, to determine the bit-vector to check in
1992 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1993 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1994 *  to mc_filter_type.
1995 **/
1996static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1997{
1998	u32 vector = 0;
1999
2000	switch (hw->mac.mc_filter_type) {
2001	case 0:   /* use bits [47:36] of the address */
2002		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2003		break;
2004	case 1:   /* use bits [46:35] of the address */
2005		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2006		break;
2007	case 2:   /* use bits [45:34] of the address */
2008		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2009		break;
2010	case 3:   /* use bits [43:32] of the address */
2011		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2012		break;
2013	default:  /* Invalid mc_filter_type */
2014		hw_dbg(hw, "MC filter type param set incorrectly\n");
2015		break;
2016	}
2017
2018	/* vector can only be 12-bits or boundary will be exceeded */
2019	vector &= 0xFFF;
2020	return vector;
2021}
2022
2023/**
2024 *  ixgbe_set_mta - Set bit-vector in multicast table
2025 *  @hw: pointer to hardware structure
2026 *  @mc_addr: Multicast address
2027 *
2028 *  Sets the bit-vector in the multicast table.
2029 **/
2030static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2031{
2032	u32 vector;
2033	u32 vector_bit;
2034	u32 vector_reg;
2035
2036	hw->addr_ctrl.mta_in_use++;
2037
2038	vector = ixgbe_mta_vector(hw, mc_addr);
2039	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2040
2041	/*
2042	 * The MTA is a register array of 128 32-bit registers. It is treated
2043	 * like an array of 4096 bits.  We want to set bit
2044	 * BitArray[vector_value]. So we figure out what register the bit is
2045	 * in, read it, OR in the new bit, then write back the new value.  The
2046	 * register is determined by the upper 7 bits of the vector value and
2047	 * the bit within that register are determined by the lower 5 bits of
2048	 * the value.
2049	 */
2050	vector_reg = (vector >> 5) & 0x7F;
2051	vector_bit = vector & 0x1F;
2052	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2053}
2054
2055/**
2056 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2057 *  @hw: pointer to hardware structure
2058 *  @netdev: pointer to net device structure
2059 *
2060 *  The given list replaces any existing list. Clears the MC addrs from receive
2061 *  address registers and the multicast table. Uses unused receive address
2062 *  registers for the first multicast addresses, and hashes the rest into the
2063 *  multicast table.
2064 **/
2065s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2066				      struct net_device *netdev)
2067{
2068	struct netdev_hw_addr *ha;
2069	u32 i;
2070
2071	/*
2072	 * Set the new number of MC addresses that we are being requested to
2073	 * use.
2074	 */
2075	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2076	hw->addr_ctrl.mta_in_use = 0;
2077
2078	/* Clear mta_shadow */
2079	hw_dbg(hw, " Clearing MTA\n");
2080	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2081
2082	/* Update mta shadow */
2083	netdev_for_each_mc_addr(ha, netdev) {
2084		hw_dbg(hw, " Adding the multicast addresses:\n");
2085		ixgbe_set_mta(hw, ha->addr);
2086	}
2087
2088	/* Enable mta */
2089	for (i = 0; i < hw->mac.mcft_size; i++)
2090		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2091				      hw->mac.mta_shadow[i]);
2092
2093	if (hw->addr_ctrl.mta_in_use > 0)
2094		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2095				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2096
2097	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2098	return 0;
2099}
2100
2101/**
2102 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2103 *  @hw: pointer to hardware structure
2104 *
2105 *  Enables multicast address in RAR and the use of the multicast hash table.
2106 **/
2107s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2108{
2109	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2110
2111	if (a->mta_in_use > 0)
2112		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2113				hw->mac.mc_filter_type);
2114
2115	return 0;
2116}
2117
2118/**
2119 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2120 *  @hw: pointer to hardware structure
2121 *
2122 *  Disables multicast address in RAR and the use of the multicast hash table.
2123 **/
2124s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2125{
2126	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127
2128	if (a->mta_in_use > 0)
2129		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2130
2131	return 0;
2132}
2133
2134/**
2135 *  ixgbe_fc_enable_generic - Enable flow control
2136 *  @hw: pointer to hardware structure
2137 *
2138 *  Enable flow control according to the current settings.
2139 **/
2140s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2141{
2142	u32 mflcn_reg, fccfg_reg;
2143	u32 reg;
2144	u32 fcrtl, fcrth;
2145	int i;
2146
2147	/* Validate the water mark configuration. */
2148	if (!hw->fc.pause_time)
2149		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2150
2151	/* Low water mark of zero causes XOFF floods */
2152	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2153		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2154		    hw->fc.high_water[i]) {
2155			if (!hw->fc.low_water[i] ||
2156			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2157				hw_dbg(hw, "Invalid water mark configuration\n");
2158				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2159			}
2160		}
2161	}
2162
2163	/* Negotiate the fc mode to use */
2164	hw->mac.ops.fc_autoneg(hw);
2165
2166	/* Disable any previous flow control settings */
2167	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2168	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2169
2170	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2171	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2172
2173	/*
2174	 * The possible values of fc.current_mode are:
2175	 * 0: Flow control is completely disabled
2176	 * 1: Rx flow control is enabled (we can receive pause frames,
2177	 *    but not send pause frames).
2178	 * 2: Tx flow control is enabled (we can send pause frames but
2179	 *    we do not support receiving pause frames).
2180	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2181	 * other: Invalid.
2182	 */
2183	switch (hw->fc.current_mode) {
2184	case ixgbe_fc_none:
2185		/*
2186		 * Flow control is disabled by software override or autoneg.
2187		 * The code below will actually disable it in the HW.
2188		 */
2189		break;
2190	case ixgbe_fc_rx_pause:
2191		/*
2192		 * Rx Flow control is enabled and Tx Flow control is
2193		 * disabled by software override. Since there really
2194		 * isn't a way to advertise that we are capable of RX
2195		 * Pause ONLY, we will advertise that we support both
2196		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2197		 * disable the adapter's ability to send PAUSE frames.
2198		 */
2199		mflcn_reg |= IXGBE_MFLCN_RFCE;
2200		break;
2201	case ixgbe_fc_tx_pause:
2202		/*
2203		 * Tx Flow control is enabled, and Rx Flow control is
2204		 * disabled by software override.
2205		 */
2206		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2207		break;
2208	case ixgbe_fc_full:
2209		/* Flow control (both Rx and Tx) is enabled by SW override. */
2210		mflcn_reg |= IXGBE_MFLCN_RFCE;
2211		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2212		break;
2213	default:
2214		hw_dbg(hw, "Flow control param set incorrectly\n");
2215		return IXGBE_ERR_CONFIG;
2216	}
2217
2218	/* Set 802.3x based flow control settings. */
2219	mflcn_reg |= IXGBE_MFLCN_DPF;
2220	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2221	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2222
2223	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2224	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2225		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2226		    hw->fc.high_water[i]) {
2227			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2228			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2229			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2230		} else {
2231			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2232			/*
2233			 * In order to prevent Tx hangs when the internal Tx
2234			 * switch is enabled we must set the high water mark
2235			 * to the Rx packet buffer size - 24KB.  This allows
2236			 * the Tx switch to function even under heavy Rx
2237			 * workloads.
2238			 */
2239			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2240		}
2241
2242		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2243	}
2244
2245	/* Configure pause time (2 TCs per register) */
2246	reg = hw->fc.pause_time * 0x00010001U;
2247	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2248		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2249
2250	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2251
2252	return 0;
2253}
2254
2255/**
2256 *  ixgbe_negotiate_fc - Negotiate flow control
2257 *  @hw: pointer to hardware structure
2258 *  @adv_reg: flow control advertised settings
2259 *  @lp_reg: link partner's flow control settings
2260 *  @adv_sym: symmetric pause bit in advertisement
2261 *  @adv_asm: asymmetric pause bit in advertisement
2262 *  @lp_sym: symmetric pause bit in link partner advertisement
2263 *  @lp_asm: asymmetric pause bit in link partner advertisement
2264 *
2265 *  Find the intersection between advertised settings and link partner's
2266 *  advertised settings
2267 **/
2268s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2269		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2270{
2271	if ((!(adv_reg)) ||  (!(lp_reg)))
2272		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2273
2274	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2275		/*
2276		 * Now we need to check if the user selected Rx ONLY
2277		 * of pause frames.  In this case, we had to advertise
2278		 * FULL flow control because we could not advertise RX
2279		 * ONLY. Hence, we must now check to see if we need to
2280		 * turn OFF the TRANSMISSION of PAUSE frames.
2281		 */
2282		if (hw->fc.requested_mode == ixgbe_fc_full) {
2283			hw->fc.current_mode = ixgbe_fc_full;
2284			hw_dbg(hw, "Flow Control = FULL.\n");
2285		} else {
2286			hw->fc.current_mode = ixgbe_fc_rx_pause;
2287			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2288		}
2289	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2290		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2291		hw->fc.current_mode = ixgbe_fc_tx_pause;
2292		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2293	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2294		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2295		hw->fc.current_mode = ixgbe_fc_rx_pause;
2296		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2297	} else {
2298		hw->fc.current_mode = ixgbe_fc_none;
2299		hw_dbg(hw, "Flow Control = NONE.\n");
2300	}
2301	return 0;
2302}
2303
2304/**
2305 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2306 *  @hw: pointer to hardware structure
2307 *
2308 *  Enable flow control according on 1 gig fiber.
2309 **/
2310static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2311{
2312	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2313	s32 ret_val;
2314
2315	/*
2316	 * On multispeed fiber at 1g, bail out if
2317	 * - link is up but AN did not complete, or if
2318	 * - link is up and AN completed but timed out
2319	 */
2320
2321	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2322	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2323	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2324		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2325
2326	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2327	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2328
2329	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2330			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2331			       IXGBE_PCS1GANA_ASM_PAUSE,
2332			       IXGBE_PCS1GANA_SYM_PAUSE,
2333			       IXGBE_PCS1GANA_ASM_PAUSE);
2334
2335	return ret_val;
2336}
2337
2338/**
2339 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2340 *  @hw: pointer to hardware structure
2341 *
2342 *  Enable flow control according to IEEE clause 37.
2343 **/
2344static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2345{
2346	u32 links2, anlp1_reg, autoc_reg, links;
2347	s32 ret_val;
2348
2349	/*
2350	 * On backplane, bail out if
2351	 * - backplane autoneg was not completed, or if
2352	 * - we are 82599 and link partner is not AN enabled
2353	 */
2354	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2355	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2356		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2357
2358	if (hw->mac.type == ixgbe_mac_82599EB) {
2359		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2360		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2361			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2362	}
2363	/*
2364	 * Read the 10g AN autoc and LP ability registers and resolve
2365	 * local flow control settings accordingly
2366	 */
2367	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2368	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2369
2370	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2371		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2372		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2373
2374	return ret_val;
2375}
2376
2377/**
2378 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2379 *  @hw: pointer to hardware structure
2380 *
2381 *  Enable flow control according to IEEE clause 37.
2382 **/
2383static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2384{
2385	u16 technology_ability_reg = 0;
2386	u16 lp_technology_ability_reg = 0;
2387
2388	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2389			     MDIO_MMD_AN,
2390			     &technology_ability_reg);
2391	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2392			     MDIO_MMD_AN,
2393			     &lp_technology_ability_reg);
2394
2395	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2396				  (u32)lp_technology_ability_reg,
2397				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2398				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2399}
2400
2401/**
2402 *  ixgbe_fc_autoneg - Configure flow control
2403 *  @hw: pointer to hardware structure
2404 *
2405 *  Compares our advertised flow control capabilities to those advertised by
2406 *  our link partner, and determines the proper flow control mode to use.
2407 **/
2408void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2409{
2410	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2411	ixgbe_link_speed speed;
2412	bool link_up;
2413
2414	/*
2415	 * AN should have completed when the cable was plugged in.
2416	 * Look for reasons to bail out.  Bail out if:
2417	 * - FC autoneg is disabled, or if
2418	 * - link is not up.
2419	 *
2420	 * Since we're being called from an LSC, link is already known to be up.
2421	 * So use link_up_wait_to_complete=false.
2422	 */
2423	if (hw->fc.disable_fc_autoneg)
2424		goto out;
2425
2426	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2427	if (!link_up)
2428		goto out;
2429
2430	switch (hw->phy.media_type) {
2431	/* Autoneg flow control on fiber adapters */
2432	case ixgbe_media_type_fiber:
2433		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2434			ret_val = ixgbe_fc_autoneg_fiber(hw);
2435		break;
2436
2437	/* Autoneg flow control on backplane adapters */
2438	case ixgbe_media_type_backplane:
2439		ret_val = ixgbe_fc_autoneg_backplane(hw);
2440		break;
2441
2442	/* Autoneg flow control on copper adapters */
2443	case ixgbe_media_type_copper:
2444		if (ixgbe_device_supports_autoneg_fc(hw))
2445			ret_val = ixgbe_fc_autoneg_copper(hw);
2446		break;
2447
2448	default:
2449		break;
2450	}
2451
2452out:
2453	if (ret_val == 0) {
2454		hw->fc.fc_was_autonegged = true;
2455	} else {
2456		hw->fc.fc_was_autonegged = false;
2457		hw->fc.current_mode = hw->fc.requested_mode;
2458	}
2459}
2460
2461/**
2462 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2463 * @hw: pointer to hardware structure
2464 *
2465 * System-wide timeout range is encoded in PCIe Device Control2 register.
2466 *
2467 *  Add 10% to specified maximum and return the number of times to poll for
2468 *  completion timeout, in units of 100 microsec.  Never return less than
2469 *  800 = 80 millisec.
2470 **/
2471static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2472{
2473	s16 devctl2;
2474	u32 pollcnt;
2475
2476	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2477	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2478
2479	switch (devctl2) {
2480	case IXGBE_PCIDEVCTRL2_65_130ms:
2481		 pollcnt = 1300;         /* 130 millisec */
2482		break;
2483	case IXGBE_PCIDEVCTRL2_260_520ms:
2484		pollcnt = 5200;         /* 520 millisec */
2485		break;
2486	case IXGBE_PCIDEVCTRL2_1_2s:
2487		pollcnt = 20000;        /* 2 sec */
2488		break;
2489	case IXGBE_PCIDEVCTRL2_4_8s:
2490		pollcnt = 80000;        /* 8 sec */
2491		break;
2492	case IXGBE_PCIDEVCTRL2_17_34s:
2493		pollcnt = 34000;        /* 34 sec */
2494		break;
2495	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2496	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2497	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2498	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2499	default:
2500		pollcnt = 800;          /* 80 millisec minimum */
2501		break;
2502	}
2503
2504	/* add 10% to spec maximum */
2505	return (pollcnt * 11) / 10;
2506}
2507
2508/**
2509 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2510 *  @hw: pointer to hardware structure
2511 *
2512 *  Disables PCI-Express master access and verifies there are no pending
2513 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2514 *  bit hasn't caused the master requests to be disabled, else 0
2515 *  is returned signifying master requests disabled.
2516 **/
2517static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2518{
2519	u32 i, poll;
2520	u16 value;
2521
2522	/* Always set this bit to ensure any future transactions are blocked */
2523	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2524
2525	/* Poll for bit to read as set */
2526	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2527		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2528			break;
2529		usleep_range(100, 120);
2530	}
2531	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2532		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2533		goto gio_disable_fail;
2534	}
2535
2536	/* Exit if master requests are blocked */
2537	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2538	    ixgbe_removed(hw->hw_addr))
2539		return 0;
2540
2541	/* Poll for master request bit to clear */
2542	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543		udelay(100);
2544		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2545			return 0;
2546	}
2547
2548	/*
2549	 * Two consecutive resets are required via CTRL.RST per datasheet
2550	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2551	 * of this need.  The first reset prevents new master requests from
2552	 * being issued by our device.  We then must wait 1usec or more for any
2553	 * remaining completions from the PCIe bus to trickle in, and then reset
2554	 * again to clear out any effects they may have had on our device.
2555	 */
2556	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2557gio_disable_fail:
2558	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2559
2560	if (hw->mac.type >= ixgbe_mac_X550)
2561		return 0;
2562
2563	/*
2564	 * Before proceeding, make sure that the PCIe block does not have
2565	 * transactions pending.
2566	 */
2567	poll = ixgbe_pcie_timeout_poll(hw);
2568	for (i = 0; i < poll; i++) {
2569		udelay(100);
2570		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2571		if (ixgbe_removed(hw->hw_addr))
2572			return 0;
2573		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2574			return 0;
2575	}
2576
2577	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2578	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2579}
2580
2581/**
2582 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2583 *  @hw: pointer to hardware structure
2584 *  @mask: Mask to specify which semaphore to acquire
2585 *
2586 *  Acquires the SWFW semaphore through the GSSR register for the specified
2587 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2588 **/
2589s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2590{
2591	u32 gssr = 0;
2592	u32 swmask = mask;
2593	u32 fwmask = mask << 5;
2594	u32 timeout = 200;
2595	u32 i;
2596
2597	for (i = 0; i < timeout; i++) {
2598		/*
2599		 * SW NVM semaphore bit is used for access to all
2600		 * SW_FW_SYNC bits (not just NVM)
2601		 */
2602		if (ixgbe_get_eeprom_semaphore(hw))
2603			return IXGBE_ERR_SWFW_SYNC;
2604
2605		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2606		if (!(gssr & (fwmask | swmask))) {
2607			gssr |= swmask;
2608			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2609			ixgbe_release_eeprom_semaphore(hw);
2610			return 0;
2611		} else {
2612			/* Resource is currently in use by FW or SW */
2613			ixgbe_release_eeprom_semaphore(hw);
2614			usleep_range(5000, 10000);
2615		}
2616	}
2617
2618	/* If time expired clear the bits holding the lock and retry */
2619	if (gssr & (fwmask | swmask))
2620		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2621
2622	usleep_range(5000, 10000);
2623	return IXGBE_ERR_SWFW_SYNC;
2624}
2625
2626/**
2627 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2628 *  @hw: pointer to hardware structure
2629 *  @mask: Mask to specify which semaphore to release
2630 *
2631 *  Releases the SWFW semaphore through the GSSR register for the specified
2632 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2633 **/
2634void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2635{
2636	u32 gssr;
2637	u32 swmask = mask;
2638
2639	ixgbe_get_eeprom_semaphore(hw);
2640
2641	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2642	gssr &= ~swmask;
2643	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2644
2645	ixgbe_release_eeprom_semaphore(hw);
2646}
2647
2648/**
2649 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2650 * @hw: pointer to hardware structure
2651 * @reg_val: Value we read from AUTOC
2652 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2653 *	    true in this the generic case.
2654 *
2655 * The default case requires no protection so just to the register read.
2656 **/
2657s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2658{
2659	*locked = false;
2660	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2661	return 0;
2662}
2663
2664/**
2665 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2666 * @hw: pointer to hardware structure
2667 * @reg_val: value to write to AUTOC
2668 * @locked: bool to indicate whether the SW/FW lock was already taken by
2669 *	    previous read.
2670 **/
2671s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2672{
2673	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2674	return 0;
2675}
2676
2677/**
2678 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2679 *  @hw: pointer to hardware structure
2680 *
2681 *  Stops the receive data path and waits for the HW to internally
2682 *  empty the Rx security block.
2683 **/
2684s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2685{
2686#define IXGBE_MAX_SECRX_POLL 40
2687	int i;
2688	int secrxreg;
2689
2690	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2691	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2692	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2693	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2694		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2695		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2696			break;
2697		else
2698			/* Use interrupt-safe sleep just in case */
2699			udelay(1000);
2700	}
2701
2702	/* For informational purposes only */
2703	if (i >= IXGBE_MAX_SECRX_POLL)
2704		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2705
2706	return 0;
2707
2708}
2709
2710/**
2711 *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2712 *  @hw: pointer to hardware structure
2713 *
2714 *  Enables the receive data path
2715 **/
2716s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2717{
2718	u32 secrxreg;
2719
2720	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2721	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2722	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2723	IXGBE_WRITE_FLUSH(hw);
2724
2725	return 0;
2726}
2727
2728/**
2729 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2730 *  @hw: pointer to hardware structure
2731 *  @regval: register value to write to RXCTRL
2732 *
2733 *  Enables the Rx DMA unit
2734 **/
2735s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2736{
2737	if (regval & IXGBE_RXCTRL_RXEN)
2738		hw->mac.ops.enable_rx(hw);
2739	else
2740		hw->mac.ops.disable_rx(hw);
2741
2742	return 0;
2743}
2744
2745/**
2746 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2747 *  @hw: pointer to hardware structure
2748 *  @index: led number to blink
2749 **/
2750s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2751{
2752	ixgbe_link_speed speed = 0;
2753	bool link_up = false;
2754	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2755	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2756	bool locked = false;
2757	s32 ret_val;
2758
2759	if (index > 3)
2760		return IXGBE_ERR_PARAM;
2761
2762	/*
2763	 * Link must be up to auto-blink the LEDs;
2764	 * Force it if link is down.
2765	 */
2766	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2767
2768	if (!link_up) {
2769		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2770		if (ret_val)
2771			return ret_val;
2772
2773		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2774		autoc_reg |= IXGBE_AUTOC_FLU;
2775
2776		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2777		if (ret_val)
2778			return ret_val;
2779
2780		IXGBE_WRITE_FLUSH(hw);
2781
2782		usleep_range(10000, 20000);
2783	}
2784
2785	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2786	led_reg |= IXGBE_LED_BLINK(index);
2787	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2788	IXGBE_WRITE_FLUSH(hw);
2789
2790	return 0;
2791}
2792
2793/**
2794 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2795 *  @hw: pointer to hardware structure
2796 *  @index: led number to stop blinking
2797 **/
2798s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2799{
2800	u32 autoc_reg = 0;
2801	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2802	bool locked = false;
2803	s32 ret_val;
2804
2805	if (index > 3)
2806		return IXGBE_ERR_PARAM;
2807
2808	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2809	if (ret_val)
2810		return ret_val;
2811
2812	autoc_reg &= ~IXGBE_AUTOC_FLU;
2813	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2814
2815	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2816	if (ret_val)
2817		return ret_val;
2818
2819	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2820	led_reg &= ~IXGBE_LED_BLINK(index);
2821	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2822	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2823	IXGBE_WRITE_FLUSH(hw);
2824
2825	return 0;
2826}
2827
2828/**
2829 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2830 *  @hw: pointer to hardware structure
2831 *  @san_mac_offset: SAN MAC address offset
2832 *
2833 *  This function will read the EEPROM location for the SAN MAC address
2834 *  pointer, and returns the value at that location.  This is used in both
2835 *  get and set mac_addr routines.
2836 **/
2837static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2838					u16 *san_mac_offset)
2839{
2840	s32 ret_val;
2841
2842	/*
2843	 * First read the EEPROM pointer to see if the MAC addresses are
2844	 * available.
2845	 */
2846	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2847				      san_mac_offset);
2848	if (ret_val)
2849		hw_err(hw, "eeprom read at offset %d failed\n",
2850		       IXGBE_SAN_MAC_ADDR_PTR);
2851
2852	return ret_val;
2853}
2854
2855/**
2856 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2857 *  @hw: pointer to hardware structure
2858 *  @san_mac_addr: SAN MAC address
2859 *
2860 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2861 *  per-port, so set_lan_id() must be called before reading the addresses.
2862 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2863 *  upon for non-SFP connections, so we must call it here.
2864 **/
2865s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2866{
2867	u16 san_mac_data, san_mac_offset;
2868	u8 i;
2869	s32 ret_val;
2870
2871	/*
2872	 * First read the EEPROM pointer to see if the MAC addresses are
2873	 * available.  If they're not, no point in calling set_lan_id() here.
2874	 */
2875	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2876	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2877
2878		goto san_mac_addr_clr;
2879
2880	/* make sure we know which port we need to program */
2881	hw->mac.ops.set_lan_id(hw);
2882	/* apply the port offset to the address offset */
2883	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2884			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2885	for (i = 0; i < 3; i++) {
2886		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2887					      &san_mac_data);
2888		if (ret_val) {
2889			hw_err(hw, "eeprom read at offset %d failed\n",
2890			       san_mac_offset);
2891			goto san_mac_addr_clr;
2892		}
2893		san_mac_addr[i * 2] = (u8)(san_mac_data);
2894		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2895		san_mac_offset++;
2896	}
2897	return 0;
2898
2899san_mac_addr_clr:
2900	/* No addresses available in this EEPROM.  It's not necessarily an
2901	 * error though, so just wipe the local address and return.
2902	 */
2903	for (i = 0; i < 6; i++)
2904		san_mac_addr[i] = 0xFF;
2905	return ret_val;
2906}
2907
2908/**
2909 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2910 *  @hw: pointer to hardware structure
2911 *
2912 *  Read PCIe configuration space, and get the MSI-X vector count from
2913 *  the capabilities table.
2914 **/
2915u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2916{
2917	u16 msix_count;
2918	u16 max_msix_count;
2919	u16 pcie_offset;
2920
2921	switch (hw->mac.type) {
2922	case ixgbe_mac_82598EB:
2923		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2924		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2925		break;
2926	case ixgbe_mac_82599EB:
2927	case ixgbe_mac_X540:
2928	case ixgbe_mac_X550:
2929	case ixgbe_mac_X550EM_x:
2930	case ixgbe_mac_x550em_a:
2931		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2932		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2933		break;
2934	default:
2935		return 1;
2936	}
2937
2938	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2939	if (ixgbe_removed(hw->hw_addr))
2940		msix_count = 0;
2941	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2942
2943	/* MSI-X count is zero-based in HW */
2944	msix_count++;
2945
2946	if (msix_count > max_msix_count)
2947		msix_count = max_msix_count;
2948
2949	return msix_count;
2950}
2951
2952/**
2953 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2954 *  @hw: pointer to hardware struct
2955 *  @rar: receive address register index to disassociate
2956 *  @vmdq: VMDq pool index to remove from the rar
2957 **/
2958s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2959{
2960	u32 mpsar_lo, mpsar_hi;
2961	u32 rar_entries = hw->mac.num_rar_entries;
2962
2963	/* Make sure we are using a valid rar index range */
2964	if (rar >= rar_entries) {
2965		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2966		return IXGBE_ERR_INVALID_ARGUMENT;
2967	}
2968
2969	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2970	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2971
2972	if (ixgbe_removed(hw->hw_addr))
2973		return 0;
2974
2975	if (!mpsar_lo && !mpsar_hi)
2976		return 0;
2977
2978	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2979		if (mpsar_lo) {
2980			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2981			mpsar_lo = 0;
2982		}
2983		if (mpsar_hi) {
2984			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2985			mpsar_hi = 0;
2986		}
2987	} else if (vmdq < 32) {
2988		mpsar_lo &= ~BIT(vmdq);
2989		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2990	} else {
2991		mpsar_hi &= ~BIT(vmdq - 32);
2992		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2993	}
2994
2995	/* was that the last pool using this rar? */
2996	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2997	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2998		hw->mac.ops.clear_rar(hw, rar);
2999
3000	return 0;
3001}
3002
3003/**
3004 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3005 *  @hw: pointer to hardware struct
3006 *  @rar: receive address register index to associate with a VMDq index
3007 *  @vmdq: VMDq pool index
3008 **/
3009s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3010{
3011	u32 mpsar;
3012	u32 rar_entries = hw->mac.num_rar_entries;
3013
3014	/* Make sure we are using a valid rar index range */
3015	if (rar >= rar_entries) {
3016		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3017		return IXGBE_ERR_INVALID_ARGUMENT;
3018	}
3019
3020	if (vmdq < 32) {
3021		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3022		mpsar |= BIT(vmdq);
3023		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3024	} else {
3025		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3026		mpsar |= BIT(vmdq - 32);
3027		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3028	}
3029	return 0;
3030}
3031
3032/**
3033 *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3034 *  @hw: pointer to hardware struct
3035 *  @vmdq: VMDq pool index
3036 *
3037 *  This function should only be involved in the IOV mode.
3038 *  In IOV mode, Default pool is next pool after the number of
3039 *  VFs advertized and not 0.
3040 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
 
 
 
 
3041 **/
3042s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3043{
3044	u32 rar = hw->mac.san_mac_rar_index;
3045
3046	if (vmdq < 32) {
3047		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3048		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3049	} else {
3050		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3051		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3052	}
3053
3054	return 0;
3055}
3056
3057/**
3058 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3059 *  @hw: pointer to hardware structure
3060 **/
3061s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3062{
3063	int i;
3064
3065	for (i = 0; i < 128; i++)
3066		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3067
3068	return 0;
3069}
3070
3071/**
3072 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3073 *  @hw: pointer to hardware structure
3074 *  @vlan: VLAN id to write to VLAN filter
3075 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3076 *		  vlanid not found
3077 *
3078 *  return the VLVF index where this VLAN id should be placed
3079 *
3080 **/
3081static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3082{
3083	s32 regindex, first_empty_slot;
3084	u32 bits;
3085
3086	/* short cut the special case */
3087	if (vlan == 0)
3088		return 0;
3089
3090	/* if vlvf_bypass is set we don't want to use an empty slot, we
3091	 * will simply bypass the VLVF if there are no entries present in the
3092	 * VLVF that contain our VLAN
3093	 */
3094	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3095
3096	/* add VLAN enable bit for comparison */
3097	vlan |= IXGBE_VLVF_VIEN;
3098
3099	/* Search for the vlan id in the VLVF entries. Save off the first empty
3100	 * slot found along the way.
3101	 *
3102	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3103	 */
3104	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3105		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3106		if (bits == vlan)
3107			return regindex;
3108		if (!first_empty_slot && !bits)
3109			first_empty_slot = regindex;
3110	}
3111
3112	/* If we are here then we didn't find the VLAN.  Return first empty
3113	 * slot we found during our search, else error.
3114	 */
3115	if (!first_empty_slot)
3116		hw_dbg(hw, "No space in VLVF.\n");
3117
3118	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3119}
3120
3121/**
3122 *  ixgbe_set_vfta_generic - Set VLAN filter table
3123 *  @hw: pointer to hardware structure
3124 *  @vlan: VLAN id to write to VLAN filter
3125 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3126 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3127 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3128 *
3129 *  Turn on/off specified VLAN in the VLAN filter table.
3130 **/
3131s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3132			   bool vlan_on, bool vlvf_bypass)
3133{
3134	u32 regidx, vfta_delta, vfta, bits;
3135	s32 vlvf_index;
3136
3137	if ((vlan > 4095) || (vind > 63))
3138		return IXGBE_ERR_PARAM;
3139
3140	/*
3141	 * this is a 2 part operation - first the VFTA, then the
3142	 * VLVF and VLVFB if VT Mode is set
3143	 * We don't write the VFTA until we know the VLVF part succeeded.
3144	 */
3145
3146	/* Part 1
3147	 * The VFTA is a bitstring made up of 128 32-bit registers
3148	 * that enable the particular VLAN id, much like the MTA:
3149	 *    bits[11-5]: which register
3150	 *    bits[4-0]:  which bit in the register
3151	 */
3152	regidx = vlan / 32;
3153	vfta_delta = BIT(vlan % 32);
3154	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3155
3156	/* vfta_delta represents the difference between the current value
3157	 * of vfta and the value we want in the register.  Since the diff
3158	 * is an XOR mask we can just update vfta using an XOR.
3159	 */
3160	vfta_delta &= vlan_on ? ~vfta : vfta;
3161	vfta ^= vfta_delta;
3162
3163	/* Part 2
3164	 * If VT Mode is set
3165	 *   Either vlan_on
3166	 *     make sure the vlan is in VLVF
3167	 *     set the vind bit in the matching VLVFB
3168	 *   Or !vlan_on
3169	 *     clear the pool bit and possibly the vind
3170	 */
3171	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3172		goto vfta_update;
3173
3174	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3175	if (vlvf_index < 0) {
3176		if (vlvf_bypass)
3177			goto vfta_update;
3178		return vlvf_index;
3179	}
3180
3181	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3182
3183	/* set the pool bit */
3184	bits |= BIT(vind % 32);
3185	if (vlan_on)
3186		goto vlvf_update;
3187
3188	/* clear the pool bit */
3189	bits ^= BIT(vind % 32);
3190
3191	if (!bits &&
3192	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3193		/* Clear VFTA first, then disable VLVF.  Otherwise
3194		 * we run the risk of stray packets leaking into
3195		 * the PF via the default pool
3196		 */
3197		if (vfta_delta)
3198			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3199
3200		/* disable VLVF and clear remaining bit from pool */
3201		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3202		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3203
3204		return 0;
3205	}
3206
3207	/* If there are still bits set in the VLVFB registers
3208	 * for the VLAN ID indicated we need to see if the
3209	 * caller is requesting that we clear the VFTA entry bit.
3210	 * If the caller has requested that we clear the VFTA
3211	 * entry bit but there are still pools/VFs using this VLAN
3212	 * ID entry then ignore the request.  We're not worried
3213	 * about the case where we're turning the VFTA VLAN ID
3214	 * entry bit on, only when requested to turn it off as
3215	 * there may be multiple pools and/or VFs using the
3216	 * VLAN ID entry.  In that case we cannot clear the
3217	 * VFTA bit until all pools/VFs using that VLAN ID have also
3218	 * been cleared.  This will be indicated by "bits" being
3219	 * zero.
3220	 */
3221	vfta_delta = 0;
3222
3223vlvf_update:
3224	/* record pool change and enable VLAN ID if not already enabled */
3225	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3226	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3227
3228vfta_update:
3229	/* Update VFTA now that we are ready for traffic */
3230	if (vfta_delta)
3231		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3232
3233	return 0;
3234}
3235
3236/**
3237 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3238 *  @hw: pointer to hardware structure
3239 *
3240 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3241 **/
3242s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3243{
3244	u32 offset;
3245
3246	for (offset = 0; offset < hw->mac.vft_size; offset++)
3247		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3248
3249	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3250		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3251		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3252		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3253	}
3254
3255	return 0;
3256}
3257
3258/**
3259 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3260 *  @hw: pointer to hardware structure
3261 *
3262 *  Contains the logic to identify if we need to verify link for the
3263 *  crosstalk fix
3264 **/
3265static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3266{
3267	/* Does FW say we need the fix */
3268	if (!hw->need_crosstalk_fix)
3269		return false;
3270
3271	/* Only consider SFP+ PHYs i.e. media type fiber */
3272	switch (hw->mac.ops.get_media_type(hw)) {
3273	case ixgbe_media_type_fiber:
3274	case ixgbe_media_type_fiber_qsfp:
3275		break;
3276	default:
3277		return false;
3278	}
3279
3280	return true;
3281}
3282
3283/**
3284 *  ixgbe_check_mac_link_generic - Determine link and speed status
3285 *  @hw: pointer to hardware structure
3286 *  @speed: pointer to link speed
3287 *  @link_up: true when link is up
3288 *  @link_up_wait_to_complete: bool used to wait for link up or not
3289 *
3290 *  Reads the links register to determine if link is up and the current speed
3291 **/
3292s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3293				 bool *link_up, bool link_up_wait_to_complete)
3294{
3295	u32 links_reg, links_orig;
3296	u32 i;
3297
3298	/* If Crosstalk fix enabled do the sanity check of making sure
3299	 * the SFP+ cage is full.
3300	 */
3301	if (ixgbe_need_crosstalk_fix(hw)) {
3302		u32 sfp_cage_full;
3303
3304		switch (hw->mac.type) {
3305		case ixgbe_mac_82599EB:
3306			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3307					IXGBE_ESDP_SDP2;
3308			break;
3309		case ixgbe_mac_X550EM_x:
3310		case ixgbe_mac_x550em_a:
3311			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3312					IXGBE_ESDP_SDP0;
3313			break;
3314		default:
3315			/* sanity check - No SFP+ devices here */
3316			sfp_cage_full = false;
3317			break;
3318		}
3319
3320		if (!sfp_cage_full) {
3321			*link_up = false;
3322			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3323			return 0;
3324		}
3325	}
3326
3327	/* clear the old state */
3328	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3329
3330	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3331
3332	if (links_orig != links_reg) {
3333		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3334		       links_orig, links_reg);
3335	}
3336
3337	if (link_up_wait_to_complete) {
3338		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3339			if (links_reg & IXGBE_LINKS_UP) {
3340				*link_up = true;
3341				break;
3342			} else {
3343				*link_up = false;
3344			}
3345			msleep(100);
3346			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347		}
3348	} else {
3349		if (links_reg & IXGBE_LINKS_UP)
3350			*link_up = true;
3351		else
3352			*link_up = false;
3353	}
3354
3355	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3356	case IXGBE_LINKS_SPEED_10G_82599:
3357		if ((hw->mac.type >= ixgbe_mac_X550) &&
3358		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3359			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3360		else
3361			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3362		break;
3363	case IXGBE_LINKS_SPEED_1G_82599:
3364		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3365		break;
3366	case IXGBE_LINKS_SPEED_100_82599:
3367		if ((hw->mac.type >= ixgbe_mac_X550) &&
3368		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3369			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3370		else
3371			*speed = IXGBE_LINK_SPEED_100_FULL;
3372		break;
3373	case IXGBE_LINKS_SPEED_10_X550EM_A:
3374		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3375		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3376		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3377			*speed = IXGBE_LINK_SPEED_10_FULL;
3378		}
3379		break;
3380	default:
3381		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3382	}
3383
3384	return 0;
3385}
3386
3387/**
3388 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3389 *  the EEPROM
3390 *  @hw: pointer to hardware structure
3391 *  @wwnn_prefix: the alternative WWNN prefix
3392 *  @wwpn_prefix: the alternative WWPN prefix
3393 *
3394 *  This function will read the EEPROM from the alternative SAN MAC address
3395 *  block to check the support for the alternative WWNN/WWPN prefix support.
3396 **/
3397s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3398					u16 *wwpn_prefix)
3399{
3400	u16 offset, caps;
3401	u16 alt_san_mac_blk_offset;
3402
3403	/* clear output first */
3404	*wwnn_prefix = 0xFFFF;
3405	*wwpn_prefix = 0xFFFF;
3406
3407	/* check if alternative SAN MAC is supported */
3408	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3409	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3410		goto wwn_prefix_err;
3411
3412	if ((alt_san_mac_blk_offset == 0) ||
3413	    (alt_san_mac_blk_offset == 0xFFFF))
3414		return 0;
3415
3416	/* check capability in alternative san mac address block */
3417	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3418	if (hw->eeprom.ops.read(hw, offset, &caps))
3419		goto wwn_prefix_err;
3420	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3421		return 0;
3422
3423	/* get the corresponding prefix for WWNN/WWPN */
3424	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3425	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3426		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3427
3428	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3429	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3430		goto wwn_prefix_err;
3431
3432	return 0;
3433
3434wwn_prefix_err:
3435	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3436	return 0;
3437}
3438
3439/**
3440 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3441 *  @hw: pointer to hardware structure
3442 *  @enable: enable or disable switch for MAC anti-spoofing
3443 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3444 *
3445 **/
3446void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3447{
3448	int vf_target_reg = vf >> 3;
3449	int vf_target_shift = vf % 8;
3450	u32 pfvfspoof;
 
3451
3452	if (hw->mac.type == ixgbe_mac_82598EB)
3453		return;
3454
3455	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3456	if (enable)
3457		pfvfspoof |= BIT(vf_target_shift);
3458	else
3459		pfvfspoof &= ~BIT(vf_target_shift);
3460	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3461}
3462
3463/**
3464 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3465 *  @hw: pointer to hardware structure
3466 *  @enable: enable or disable switch for VLAN anti-spoofing
3467 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3468 *
3469 **/
3470void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3471{
3472	int vf_target_reg = vf >> 3;
3473	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3474	u32 pfvfspoof;
3475
3476	if (hw->mac.type == ixgbe_mac_82598EB)
3477		return;
3478
3479	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3480	if (enable)
3481		pfvfspoof |= BIT(vf_target_shift);
3482	else
3483		pfvfspoof &= ~BIT(vf_target_shift);
3484	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3485}
3486
3487/**
3488 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3489 *  @hw: pointer to hardware structure
3490 *  @device_caps: the EEPROM word with the extra device capabilities
3491 *
3492 *  This function will read the EEPROM location for the device capabilities,
3493 *  and return the word through device_caps.
3494 **/
3495s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3496{
3497	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3498
3499	return 0;
3500}
3501
3502/**
3503 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3504 * @hw: pointer to hardware structure
3505 * @num_pb: number of packet buffers to allocate
3506 * @headroom: reserve n KB of headroom
3507 * @strategy: packet buffer allocation strategy
3508 **/
3509void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3510			     int num_pb,
3511			     u32 headroom,
3512			     int strategy)
3513{
3514	u32 pbsize = hw->mac.rx_pb_size;
3515	int i = 0;
3516	u32 rxpktsize, txpktsize, txpbthresh;
3517
3518	/* Reserve headroom */
3519	pbsize -= headroom;
3520
3521	if (!num_pb)
3522		num_pb = 1;
3523
3524	/* Divide remaining packet buffer space amongst the number
3525	 * of packet buffers requested using supplied strategy.
3526	 */
3527	switch (strategy) {
3528	case (PBA_STRATEGY_WEIGHTED):
3529		/* pba_80_48 strategy weight first half of packet buffer with
3530		 * 5/8 of the packet buffer space.
3531		 */
3532		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3533		pbsize -= rxpktsize * (num_pb / 2);
3534		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3535		for (; i < (num_pb / 2); i++)
3536			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3537		fallthrough; /* configure remaining packet buffers */
3538	case (PBA_STRATEGY_EQUAL):
3539		/* Divide the remaining Rx packet buffer evenly among the TCs */
3540		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3541		for (; i < num_pb; i++)
3542			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3543		break;
3544	default:
3545		break;
3546	}
3547
3548	/*
3549	 * Setup Tx packet buffer and threshold equally for all TCs
3550	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3551	 * 10 since the largest packet we support is just over 9K.
3552	 */
3553	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3554	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3555	for (i = 0; i < num_pb; i++) {
3556		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3557		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3558	}
3559
3560	/* Clear unused TCs, if any, to zero buffer size*/
3561	for (; i < IXGBE_MAX_PB; i++) {
3562		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3563		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3564		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3565	}
3566}
3567
3568/**
3569 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3570 *  @buffer: pointer to EEPROM
3571 *  @length: size of EEPROM to calculate a checksum for
3572 *
3573 *  Calculates the checksum for some buffer on a specified length.  The
3574 *  checksum calculated is returned.
3575 **/
3576u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3577{
3578	u32 i;
3579	u8 sum = 0;
3580
3581	if (!buffer)
3582		return 0;
3583
3584	for (i = 0; i < length; i++)
3585		sum += buffer[i];
3586
3587	return (u8) (0 - sum);
3588}
3589
3590/**
3591 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3592 *  @hw: pointer to the HW structure
3593 *  @buffer: command to write and where the return status will be placed
 
3594 *  @length: length of buffer, must be multiple of 4 bytes
3595 *  @timeout: time in ms to wait for command completion
 
 
 
 
 
 
3596 *
3597 *  Communicates with the manageability block. On success return 0
3598 *  else returns semaphore error when encountering an error acquiring
3599 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3600 *
3601 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3602 *  by the caller.
3603 **/
3604s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3605		       u32 timeout)
 
3606{
3607	u32 hicr, i, fwsts;
3608	u16 dword_len;
 
3609
3610	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3611		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3612		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3613	}
3614
3615	/* Set bit 9 of FWSTS clearing FW reset indication */
3616	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3617	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3618
3619	/* Check that the host interface is enabled. */
3620	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3621	if (!(hicr & IXGBE_HICR_EN)) {
3622		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3623		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3624	}
3625
3626	/* Calculate length in DWORDs. We must be DWORD aligned */
3627	if (length % sizeof(u32)) {
3628		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3629		return IXGBE_ERR_INVALID_ARGUMENT;
3630	}
3631
3632	dword_len = length >> 2;
3633
3634	/* The device driver writes the relevant command block
 
3635	 * into the ram area.
3636	 */
3637	for (i = 0; i < dword_len; i++)
3638		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3639				      i, (__force u32)cpu_to_le32(buffer[i]));
3640
3641	/* Setting this bit tells the ARC that a new command is pending. */
3642	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3643
3644	for (i = 0; i < timeout; i++) {
3645		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3646		if (!(hicr & IXGBE_HICR_C))
3647			break;
3648		usleep_range(1000, 2000);
3649	}
3650
3651	/* Check command successful completion. */
3652	if ((timeout && i == timeout) ||
3653	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3654		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3655
3656	return 0;
3657}
3658
3659/**
3660 *  ixgbe_host_interface_command - Issue command to manageability block
3661 *  @hw: pointer to the HW structure
3662 *  @buffer: contains the command to write and where the return status will
3663 *           be placed
3664 *  @length: length of buffer, must be multiple of 4 bytes
3665 *  @timeout: time in ms to wait for command completion
3666 *  @return_data: read and return data from the buffer (true) or not (false)
3667 *  Needed because FW structures are big endian and decoding of
3668 *  these fields can be 8 bit or 16 bit based on command. Decoding
3669 *  is not easily understood without making a table of commands.
3670 *  So we will leave this up to the caller to read back the data
3671 *  in these cases.
3672 *
3673 *  Communicates with the manageability block.  On success return 0
3674 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3675 **/
3676s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3677				 u32 length, u32 timeout,
3678				 bool return_data)
3679{
3680	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3681	struct ixgbe_hic_hdr *hdr = buffer;
3682	u32 *u32arr = buffer;
3683	u16 buf_len, dword_len;
3684	s32 status;
3685	u32 bi;
3686
3687	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3688		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3689		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3690	}
3691	/* Take management host interface semaphore */
3692	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3693	if (status)
3694		return status;
3695
3696	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3697	if (status)
3698		goto rel_out;
3699
3700	if (!return_data)
3701		goto rel_out;
3702
3703	/* Calculate length in DWORDs */
3704	dword_len = hdr_size >> 2;
3705
3706	/* first pull in the header so we know the buffer length */
3707	for (bi = 0; bi < dword_len; bi++) {
3708		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3709		le32_to_cpus(&u32arr[bi]);
3710	}
3711
3712	/* If there is any thing in data position pull it in */
3713	buf_len = hdr->buf_len;
3714	if (!buf_len)
3715		goto rel_out;
3716
3717	if (length < round_up(buf_len, 4) + hdr_size) {
3718		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3719		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3720		goto rel_out;
3721	}
3722
3723	/* Calculate length in DWORDs, add 3 for odd lengths */
3724	dword_len = (buf_len + 3) >> 2;
3725
3726	/* Pull in the rest of the buffer (bi is where we left off) */
3727	for (; bi <= dword_len; bi++) {
3728		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3729		le32_to_cpus(&u32arr[bi]);
3730	}
3731
3732rel_out:
3733	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3734
3735	return status;
3736}
3737
3738/**
3739 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3740 *  @hw: pointer to the HW structure
3741 *  @maj: driver version major number
3742 *  @min: driver version minor number
3743 *  @build: driver version build number
3744 *  @sub: driver version sub build number
3745 *  @len: length of driver_ver string
3746 *  @driver_ver: driver string
3747 *
3748 *  Sends driver version number to firmware through the manageability
3749 *  block.  On success return 0
3750 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3751 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3752 **/
3753s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3754				 u8 build, u8 sub, __always_unused u16 len,
3755				 __always_unused const char *driver_ver)
3756{
3757	struct ixgbe_hic_drv_info fw_cmd;
3758	int i;
3759	s32 ret_val;
3760
 
 
 
3761	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3762	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3763	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3764	fw_cmd.port_num = hw->bus.func;
3765	fw_cmd.ver_maj = maj;
3766	fw_cmd.ver_min = min;
3767	fw_cmd.ver_build = build;
3768	fw_cmd.ver_sub = sub;
3769	fw_cmd.hdr.checksum = 0;
 
 
3770	fw_cmd.pad = 0;
3771	fw_cmd.pad2 = 0;
3772	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3773				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3774
3775	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3776		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3777						       sizeof(fw_cmd),
3778						       IXGBE_HI_COMMAND_TIMEOUT,
3779						       true);
3780		if (ret_val != 0)
3781			continue;
3782
3783		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3784		    FW_CEM_RESP_STATUS_SUCCESS)
3785			ret_val = 0;
3786		else
3787			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3788
3789		break;
3790	}
3791
 
3792	return ret_val;
3793}
3794
3795/**
3796 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3797 * @hw: pointer to the hardware structure
3798 *
3799 * The 82599 and x540 MACs can experience issues if TX work is still pending
3800 * when a reset occurs.  This function prevents this by flushing the PCIe
3801 * buffers on the system.
3802 **/
3803void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3804{
3805	u32 gcr_ext, hlreg0, i, poll;
3806	u16 value;
3807
3808	/*
3809	 * If double reset is not requested then all transactions should
3810	 * already be clear and as such there is no work to do
3811	 */
3812	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3813		return;
3814
3815	/*
3816	 * Set loopback enable to prevent any transmits from being sent
3817	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3818	 * has already been cleared.
3819	 */
3820	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3821	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3822
3823	/* wait for a last completion before clearing buffers */
3824	IXGBE_WRITE_FLUSH(hw);
3825	usleep_range(3000, 6000);
3826
3827	/* Before proceeding, make sure that the PCIe block does not have
3828	 * transactions pending.
3829	 */
3830	poll = ixgbe_pcie_timeout_poll(hw);
3831	for (i = 0; i < poll; i++) {
3832		usleep_range(100, 200);
3833		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3834		if (ixgbe_removed(hw->hw_addr))
3835			break;
3836		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3837			break;
3838	}
3839
3840	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3841	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3842	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3843			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3844
3845	/* Flush all writes and allow 20usec for all transactions to clear */
3846	IXGBE_WRITE_FLUSH(hw);
3847	udelay(20);
3848
3849	/* restore previous register values */
3850	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3851	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3852}
3853
3854static const u8 ixgbe_emc_temp_data[4] = {
3855	IXGBE_EMC_INTERNAL_DATA,
3856	IXGBE_EMC_DIODE1_DATA,
3857	IXGBE_EMC_DIODE2_DATA,
3858	IXGBE_EMC_DIODE3_DATA
3859};
3860static const u8 ixgbe_emc_therm_limit[4] = {
3861	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3862	IXGBE_EMC_DIODE1_THERM_LIMIT,
3863	IXGBE_EMC_DIODE2_THERM_LIMIT,
3864	IXGBE_EMC_DIODE3_THERM_LIMIT
3865};
3866
3867/**
3868 *  ixgbe_get_ets_data - Extracts the ETS bit data
3869 *  @hw: pointer to hardware structure
3870 *  @ets_cfg: extected ETS data
3871 *  @ets_offset: offset of ETS data
3872 *
3873 *  Returns error code.
3874 **/
3875static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3876			      u16 *ets_offset)
3877{
3878	s32 status;
3879
3880	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3881	if (status)
3882		return status;
3883
3884	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3885		return IXGBE_NOT_IMPLEMENTED;
3886
3887	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3888	if (status)
3889		return status;
3890
3891	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3892		return IXGBE_NOT_IMPLEMENTED;
3893
3894	return 0;
3895}
3896
3897/**
3898 *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3899 *  @hw: pointer to hardware structure
3900 *
3901 *  Returns the thermal sensor data structure
3902 **/
3903s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3904{
3905	s32 status;
3906	u16 ets_offset;
3907	u16 ets_cfg;
3908	u16 ets_sensor;
3909	u8  num_sensors;
3910	u8  i;
3911	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3912
3913	/* Only support thermal sensors attached to physical port 0 */
3914	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3915		return IXGBE_NOT_IMPLEMENTED;
3916
3917	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3918	if (status)
3919		return status;
3920
3921	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3922	if (num_sensors > IXGBE_MAX_SENSORS)
3923		num_sensors = IXGBE_MAX_SENSORS;
3924
3925	for (i = 0; i < num_sensors; i++) {
3926		u8  sensor_index;
3927		u8  sensor_location;
3928
3929		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3930					     &ets_sensor);
3931		if (status)
3932			return status;
3933
3934		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3935				IXGBE_ETS_DATA_INDEX_SHIFT);
3936		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3937				   IXGBE_ETS_DATA_LOC_SHIFT);
3938
3939		if (sensor_location != 0) {
3940			status = hw->phy.ops.read_i2c_byte(hw,
3941					ixgbe_emc_temp_data[sensor_index],
3942					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3943					&data->sensor[i].temp);
3944			if (status)
3945				return status;
3946		}
3947	}
3948
3949	return 0;
3950}
3951
3952/**
3953 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3954 * @hw: pointer to hardware structure
3955 *
3956 * Inits the thermal sensor thresholds according to the NVM map
3957 * and save off the threshold and location values into mac.thermal_sensor_data
3958 **/
3959s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3960{
3961	s32 status;
3962	u16 ets_offset;
3963	u16 ets_cfg;
3964	u16 ets_sensor;
3965	u8  low_thresh_delta;
3966	u8  num_sensors;
3967	u8  therm_limit;
3968	u8  i;
3969	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3970
3971	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3972
3973	/* Only support thermal sensors attached to physical port 0 */
3974	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3975		return IXGBE_NOT_IMPLEMENTED;
3976
3977	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3978	if (status)
3979		return status;
3980
3981	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3982			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3983	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3984	if (num_sensors > IXGBE_MAX_SENSORS)
3985		num_sensors = IXGBE_MAX_SENSORS;
3986
3987	for (i = 0; i < num_sensors; i++) {
3988		u8  sensor_index;
3989		u8  sensor_location;
3990
3991		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3992			hw_err(hw, "eeprom read at offset %d failed\n",
3993			       ets_offset + 1 + i);
3994			continue;
3995		}
3996		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3997				IXGBE_ETS_DATA_INDEX_SHIFT);
3998		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3999				   IXGBE_ETS_DATA_LOC_SHIFT);
4000		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4001
4002		hw->phy.ops.write_i2c_byte(hw,
4003			ixgbe_emc_therm_limit[sensor_index],
4004			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4005
4006		if (sensor_location == 0)
4007			continue;
4008
4009		data->sensor[i].location = sensor_location;
4010		data->sensor[i].caution_thresh = therm_limit;
4011		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4012	}
4013
4014	return 0;
4015}
4016
4017/**
4018 *  ixgbe_get_orom_version - Return option ROM from EEPROM
4019 *
4020 *  @hw: pointer to hardware structure
4021 *  @nvm_ver: pointer to output structure
4022 *
4023 *  if valid option ROM version, nvm_ver->or_valid set to true
4024 *  else nvm_ver->or_valid is false.
4025 **/
4026void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4027			    struct ixgbe_nvm_version *nvm_ver)
4028{
4029	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4030
4031	nvm_ver->or_valid = false;
4032	/* Option Rom may or may not be present.  Start with pointer */
4033	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4034
4035	/* make sure offset is valid */
4036	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4037		return;
4038
4039	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4040	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4041
4042	/* option rom exists and is valid */
4043	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4044	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4045	    eeprom_cfg_blkh == NVM_VER_INVALID)
4046		return;
4047
4048	nvm_ver->or_valid = true;
4049	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4050	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4051			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4052	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4053}
4054
4055/**
4056 *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4057 *  @hw: pointer to hardware structure
4058 *  @nvm_ver: pointer to output structure
4059 *
4060 *  if valid OEM product version, nvm_ver->oem_valid set to true
4061 *  else nvm_ver->oem_valid is false.
4062 **/
4063void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4064				struct ixgbe_nvm_version *nvm_ver)
4065{
4066	u16 rel_num, prod_ver, mod_len, cap, offset;
4067
4068	nvm_ver->oem_valid = false;
4069	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4070
4071	/* Return is offset to OEM Product Version block is invalid */
4072	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4073		return;
4074
4075	/* Read product version block */
4076	hw->eeprom.ops.read(hw, offset, &mod_len);
4077	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4078
4079	/* Return if OEM product version block is invalid */
4080	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4081	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4082		return;
4083
4084	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4085	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4086
4087	/* Return if version is invalid */
4088	if ((rel_num | prod_ver) == 0x0 ||
4089	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4090		return;
4091
4092	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4093	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4094	nvm_ver->oem_release = rel_num;
4095	nvm_ver->oem_valid = true;
4096}
4097
4098/**
4099 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4100 *
4101 *  @hw: pointer to hardware structure
4102 *  @nvm_ver: pointer to output structure
4103 *
4104 *  word read errors will return 0xFFFF
4105 **/
4106void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4107		      struct ixgbe_nvm_version *nvm_ver)
4108{
4109	u16 etk_id_l, etk_id_h;
4110
4111	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4112		etk_id_l = NVM_VER_INVALID;
4113	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4114		etk_id_h = NVM_VER_INVALID;
4115
4116	/* The word order for the version format is determined by high order
4117	 * word bit 15.
4118	 */
4119	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4120		nvm_ver->etk_id = etk_id_h;
4121		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4122	} else {
4123		nvm_ver->etk_id = etk_id_l;
4124		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4125	}
4126}
4127
4128void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4129{
4130	u32 rxctrl;
4131
4132	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4133	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4134		if (hw->mac.type != ixgbe_mac_82598EB) {
4135			u32 pfdtxgswc;
4136
4137			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4138			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4139				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4140				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4141				hw->mac.set_lben = true;
4142			} else {
4143				hw->mac.set_lben = false;
4144			}
4145		}
4146		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4147		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4148	}
4149}
4150
4151void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4152{
4153	u32 rxctrl;
4154
4155	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4156	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4157
4158	if (hw->mac.type != ixgbe_mac_82598EB) {
4159		if (hw->mac.set_lben) {
4160			u32 pfdtxgswc;
4161
4162			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4163			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4164			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4165			hw->mac.set_lben = false;
4166		}
4167	}
4168}
4169
4170/** ixgbe_mng_present - returns true when management capability is present
4171 * @hw: pointer to hardware structure
4172 **/
4173bool ixgbe_mng_present(struct ixgbe_hw *hw)
4174{
4175	u32 fwsm;
4176
4177	if (hw->mac.type < ixgbe_mac_82599EB)
4178		return false;
4179
4180	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4181
4182	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4183}
4184
4185/**
4186 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4187 *  @hw: pointer to hardware structure
4188 *  @speed: new link speed
4189 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4190 *
4191 *  Set the link speed in the MAC and/or PHY register and restarts link.
4192 */
4193s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4194					  ixgbe_link_speed speed,
4195					  bool autoneg_wait_to_complete)
4196{
4197	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4198	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4199	s32 status = 0;
4200	u32 speedcnt = 0;
4201	u32 i = 0;
4202	bool autoneg, link_up = false;
4203
4204	/* Mask off requested but non-supported speeds */
4205	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4206	if (status)
4207		return status;
4208
4209	speed &= link_speed;
4210
4211	/* Try each speed one by one, highest priority first.  We do this in
4212	 * software because 10Gb fiber doesn't support speed autonegotiation.
4213	 */
4214	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4215		speedcnt++;
4216		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4217
 
 
 
 
 
 
 
 
 
4218		/* Set the module link speed */
4219		switch (hw->phy.media_type) {
4220		case ixgbe_media_type_fiber:
4221			hw->mac.ops.set_rate_select_speed(hw,
4222						    IXGBE_LINK_SPEED_10GB_FULL);
4223			break;
4224		case ixgbe_media_type_fiber_qsfp:
4225			/* QSFP module automatically detects MAC link speed */
4226			break;
4227		default:
4228			hw_dbg(hw, "Unexpected media type\n");
4229			break;
4230		}
4231
4232		/* Allow module to change analog characteristics (1G->10G) */
4233		msleep(40);
4234
4235		status = hw->mac.ops.setup_mac_link(hw,
4236						    IXGBE_LINK_SPEED_10GB_FULL,
4237						    autoneg_wait_to_complete);
4238		if (status)
4239			return status;
4240
4241		/* Flap the Tx laser if it has not already been done */
4242		if (hw->mac.ops.flap_tx_laser)
4243			hw->mac.ops.flap_tx_laser(hw);
4244
4245		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4246		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4247		 * attempted.  82599 uses the same timing for 10g SFI.
4248		 */
4249		for (i = 0; i < 5; i++) {
4250			/* Wait for the link partner to also set speed */
4251			msleep(100);
4252
4253			/* If we have link, just jump out */
4254			status = hw->mac.ops.check_link(hw, &link_speed,
4255							&link_up, false);
4256			if (status)
4257				return status;
4258
4259			if (link_up)
4260				goto out;
4261		}
4262	}
4263
4264	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4265		speedcnt++;
4266		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4267			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4268
 
 
 
 
 
 
 
 
 
4269		/* Set the module link speed */
4270		switch (hw->phy.media_type) {
4271		case ixgbe_media_type_fiber:
4272			hw->mac.ops.set_rate_select_speed(hw,
4273						     IXGBE_LINK_SPEED_1GB_FULL);
4274			break;
4275		case ixgbe_media_type_fiber_qsfp:
4276			/* QSFP module automatically detects link speed */
4277			break;
4278		default:
4279			hw_dbg(hw, "Unexpected media type\n");
4280			break;
4281		}
4282
4283		/* Allow module to change analog characteristics (10G->1G) */
4284		msleep(40);
4285
4286		status = hw->mac.ops.setup_mac_link(hw,
4287						    IXGBE_LINK_SPEED_1GB_FULL,
4288						    autoneg_wait_to_complete);
4289		if (status)
4290			return status;
4291
4292		/* Flap the Tx laser if it has not already been done */
4293		if (hw->mac.ops.flap_tx_laser)
4294			hw->mac.ops.flap_tx_laser(hw);
4295
4296		/* Wait for the link partner to also set speed */
4297		msleep(100);
4298
4299		/* If we have link, just jump out */
4300		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4301						false);
4302		if (status)
4303			return status;
4304
4305		if (link_up)
4306			goto out;
4307	}
4308
4309	/* We didn't get link.  Configure back to the highest speed we tried,
4310	 * (if there was more than one).  We call ourselves back with just the
4311	 * single highest speed that the user requested.
4312	 */
4313	if (speedcnt > 1)
4314		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4315						      highest_link_speed,
4316						      autoneg_wait_to_complete);
4317
4318out:
4319	/* Set autoneg_advertised value based on input link speed */
4320	hw->phy.autoneg_advertised = 0;
4321
4322	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4323		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4324
4325	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4326		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4327
4328	return status;
4329}
4330
4331/**
4332 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4333 *  @hw: pointer to hardware structure
4334 *  @speed: link speed to set
4335 *
4336 *  Set module link speed via the soft rate select.
4337 */
4338void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4339				      ixgbe_link_speed speed)
4340{
4341	s32 status;
4342	u8 rs, eeprom_data;
4343
4344	switch (speed) {
4345	case IXGBE_LINK_SPEED_10GB_FULL:
4346		/* one bit mask same as setting on */
4347		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4348		break;
4349	case IXGBE_LINK_SPEED_1GB_FULL:
4350		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4351		break;
4352	default:
4353		hw_dbg(hw, "Invalid fixed module speed\n");
4354		return;
4355	}
4356
4357	/* Set RS0 */
4358	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4359					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4360					   &eeprom_data);
4361	if (status) {
4362		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4363		return;
4364	}
4365
4366	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4367
4368	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4369					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4370					    eeprom_data);
4371	if (status) {
4372		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4373		return;
4374	}
4375
4376	/* Set RS1 */
4377	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4378					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4379					   &eeprom_data);
4380	if (status) {
4381		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4382		return;
4383	}
4384
4385	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386
4387	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4388					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4389					    eeprom_data);
4390	if (status) {
4391		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4392		return;
4393	}
4394}