Loading...
1/*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2015 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/pci.h>
30#include <linux/delay.h>
31#include <linux/sched.h>
32#include <linux/netdevice.h>
33
34#include "ixgbe.h"
35#include "ixgbe_common.h"
36#include "ixgbe_phy.h"
37
38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49
50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 u16 offset);
58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59
60/* Base table for registers values that change by MAC */
61const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 IXGBE_MVALS_INIT(8259X)
63};
64
65/**
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67 * control
68 * @hw: pointer to hardware structure
69 *
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
73 **/
74bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75{
76 bool supported = false;
77 ixgbe_link_speed speed;
78 bool link_up;
79
80 switch (hw->phy.media_type) {
81 case ixgbe_media_type_fiber:
82 hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 /* if link is down, assume supported */
84 if (link_up)
85 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 true : false;
87 else
88 supported = true;
89 break;
90 case ixgbe_media_type_backplane:
91 supported = true;
92 break;
93 case ixgbe_media_type_copper:
94 /* only some copper devices support flow control autoneg */
95 switch (hw->device_id) {
96 case IXGBE_DEV_ID_82599_T3_LOM:
97 case IXGBE_DEV_ID_X540T:
98 case IXGBE_DEV_ID_X540T1:
99 case IXGBE_DEV_ID_X550T:
100 case IXGBE_DEV_ID_X550EM_X_10G_T:
101 supported = true;
102 break;
103 default:
104 break;
105 }
106 default:
107 break;
108 }
109
110 return supported;
111}
112
113/**
114 * ixgbe_setup_fc - Set up flow control
115 * @hw: pointer to hardware structure
116 *
117 * Called at init time to set up flow control.
118 **/
119static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
120{
121 s32 ret_val = 0;
122 u32 reg = 0, reg_bp = 0;
123 u16 reg_cu = 0;
124 bool locked = false;
125
126 /*
127 * Validate the requested mode. Strict IEEE mode does not allow
128 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
129 */
130 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
131 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
132 return IXGBE_ERR_INVALID_LINK_SETTINGS;
133 }
134
135 /*
136 * 10gig parts do not have a word in the EEPROM to determine the
137 * default flow control setting, so we explicitly set it to full.
138 */
139 if (hw->fc.requested_mode == ixgbe_fc_default)
140 hw->fc.requested_mode = ixgbe_fc_full;
141
142 /*
143 * Set up the 1G and 10G flow control advertisement registers so the
144 * HW will be able to do fc autoneg once the cable is plugged in. If
145 * we link at 10G, the 1G advertisement is harmless and vice versa.
146 */
147 switch (hw->phy.media_type) {
148 case ixgbe_media_type_backplane:
149 /* some MAC's need RMW protection on AUTOC */
150 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
151 if (ret_val)
152 return ret_val;
153
154 /* only backplane uses autoc so fall though */
155 case ixgbe_media_type_fiber:
156 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
157
158 break;
159 case ixgbe_media_type_copper:
160 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
161 MDIO_MMD_AN, ®_cu);
162 break;
163 default:
164 break;
165 }
166
167 /*
168 * The possible values of fc.requested_mode are:
169 * 0: Flow control is completely disabled
170 * 1: Rx flow control is enabled (we can receive pause frames,
171 * but not send pause frames).
172 * 2: Tx flow control is enabled (we can send pause frames but
173 * we do not support receiving pause frames).
174 * 3: Both Rx and Tx flow control (symmetric) are enabled.
175 * other: Invalid.
176 */
177 switch (hw->fc.requested_mode) {
178 case ixgbe_fc_none:
179 /* Flow control completely disabled by software override. */
180 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
181 if (hw->phy.media_type == ixgbe_media_type_backplane)
182 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
183 IXGBE_AUTOC_ASM_PAUSE);
184 else if (hw->phy.media_type == ixgbe_media_type_copper)
185 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
186 break;
187 case ixgbe_fc_tx_pause:
188 /*
189 * Tx Flow control is enabled, and Rx Flow control is
190 * disabled by software override.
191 */
192 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
193 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
194 if (hw->phy.media_type == ixgbe_media_type_backplane) {
195 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
196 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
197 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
198 reg_cu |= IXGBE_TAF_ASM_PAUSE;
199 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
200 }
201 break;
202 case ixgbe_fc_rx_pause:
203 /*
204 * Rx Flow control is enabled and Tx Flow control is
205 * disabled by software override. Since there really
206 * isn't a way to advertise that we are capable of RX
207 * Pause ONLY, we will advertise that we support both
208 * symmetric and asymmetric Rx PAUSE, as such we fall
209 * through to the fc_full statement. Later, we will
210 * disable the adapter's ability to send PAUSE frames.
211 */
212 case ixgbe_fc_full:
213 /* Flow control (both Rx and Tx) is enabled by SW override. */
214 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
215 if (hw->phy.media_type == ixgbe_media_type_backplane)
216 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
217 IXGBE_AUTOC_ASM_PAUSE;
218 else if (hw->phy.media_type == ixgbe_media_type_copper)
219 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
220 break;
221 default:
222 hw_dbg(hw, "Flow control param set incorrectly\n");
223 return IXGBE_ERR_CONFIG;
224 }
225
226 if (hw->mac.type != ixgbe_mac_X540) {
227 /*
228 * Enable auto-negotiation between the MAC & PHY;
229 * the MAC will advertise clause 37 flow control.
230 */
231 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
232 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
233
234 /* Disable AN timeout */
235 if (hw->fc.strict_ieee)
236 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
237
238 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
239 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
240 }
241
242 /*
243 * AUTOC restart handles negotiation of 1G and 10G on backplane
244 * and copper. There is no need to set the PCS1GCTL register.
245 *
246 */
247 if (hw->phy.media_type == ixgbe_media_type_backplane) {
248 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
249 * LESM is on, likewise reset_pipeline requries the lock as
250 * it also writes AUTOC.
251 */
252 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
253 if (ret_val)
254 return ret_val;
255
256 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
257 ixgbe_device_supports_autoneg_fc(hw)) {
258 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
259 MDIO_MMD_AN, reg_cu);
260 }
261
262 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
263 return ret_val;
264}
265
266/**
267 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
268 * @hw: pointer to hardware structure
269 *
270 * Starts the hardware by filling the bus info structure and media type, clears
271 * all on chip counters, initializes receive address registers, multicast
272 * table, VLAN filter table, calls routine to set up link and flow control
273 * settings, and leaves transmit and receive units disabled and uninitialized
274 **/
275s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
276{
277 s32 ret_val;
278 u32 ctrl_ext;
279
280 /* Set the media type */
281 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
282
283 /* Identify the PHY */
284 hw->phy.ops.identify(hw);
285
286 /* Clear the VLAN filter table */
287 hw->mac.ops.clear_vfta(hw);
288
289 /* Clear statistics registers */
290 hw->mac.ops.clear_hw_cntrs(hw);
291
292 /* Set No Snoop Disable */
293 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
294 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
295 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
296 IXGBE_WRITE_FLUSH(hw);
297
298 /* Setup flow control */
299 ret_val = ixgbe_setup_fc(hw);
300 if (ret_val)
301 return ret_val;
302
303 /* Clear adapter stopped flag */
304 hw->adapter_stopped = false;
305
306 return 0;
307}
308
309/**
310 * ixgbe_start_hw_gen2 - Init sequence for common device family
311 * @hw: pointer to hw structure
312 *
313 * Performs the init sequence common to the second generation
314 * of 10 GbE devices.
315 * Devices in the second generation:
316 * 82599
317 * X540
318 **/
319s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
320{
321 u32 i;
322
323 /* Clear the rate limiters */
324 for (i = 0; i < hw->mac.max_tx_queues; i++) {
325 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
326 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
327 }
328 IXGBE_WRITE_FLUSH(hw);
329
330#ifndef CONFIG_SPARC
331 /* Disable relaxed ordering */
332 for (i = 0; i < hw->mac.max_tx_queues; i++) {
333 u32 regval;
334
335 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
336 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
337 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
338 }
339
340 for (i = 0; i < hw->mac.max_rx_queues; i++) {
341 u32 regval;
342
343 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
344 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
345 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
346 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
347 }
348#endif
349 return 0;
350}
351
352/**
353 * ixgbe_init_hw_generic - Generic hardware initialization
354 * @hw: pointer to hardware structure
355 *
356 * Initialize the hardware by resetting the hardware, filling the bus info
357 * structure and media type, clears all on chip counters, initializes receive
358 * address registers, multicast table, VLAN filter table, calls routine to set
359 * up link and flow control settings, and leaves transmit and receive units
360 * disabled and uninitialized
361 **/
362s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
363{
364 s32 status;
365
366 /* Reset the hardware */
367 status = hw->mac.ops.reset_hw(hw);
368
369 if (status == 0) {
370 /* Start the HW */
371 status = hw->mac.ops.start_hw(hw);
372 }
373
374 return status;
375}
376
377/**
378 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
379 * @hw: pointer to hardware structure
380 *
381 * Clears all hardware statistics counters by reading them from the hardware
382 * Statistics counters are clear on read.
383 **/
384s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
385{
386 u16 i = 0;
387
388 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
389 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
390 IXGBE_READ_REG(hw, IXGBE_ERRBC);
391 IXGBE_READ_REG(hw, IXGBE_MSPDC);
392 for (i = 0; i < 8; i++)
393 IXGBE_READ_REG(hw, IXGBE_MPC(i));
394
395 IXGBE_READ_REG(hw, IXGBE_MLFC);
396 IXGBE_READ_REG(hw, IXGBE_MRFC);
397 IXGBE_READ_REG(hw, IXGBE_RLEC);
398 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
399 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
400 if (hw->mac.type >= ixgbe_mac_82599EB) {
401 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
402 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
403 } else {
404 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
405 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
406 }
407
408 for (i = 0; i < 8; i++) {
409 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
410 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
411 if (hw->mac.type >= ixgbe_mac_82599EB) {
412 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
413 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
414 } else {
415 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
416 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
417 }
418 }
419 if (hw->mac.type >= ixgbe_mac_82599EB)
420 for (i = 0; i < 8; i++)
421 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
422 IXGBE_READ_REG(hw, IXGBE_PRC64);
423 IXGBE_READ_REG(hw, IXGBE_PRC127);
424 IXGBE_READ_REG(hw, IXGBE_PRC255);
425 IXGBE_READ_REG(hw, IXGBE_PRC511);
426 IXGBE_READ_REG(hw, IXGBE_PRC1023);
427 IXGBE_READ_REG(hw, IXGBE_PRC1522);
428 IXGBE_READ_REG(hw, IXGBE_GPRC);
429 IXGBE_READ_REG(hw, IXGBE_BPRC);
430 IXGBE_READ_REG(hw, IXGBE_MPRC);
431 IXGBE_READ_REG(hw, IXGBE_GPTC);
432 IXGBE_READ_REG(hw, IXGBE_GORCL);
433 IXGBE_READ_REG(hw, IXGBE_GORCH);
434 IXGBE_READ_REG(hw, IXGBE_GOTCL);
435 IXGBE_READ_REG(hw, IXGBE_GOTCH);
436 if (hw->mac.type == ixgbe_mac_82598EB)
437 for (i = 0; i < 8; i++)
438 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
439 IXGBE_READ_REG(hw, IXGBE_RUC);
440 IXGBE_READ_REG(hw, IXGBE_RFC);
441 IXGBE_READ_REG(hw, IXGBE_ROC);
442 IXGBE_READ_REG(hw, IXGBE_RJC);
443 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
444 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
445 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
446 IXGBE_READ_REG(hw, IXGBE_TORL);
447 IXGBE_READ_REG(hw, IXGBE_TORH);
448 IXGBE_READ_REG(hw, IXGBE_TPR);
449 IXGBE_READ_REG(hw, IXGBE_TPT);
450 IXGBE_READ_REG(hw, IXGBE_PTC64);
451 IXGBE_READ_REG(hw, IXGBE_PTC127);
452 IXGBE_READ_REG(hw, IXGBE_PTC255);
453 IXGBE_READ_REG(hw, IXGBE_PTC511);
454 IXGBE_READ_REG(hw, IXGBE_PTC1023);
455 IXGBE_READ_REG(hw, IXGBE_PTC1522);
456 IXGBE_READ_REG(hw, IXGBE_MPTC);
457 IXGBE_READ_REG(hw, IXGBE_BPTC);
458 for (i = 0; i < 16; i++) {
459 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
460 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
461 if (hw->mac.type >= ixgbe_mac_82599EB) {
462 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
463 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
464 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
465 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
466 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
467 } else {
468 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
469 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
470 }
471 }
472
473 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
474 if (hw->phy.id == 0)
475 hw->phy.ops.identify(hw);
476 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
477 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
478 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
479 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
480 }
481
482 return 0;
483}
484
485/**
486 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
487 * @hw: pointer to hardware structure
488 * @pba_num: stores the part number string from the EEPROM
489 * @pba_num_size: part number string buffer length
490 *
491 * Reads the part number string from the EEPROM.
492 **/
493s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
494 u32 pba_num_size)
495{
496 s32 ret_val;
497 u16 data;
498 u16 pba_ptr;
499 u16 offset;
500 u16 length;
501
502 if (pba_num == NULL) {
503 hw_dbg(hw, "PBA string buffer was null\n");
504 return IXGBE_ERR_INVALID_ARGUMENT;
505 }
506
507 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
508 if (ret_val) {
509 hw_dbg(hw, "NVM Read Error\n");
510 return ret_val;
511 }
512
513 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
514 if (ret_val) {
515 hw_dbg(hw, "NVM Read Error\n");
516 return ret_val;
517 }
518
519 /*
520 * if data is not ptr guard the PBA must be in legacy format which
521 * means pba_ptr is actually our second data word for the PBA number
522 * and we can decode it into an ascii string
523 */
524 if (data != IXGBE_PBANUM_PTR_GUARD) {
525 hw_dbg(hw, "NVM PBA number is not stored as string\n");
526
527 /* we will need 11 characters to store the PBA */
528 if (pba_num_size < 11) {
529 hw_dbg(hw, "PBA string buffer too small\n");
530 return IXGBE_ERR_NO_SPACE;
531 }
532
533 /* extract hex string from data and pba_ptr */
534 pba_num[0] = (data >> 12) & 0xF;
535 pba_num[1] = (data >> 8) & 0xF;
536 pba_num[2] = (data >> 4) & 0xF;
537 pba_num[3] = data & 0xF;
538 pba_num[4] = (pba_ptr >> 12) & 0xF;
539 pba_num[5] = (pba_ptr >> 8) & 0xF;
540 pba_num[6] = '-';
541 pba_num[7] = 0;
542 pba_num[8] = (pba_ptr >> 4) & 0xF;
543 pba_num[9] = pba_ptr & 0xF;
544
545 /* put a null character on the end of our string */
546 pba_num[10] = '\0';
547
548 /* switch all the data but the '-' to hex char */
549 for (offset = 0; offset < 10; offset++) {
550 if (pba_num[offset] < 0xA)
551 pba_num[offset] += '0';
552 else if (pba_num[offset] < 0x10)
553 pba_num[offset] += 'A' - 0xA;
554 }
555
556 return 0;
557 }
558
559 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
560 if (ret_val) {
561 hw_dbg(hw, "NVM Read Error\n");
562 return ret_val;
563 }
564
565 if (length == 0xFFFF || length == 0) {
566 hw_dbg(hw, "NVM PBA number section invalid length\n");
567 return IXGBE_ERR_PBA_SECTION;
568 }
569
570 /* check if pba_num buffer is big enough */
571 if (pba_num_size < (((u32)length * 2) - 1)) {
572 hw_dbg(hw, "PBA string buffer too small\n");
573 return IXGBE_ERR_NO_SPACE;
574 }
575
576 /* trim pba length from start of string */
577 pba_ptr++;
578 length--;
579
580 for (offset = 0; offset < length; offset++) {
581 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
582 if (ret_val) {
583 hw_dbg(hw, "NVM Read Error\n");
584 return ret_val;
585 }
586 pba_num[offset * 2] = (u8)(data >> 8);
587 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
588 }
589 pba_num[offset * 2] = '\0';
590
591 return 0;
592}
593
594/**
595 * ixgbe_get_mac_addr_generic - Generic get MAC address
596 * @hw: pointer to hardware structure
597 * @mac_addr: Adapter MAC address
598 *
599 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
600 * A reset of the adapter must be performed prior to calling this function
601 * in order for the MAC address to have been loaded from the EEPROM into RAR0
602 **/
603s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
604{
605 u32 rar_high;
606 u32 rar_low;
607 u16 i;
608
609 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
610 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
611
612 for (i = 0; i < 4; i++)
613 mac_addr[i] = (u8)(rar_low >> (i*8));
614
615 for (i = 0; i < 2; i++)
616 mac_addr[i+4] = (u8)(rar_high >> (i*8));
617
618 return 0;
619}
620
621enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
622{
623 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
624 case IXGBE_PCI_LINK_WIDTH_1:
625 return ixgbe_bus_width_pcie_x1;
626 case IXGBE_PCI_LINK_WIDTH_2:
627 return ixgbe_bus_width_pcie_x2;
628 case IXGBE_PCI_LINK_WIDTH_4:
629 return ixgbe_bus_width_pcie_x4;
630 case IXGBE_PCI_LINK_WIDTH_8:
631 return ixgbe_bus_width_pcie_x8;
632 default:
633 return ixgbe_bus_width_unknown;
634 }
635}
636
637enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
638{
639 switch (link_status & IXGBE_PCI_LINK_SPEED) {
640 case IXGBE_PCI_LINK_SPEED_2500:
641 return ixgbe_bus_speed_2500;
642 case IXGBE_PCI_LINK_SPEED_5000:
643 return ixgbe_bus_speed_5000;
644 case IXGBE_PCI_LINK_SPEED_8000:
645 return ixgbe_bus_speed_8000;
646 default:
647 return ixgbe_bus_speed_unknown;
648 }
649}
650
651/**
652 * ixgbe_get_bus_info_generic - Generic set PCI bus info
653 * @hw: pointer to hardware structure
654 *
655 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
656 **/
657s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
658{
659 u16 link_status;
660
661 hw->bus.type = ixgbe_bus_type_pci_express;
662
663 /* Get the negotiated link width and speed from PCI config space */
664 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
665
666 hw->bus.width = ixgbe_convert_bus_width(link_status);
667 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
668
669 hw->mac.ops.set_lan_id(hw);
670
671 return 0;
672}
673
674/**
675 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
676 * @hw: pointer to the HW structure
677 *
678 * Determines the LAN function id by reading memory-mapped registers
679 * and swaps the port value if requested.
680 **/
681void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
682{
683 struct ixgbe_bus_info *bus = &hw->bus;
684 u32 reg;
685
686 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688 bus->lan_id = bus->func;
689
690 /* check for a port swap */
691 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 if (reg & IXGBE_FACTPS_LFS)
693 bus->func ^= 0x1;
694}
695
696/**
697 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
698 * @hw: pointer to hardware structure
699 *
700 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
701 * disables transmit and receive units. The adapter_stopped flag is used by
702 * the shared code and drivers to determine if the adapter is in a stopped
703 * state and should not touch the hardware.
704 **/
705s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
706{
707 u32 reg_val;
708 u16 i;
709
710 /*
711 * Set the adapter_stopped flag so other driver functions stop touching
712 * the hardware
713 */
714 hw->adapter_stopped = true;
715
716 /* Disable the receive unit */
717 hw->mac.ops.disable_rx(hw);
718
719 /* Clear interrupt mask to stop interrupts from being generated */
720 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
721
722 /* Clear any pending interrupts, flush previous writes */
723 IXGBE_READ_REG(hw, IXGBE_EICR);
724
725 /* Disable the transmit unit. Each queue must be disabled. */
726 for (i = 0; i < hw->mac.max_tx_queues; i++)
727 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
728
729 /* Disable the receive unit by stopping each queue */
730 for (i = 0; i < hw->mac.max_rx_queues; i++) {
731 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
732 reg_val &= ~IXGBE_RXDCTL_ENABLE;
733 reg_val |= IXGBE_RXDCTL_SWFLSH;
734 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
735 }
736
737 /* flush all queues disables */
738 IXGBE_WRITE_FLUSH(hw);
739 usleep_range(1000, 2000);
740
741 /*
742 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
743 * access and verify no pending requests
744 */
745 return ixgbe_disable_pcie_master(hw);
746}
747
748/**
749 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
750 * @hw: pointer to hardware structure
751 * @index: led number to turn on
752 **/
753s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
754{
755 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
756
757 /* To turn on the LED, set mode to ON. */
758 led_reg &= ~IXGBE_LED_MODE_MASK(index);
759 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
760 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
761 IXGBE_WRITE_FLUSH(hw);
762
763 return 0;
764}
765
766/**
767 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
768 * @hw: pointer to hardware structure
769 * @index: led number to turn off
770 **/
771s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
772{
773 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
774
775 /* To turn off the LED, set mode to OFF. */
776 led_reg &= ~IXGBE_LED_MODE_MASK(index);
777 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
778 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
779 IXGBE_WRITE_FLUSH(hw);
780
781 return 0;
782}
783
784/**
785 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
786 * @hw: pointer to hardware structure
787 *
788 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
789 * ixgbe_hw struct in order to set up EEPROM access.
790 **/
791s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
792{
793 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
794 u32 eec;
795 u16 eeprom_size;
796
797 if (eeprom->type == ixgbe_eeprom_uninitialized) {
798 eeprom->type = ixgbe_eeprom_none;
799 /* Set default semaphore delay to 10ms which is a well
800 * tested value */
801 eeprom->semaphore_delay = 10;
802 /* Clear EEPROM page size, it will be initialized as needed */
803 eeprom->word_page_size = 0;
804
805 /*
806 * Check for EEPROM present first.
807 * If not present leave as none
808 */
809 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
810 if (eec & IXGBE_EEC_PRES) {
811 eeprom->type = ixgbe_eeprom_spi;
812
813 /*
814 * SPI EEPROM is assumed here. This code would need to
815 * change if a future EEPROM is not SPI.
816 */
817 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
818 IXGBE_EEC_SIZE_SHIFT);
819 eeprom->word_size = 1 << (eeprom_size +
820 IXGBE_EEPROM_WORD_SIZE_SHIFT);
821 }
822
823 if (eec & IXGBE_EEC_ADDR_SIZE)
824 eeprom->address_bits = 16;
825 else
826 eeprom->address_bits = 8;
827 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
828 eeprom->type, eeprom->word_size, eeprom->address_bits);
829 }
830
831 return 0;
832}
833
834/**
835 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
836 * @hw: pointer to hardware structure
837 * @offset: offset within the EEPROM to write
838 * @words: number of words
839 * @data: 16 bit word(s) to write to EEPROM
840 *
841 * Reads 16 bit word(s) from EEPROM through bit-bang method
842 **/
843s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
844 u16 words, u16 *data)
845{
846 s32 status;
847 u16 i, count;
848
849 hw->eeprom.ops.init_params(hw);
850
851 if (words == 0)
852 return IXGBE_ERR_INVALID_ARGUMENT;
853
854 if (offset + words > hw->eeprom.word_size)
855 return IXGBE_ERR_EEPROM;
856
857 /*
858 * The EEPROM page size cannot be queried from the chip. We do lazy
859 * initialization. It is worth to do that when we write large buffer.
860 */
861 if ((hw->eeprom.word_page_size == 0) &&
862 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
863 ixgbe_detect_eeprom_page_size_generic(hw, offset);
864
865 /*
866 * We cannot hold synchronization semaphores for too long
867 * to avoid other entity starvation. However it is more efficient
868 * to read in bursts than synchronizing access for each word.
869 */
870 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
871 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
872 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
873 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
874 count, &data[i]);
875
876 if (status != 0)
877 break;
878 }
879
880 return status;
881}
882
883/**
884 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
885 * @hw: pointer to hardware structure
886 * @offset: offset within the EEPROM to be written to
887 * @words: number of word(s)
888 * @data: 16 bit word(s) to be written to the EEPROM
889 *
890 * If ixgbe_eeprom_update_checksum is not called after this function, the
891 * EEPROM will most likely contain an invalid checksum.
892 **/
893static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
894 u16 words, u16 *data)
895{
896 s32 status;
897 u16 word;
898 u16 page_size;
899 u16 i;
900 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
901
902 /* Prepare the EEPROM for writing */
903 status = ixgbe_acquire_eeprom(hw);
904 if (status)
905 return status;
906
907 if (ixgbe_ready_eeprom(hw) != 0) {
908 ixgbe_release_eeprom(hw);
909 return IXGBE_ERR_EEPROM;
910 }
911
912 for (i = 0; i < words; i++) {
913 ixgbe_standby_eeprom(hw);
914
915 /* Send the WRITE ENABLE command (8 bit opcode) */
916 ixgbe_shift_out_eeprom_bits(hw,
917 IXGBE_EEPROM_WREN_OPCODE_SPI,
918 IXGBE_EEPROM_OPCODE_BITS);
919
920 ixgbe_standby_eeprom(hw);
921
922 /* Some SPI eeproms use the 8th address bit embedded
923 * in the opcode
924 */
925 if ((hw->eeprom.address_bits == 8) &&
926 ((offset + i) >= 128))
927 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
928
929 /* Send the Write command (8-bit opcode + addr) */
930 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
931 IXGBE_EEPROM_OPCODE_BITS);
932 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
933 hw->eeprom.address_bits);
934
935 page_size = hw->eeprom.word_page_size;
936
937 /* Send the data in burst via SPI */
938 do {
939 word = data[i];
940 word = (word >> 8) | (word << 8);
941 ixgbe_shift_out_eeprom_bits(hw, word, 16);
942
943 if (page_size == 0)
944 break;
945
946 /* do not wrap around page */
947 if (((offset + i) & (page_size - 1)) ==
948 (page_size - 1))
949 break;
950 } while (++i < words);
951
952 ixgbe_standby_eeprom(hw);
953 usleep_range(10000, 20000);
954 }
955 /* Done with writing - release the EEPROM */
956 ixgbe_release_eeprom(hw);
957
958 return 0;
959}
960
961/**
962 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
963 * @hw: pointer to hardware structure
964 * @offset: offset within the EEPROM to be written to
965 * @data: 16 bit word to be written to the EEPROM
966 *
967 * If ixgbe_eeprom_update_checksum is not called after this function, the
968 * EEPROM will most likely contain an invalid checksum.
969 **/
970s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
971{
972 hw->eeprom.ops.init_params(hw);
973
974 if (offset >= hw->eeprom.word_size)
975 return IXGBE_ERR_EEPROM;
976
977 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
978}
979
980/**
981 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
982 * @hw: pointer to hardware structure
983 * @offset: offset within the EEPROM to be read
984 * @words: number of word(s)
985 * @data: read 16 bit words(s) from EEPROM
986 *
987 * Reads 16 bit word(s) from EEPROM through bit-bang method
988 **/
989s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
990 u16 words, u16 *data)
991{
992 s32 status;
993 u16 i, count;
994
995 hw->eeprom.ops.init_params(hw);
996
997 if (words == 0)
998 return IXGBE_ERR_INVALID_ARGUMENT;
999
1000 if (offset + words > hw->eeprom.word_size)
1001 return IXGBE_ERR_EEPROM;
1002
1003 /*
1004 * We cannot hold synchronization semaphores for too long
1005 * to avoid other entity starvation. However it is more efficient
1006 * to read in bursts than synchronizing access for each word.
1007 */
1008 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1009 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1010 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1011
1012 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1013 count, &data[i]);
1014
1015 if (status)
1016 return status;
1017 }
1018
1019 return 0;
1020}
1021
1022/**
1023 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1024 * @hw: pointer to hardware structure
1025 * @offset: offset within the EEPROM to be read
1026 * @words: number of word(s)
1027 * @data: read 16 bit word(s) from EEPROM
1028 *
1029 * Reads 16 bit word(s) from EEPROM through bit-bang method
1030 **/
1031static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1032 u16 words, u16 *data)
1033{
1034 s32 status;
1035 u16 word_in;
1036 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1037 u16 i;
1038
1039 /* Prepare the EEPROM for reading */
1040 status = ixgbe_acquire_eeprom(hw);
1041 if (status)
1042 return status;
1043
1044 if (ixgbe_ready_eeprom(hw) != 0) {
1045 ixgbe_release_eeprom(hw);
1046 return IXGBE_ERR_EEPROM;
1047 }
1048
1049 for (i = 0; i < words; i++) {
1050 ixgbe_standby_eeprom(hw);
1051 /* Some SPI eeproms use the 8th address bit embedded
1052 * in the opcode
1053 */
1054 if ((hw->eeprom.address_bits == 8) &&
1055 ((offset + i) >= 128))
1056 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1057
1058 /* Send the READ command (opcode + addr) */
1059 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1060 IXGBE_EEPROM_OPCODE_BITS);
1061 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1062 hw->eeprom.address_bits);
1063
1064 /* Read the data. */
1065 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1066 data[i] = (word_in >> 8) | (word_in << 8);
1067 }
1068
1069 /* End this read operation */
1070 ixgbe_release_eeprom(hw);
1071
1072 return 0;
1073}
1074
1075/**
1076 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1077 * @hw: pointer to hardware structure
1078 * @offset: offset within the EEPROM to be read
1079 * @data: read 16 bit value from EEPROM
1080 *
1081 * Reads 16 bit value from EEPROM through bit-bang method
1082 **/
1083s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1084 u16 *data)
1085{
1086 hw->eeprom.ops.init_params(hw);
1087
1088 if (offset >= hw->eeprom.word_size)
1089 return IXGBE_ERR_EEPROM;
1090
1091 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1092}
1093
1094/**
1095 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1096 * @hw: pointer to hardware structure
1097 * @offset: offset of word in the EEPROM to read
1098 * @words: number of word(s)
1099 * @data: 16 bit word(s) from the EEPROM
1100 *
1101 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1102 **/
1103s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1104 u16 words, u16 *data)
1105{
1106 u32 eerd;
1107 s32 status;
1108 u32 i;
1109
1110 hw->eeprom.ops.init_params(hw);
1111
1112 if (words == 0)
1113 return IXGBE_ERR_INVALID_ARGUMENT;
1114
1115 if (offset >= hw->eeprom.word_size)
1116 return IXGBE_ERR_EEPROM;
1117
1118 for (i = 0; i < words; i++) {
1119 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1120 IXGBE_EEPROM_RW_REG_START;
1121
1122 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1123 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1124
1125 if (status == 0) {
1126 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1127 IXGBE_EEPROM_RW_REG_DATA);
1128 } else {
1129 hw_dbg(hw, "Eeprom read timed out\n");
1130 return status;
1131 }
1132 }
1133
1134 return 0;
1135}
1136
1137/**
1138 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1139 * @hw: pointer to hardware structure
1140 * @offset: offset within the EEPROM to be used as a scratch pad
1141 *
1142 * Discover EEPROM page size by writing marching data at given offset.
1143 * This function is called only when we are writing a new large buffer
1144 * at given offset so the data would be overwritten anyway.
1145 **/
1146static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1147 u16 offset)
1148{
1149 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1150 s32 status;
1151 u16 i;
1152
1153 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1154 data[i] = i;
1155
1156 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1157 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1158 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1159 hw->eeprom.word_page_size = 0;
1160 if (status)
1161 return status;
1162
1163 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1164 if (status)
1165 return status;
1166
1167 /*
1168 * When writing in burst more than the actual page size
1169 * EEPROM address wraps around current page.
1170 */
1171 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1172
1173 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1174 hw->eeprom.word_page_size);
1175 return 0;
1176}
1177
1178/**
1179 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1180 * @hw: pointer to hardware structure
1181 * @offset: offset of word in the EEPROM to read
1182 * @data: word read from the EEPROM
1183 *
1184 * Reads a 16 bit word from the EEPROM using the EERD register.
1185 **/
1186s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1187{
1188 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1189}
1190
1191/**
1192 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1193 * @hw: pointer to hardware structure
1194 * @offset: offset of word in the EEPROM to write
1195 * @words: number of words
1196 * @data: word(s) write to the EEPROM
1197 *
1198 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1199 **/
1200s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1201 u16 words, u16 *data)
1202{
1203 u32 eewr;
1204 s32 status;
1205 u16 i;
1206
1207 hw->eeprom.ops.init_params(hw);
1208
1209 if (words == 0)
1210 return IXGBE_ERR_INVALID_ARGUMENT;
1211
1212 if (offset >= hw->eeprom.word_size)
1213 return IXGBE_ERR_EEPROM;
1214
1215 for (i = 0; i < words; i++) {
1216 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1217 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1218 IXGBE_EEPROM_RW_REG_START;
1219
1220 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1221 if (status) {
1222 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1223 return status;
1224 }
1225
1226 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1227
1228 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1229 if (status) {
1230 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1231 return status;
1232 }
1233 }
1234
1235 return 0;
1236}
1237
1238/**
1239 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1240 * @hw: pointer to hardware structure
1241 * @offset: offset of word in the EEPROM to write
1242 * @data: word write to the EEPROM
1243 *
1244 * Write a 16 bit word to the EEPROM using the EEWR register.
1245 **/
1246s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1247{
1248 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1249}
1250
1251/**
1252 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1253 * @hw: pointer to hardware structure
1254 * @ee_reg: EEPROM flag for polling
1255 *
1256 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1257 * read or write is done respectively.
1258 **/
1259static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1260{
1261 u32 i;
1262 u32 reg;
1263
1264 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1265 if (ee_reg == IXGBE_NVM_POLL_READ)
1266 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1267 else
1268 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1269
1270 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1271 return 0;
1272 }
1273 udelay(5);
1274 }
1275 return IXGBE_ERR_EEPROM;
1276}
1277
1278/**
1279 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1280 * @hw: pointer to hardware structure
1281 *
1282 * Prepares EEPROM for access using bit-bang method. This function should
1283 * be called before issuing a command to the EEPROM.
1284 **/
1285static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1286{
1287 u32 eec;
1288 u32 i;
1289
1290 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1291 return IXGBE_ERR_SWFW_SYNC;
1292
1293 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1294
1295 /* Request EEPROM Access */
1296 eec |= IXGBE_EEC_REQ;
1297 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1298
1299 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1300 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1301 if (eec & IXGBE_EEC_GNT)
1302 break;
1303 udelay(5);
1304 }
1305
1306 /* Release if grant not acquired */
1307 if (!(eec & IXGBE_EEC_GNT)) {
1308 eec &= ~IXGBE_EEC_REQ;
1309 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1310 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1311
1312 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1313 return IXGBE_ERR_EEPROM;
1314 }
1315
1316 /* Setup EEPROM for Read/Write */
1317 /* Clear CS and SK */
1318 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1319 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1320 IXGBE_WRITE_FLUSH(hw);
1321 udelay(1);
1322 return 0;
1323}
1324
1325/**
1326 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1327 * @hw: pointer to hardware structure
1328 *
1329 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1330 **/
1331static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1332{
1333 u32 timeout = 2000;
1334 u32 i;
1335 u32 swsm;
1336
1337 /* Get SMBI software semaphore between device drivers first */
1338 for (i = 0; i < timeout; i++) {
1339 /*
1340 * If the SMBI bit is 0 when we read it, then the bit will be
1341 * set and we have the semaphore
1342 */
1343 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1344 if (!(swsm & IXGBE_SWSM_SMBI))
1345 break;
1346 usleep_range(50, 100);
1347 }
1348
1349 if (i == timeout) {
1350 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1351 /* this release is particularly important because our attempts
1352 * above to get the semaphore may have succeeded, and if there
1353 * was a timeout, we should unconditionally clear the semaphore
1354 * bits to free the driver to make progress
1355 */
1356 ixgbe_release_eeprom_semaphore(hw);
1357
1358 usleep_range(50, 100);
1359 /* one last try
1360 * If the SMBI bit is 0 when we read it, then the bit will be
1361 * set and we have the semaphore
1362 */
1363 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1364 if (swsm & IXGBE_SWSM_SMBI) {
1365 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1366 return IXGBE_ERR_EEPROM;
1367 }
1368 }
1369
1370 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1371 for (i = 0; i < timeout; i++) {
1372 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1373
1374 /* Set the SW EEPROM semaphore bit to request access */
1375 swsm |= IXGBE_SWSM_SWESMBI;
1376 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1377
1378 /* If we set the bit successfully then we got the
1379 * semaphore.
1380 */
1381 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1382 if (swsm & IXGBE_SWSM_SWESMBI)
1383 break;
1384
1385 usleep_range(50, 100);
1386 }
1387
1388 /* Release semaphores and return error if SW EEPROM semaphore
1389 * was not granted because we don't have access to the EEPROM
1390 */
1391 if (i >= timeout) {
1392 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1393 ixgbe_release_eeprom_semaphore(hw);
1394 return IXGBE_ERR_EEPROM;
1395 }
1396
1397 return 0;
1398}
1399
1400/**
1401 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1402 * @hw: pointer to hardware structure
1403 *
1404 * This function clears hardware semaphore bits.
1405 **/
1406static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1407{
1408 u32 swsm;
1409
1410 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1411
1412 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1413 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1414 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1415 IXGBE_WRITE_FLUSH(hw);
1416}
1417
1418/**
1419 * ixgbe_ready_eeprom - Polls for EEPROM ready
1420 * @hw: pointer to hardware structure
1421 **/
1422static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1423{
1424 u16 i;
1425 u8 spi_stat_reg;
1426
1427 /*
1428 * Read "Status Register" repeatedly until the LSB is cleared. The
1429 * EEPROM will signal that the command has been completed by clearing
1430 * bit 0 of the internal status register. If it's not cleared within
1431 * 5 milliseconds, then error out.
1432 */
1433 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1434 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1435 IXGBE_EEPROM_OPCODE_BITS);
1436 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1437 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1438 break;
1439
1440 udelay(5);
1441 ixgbe_standby_eeprom(hw);
1442 }
1443
1444 /*
1445 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1446 * devices (and only 0-5mSec on 5V devices)
1447 */
1448 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1449 hw_dbg(hw, "SPI EEPROM Status error\n");
1450 return IXGBE_ERR_EEPROM;
1451 }
1452
1453 return 0;
1454}
1455
1456/**
1457 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1458 * @hw: pointer to hardware structure
1459 **/
1460static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1461{
1462 u32 eec;
1463
1464 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1465
1466 /* Toggle CS to flush commands */
1467 eec |= IXGBE_EEC_CS;
1468 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1469 IXGBE_WRITE_FLUSH(hw);
1470 udelay(1);
1471 eec &= ~IXGBE_EEC_CS;
1472 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1473 IXGBE_WRITE_FLUSH(hw);
1474 udelay(1);
1475}
1476
1477/**
1478 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1479 * @hw: pointer to hardware structure
1480 * @data: data to send to the EEPROM
1481 * @count: number of bits to shift out
1482 **/
1483static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1484 u16 count)
1485{
1486 u32 eec;
1487 u32 mask;
1488 u32 i;
1489
1490 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1491
1492 /*
1493 * Mask is used to shift "count" bits of "data" out to the EEPROM
1494 * one bit at a time. Determine the starting bit based on count
1495 */
1496 mask = 0x01 << (count - 1);
1497
1498 for (i = 0; i < count; i++) {
1499 /*
1500 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1501 * "1", and then raising and then lowering the clock (the SK
1502 * bit controls the clock input to the EEPROM). A "0" is
1503 * shifted out to the EEPROM by setting "DI" to "0" and then
1504 * raising and then lowering the clock.
1505 */
1506 if (data & mask)
1507 eec |= IXGBE_EEC_DI;
1508 else
1509 eec &= ~IXGBE_EEC_DI;
1510
1511 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512 IXGBE_WRITE_FLUSH(hw);
1513
1514 udelay(1);
1515
1516 ixgbe_raise_eeprom_clk(hw, &eec);
1517 ixgbe_lower_eeprom_clk(hw, &eec);
1518
1519 /*
1520 * Shift mask to signify next bit of data to shift in to the
1521 * EEPROM
1522 */
1523 mask = mask >> 1;
1524 }
1525
1526 /* We leave the "DI" bit set to "0" when we leave this routine. */
1527 eec &= ~IXGBE_EEC_DI;
1528 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529 IXGBE_WRITE_FLUSH(hw);
1530}
1531
1532/**
1533 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1534 * @hw: pointer to hardware structure
1535 **/
1536static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1537{
1538 u32 eec;
1539 u32 i;
1540 u16 data = 0;
1541
1542 /*
1543 * In order to read a register from the EEPROM, we need to shift
1544 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1545 * the clock input to the EEPROM (setting the SK bit), and then reading
1546 * the value of the "DO" bit. During this "shifting in" process the
1547 * "DI" bit should always be clear.
1548 */
1549 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1550
1551 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1552
1553 for (i = 0; i < count; i++) {
1554 data = data << 1;
1555 ixgbe_raise_eeprom_clk(hw, &eec);
1556
1557 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1558
1559 eec &= ~(IXGBE_EEC_DI);
1560 if (eec & IXGBE_EEC_DO)
1561 data |= 1;
1562
1563 ixgbe_lower_eeprom_clk(hw, &eec);
1564 }
1565
1566 return data;
1567}
1568
1569/**
1570 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1571 * @hw: pointer to hardware structure
1572 * @eec: EEC register's current value
1573 **/
1574static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1575{
1576 /*
1577 * Raise the clock input to the EEPROM
1578 * (setting the SK bit), then delay
1579 */
1580 *eec = *eec | IXGBE_EEC_SK;
1581 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1582 IXGBE_WRITE_FLUSH(hw);
1583 udelay(1);
1584}
1585
1586/**
1587 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1588 * @hw: pointer to hardware structure
1589 * @eecd: EECD's current value
1590 **/
1591static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1592{
1593 /*
1594 * Lower the clock input to the EEPROM (clearing the SK bit), then
1595 * delay
1596 */
1597 *eec = *eec & ~IXGBE_EEC_SK;
1598 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1599 IXGBE_WRITE_FLUSH(hw);
1600 udelay(1);
1601}
1602
1603/**
1604 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1605 * @hw: pointer to hardware structure
1606 **/
1607static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1608{
1609 u32 eec;
1610
1611 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1612
1613 eec |= IXGBE_EEC_CS; /* Pull CS high */
1614 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1615
1616 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1617 IXGBE_WRITE_FLUSH(hw);
1618
1619 udelay(1);
1620
1621 /* Stop requesting EEPROM access */
1622 eec &= ~IXGBE_EEC_REQ;
1623 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1624
1625 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1626
1627 /*
1628 * Delay before attempt to obtain semaphore again to allow FW
1629 * access. semaphore_delay is in ms we need us for usleep_range
1630 */
1631 usleep_range(hw->eeprom.semaphore_delay * 1000,
1632 hw->eeprom.semaphore_delay * 2000);
1633}
1634
1635/**
1636 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1637 * @hw: pointer to hardware structure
1638 **/
1639s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1640{
1641 u16 i;
1642 u16 j;
1643 u16 checksum = 0;
1644 u16 length = 0;
1645 u16 pointer = 0;
1646 u16 word = 0;
1647
1648 /* Include 0x0-0x3F in the checksum */
1649 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1650 if (hw->eeprom.ops.read(hw, i, &word)) {
1651 hw_dbg(hw, "EEPROM read failed\n");
1652 break;
1653 }
1654 checksum += word;
1655 }
1656
1657 /* Include all data from pointers except for the fw pointer */
1658 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1659 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1660 hw_dbg(hw, "EEPROM read failed\n");
1661 return IXGBE_ERR_EEPROM;
1662 }
1663
1664 /* If the pointer seems invalid */
1665 if (pointer == 0xFFFF || pointer == 0)
1666 continue;
1667
1668 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1669 hw_dbg(hw, "EEPROM read failed\n");
1670 return IXGBE_ERR_EEPROM;
1671 }
1672
1673 if (length == 0xFFFF || length == 0)
1674 continue;
1675
1676 for (j = pointer + 1; j <= pointer + length; j++) {
1677 if (hw->eeprom.ops.read(hw, j, &word)) {
1678 hw_dbg(hw, "EEPROM read failed\n");
1679 return IXGBE_ERR_EEPROM;
1680 }
1681 checksum += word;
1682 }
1683 }
1684
1685 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1686
1687 return (s32)checksum;
1688}
1689
1690/**
1691 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1692 * @hw: pointer to hardware structure
1693 * @checksum_val: calculated checksum
1694 *
1695 * Performs checksum calculation and validates the EEPROM checksum. If the
1696 * caller does not need checksum_val, the value can be NULL.
1697 **/
1698s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1699 u16 *checksum_val)
1700{
1701 s32 status;
1702 u16 checksum;
1703 u16 read_checksum = 0;
1704
1705 /*
1706 * Read the first word from the EEPROM. If this times out or fails, do
1707 * not continue or we could be in for a very long wait while every
1708 * EEPROM read fails
1709 */
1710 status = hw->eeprom.ops.read(hw, 0, &checksum);
1711 if (status) {
1712 hw_dbg(hw, "EEPROM read failed\n");
1713 return status;
1714 }
1715
1716 status = hw->eeprom.ops.calc_checksum(hw);
1717 if (status < 0)
1718 return status;
1719
1720 checksum = (u16)(status & 0xffff);
1721
1722 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1723 if (status) {
1724 hw_dbg(hw, "EEPROM read failed\n");
1725 return status;
1726 }
1727
1728 /* Verify read checksum from EEPROM is the same as
1729 * calculated checksum
1730 */
1731 if (read_checksum != checksum)
1732 status = IXGBE_ERR_EEPROM_CHECKSUM;
1733
1734 /* If the user cares, return the calculated checksum */
1735 if (checksum_val)
1736 *checksum_val = checksum;
1737
1738 return status;
1739}
1740
1741/**
1742 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1743 * @hw: pointer to hardware structure
1744 **/
1745s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1746{
1747 s32 status;
1748 u16 checksum;
1749
1750 /*
1751 * Read the first word from the EEPROM. If this times out or fails, do
1752 * not continue or we could be in for a very long wait while every
1753 * EEPROM read fails
1754 */
1755 status = hw->eeprom.ops.read(hw, 0, &checksum);
1756 if (status) {
1757 hw_dbg(hw, "EEPROM read failed\n");
1758 return status;
1759 }
1760
1761 status = hw->eeprom.ops.calc_checksum(hw);
1762 if (status < 0)
1763 return status;
1764
1765 checksum = (u16)(status & 0xffff);
1766
1767 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1768
1769 return status;
1770}
1771
1772/**
1773 * ixgbe_set_rar_generic - Set Rx address register
1774 * @hw: pointer to hardware structure
1775 * @index: Receive address register to write
1776 * @addr: Address to put into receive address register
1777 * @vmdq: VMDq "set" or "pool" index
1778 * @enable_addr: set flag that address is active
1779 *
1780 * Puts an ethernet address into a receive address register.
1781 **/
1782s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1783 u32 enable_addr)
1784{
1785 u32 rar_low, rar_high;
1786 u32 rar_entries = hw->mac.num_rar_entries;
1787
1788 /* Make sure we are using a valid rar index range */
1789 if (index >= rar_entries) {
1790 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1791 return IXGBE_ERR_INVALID_ARGUMENT;
1792 }
1793
1794 /* setup VMDq pool selection before this RAR gets enabled */
1795 hw->mac.ops.set_vmdq(hw, index, vmdq);
1796
1797 /*
1798 * HW expects these in little endian so we reverse the byte
1799 * order from network order (big endian) to little endian
1800 */
1801 rar_low = ((u32)addr[0] |
1802 ((u32)addr[1] << 8) |
1803 ((u32)addr[2] << 16) |
1804 ((u32)addr[3] << 24));
1805 /*
1806 * Some parts put the VMDq setting in the extra RAH bits,
1807 * so save everything except the lower 16 bits that hold part
1808 * of the address and the address valid bit.
1809 */
1810 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1811 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1812 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1813
1814 if (enable_addr != 0)
1815 rar_high |= IXGBE_RAH_AV;
1816
1817 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1818 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1819
1820 return 0;
1821}
1822
1823/**
1824 * ixgbe_clear_rar_generic - Remove Rx address register
1825 * @hw: pointer to hardware structure
1826 * @index: Receive address register to write
1827 *
1828 * Clears an ethernet address from a receive address register.
1829 **/
1830s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1831{
1832 u32 rar_high;
1833 u32 rar_entries = hw->mac.num_rar_entries;
1834
1835 /* Make sure we are using a valid rar index range */
1836 if (index >= rar_entries) {
1837 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1838 return IXGBE_ERR_INVALID_ARGUMENT;
1839 }
1840
1841 /*
1842 * Some parts put the VMDq setting in the extra RAH bits,
1843 * so save everything except the lower 16 bits that hold part
1844 * of the address and the address valid bit.
1845 */
1846 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1847 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1848
1849 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1850 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1851
1852 /* clear VMDq pool/queue selection for this RAR */
1853 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1854
1855 return 0;
1856}
1857
1858/**
1859 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1860 * @hw: pointer to hardware structure
1861 *
1862 * Places the MAC address in receive address register 0 and clears the rest
1863 * of the receive address registers. Clears the multicast table. Assumes
1864 * the receiver is in reset when the routine is called.
1865 **/
1866s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1867{
1868 u32 i;
1869 u32 rar_entries = hw->mac.num_rar_entries;
1870
1871 /*
1872 * If the current mac address is valid, assume it is a software override
1873 * to the permanent address.
1874 * Otherwise, use the permanent address from the eeprom.
1875 */
1876 if (!is_valid_ether_addr(hw->mac.addr)) {
1877 /* Get the MAC address from the RAR0 for later reference */
1878 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1879
1880 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1881 } else {
1882 /* Setup the receive address. */
1883 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1884 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1885
1886 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1887 }
1888
1889 /* clear VMDq pool/queue selection for RAR 0 */
1890 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1891
1892 hw->addr_ctrl.overflow_promisc = 0;
1893
1894 hw->addr_ctrl.rar_used_count = 1;
1895
1896 /* Zero out the other receive addresses. */
1897 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1898 for (i = 1; i < rar_entries; i++) {
1899 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1900 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1901 }
1902
1903 /* Clear the MTA */
1904 hw->addr_ctrl.mta_in_use = 0;
1905 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1906
1907 hw_dbg(hw, " Clearing MTA\n");
1908 for (i = 0; i < hw->mac.mcft_size; i++)
1909 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1910
1911 if (hw->mac.ops.init_uta_tables)
1912 hw->mac.ops.init_uta_tables(hw);
1913
1914 return 0;
1915}
1916
1917/**
1918 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1919 * @hw: pointer to hardware structure
1920 * @mc_addr: the multicast address
1921 *
1922 * Extracts the 12 bits, from a multicast address, to determine which
1923 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1924 * incoming rx multicast addresses, to determine the bit-vector to check in
1925 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1926 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1927 * to mc_filter_type.
1928 **/
1929static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1930{
1931 u32 vector = 0;
1932
1933 switch (hw->mac.mc_filter_type) {
1934 case 0: /* use bits [47:36] of the address */
1935 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1936 break;
1937 case 1: /* use bits [46:35] of the address */
1938 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1939 break;
1940 case 2: /* use bits [45:34] of the address */
1941 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1942 break;
1943 case 3: /* use bits [43:32] of the address */
1944 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1945 break;
1946 default: /* Invalid mc_filter_type */
1947 hw_dbg(hw, "MC filter type param set incorrectly\n");
1948 break;
1949 }
1950
1951 /* vector can only be 12-bits or boundary will be exceeded */
1952 vector &= 0xFFF;
1953 return vector;
1954}
1955
1956/**
1957 * ixgbe_set_mta - Set bit-vector in multicast table
1958 * @hw: pointer to hardware structure
1959 * @hash_value: Multicast address hash value
1960 *
1961 * Sets the bit-vector in the multicast table.
1962 **/
1963static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1964{
1965 u32 vector;
1966 u32 vector_bit;
1967 u32 vector_reg;
1968
1969 hw->addr_ctrl.mta_in_use++;
1970
1971 vector = ixgbe_mta_vector(hw, mc_addr);
1972 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1973
1974 /*
1975 * The MTA is a register array of 128 32-bit registers. It is treated
1976 * like an array of 4096 bits. We want to set bit
1977 * BitArray[vector_value]. So we figure out what register the bit is
1978 * in, read it, OR in the new bit, then write back the new value. The
1979 * register is determined by the upper 7 bits of the vector value and
1980 * the bit within that register are determined by the lower 5 bits of
1981 * the value.
1982 */
1983 vector_reg = (vector >> 5) & 0x7F;
1984 vector_bit = vector & 0x1F;
1985 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1986}
1987
1988/**
1989 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1990 * @hw: pointer to hardware structure
1991 * @netdev: pointer to net device structure
1992 *
1993 * The given list replaces any existing list. Clears the MC addrs from receive
1994 * address registers and the multicast table. Uses unused receive address
1995 * registers for the first multicast addresses, and hashes the rest into the
1996 * multicast table.
1997 **/
1998s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1999 struct net_device *netdev)
2000{
2001 struct netdev_hw_addr *ha;
2002 u32 i;
2003
2004 /*
2005 * Set the new number of MC addresses that we are being requested to
2006 * use.
2007 */
2008 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2009 hw->addr_ctrl.mta_in_use = 0;
2010
2011 /* Clear mta_shadow */
2012 hw_dbg(hw, " Clearing MTA\n");
2013 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2014
2015 /* Update mta shadow */
2016 netdev_for_each_mc_addr(ha, netdev) {
2017 hw_dbg(hw, " Adding the multicast addresses:\n");
2018 ixgbe_set_mta(hw, ha->addr);
2019 }
2020
2021 /* Enable mta */
2022 for (i = 0; i < hw->mac.mcft_size; i++)
2023 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2024 hw->mac.mta_shadow[i]);
2025
2026 if (hw->addr_ctrl.mta_in_use > 0)
2027 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2028 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2029
2030 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2031 return 0;
2032}
2033
2034/**
2035 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2036 * @hw: pointer to hardware structure
2037 *
2038 * Enables multicast address in RAR and the use of the multicast hash table.
2039 **/
2040s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2041{
2042 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2043
2044 if (a->mta_in_use > 0)
2045 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2046 hw->mac.mc_filter_type);
2047
2048 return 0;
2049}
2050
2051/**
2052 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2053 * @hw: pointer to hardware structure
2054 *
2055 * Disables multicast address in RAR and the use of the multicast hash table.
2056 **/
2057s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2058{
2059 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2060
2061 if (a->mta_in_use > 0)
2062 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2063
2064 return 0;
2065}
2066
2067/**
2068 * ixgbe_fc_enable_generic - Enable flow control
2069 * @hw: pointer to hardware structure
2070 *
2071 * Enable flow control according to the current settings.
2072 **/
2073s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2074{
2075 u32 mflcn_reg, fccfg_reg;
2076 u32 reg;
2077 u32 fcrtl, fcrth;
2078 int i;
2079
2080 /* Validate the water mark configuration. */
2081 if (!hw->fc.pause_time)
2082 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2083
2084 /* Low water mark of zero causes XOFF floods */
2085 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2086 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2087 hw->fc.high_water[i]) {
2088 if (!hw->fc.low_water[i] ||
2089 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2090 hw_dbg(hw, "Invalid water mark configuration\n");
2091 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2092 }
2093 }
2094 }
2095
2096 /* Negotiate the fc mode to use */
2097 ixgbe_fc_autoneg(hw);
2098
2099 /* Disable any previous flow control settings */
2100 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2101 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2102
2103 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2104 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2105
2106 /*
2107 * The possible values of fc.current_mode are:
2108 * 0: Flow control is completely disabled
2109 * 1: Rx flow control is enabled (we can receive pause frames,
2110 * but not send pause frames).
2111 * 2: Tx flow control is enabled (we can send pause frames but
2112 * we do not support receiving pause frames).
2113 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2114 * other: Invalid.
2115 */
2116 switch (hw->fc.current_mode) {
2117 case ixgbe_fc_none:
2118 /*
2119 * Flow control is disabled by software override or autoneg.
2120 * The code below will actually disable it in the HW.
2121 */
2122 break;
2123 case ixgbe_fc_rx_pause:
2124 /*
2125 * Rx Flow control is enabled and Tx Flow control is
2126 * disabled by software override. Since there really
2127 * isn't a way to advertise that we are capable of RX
2128 * Pause ONLY, we will advertise that we support both
2129 * symmetric and asymmetric Rx PAUSE. Later, we will
2130 * disable the adapter's ability to send PAUSE frames.
2131 */
2132 mflcn_reg |= IXGBE_MFLCN_RFCE;
2133 break;
2134 case ixgbe_fc_tx_pause:
2135 /*
2136 * Tx Flow control is enabled, and Rx Flow control is
2137 * disabled by software override.
2138 */
2139 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2140 break;
2141 case ixgbe_fc_full:
2142 /* Flow control (both Rx and Tx) is enabled by SW override. */
2143 mflcn_reg |= IXGBE_MFLCN_RFCE;
2144 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2145 break;
2146 default:
2147 hw_dbg(hw, "Flow control param set incorrectly\n");
2148 return IXGBE_ERR_CONFIG;
2149 }
2150
2151 /* Set 802.3x based flow control settings. */
2152 mflcn_reg |= IXGBE_MFLCN_DPF;
2153 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2154 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2155
2156 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2157 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2158 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2159 hw->fc.high_water[i]) {
2160 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2161 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2162 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2163 } else {
2164 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2165 /*
2166 * In order to prevent Tx hangs when the internal Tx
2167 * switch is enabled we must set the high water mark
2168 * to the Rx packet buffer size - 24KB. This allows
2169 * the Tx switch to function even under heavy Rx
2170 * workloads.
2171 */
2172 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2173 }
2174
2175 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2176 }
2177
2178 /* Configure pause time (2 TCs per register) */
2179 reg = hw->fc.pause_time * 0x00010001;
2180 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2181 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2182
2183 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2184
2185 return 0;
2186}
2187
2188/**
2189 * ixgbe_negotiate_fc - Negotiate flow control
2190 * @hw: pointer to hardware structure
2191 * @adv_reg: flow control advertised settings
2192 * @lp_reg: link partner's flow control settings
2193 * @adv_sym: symmetric pause bit in advertisement
2194 * @adv_asm: asymmetric pause bit in advertisement
2195 * @lp_sym: symmetric pause bit in link partner advertisement
2196 * @lp_asm: asymmetric pause bit in link partner advertisement
2197 *
2198 * Find the intersection between advertised settings and link partner's
2199 * advertised settings
2200 **/
2201static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2202 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2203{
2204 if ((!(adv_reg)) || (!(lp_reg)))
2205 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2206
2207 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2208 /*
2209 * Now we need to check if the user selected Rx ONLY
2210 * of pause frames. In this case, we had to advertise
2211 * FULL flow control because we could not advertise RX
2212 * ONLY. Hence, we must now check to see if we need to
2213 * turn OFF the TRANSMISSION of PAUSE frames.
2214 */
2215 if (hw->fc.requested_mode == ixgbe_fc_full) {
2216 hw->fc.current_mode = ixgbe_fc_full;
2217 hw_dbg(hw, "Flow Control = FULL.\n");
2218 } else {
2219 hw->fc.current_mode = ixgbe_fc_rx_pause;
2220 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2221 }
2222 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2223 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2224 hw->fc.current_mode = ixgbe_fc_tx_pause;
2225 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2226 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2227 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2228 hw->fc.current_mode = ixgbe_fc_rx_pause;
2229 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2230 } else {
2231 hw->fc.current_mode = ixgbe_fc_none;
2232 hw_dbg(hw, "Flow Control = NONE.\n");
2233 }
2234 return 0;
2235}
2236
2237/**
2238 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2239 * @hw: pointer to hardware structure
2240 *
2241 * Enable flow control according on 1 gig fiber.
2242 **/
2243static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2244{
2245 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2246 s32 ret_val;
2247
2248 /*
2249 * On multispeed fiber at 1g, bail out if
2250 * - link is up but AN did not complete, or if
2251 * - link is up and AN completed but timed out
2252 */
2253
2254 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2255 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2256 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2257 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2258
2259 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2260 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2261
2262 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2263 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2264 IXGBE_PCS1GANA_ASM_PAUSE,
2265 IXGBE_PCS1GANA_SYM_PAUSE,
2266 IXGBE_PCS1GANA_ASM_PAUSE);
2267
2268 return ret_val;
2269}
2270
2271/**
2272 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2273 * @hw: pointer to hardware structure
2274 *
2275 * Enable flow control according to IEEE clause 37.
2276 **/
2277static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2278{
2279 u32 links2, anlp1_reg, autoc_reg, links;
2280 s32 ret_val;
2281
2282 /*
2283 * On backplane, bail out if
2284 * - backplane autoneg was not completed, or if
2285 * - we are 82599 and link partner is not AN enabled
2286 */
2287 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2288 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2289 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290
2291 if (hw->mac.type == ixgbe_mac_82599EB) {
2292 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2293 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2294 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2295 }
2296 /*
2297 * Read the 10g AN autoc and LP ability registers and resolve
2298 * local flow control settings accordingly
2299 */
2300 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2301 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2302
2303 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2304 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2305 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2306
2307 return ret_val;
2308}
2309
2310/**
2311 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2312 * @hw: pointer to hardware structure
2313 *
2314 * Enable flow control according to IEEE clause 37.
2315 **/
2316static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2317{
2318 u16 technology_ability_reg = 0;
2319 u16 lp_technology_ability_reg = 0;
2320
2321 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2322 MDIO_MMD_AN,
2323 &technology_ability_reg);
2324 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2325 MDIO_MMD_AN,
2326 &lp_technology_ability_reg);
2327
2328 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2329 (u32)lp_technology_ability_reg,
2330 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2331 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2332}
2333
2334/**
2335 * ixgbe_fc_autoneg - Configure flow control
2336 * @hw: pointer to hardware structure
2337 *
2338 * Compares our advertised flow control capabilities to those advertised by
2339 * our link partner, and determines the proper flow control mode to use.
2340 **/
2341void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2342{
2343 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2344 ixgbe_link_speed speed;
2345 bool link_up;
2346
2347 /*
2348 * AN should have completed when the cable was plugged in.
2349 * Look for reasons to bail out. Bail out if:
2350 * - FC autoneg is disabled, or if
2351 * - link is not up.
2352 *
2353 * Since we're being called from an LSC, link is already known to be up.
2354 * So use link_up_wait_to_complete=false.
2355 */
2356 if (hw->fc.disable_fc_autoneg)
2357 goto out;
2358
2359 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2360 if (!link_up)
2361 goto out;
2362
2363 switch (hw->phy.media_type) {
2364 /* Autoneg flow control on fiber adapters */
2365 case ixgbe_media_type_fiber:
2366 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2367 ret_val = ixgbe_fc_autoneg_fiber(hw);
2368 break;
2369
2370 /* Autoneg flow control on backplane adapters */
2371 case ixgbe_media_type_backplane:
2372 ret_val = ixgbe_fc_autoneg_backplane(hw);
2373 break;
2374
2375 /* Autoneg flow control on copper adapters */
2376 case ixgbe_media_type_copper:
2377 if (ixgbe_device_supports_autoneg_fc(hw))
2378 ret_val = ixgbe_fc_autoneg_copper(hw);
2379 break;
2380
2381 default:
2382 break;
2383 }
2384
2385out:
2386 if (ret_val == 0) {
2387 hw->fc.fc_was_autonegged = true;
2388 } else {
2389 hw->fc.fc_was_autonegged = false;
2390 hw->fc.current_mode = hw->fc.requested_mode;
2391 }
2392}
2393
2394/**
2395 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2396 * @hw: pointer to hardware structure
2397 *
2398 * System-wide timeout range is encoded in PCIe Device Control2 register.
2399 *
2400 * Add 10% to specified maximum and return the number of times to poll for
2401 * completion timeout, in units of 100 microsec. Never return less than
2402 * 800 = 80 millisec.
2403 **/
2404static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2405{
2406 s16 devctl2;
2407 u32 pollcnt;
2408
2409 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2410 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2411
2412 switch (devctl2) {
2413 case IXGBE_PCIDEVCTRL2_65_130ms:
2414 pollcnt = 1300; /* 130 millisec */
2415 break;
2416 case IXGBE_PCIDEVCTRL2_260_520ms:
2417 pollcnt = 5200; /* 520 millisec */
2418 break;
2419 case IXGBE_PCIDEVCTRL2_1_2s:
2420 pollcnt = 20000; /* 2 sec */
2421 break;
2422 case IXGBE_PCIDEVCTRL2_4_8s:
2423 pollcnt = 80000; /* 8 sec */
2424 break;
2425 case IXGBE_PCIDEVCTRL2_17_34s:
2426 pollcnt = 34000; /* 34 sec */
2427 break;
2428 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2429 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2430 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2431 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2432 default:
2433 pollcnt = 800; /* 80 millisec minimum */
2434 break;
2435 }
2436
2437 /* add 10% to spec maximum */
2438 return (pollcnt * 11) / 10;
2439}
2440
2441/**
2442 * ixgbe_disable_pcie_master - Disable PCI-express master access
2443 * @hw: pointer to hardware structure
2444 *
2445 * Disables PCI-Express master access and verifies there are no pending
2446 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2447 * bit hasn't caused the master requests to be disabled, else 0
2448 * is returned signifying master requests disabled.
2449 **/
2450static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2451{
2452 u32 i, poll;
2453 u16 value;
2454
2455 /* Always set this bit to ensure any future transactions are blocked */
2456 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2457
2458 /* Poll for bit to read as set */
2459 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2460 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2461 break;
2462 usleep_range(100, 120);
2463 }
2464 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2465 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2466 goto gio_disable_fail;
2467 }
2468
2469 /* Exit if master requests are blocked */
2470 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2471 ixgbe_removed(hw->hw_addr))
2472 return 0;
2473
2474 /* Poll for master request bit to clear */
2475 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2476 udelay(100);
2477 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2478 return 0;
2479 }
2480
2481 /*
2482 * Two consecutive resets are required via CTRL.RST per datasheet
2483 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2484 * of this need. The first reset prevents new master requests from
2485 * being issued by our device. We then must wait 1usec or more for any
2486 * remaining completions from the PCIe bus to trickle in, and then reset
2487 * again to clear out any effects they may have had on our device.
2488 */
2489 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2490gio_disable_fail:
2491 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2492
2493 if (hw->mac.type >= ixgbe_mac_X550)
2494 return 0;
2495
2496 /*
2497 * Before proceeding, make sure that the PCIe block does not have
2498 * transactions pending.
2499 */
2500 poll = ixgbe_pcie_timeout_poll(hw);
2501 for (i = 0; i < poll; i++) {
2502 udelay(100);
2503 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2504 if (ixgbe_removed(hw->hw_addr))
2505 return 0;
2506 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2507 return 0;
2508 }
2509
2510 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2511 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2512}
2513
2514/**
2515 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2516 * @hw: pointer to hardware structure
2517 * @mask: Mask to specify which semaphore to acquire
2518 *
2519 * Acquires the SWFW semaphore through the GSSR register for the specified
2520 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2521 **/
2522s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2523{
2524 u32 gssr = 0;
2525 u32 swmask = mask;
2526 u32 fwmask = mask << 5;
2527 u32 timeout = 200;
2528 u32 i;
2529
2530 for (i = 0; i < timeout; i++) {
2531 /*
2532 * SW NVM semaphore bit is used for access to all
2533 * SW_FW_SYNC bits (not just NVM)
2534 */
2535 if (ixgbe_get_eeprom_semaphore(hw))
2536 return IXGBE_ERR_SWFW_SYNC;
2537
2538 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2539 if (!(gssr & (fwmask | swmask))) {
2540 gssr |= swmask;
2541 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2542 ixgbe_release_eeprom_semaphore(hw);
2543 return 0;
2544 } else {
2545 /* Resource is currently in use by FW or SW */
2546 ixgbe_release_eeprom_semaphore(hw);
2547 usleep_range(5000, 10000);
2548 }
2549 }
2550
2551 /* If time expired clear the bits holding the lock and retry */
2552 if (gssr & (fwmask | swmask))
2553 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2554
2555 usleep_range(5000, 10000);
2556 return IXGBE_ERR_SWFW_SYNC;
2557}
2558
2559/**
2560 * ixgbe_release_swfw_sync - Release SWFW semaphore
2561 * @hw: pointer to hardware structure
2562 * @mask: Mask to specify which semaphore to release
2563 *
2564 * Releases the SWFW semaphore through the GSSR register for the specified
2565 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2566 **/
2567void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2568{
2569 u32 gssr;
2570 u32 swmask = mask;
2571
2572 ixgbe_get_eeprom_semaphore(hw);
2573
2574 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2575 gssr &= ~swmask;
2576 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2577
2578 ixgbe_release_eeprom_semaphore(hw);
2579}
2580
2581/**
2582 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2583 * @hw: pointer to hardware structure
2584 * @reg_val: Value we read from AUTOC
2585 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2586 * true in this the generic case.
2587 *
2588 * The default case requires no protection so just to the register read.
2589 **/
2590s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2591{
2592 *locked = false;
2593 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2594 return 0;
2595}
2596
2597/**
2598 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2599 * @hw: pointer to hardware structure
2600 * @reg_val: value to write to AUTOC
2601 * @locked: bool to indicate whether the SW/FW lock was already taken by
2602 * previous read.
2603 **/
2604s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2605{
2606 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2607 return 0;
2608}
2609
2610/**
2611 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2612 * @hw: pointer to hardware structure
2613 *
2614 * Stops the receive data path and waits for the HW to internally
2615 * empty the Rx security block.
2616 **/
2617s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2618{
2619#define IXGBE_MAX_SECRX_POLL 40
2620 int i;
2621 int secrxreg;
2622
2623 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2624 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2625 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2626 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2627 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2628 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2629 break;
2630 else
2631 /* Use interrupt-safe sleep just in case */
2632 udelay(1000);
2633 }
2634
2635 /* For informational purposes only */
2636 if (i >= IXGBE_MAX_SECRX_POLL)
2637 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2638
2639 return 0;
2640
2641}
2642
2643/**
2644 * ixgbe_enable_rx_buff - Enables the receive data path
2645 * @hw: pointer to hardware structure
2646 *
2647 * Enables the receive data path
2648 **/
2649s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2650{
2651 int secrxreg;
2652
2653 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2654 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2655 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2656 IXGBE_WRITE_FLUSH(hw);
2657
2658 return 0;
2659}
2660
2661/**
2662 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2663 * @hw: pointer to hardware structure
2664 * @regval: register value to write to RXCTRL
2665 *
2666 * Enables the Rx DMA unit
2667 **/
2668s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2669{
2670 if (regval & IXGBE_RXCTRL_RXEN)
2671 hw->mac.ops.enable_rx(hw);
2672 else
2673 hw->mac.ops.disable_rx(hw);
2674
2675 return 0;
2676}
2677
2678/**
2679 * ixgbe_blink_led_start_generic - Blink LED based on index.
2680 * @hw: pointer to hardware structure
2681 * @index: led number to blink
2682 **/
2683s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2684{
2685 ixgbe_link_speed speed = 0;
2686 bool link_up = false;
2687 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2688 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2689 bool locked = false;
2690 s32 ret_val;
2691
2692 /*
2693 * Link must be up to auto-blink the LEDs;
2694 * Force it if link is down.
2695 */
2696 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2697
2698 if (!link_up) {
2699 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2700 if (ret_val)
2701 return ret_val;
2702
2703 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2704 autoc_reg |= IXGBE_AUTOC_FLU;
2705
2706 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2707 if (ret_val)
2708 return ret_val;
2709
2710 IXGBE_WRITE_FLUSH(hw);
2711
2712 usleep_range(10000, 20000);
2713 }
2714
2715 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2716 led_reg |= IXGBE_LED_BLINK(index);
2717 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2718 IXGBE_WRITE_FLUSH(hw);
2719
2720 return 0;
2721}
2722
2723/**
2724 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2725 * @hw: pointer to hardware structure
2726 * @index: led number to stop blinking
2727 **/
2728s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2729{
2730 u32 autoc_reg = 0;
2731 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2732 bool locked = false;
2733 s32 ret_val;
2734
2735 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2736 if (ret_val)
2737 return ret_val;
2738
2739 autoc_reg &= ~IXGBE_AUTOC_FLU;
2740 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2741
2742 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2743 if (ret_val)
2744 return ret_val;
2745
2746 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2747 led_reg &= ~IXGBE_LED_BLINK(index);
2748 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2749 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2750 IXGBE_WRITE_FLUSH(hw);
2751
2752 return 0;
2753}
2754
2755/**
2756 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2757 * @hw: pointer to hardware structure
2758 * @san_mac_offset: SAN MAC address offset
2759 *
2760 * This function will read the EEPROM location for the SAN MAC address
2761 * pointer, and returns the value at that location. This is used in both
2762 * get and set mac_addr routines.
2763 **/
2764static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2765 u16 *san_mac_offset)
2766{
2767 s32 ret_val;
2768
2769 /*
2770 * First read the EEPROM pointer to see if the MAC addresses are
2771 * available.
2772 */
2773 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2774 san_mac_offset);
2775 if (ret_val)
2776 hw_err(hw, "eeprom read at offset %d failed\n",
2777 IXGBE_SAN_MAC_ADDR_PTR);
2778
2779 return ret_val;
2780}
2781
2782/**
2783 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2784 * @hw: pointer to hardware structure
2785 * @san_mac_addr: SAN MAC address
2786 *
2787 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2788 * per-port, so set_lan_id() must be called before reading the addresses.
2789 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2790 * upon for non-SFP connections, so we must call it here.
2791 **/
2792s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2793{
2794 u16 san_mac_data, san_mac_offset;
2795 u8 i;
2796 s32 ret_val;
2797
2798 /*
2799 * First read the EEPROM pointer to see if the MAC addresses are
2800 * available. If they're not, no point in calling set_lan_id() here.
2801 */
2802 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2803 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2804
2805 goto san_mac_addr_clr;
2806
2807 /* make sure we know which port we need to program */
2808 hw->mac.ops.set_lan_id(hw);
2809 /* apply the port offset to the address offset */
2810 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2811 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2812 for (i = 0; i < 3; i++) {
2813 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2814 &san_mac_data);
2815 if (ret_val) {
2816 hw_err(hw, "eeprom read at offset %d failed\n",
2817 san_mac_offset);
2818 goto san_mac_addr_clr;
2819 }
2820 san_mac_addr[i * 2] = (u8)(san_mac_data);
2821 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2822 san_mac_offset++;
2823 }
2824 return 0;
2825
2826san_mac_addr_clr:
2827 /* No addresses available in this EEPROM. It's not necessarily an
2828 * error though, so just wipe the local address and return.
2829 */
2830 for (i = 0; i < 6; i++)
2831 san_mac_addr[i] = 0xFF;
2832 return ret_val;
2833}
2834
2835/**
2836 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2837 * @hw: pointer to hardware structure
2838 *
2839 * Read PCIe configuration space, and get the MSI-X vector count from
2840 * the capabilities table.
2841 **/
2842u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2843{
2844 u16 msix_count;
2845 u16 max_msix_count;
2846 u16 pcie_offset;
2847
2848 switch (hw->mac.type) {
2849 case ixgbe_mac_82598EB:
2850 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2851 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2852 break;
2853 case ixgbe_mac_82599EB:
2854 case ixgbe_mac_X540:
2855 case ixgbe_mac_X550:
2856 case ixgbe_mac_X550EM_x:
2857 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2858 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2859 break;
2860 default:
2861 return 1;
2862 }
2863
2864 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2865 if (ixgbe_removed(hw->hw_addr))
2866 msix_count = 0;
2867 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2868
2869 /* MSI-X count is zero-based in HW */
2870 msix_count++;
2871
2872 if (msix_count > max_msix_count)
2873 msix_count = max_msix_count;
2874
2875 return msix_count;
2876}
2877
2878/**
2879 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2880 * @hw: pointer to hardware struct
2881 * @rar: receive address register index to disassociate
2882 * @vmdq: VMDq pool index to remove from the rar
2883 **/
2884s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2885{
2886 u32 mpsar_lo, mpsar_hi;
2887 u32 rar_entries = hw->mac.num_rar_entries;
2888
2889 /* Make sure we are using a valid rar index range */
2890 if (rar >= rar_entries) {
2891 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2892 return IXGBE_ERR_INVALID_ARGUMENT;
2893 }
2894
2895 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2896 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2897
2898 if (ixgbe_removed(hw->hw_addr))
2899 return 0;
2900
2901 if (!mpsar_lo && !mpsar_hi)
2902 return 0;
2903
2904 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2905 if (mpsar_lo) {
2906 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2907 mpsar_lo = 0;
2908 }
2909 if (mpsar_hi) {
2910 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2911 mpsar_hi = 0;
2912 }
2913 } else if (vmdq < 32) {
2914 mpsar_lo &= ~(1 << vmdq);
2915 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2916 } else {
2917 mpsar_hi &= ~(1 << (vmdq - 32));
2918 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2919 }
2920
2921 /* was that the last pool using this rar? */
2922 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2923 hw->mac.ops.clear_rar(hw, rar);
2924 return 0;
2925}
2926
2927/**
2928 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2929 * @hw: pointer to hardware struct
2930 * @rar: receive address register index to associate with a VMDq index
2931 * @vmdq: VMDq pool index
2932 **/
2933s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2934{
2935 u32 mpsar;
2936 u32 rar_entries = hw->mac.num_rar_entries;
2937
2938 /* Make sure we are using a valid rar index range */
2939 if (rar >= rar_entries) {
2940 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2941 return IXGBE_ERR_INVALID_ARGUMENT;
2942 }
2943
2944 if (vmdq < 32) {
2945 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2946 mpsar |= 1 << vmdq;
2947 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2948 } else {
2949 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2950 mpsar |= 1 << (vmdq - 32);
2951 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2952 }
2953 return 0;
2954}
2955
2956/**
2957 * This function should only be involved in the IOV mode.
2958 * In IOV mode, Default pool is next pool after the number of
2959 * VFs advertized and not 0.
2960 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2961 *
2962 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2963 * @hw: pointer to hardware struct
2964 * @vmdq: VMDq pool index
2965 **/
2966s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2967{
2968 u32 rar = hw->mac.san_mac_rar_index;
2969
2970 if (vmdq < 32) {
2971 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2972 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2973 } else {
2974 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2975 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2976 }
2977
2978 return 0;
2979}
2980
2981/**
2982 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2983 * @hw: pointer to hardware structure
2984 **/
2985s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2986{
2987 int i;
2988
2989 for (i = 0; i < 128; i++)
2990 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2991
2992 return 0;
2993}
2994
2995/**
2996 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2997 * @hw: pointer to hardware structure
2998 * @vlan: VLAN id to write to VLAN filter
2999 *
3000 * return the VLVF index where this VLAN id should be placed
3001 *
3002 **/
3003static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3004{
3005 s32 regindex, first_empty_slot;
3006 u32 bits;
3007
3008 /* short cut the special case */
3009 if (vlan == 0)
3010 return 0;
3011
3012 /* if vlvf_bypass is set we don't want to use an empty slot, we
3013 * will simply bypass the VLVF if there are no entries present in the
3014 * VLVF that contain our VLAN
3015 */
3016 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3017
3018 /* add VLAN enable bit for comparison */
3019 vlan |= IXGBE_VLVF_VIEN;
3020
3021 /* Search for the vlan id in the VLVF entries. Save off the first empty
3022 * slot found along the way.
3023 *
3024 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3025 */
3026 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3027 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3028 if (bits == vlan)
3029 return regindex;
3030 if (!first_empty_slot && !bits)
3031 first_empty_slot = regindex;
3032 }
3033
3034 /* If we are here then we didn't find the VLAN. Return first empty
3035 * slot we found during our search, else error.
3036 */
3037 if (!first_empty_slot)
3038 hw_dbg(hw, "No space in VLVF.\n");
3039
3040 return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3041}
3042
3043/**
3044 * ixgbe_set_vfta_generic - Set VLAN filter table
3045 * @hw: pointer to hardware structure
3046 * @vlan: VLAN id to write to VLAN filter
3047 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3048 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3049 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3050 *
3051 * Turn on/off specified VLAN in the VLAN filter table.
3052 **/
3053s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3054 bool vlan_on, bool vlvf_bypass)
3055{
3056 u32 regidx, vfta_delta, vfta, bits;
3057 s32 vlvf_index;
3058
3059 if ((vlan > 4095) || (vind > 63))
3060 return IXGBE_ERR_PARAM;
3061
3062 /*
3063 * this is a 2 part operation - first the VFTA, then the
3064 * VLVF and VLVFB if VT Mode is set
3065 * We don't write the VFTA until we know the VLVF part succeeded.
3066 */
3067
3068 /* Part 1
3069 * The VFTA is a bitstring made up of 128 32-bit registers
3070 * that enable the particular VLAN id, much like the MTA:
3071 * bits[11-5]: which register
3072 * bits[4-0]: which bit in the register
3073 */
3074 regidx = vlan / 32;
3075 vfta_delta = 1 << (vlan % 32);
3076 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3077
3078 /* vfta_delta represents the difference between the current value
3079 * of vfta and the value we want in the register. Since the diff
3080 * is an XOR mask we can just update vfta using an XOR.
3081 */
3082 vfta_delta &= vlan_on ? ~vfta : vfta;
3083 vfta ^= vfta_delta;
3084
3085 /* Part 2
3086 * If VT Mode is set
3087 * Either vlan_on
3088 * make sure the vlan is in VLVF
3089 * set the vind bit in the matching VLVFB
3090 * Or !vlan_on
3091 * clear the pool bit and possibly the vind
3092 */
3093 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3094 goto vfta_update;
3095
3096 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3097 if (vlvf_index < 0) {
3098 if (vlvf_bypass)
3099 goto vfta_update;
3100 return vlvf_index;
3101 }
3102
3103 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3104
3105 /* set the pool bit */
3106 bits |= 1 << (vind % 32);
3107 if (vlan_on)
3108 goto vlvf_update;
3109
3110 /* clear the pool bit */
3111 bits ^= 1 << (vind % 32);
3112
3113 if (!bits &&
3114 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3115 /* Clear VFTA first, then disable VLVF. Otherwise
3116 * we run the risk of stray packets leaking into
3117 * the PF via the default pool
3118 */
3119 if (vfta_delta)
3120 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3121
3122 /* disable VLVF and clear remaining bit from pool */
3123 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3124 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3125
3126 return 0;
3127 }
3128
3129 /* If there are still bits set in the VLVFB registers
3130 * for the VLAN ID indicated we need to see if the
3131 * caller is requesting that we clear the VFTA entry bit.
3132 * If the caller has requested that we clear the VFTA
3133 * entry bit but there are still pools/VFs using this VLAN
3134 * ID entry then ignore the request. We're not worried
3135 * about the case where we're turning the VFTA VLAN ID
3136 * entry bit on, only when requested to turn it off as
3137 * there may be multiple pools and/or VFs using the
3138 * VLAN ID entry. In that case we cannot clear the
3139 * VFTA bit until all pools/VFs using that VLAN ID have also
3140 * been cleared. This will be indicated by "bits" being
3141 * zero.
3142 */
3143 vfta_delta = 0;
3144
3145vlvf_update:
3146 /* record pool change and enable VLAN ID if not already enabled */
3147 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3148 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3149
3150vfta_update:
3151 /* Update VFTA now that we are ready for traffic */
3152 if (vfta_delta)
3153 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3154
3155 return 0;
3156}
3157
3158/**
3159 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3160 * @hw: pointer to hardware structure
3161 *
3162 * Clears the VLAN filer table, and the VMDq index associated with the filter
3163 **/
3164s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3165{
3166 u32 offset;
3167
3168 for (offset = 0; offset < hw->mac.vft_size; offset++)
3169 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3170
3171 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3172 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3173 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3174 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3175 }
3176
3177 return 0;
3178}
3179
3180/**
3181 * ixgbe_check_mac_link_generic - Determine link and speed status
3182 * @hw: pointer to hardware structure
3183 * @speed: pointer to link speed
3184 * @link_up: true when link is up
3185 * @link_up_wait_to_complete: bool used to wait for link up or not
3186 *
3187 * Reads the links register to determine if link is up and the current speed
3188 **/
3189s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3190 bool *link_up, bool link_up_wait_to_complete)
3191{
3192 u32 links_reg, links_orig;
3193 u32 i;
3194
3195 /* clear the old state */
3196 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3197
3198 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3199
3200 if (links_orig != links_reg) {
3201 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3202 links_orig, links_reg);
3203 }
3204
3205 if (link_up_wait_to_complete) {
3206 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3207 if (links_reg & IXGBE_LINKS_UP) {
3208 *link_up = true;
3209 break;
3210 } else {
3211 *link_up = false;
3212 }
3213 msleep(100);
3214 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3215 }
3216 } else {
3217 if (links_reg & IXGBE_LINKS_UP)
3218 *link_up = true;
3219 else
3220 *link_up = false;
3221 }
3222
3223 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3224 case IXGBE_LINKS_SPEED_10G_82599:
3225 if ((hw->mac.type >= ixgbe_mac_X550) &&
3226 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3227 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3228 else
3229 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3230 break;
3231 case IXGBE_LINKS_SPEED_1G_82599:
3232 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3233 break;
3234 case IXGBE_LINKS_SPEED_100_82599:
3235 if ((hw->mac.type >= ixgbe_mac_X550) &&
3236 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3237 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3238 else
3239 *speed = IXGBE_LINK_SPEED_100_FULL;
3240 break;
3241 default:
3242 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3243 }
3244
3245 return 0;
3246}
3247
3248/**
3249 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3250 * the EEPROM
3251 * @hw: pointer to hardware structure
3252 * @wwnn_prefix: the alternative WWNN prefix
3253 * @wwpn_prefix: the alternative WWPN prefix
3254 *
3255 * This function will read the EEPROM from the alternative SAN MAC address
3256 * block to check the support for the alternative WWNN/WWPN prefix support.
3257 **/
3258s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3259 u16 *wwpn_prefix)
3260{
3261 u16 offset, caps;
3262 u16 alt_san_mac_blk_offset;
3263
3264 /* clear output first */
3265 *wwnn_prefix = 0xFFFF;
3266 *wwpn_prefix = 0xFFFF;
3267
3268 /* check if alternative SAN MAC is supported */
3269 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3270 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3271 goto wwn_prefix_err;
3272
3273 if ((alt_san_mac_blk_offset == 0) ||
3274 (alt_san_mac_blk_offset == 0xFFFF))
3275 return 0;
3276
3277 /* check capability in alternative san mac address block */
3278 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3279 if (hw->eeprom.ops.read(hw, offset, &caps))
3280 goto wwn_prefix_err;
3281 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3282 return 0;
3283
3284 /* get the corresponding prefix for WWNN/WWPN */
3285 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3286 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3287 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3288
3289 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3290 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3291 goto wwn_prefix_err;
3292
3293 return 0;
3294
3295wwn_prefix_err:
3296 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3297 return 0;
3298}
3299
3300/**
3301 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3302 * @hw: pointer to hardware structure
3303 * @enable: enable or disable switch for anti-spoofing
3304 * @pf: Physical Function pool - do not enable anti-spoofing for the PF
3305 *
3306 **/
3307void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3308{
3309 int j;
3310 int pf_target_reg = pf >> 3;
3311 int pf_target_shift = pf % 8;
3312 u32 pfvfspoof = 0;
3313
3314 if (hw->mac.type == ixgbe_mac_82598EB)
3315 return;
3316
3317 if (enable)
3318 pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3319
3320 /*
3321 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3322 * MAC anti-spoof enables in each register array element.
3323 */
3324 for (j = 0; j < pf_target_reg; j++)
3325 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3326
3327 /*
3328 * The PF should be allowed to spoof so that it can support
3329 * emulation mode NICs. Do not set the bits assigned to the PF
3330 */
3331 pfvfspoof &= (1 << pf_target_shift) - 1;
3332 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3333
3334 /*
3335 * Remaining pools belong to the PF so they do not need to have
3336 * anti-spoofing enabled.
3337 */
3338 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3339 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3340}
3341
3342/**
3343 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3344 * @hw: pointer to hardware structure
3345 * @enable: enable or disable switch for VLAN anti-spoofing
3346 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3347 *
3348 **/
3349void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3350{
3351 int vf_target_reg = vf >> 3;
3352 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3353 u32 pfvfspoof;
3354
3355 if (hw->mac.type == ixgbe_mac_82598EB)
3356 return;
3357
3358 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3359 if (enable)
3360 pfvfspoof |= (1 << vf_target_shift);
3361 else
3362 pfvfspoof &= ~(1 << vf_target_shift);
3363 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3364}
3365
3366/**
3367 * ixgbe_get_device_caps_generic - Get additional device capabilities
3368 * @hw: pointer to hardware structure
3369 * @device_caps: the EEPROM word with the extra device capabilities
3370 *
3371 * This function will read the EEPROM location for the device capabilities,
3372 * and return the word through device_caps.
3373 **/
3374s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3375{
3376 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3377
3378 return 0;
3379}
3380
3381/**
3382 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3383 * @hw: pointer to hardware structure
3384 * @num_pb: number of packet buffers to allocate
3385 * @headroom: reserve n KB of headroom
3386 * @strategy: packet buffer allocation strategy
3387 **/
3388void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3389 int num_pb,
3390 u32 headroom,
3391 int strategy)
3392{
3393 u32 pbsize = hw->mac.rx_pb_size;
3394 int i = 0;
3395 u32 rxpktsize, txpktsize, txpbthresh;
3396
3397 /* Reserve headroom */
3398 pbsize -= headroom;
3399
3400 if (!num_pb)
3401 num_pb = 1;
3402
3403 /* Divide remaining packet buffer space amongst the number
3404 * of packet buffers requested using supplied strategy.
3405 */
3406 switch (strategy) {
3407 case (PBA_STRATEGY_WEIGHTED):
3408 /* pba_80_48 strategy weight first half of packet buffer with
3409 * 5/8 of the packet buffer space.
3410 */
3411 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3412 pbsize -= rxpktsize * (num_pb / 2);
3413 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3414 for (; i < (num_pb / 2); i++)
3415 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3416 /* Fall through to configure remaining packet buffers */
3417 case (PBA_STRATEGY_EQUAL):
3418 /* Divide the remaining Rx packet buffer evenly among the TCs */
3419 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3420 for (; i < num_pb; i++)
3421 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3422 break;
3423 default:
3424 break;
3425 }
3426
3427 /*
3428 * Setup Tx packet buffer and threshold equally for all TCs
3429 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3430 * 10 since the largest packet we support is just over 9K.
3431 */
3432 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3433 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3434 for (i = 0; i < num_pb; i++) {
3435 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3436 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3437 }
3438
3439 /* Clear unused TCs, if any, to zero buffer size*/
3440 for (; i < IXGBE_MAX_PB; i++) {
3441 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3442 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3443 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3444 }
3445}
3446
3447/**
3448 * ixgbe_calculate_checksum - Calculate checksum for buffer
3449 * @buffer: pointer to EEPROM
3450 * @length: size of EEPROM to calculate a checksum for
3451 *
3452 * Calculates the checksum for some buffer on a specified length. The
3453 * checksum calculated is returned.
3454 **/
3455static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3456{
3457 u32 i;
3458 u8 sum = 0;
3459
3460 if (!buffer)
3461 return 0;
3462
3463 for (i = 0; i < length; i++)
3464 sum += buffer[i];
3465
3466 return (u8) (0 - sum);
3467}
3468
3469/**
3470 * ixgbe_host_interface_command - Issue command to manageability block
3471 * @hw: pointer to the HW structure
3472 * @buffer: contains the command to write and where the return status will
3473 * be placed
3474 * @length: length of buffer, must be multiple of 4 bytes
3475 * @timeout: time in ms to wait for command completion
3476 * @return_data: read and return data from the buffer (true) or not (false)
3477 * Needed because FW structures are big endian and decoding of
3478 * these fields can be 8 bit or 16 bit based on command. Decoding
3479 * is not easily understood without making a table of commands.
3480 * So we will leave this up to the caller to read back the data
3481 * in these cases.
3482 *
3483 * Communicates with the manageability block. On success return 0
3484 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3485 **/
3486s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3487 u32 length, u32 timeout,
3488 bool return_data)
3489{
3490 u32 hicr, i, bi, fwsts;
3491 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3492 u16 buf_len, dword_len;
3493
3494 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3495 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3496 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3497 }
3498
3499 /* Set bit 9 of FWSTS clearing FW reset indication */
3500 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3501 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3502
3503 /* Check that the host interface is enabled. */
3504 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3505 if ((hicr & IXGBE_HICR_EN) == 0) {
3506 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3507 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3508 }
3509
3510 /* Calculate length in DWORDs. We must be DWORD aligned */
3511 if ((length % (sizeof(u32))) != 0) {
3512 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3513 return IXGBE_ERR_INVALID_ARGUMENT;
3514 }
3515
3516 dword_len = length >> 2;
3517
3518 /*
3519 * The device driver writes the relevant command block
3520 * into the ram area.
3521 */
3522 for (i = 0; i < dword_len; i++)
3523 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3524 i, cpu_to_le32(buffer[i]));
3525
3526 /* Setting this bit tells the ARC that a new command is pending. */
3527 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3528
3529 for (i = 0; i < timeout; i++) {
3530 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3531 if (!(hicr & IXGBE_HICR_C))
3532 break;
3533 usleep_range(1000, 2000);
3534 }
3535
3536 /* Check command successful completion. */
3537 if ((timeout != 0 && i == timeout) ||
3538 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3539 hw_dbg(hw, "Command has failed with no status valid.\n");
3540 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3541 }
3542
3543 if (!return_data)
3544 return 0;
3545
3546 /* Calculate length in DWORDs */
3547 dword_len = hdr_size >> 2;
3548
3549 /* first pull in the header so we know the buffer length */
3550 for (bi = 0; bi < dword_len; bi++) {
3551 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3552 le32_to_cpus(&buffer[bi]);
3553 }
3554
3555 /* If there is any thing in data position pull it in */
3556 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3557 if (buf_len == 0)
3558 return 0;
3559
3560 if (length < (buf_len + hdr_size)) {
3561 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3562 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3563 }
3564
3565 /* Calculate length in DWORDs, add 3 for odd lengths */
3566 dword_len = (buf_len + 3) >> 2;
3567
3568 /* Pull in the rest of the buffer (bi is where we left off)*/
3569 for (; bi <= dword_len; bi++) {
3570 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3571 le32_to_cpus(&buffer[bi]);
3572 }
3573
3574 return 0;
3575}
3576
3577/**
3578 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3579 * @hw: pointer to the HW structure
3580 * @maj: driver version major number
3581 * @min: driver version minor number
3582 * @build: driver version build number
3583 * @sub: driver version sub build number
3584 *
3585 * Sends driver version number to firmware through the manageability
3586 * block. On success return 0
3587 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3588 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3589 **/
3590s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3591 u8 build, u8 sub)
3592{
3593 struct ixgbe_hic_drv_info fw_cmd;
3594 int i;
3595 s32 ret_val;
3596
3597 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3598 return IXGBE_ERR_SWFW_SYNC;
3599
3600 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3601 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3602 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3603 fw_cmd.port_num = (u8)hw->bus.func;
3604 fw_cmd.ver_maj = maj;
3605 fw_cmd.ver_min = min;
3606 fw_cmd.ver_build = build;
3607 fw_cmd.ver_sub = sub;
3608 fw_cmd.hdr.checksum = 0;
3609 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3610 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3611 fw_cmd.pad = 0;
3612 fw_cmd.pad2 = 0;
3613
3614 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3615 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3616 sizeof(fw_cmd),
3617 IXGBE_HI_COMMAND_TIMEOUT,
3618 true);
3619 if (ret_val != 0)
3620 continue;
3621
3622 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3623 FW_CEM_RESP_STATUS_SUCCESS)
3624 ret_val = 0;
3625 else
3626 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3627
3628 break;
3629 }
3630
3631 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3632 return ret_val;
3633}
3634
3635/**
3636 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3637 * @hw: pointer to the hardware structure
3638 *
3639 * The 82599 and x540 MACs can experience issues if TX work is still pending
3640 * when a reset occurs. This function prevents this by flushing the PCIe
3641 * buffers on the system.
3642 **/
3643void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3644{
3645 u32 gcr_ext, hlreg0, i, poll;
3646 u16 value;
3647
3648 /*
3649 * If double reset is not requested then all transactions should
3650 * already be clear and as such there is no work to do
3651 */
3652 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3653 return;
3654
3655 /*
3656 * Set loopback enable to prevent any transmits from being sent
3657 * should the link come up. This assumes that the RXCTRL.RXEN bit
3658 * has already been cleared.
3659 */
3660 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3661 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3662
3663 /* wait for a last completion before clearing buffers */
3664 IXGBE_WRITE_FLUSH(hw);
3665 usleep_range(3000, 6000);
3666
3667 /* Before proceeding, make sure that the PCIe block does not have
3668 * transactions pending.
3669 */
3670 poll = ixgbe_pcie_timeout_poll(hw);
3671 for (i = 0; i < poll; i++) {
3672 usleep_range(100, 200);
3673 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3674 if (ixgbe_removed(hw->hw_addr))
3675 break;
3676 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3677 break;
3678 }
3679
3680 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3681 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3682 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3683 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3684
3685 /* Flush all writes and allow 20usec for all transactions to clear */
3686 IXGBE_WRITE_FLUSH(hw);
3687 udelay(20);
3688
3689 /* restore previous register values */
3690 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3691 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3692}
3693
3694static const u8 ixgbe_emc_temp_data[4] = {
3695 IXGBE_EMC_INTERNAL_DATA,
3696 IXGBE_EMC_DIODE1_DATA,
3697 IXGBE_EMC_DIODE2_DATA,
3698 IXGBE_EMC_DIODE3_DATA
3699};
3700static const u8 ixgbe_emc_therm_limit[4] = {
3701 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3702 IXGBE_EMC_DIODE1_THERM_LIMIT,
3703 IXGBE_EMC_DIODE2_THERM_LIMIT,
3704 IXGBE_EMC_DIODE3_THERM_LIMIT
3705};
3706
3707/**
3708 * ixgbe_get_ets_data - Extracts the ETS bit data
3709 * @hw: pointer to hardware structure
3710 * @ets_cfg: extected ETS data
3711 * @ets_offset: offset of ETS data
3712 *
3713 * Returns error code.
3714 **/
3715static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3716 u16 *ets_offset)
3717{
3718 s32 status;
3719
3720 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3721 if (status)
3722 return status;
3723
3724 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3725 return IXGBE_NOT_IMPLEMENTED;
3726
3727 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3728 if (status)
3729 return status;
3730
3731 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3732 return IXGBE_NOT_IMPLEMENTED;
3733
3734 return 0;
3735}
3736
3737/**
3738 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3739 * @hw: pointer to hardware structure
3740 *
3741 * Returns the thermal sensor data structure
3742 **/
3743s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3744{
3745 s32 status;
3746 u16 ets_offset;
3747 u16 ets_cfg;
3748 u16 ets_sensor;
3749 u8 num_sensors;
3750 u8 i;
3751 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3752
3753 /* Only support thermal sensors attached to physical port 0 */
3754 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3755 return IXGBE_NOT_IMPLEMENTED;
3756
3757 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3758 if (status)
3759 return status;
3760
3761 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3762 if (num_sensors > IXGBE_MAX_SENSORS)
3763 num_sensors = IXGBE_MAX_SENSORS;
3764
3765 for (i = 0; i < num_sensors; i++) {
3766 u8 sensor_index;
3767 u8 sensor_location;
3768
3769 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3770 &ets_sensor);
3771 if (status)
3772 return status;
3773
3774 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3775 IXGBE_ETS_DATA_INDEX_SHIFT);
3776 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3777 IXGBE_ETS_DATA_LOC_SHIFT);
3778
3779 if (sensor_location != 0) {
3780 status = hw->phy.ops.read_i2c_byte(hw,
3781 ixgbe_emc_temp_data[sensor_index],
3782 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3783 &data->sensor[i].temp);
3784 if (status)
3785 return status;
3786 }
3787 }
3788
3789 return 0;
3790}
3791
3792/**
3793 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3794 * @hw: pointer to hardware structure
3795 *
3796 * Inits the thermal sensor thresholds according to the NVM map
3797 * and save off the threshold and location values into mac.thermal_sensor_data
3798 **/
3799s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3800{
3801 s32 status;
3802 u16 ets_offset;
3803 u16 ets_cfg;
3804 u16 ets_sensor;
3805 u8 low_thresh_delta;
3806 u8 num_sensors;
3807 u8 therm_limit;
3808 u8 i;
3809 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3810
3811 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3812
3813 /* Only support thermal sensors attached to physical port 0 */
3814 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3815 return IXGBE_NOT_IMPLEMENTED;
3816
3817 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3818 if (status)
3819 return status;
3820
3821 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3822 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3823 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3824 if (num_sensors > IXGBE_MAX_SENSORS)
3825 num_sensors = IXGBE_MAX_SENSORS;
3826
3827 for (i = 0; i < num_sensors; i++) {
3828 u8 sensor_index;
3829 u8 sensor_location;
3830
3831 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3832 hw_err(hw, "eeprom read at offset %d failed\n",
3833 ets_offset + 1 + i);
3834 continue;
3835 }
3836 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3837 IXGBE_ETS_DATA_INDEX_SHIFT);
3838 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3839 IXGBE_ETS_DATA_LOC_SHIFT);
3840 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3841
3842 hw->phy.ops.write_i2c_byte(hw,
3843 ixgbe_emc_therm_limit[sensor_index],
3844 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3845
3846 if (sensor_location == 0)
3847 continue;
3848
3849 data->sensor[i].location = sensor_location;
3850 data->sensor[i].caution_thresh = therm_limit;
3851 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3852 }
3853
3854 return 0;
3855}
3856
3857void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3858{
3859 u32 rxctrl;
3860
3861 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3862 if (rxctrl & IXGBE_RXCTRL_RXEN) {
3863 if (hw->mac.type != ixgbe_mac_82598EB) {
3864 u32 pfdtxgswc;
3865
3866 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3867 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3868 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3869 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3870 hw->mac.set_lben = true;
3871 } else {
3872 hw->mac.set_lben = false;
3873 }
3874 }
3875 rxctrl &= ~IXGBE_RXCTRL_RXEN;
3876 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3877 }
3878}
3879
3880void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3881{
3882 u32 rxctrl;
3883
3884 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3885 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3886
3887 if (hw->mac.type != ixgbe_mac_82598EB) {
3888 if (hw->mac.set_lben) {
3889 u32 pfdtxgswc;
3890
3891 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3892 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3893 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3894 hw->mac.set_lben = false;
3895 }
3896 }
3897}
3898
3899/** ixgbe_mng_present - returns true when management capability is present
3900 * @hw: pointer to hardware structure
3901 **/
3902bool ixgbe_mng_present(struct ixgbe_hw *hw)
3903{
3904 u32 fwsm;
3905
3906 if (hw->mac.type < ixgbe_mac_82599EB)
3907 return false;
3908
3909 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3910 fwsm &= IXGBE_FWSM_MODE_MASK;
3911 return fwsm == IXGBE_FWSM_FW_MODE_PT;
3912}
3913
3914/**
3915 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
3916 * @hw: pointer to hardware structure
3917 * @speed: new link speed
3918 * @autoneg_wait_to_complete: true when waiting for completion is needed
3919 *
3920 * Set the link speed in the MAC and/or PHY register and restarts link.
3921 */
3922s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
3923 ixgbe_link_speed speed,
3924 bool autoneg_wait_to_complete)
3925{
3926 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3927 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3928 s32 status = 0;
3929 u32 speedcnt = 0;
3930 u32 i = 0;
3931 bool autoneg, link_up = false;
3932
3933 /* Mask off requested but non-supported speeds */
3934 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
3935 if (status)
3936 return status;
3937
3938 speed &= link_speed;
3939
3940 /* Try each speed one by one, highest priority first. We do this in
3941 * software because 10Gb fiber doesn't support speed autonegotiation.
3942 */
3943 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
3944 speedcnt++;
3945 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
3946
3947 /* If we already have link at this speed, just jump out */
3948 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
3949 false);
3950 if (status)
3951 return status;
3952
3953 if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
3954 goto out;
3955
3956 /* Set the module link speed */
3957 switch (hw->phy.media_type) {
3958 case ixgbe_media_type_fiber:
3959 hw->mac.ops.set_rate_select_speed(hw,
3960 IXGBE_LINK_SPEED_10GB_FULL);
3961 break;
3962 case ixgbe_media_type_fiber_qsfp:
3963 /* QSFP module automatically detects MAC link speed */
3964 break;
3965 default:
3966 hw_dbg(hw, "Unexpected media type\n");
3967 break;
3968 }
3969
3970 /* Allow module to change analog characteristics (1G->10G) */
3971 msleep(40);
3972
3973 status = hw->mac.ops.setup_mac_link(hw,
3974 IXGBE_LINK_SPEED_10GB_FULL,
3975 autoneg_wait_to_complete);
3976 if (status)
3977 return status;
3978
3979 /* Flap the Tx laser if it has not already been done */
3980 if (hw->mac.ops.flap_tx_laser)
3981 hw->mac.ops.flap_tx_laser(hw);
3982
3983 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
3984 * Section 73.10.2, we may have to wait up to 500ms if KR is
3985 * attempted. 82599 uses the same timing for 10g SFI.
3986 */
3987 for (i = 0; i < 5; i++) {
3988 /* Wait for the link partner to also set speed */
3989 msleep(100);
3990
3991 /* If we have link, just jump out */
3992 status = hw->mac.ops.check_link(hw, &link_speed,
3993 &link_up, false);
3994 if (status)
3995 return status;
3996
3997 if (link_up)
3998 goto out;
3999 }
4000 }
4001
4002 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4003 speedcnt++;
4004 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4005 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4006
4007 /* If we already have link at this speed, just jump out */
4008 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4009 false);
4010 if (status)
4011 return status;
4012
4013 if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4014 goto out;
4015
4016 /* Set the module link speed */
4017 switch (hw->phy.media_type) {
4018 case ixgbe_media_type_fiber:
4019 hw->mac.ops.set_rate_select_speed(hw,
4020 IXGBE_LINK_SPEED_1GB_FULL);
4021 break;
4022 case ixgbe_media_type_fiber_qsfp:
4023 /* QSFP module automatically detects link speed */
4024 break;
4025 default:
4026 hw_dbg(hw, "Unexpected media type\n");
4027 break;
4028 }
4029
4030 /* Allow module to change analog characteristics (10G->1G) */
4031 msleep(40);
4032
4033 status = hw->mac.ops.setup_mac_link(hw,
4034 IXGBE_LINK_SPEED_1GB_FULL,
4035 autoneg_wait_to_complete);
4036 if (status)
4037 return status;
4038
4039 /* Flap the Tx laser if it has not already been done */
4040 if (hw->mac.ops.flap_tx_laser)
4041 hw->mac.ops.flap_tx_laser(hw);
4042
4043 /* Wait for the link partner to also set speed */
4044 msleep(100);
4045
4046 /* If we have link, just jump out */
4047 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4048 false);
4049 if (status)
4050 return status;
4051
4052 if (link_up)
4053 goto out;
4054 }
4055
4056 /* We didn't get link. Configure back to the highest speed we tried,
4057 * (if there was more than one). We call ourselves back with just the
4058 * single highest speed that the user requested.
4059 */
4060 if (speedcnt > 1)
4061 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4062 highest_link_speed,
4063 autoneg_wait_to_complete);
4064
4065out:
4066 /* Set autoneg_advertised value based on input link speed */
4067 hw->phy.autoneg_advertised = 0;
4068
4069 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4070 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4071
4072 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4073 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4074
4075 return status;
4076}
4077
4078/**
4079 * ixgbe_set_soft_rate_select_speed - Set module link speed
4080 * @hw: pointer to hardware structure
4081 * @speed: link speed to set
4082 *
4083 * Set module link speed via the soft rate select.
4084 */
4085void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4086 ixgbe_link_speed speed)
4087{
4088 s32 status;
4089 u8 rs, eeprom_data;
4090
4091 switch (speed) {
4092 case IXGBE_LINK_SPEED_10GB_FULL:
4093 /* one bit mask same as setting on */
4094 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4095 break;
4096 case IXGBE_LINK_SPEED_1GB_FULL:
4097 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4098 break;
4099 default:
4100 hw_dbg(hw, "Invalid fixed module speed\n");
4101 return;
4102 }
4103
4104 /* Set RS0 */
4105 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4106 IXGBE_I2C_EEPROM_DEV_ADDR2,
4107 &eeprom_data);
4108 if (status) {
4109 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4110 return;
4111 }
4112
4113 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4114
4115 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4116 IXGBE_I2C_EEPROM_DEV_ADDR2,
4117 eeprom_data);
4118 if (status) {
4119 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4120 return;
4121 }
4122}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include <linux/pci.h>
5#include <linux/delay.h>
6#include <linux/sched.h>
7#include <linux/netdevice.h>
8
9#include "ixgbe.h"
10#include "ixgbe_common.h"
11#include "ixgbe_phy.h"
12
13static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 u16 count);
20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24
25static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 u16 words, u16 *data);
29static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 u16 words, u16 *data);
31static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 u16 offset);
33static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
34
35/* Base table for registers values that change by MAC */
36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 IXGBE_MVALS_INIT(8259X)
38};
39
40/**
41 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42 * control
43 * @hw: pointer to hardware structure
44 *
45 * There are several phys that do not support autoneg flow control. This
46 * function check the device id to see if the associated phy supports
47 * autoneg flow control.
48 **/
49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50{
51 bool supported = false;
52 ixgbe_link_speed speed;
53 bool link_up;
54
55 switch (hw->phy.media_type) {
56 case ixgbe_media_type_fiber:
57 /* flow control autoneg black list */
58 switch (hw->device_id) {
59 case IXGBE_DEV_ID_X550EM_A_SFP:
60 case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 supported = false;
62 break;
63 default:
64 hw->mac.ops.check_link(hw, &speed, &link_up, false);
65 /* if link is down, assume supported */
66 if (link_up)
67 supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68 else
69 supported = true;
70 }
71
72 break;
73 case ixgbe_media_type_backplane:
74 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75 supported = false;
76 else
77 supported = true;
78 break;
79 case ixgbe_media_type_copper:
80 /* only some copper devices support flow control autoneg */
81 switch (hw->device_id) {
82 case IXGBE_DEV_ID_82599_T3_LOM:
83 case IXGBE_DEV_ID_X540T:
84 case IXGBE_DEV_ID_X540T1:
85 case IXGBE_DEV_ID_X550T:
86 case IXGBE_DEV_ID_X550T1:
87 case IXGBE_DEV_ID_X550EM_X_10G_T:
88 case IXGBE_DEV_ID_X550EM_A_10G_T:
89 case IXGBE_DEV_ID_X550EM_A_1G_T:
90 case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91 supported = true;
92 break;
93 default:
94 break;
95 }
96 break;
97 default:
98 break;
99 }
100
101 if (!supported)
102 hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103 hw->device_id);
104
105 return supported;
106}
107
108/**
109 * ixgbe_setup_fc_generic - Set up flow control
110 * @hw: pointer to hardware structure
111 *
112 * Called at init time to set up flow control.
113 **/
114s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115{
116 s32 ret_val = 0;
117 u32 reg = 0, reg_bp = 0;
118 u16 reg_cu = 0;
119 bool locked = false;
120
121 /*
122 * Validate the requested mode. Strict IEEE mode does not allow
123 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124 */
125 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127 return IXGBE_ERR_INVALID_LINK_SETTINGS;
128 }
129
130 /*
131 * 10gig parts do not have a word in the EEPROM to determine the
132 * default flow control setting, so we explicitly set it to full.
133 */
134 if (hw->fc.requested_mode == ixgbe_fc_default)
135 hw->fc.requested_mode = ixgbe_fc_full;
136
137 /*
138 * Set up the 1G and 10G flow control advertisement registers so the
139 * HW will be able to do fc autoneg once the cable is plugged in. If
140 * we link at 10G, the 1G advertisement is harmless and vice versa.
141 */
142 switch (hw->phy.media_type) {
143 case ixgbe_media_type_backplane:
144 /* some MAC's need RMW protection on AUTOC */
145 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp);
146 if (ret_val)
147 return ret_val;
148
149 fallthrough; /* only backplane uses autoc */
150 case ixgbe_media_type_fiber:
151 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152
153 break;
154 case ixgbe_media_type_copper:
155 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156 MDIO_MMD_AN, ®_cu);
157 break;
158 default:
159 break;
160 }
161
162 /*
163 * The possible values of fc.requested_mode are:
164 * 0: Flow control is completely disabled
165 * 1: Rx flow control is enabled (we can receive pause frames,
166 * but not send pause frames).
167 * 2: Tx flow control is enabled (we can send pause frames but
168 * we do not support receiving pause frames).
169 * 3: Both Rx and Tx flow control (symmetric) are enabled.
170 * other: Invalid.
171 */
172 switch (hw->fc.requested_mode) {
173 case ixgbe_fc_none:
174 /* Flow control completely disabled by software override. */
175 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176 if (hw->phy.media_type == ixgbe_media_type_backplane)
177 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178 IXGBE_AUTOC_ASM_PAUSE);
179 else if (hw->phy.media_type == ixgbe_media_type_copper)
180 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181 break;
182 case ixgbe_fc_tx_pause:
183 /*
184 * Tx Flow control is enabled, and Rx Flow control is
185 * disabled by software override.
186 */
187 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189 if (hw->phy.media_type == ixgbe_media_type_backplane) {
190 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
193 reg_cu |= IXGBE_TAF_ASM_PAUSE;
194 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195 }
196 break;
197 case ixgbe_fc_rx_pause:
198 /*
199 * Rx Flow control is enabled and Tx Flow control is
200 * disabled by software override. Since there really
201 * isn't a way to advertise that we are capable of RX
202 * Pause ONLY, we will advertise that we support both
203 * symmetric and asymmetric Rx PAUSE, as such we fall
204 * through to the fc_full statement. Later, we will
205 * disable the adapter's ability to send PAUSE frames.
206 */
207 case ixgbe_fc_full:
208 /* Flow control (both Rx and Tx) is enabled by SW override. */
209 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210 if (hw->phy.media_type == ixgbe_media_type_backplane)
211 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212 IXGBE_AUTOC_ASM_PAUSE;
213 else if (hw->phy.media_type == ixgbe_media_type_copper)
214 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215 break;
216 default:
217 hw_dbg(hw, "Flow control param set incorrectly\n");
218 return IXGBE_ERR_CONFIG;
219 }
220
221 if (hw->mac.type != ixgbe_mac_X540) {
222 /*
223 * Enable auto-negotiation between the MAC & PHY;
224 * the MAC will advertise clause 37 flow control.
225 */
226 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228
229 /* Disable AN timeout */
230 if (hw->fc.strict_ieee)
231 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232
233 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235 }
236
237 /*
238 * AUTOC restart handles negotiation of 1G and 10G on backplane
239 * and copper. There is no need to set the PCS1GCTL register.
240 *
241 */
242 if (hw->phy.media_type == ixgbe_media_type_backplane) {
243 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
244 * LESM is on, likewise reset_pipeline requries the lock as
245 * it also writes AUTOC.
246 */
247 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248 if (ret_val)
249 return ret_val;
250
251 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252 ixgbe_device_supports_autoneg_fc(hw)) {
253 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254 MDIO_MMD_AN, reg_cu);
255 }
256
257 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258 return ret_val;
259}
260
261/**
262 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263 * @hw: pointer to hardware structure
264 *
265 * Starts the hardware by filling the bus info structure and media type, clears
266 * all on chip counters, initializes receive address registers, multicast
267 * table, VLAN filter table, calls routine to set up link and flow control
268 * settings, and leaves transmit and receive units disabled and uninitialized
269 **/
270s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271{
272 s32 ret_val;
273 u32 ctrl_ext;
274 u16 device_caps;
275
276 /* Set the media type */
277 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278
279 /* Identify the PHY */
280 hw->phy.ops.identify(hw);
281
282 /* Clear the VLAN filter table */
283 hw->mac.ops.clear_vfta(hw);
284
285 /* Clear statistics registers */
286 hw->mac.ops.clear_hw_cntrs(hw);
287
288 /* Set No Snoop Disable */
289 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292 IXGBE_WRITE_FLUSH(hw);
293
294 /* Setup flow control if method for doing so */
295 if (hw->mac.ops.setup_fc) {
296 ret_val = hw->mac.ops.setup_fc(hw);
297 if (ret_val)
298 return ret_val;
299 }
300
301 /* Cashe bit indicating need for crosstalk fix */
302 switch (hw->mac.type) {
303 case ixgbe_mac_82599EB:
304 case ixgbe_mac_X550EM_x:
305 case ixgbe_mac_x550em_a:
306 hw->mac.ops.get_device_caps(hw, &device_caps);
307 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308 hw->need_crosstalk_fix = false;
309 else
310 hw->need_crosstalk_fix = true;
311 break;
312 default:
313 hw->need_crosstalk_fix = false;
314 break;
315 }
316
317 /* Clear adapter stopped flag */
318 hw->adapter_stopped = false;
319
320 return 0;
321}
322
323/**
324 * ixgbe_start_hw_gen2 - Init sequence for common device family
325 * @hw: pointer to hw structure
326 *
327 * Performs the init sequence common to the second generation
328 * of 10 GbE devices.
329 * Devices in the second generation:
330 * 82599
331 * X540
332 **/
333s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334{
335 u32 i;
336
337 /* Clear the rate limiters */
338 for (i = 0; i < hw->mac.max_tx_queues; i++) {
339 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341 }
342 IXGBE_WRITE_FLUSH(hw);
343
344 return 0;
345}
346
347/**
348 * ixgbe_init_hw_generic - Generic hardware initialization
349 * @hw: pointer to hardware structure
350 *
351 * Initialize the hardware by resetting the hardware, filling the bus info
352 * structure and media type, clears all on chip counters, initializes receive
353 * address registers, multicast table, VLAN filter table, calls routine to set
354 * up link and flow control settings, and leaves transmit and receive units
355 * disabled and uninitialized
356 **/
357s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358{
359 s32 status;
360
361 /* Reset the hardware */
362 status = hw->mac.ops.reset_hw(hw);
363
364 if (status == 0) {
365 /* Start the HW */
366 status = hw->mac.ops.start_hw(hw);
367 }
368
369 /* Initialize the LED link active for LED blink support */
370 if (hw->mac.ops.init_led_link_act)
371 hw->mac.ops.init_led_link_act(hw);
372
373 return status;
374}
375
376/**
377 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378 * @hw: pointer to hardware structure
379 *
380 * Clears all hardware statistics counters by reading them from the hardware
381 * Statistics counters are clear on read.
382 **/
383s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384{
385 u16 i = 0;
386
387 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389 IXGBE_READ_REG(hw, IXGBE_ERRBC);
390 IXGBE_READ_REG(hw, IXGBE_MSPDC);
391 for (i = 0; i < 8; i++)
392 IXGBE_READ_REG(hw, IXGBE_MPC(i));
393
394 IXGBE_READ_REG(hw, IXGBE_MLFC);
395 IXGBE_READ_REG(hw, IXGBE_MRFC);
396 IXGBE_READ_REG(hw, IXGBE_RLEC);
397 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399 if (hw->mac.type >= ixgbe_mac_82599EB) {
400 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402 } else {
403 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405 }
406
407 for (i = 0; i < 8; i++) {
408 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410 if (hw->mac.type >= ixgbe_mac_82599EB) {
411 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413 } else {
414 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416 }
417 }
418 if (hw->mac.type >= ixgbe_mac_82599EB)
419 for (i = 0; i < 8; i++)
420 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421 IXGBE_READ_REG(hw, IXGBE_PRC64);
422 IXGBE_READ_REG(hw, IXGBE_PRC127);
423 IXGBE_READ_REG(hw, IXGBE_PRC255);
424 IXGBE_READ_REG(hw, IXGBE_PRC511);
425 IXGBE_READ_REG(hw, IXGBE_PRC1023);
426 IXGBE_READ_REG(hw, IXGBE_PRC1522);
427 IXGBE_READ_REG(hw, IXGBE_GPRC);
428 IXGBE_READ_REG(hw, IXGBE_BPRC);
429 IXGBE_READ_REG(hw, IXGBE_MPRC);
430 IXGBE_READ_REG(hw, IXGBE_GPTC);
431 IXGBE_READ_REG(hw, IXGBE_GORCL);
432 IXGBE_READ_REG(hw, IXGBE_GORCH);
433 IXGBE_READ_REG(hw, IXGBE_GOTCL);
434 IXGBE_READ_REG(hw, IXGBE_GOTCH);
435 if (hw->mac.type == ixgbe_mac_82598EB)
436 for (i = 0; i < 8; i++)
437 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438 IXGBE_READ_REG(hw, IXGBE_RUC);
439 IXGBE_READ_REG(hw, IXGBE_RFC);
440 IXGBE_READ_REG(hw, IXGBE_ROC);
441 IXGBE_READ_REG(hw, IXGBE_RJC);
442 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445 IXGBE_READ_REG(hw, IXGBE_TORL);
446 IXGBE_READ_REG(hw, IXGBE_TORH);
447 IXGBE_READ_REG(hw, IXGBE_TPR);
448 IXGBE_READ_REG(hw, IXGBE_TPT);
449 IXGBE_READ_REG(hw, IXGBE_PTC64);
450 IXGBE_READ_REG(hw, IXGBE_PTC127);
451 IXGBE_READ_REG(hw, IXGBE_PTC255);
452 IXGBE_READ_REG(hw, IXGBE_PTC511);
453 IXGBE_READ_REG(hw, IXGBE_PTC1023);
454 IXGBE_READ_REG(hw, IXGBE_PTC1522);
455 IXGBE_READ_REG(hw, IXGBE_MPTC);
456 IXGBE_READ_REG(hw, IXGBE_BPTC);
457 for (i = 0; i < 16; i++) {
458 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460 if (hw->mac.type >= ixgbe_mac_82599EB) {
461 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466 } else {
467 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469 }
470 }
471
472 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473 if (hw->phy.id == 0)
474 hw->phy.ops.identify(hw);
475 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479 }
480
481 return 0;
482}
483
484/**
485 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486 * @hw: pointer to hardware structure
487 * @pba_num: stores the part number string from the EEPROM
488 * @pba_num_size: part number string buffer length
489 *
490 * Reads the part number string from the EEPROM.
491 **/
492s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493 u32 pba_num_size)
494{
495 s32 ret_val;
496 u16 data;
497 u16 pba_ptr;
498 u16 offset;
499 u16 length;
500
501 if (pba_num == NULL) {
502 hw_dbg(hw, "PBA string buffer was null\n");
503 return IXGBE_ERR_INVALID_ARGUMENT;
504 }
505
506 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507 if (ret_val) {
508 hw_dbg(hw, "NVM Read Error\n");
509 return ret_val;
510 }
511
512 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513 if (ret_val) {
514 hw_dbg(hw, "NVM Read Error\n");
515 return ret_val;
516 }
517
518 /*
519 * if data is not ptr guard the PBA must be in legacy format which
520 * means pba_ptr is actually our second data word for the PBA number
521 * and we can decode it into an ascii string
522 */
523 if (data != IXGBE_PBANUM_PTR_GUARD) {
524 hw_dbg(hw, "NVM PBA number is not stored as string\n");
525
526 /* we will need 11 characters to store the PBA */
527 if (pba_num_size < 11) {
528 hw_dbg(hw, "PBA string buffer too small\n");
529 return IXGBE_ERR_NO_SPACE;
530 }
531
532 /* extract hex string from data and pba_ptr */
533 pba_num[0] = (data >> 12) & 0xF;
534 pba_num[1] = (data >> 8) & 0xF;
535 pba_num[2] = (data >> 4) & 0xF;
536 pba_num[3] = data & 0xF;
537 pba_num[4] = (pba_ptr >> 12) & 0xF;
538 pba_num[5] = (pba_ptr >> 8) & 0xF;
539 pba_num[6] = '-';
540 pba_num[7] = 0;
541 pba_num[8] = (pba_ptr >> 4) & 0xF;
542 pba_num[9] = pba_ptr & 0xF;
543
544 /* put a null character on the end of our string */
545 pba_num[10] = '\0';
546
547 /* switch all the data but the '-' to hex char */
548 for (offset = 0; offset < 10; offset++) {
549 if (pba_num[offset] < 0xA)
550 pba_num[offset] += '0';
551 else if (pba_num[offset] < 0x10)
552 pba_num[offset] += 'A' - 0xA;
553 }
554
555 return 0;
556 }
557
558 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559 if (ret_val) {
560 hw_dbg(hw, "NVM Read Error\n");
561 return ret_val;
562 }
563
564 if (length == 0xFFFF || length == 0) {
565 hw_dbg(hw, "NVM PBA number section invalid length\n");
566 return IXGBE_ERR_PBA_SECTION;
567 }
568
569 /* check if pba_num buffer is big enough */
570 if (pba_num_size < (((u32)length * 2) - 1)) {
571 hw_dbg(hw, "PBA string buffer too small\n");
572 return IXGBE_ERR_NO_SPACE;
573 }
574
575 /* trim pba length from start of string */
576 pba_ptr++;
577 length--;
578
579 for (offset = 0; offset < length; offset++) {
580 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581 if (ret_val) {
582 hw_dbg(hw, "NVM Read Error\n");
583 return ret_val;
584 }
585 pba_num[offset * 2] = (u8)(data >> 8);
586 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587 }
588 pba_num[offset * 2] = '\0';
589
590 return 0;
591}
592
593/**
594 * ixgbe_get_mac_addr_generic - Generic get MAC address
595 * @hw: pointer to hardware structure
596 * @mac_addr: Adapter MAC address
597 *
598 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
599 * A reset of the adapter must be performed prior to calling this function
600 * in order for the MAC address to have been loaded from the EEPROM into RAR0
601 **/
602s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603{
604 u32 rar_high;
605 u32 rar_low;
606 u16 i;
607
608 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610
611 for (i = 0; i < 4; i++)
612 mac_addr[i] = (u8)(rar_low >> (i*8));
613
614 for (i = 0; i < 2; i++)
615 mac_addr[i+4] = (u8)(rar_high >> (i*8));
616
617 return 0;
618}
619
620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621{
622 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623 case IXGBE_PCI_LINK_WIDTH_1:
624 return ixgbe_bus_width_pcie_x1;
625 case IXGBE_PCI_LINK_WIDTH_2:
626 return ixgbe_bus_width_pcie_x2;
627 case IXGBE_PCI_LINK_WIDTH_4:
628 return ixgbe_bus_width_pcie_x4;
629 case IXGBE_PCI_LINK_WIDTH_8:
630 return ixgbe_bus_width_pcie_x8;
631 default:
632 return ixgbe_bus_width_unknown;
633 }
634}
635
636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637{
638 switch (link_status & IXGBE_PCI_LINK_SPEED) {
639 case IXGBE_PCI_LINK_SPEED_2500:
640 return ixgbe_bus_speed_2500;
641 case IXGBE_PCI_LINK_SPEED_5000:
642 return ixgbe_bus_speed_5000;
643 case IXGBE_PCI_LINK_SPEED_8000:
644 return ixgbe_bus_speed_8000;
645 default:
646 return ixgbe_bus_speed_unknown;
647 }
648}
649
650/**
651 * ixgbe_get_bus_info_generic - Generic set PCI bus info
652 * @hw: pointer to hardware structure
653 *
654 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655 **/
656s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657{
658 u16 link_status;
659
660 hw->bus.type = ixgbe_bus_type_pci_express;
661
662 /* Get the negotiated link width and speed from PCI config space */
663 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664
665 hw->bus.width = ixgbe_convert_bus_width(link_status);
666 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667
668 hw->mac.ops.set_lan_id(hw);
669
670 return 0;
671}
672
673/**
674 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675 * @hw: pointer to the HW structure
676 *
677 * Determines the LAN function id by reading memory-mapped registers
678 * and swaps the port value if requested.
679 **/
680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681{
682 struct ixgbe_bus_info *bus = &hw->bus;
683 u16 ee_ctrl_4;
684 u32 reg;
685
686 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688 bus->lan_id = bus->func;
689
690 /* check for a port swap */
691 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 if (reg & IXGBE_FACTPS_LFS)
693 bus->func ^= 0x1;
694
695 /* Get MAC instance from EEPROM for configuring CS4227 */
696 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
699 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
700 }
701}
702
703/**
704 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705 * @hw: pointer to hardware structure
706 *
707 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708 * disables transmit and receive units. The adapter_stopped flag is used by
709 * the shared code and drivers to determine if the adapter is in a stopped
710 * state and should not touch the hardware.
711 **/
712s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713{
714 u32 reg_val;
715 u16 i;
716
717 /*
718 * Set the adapter_stopped flag so other driver functions stop touching
719 * the hardware
720 */
721 hw->adapter_stopped = true;
722
723 /* Disable the receive unit */
724 hw->mac.ops.disable_rx(hw);
725
726 /* Clear interrupt mask to stop interrupts from being generated */
727 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728
729 /* Clear any pending interrupts, flush previous writes */
730 IXGBE_READ_REG(hw, IXGBE_EICR);
731
732 /* Disable the transmit unit. Each queue must be disabled. */
733 for (i = 0; i < hw->mac.max_tx_queues; i++)
734 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735
736 /* Disable the receive unit by stopping each queue */
737 for (i = 0; i < hw->mac.max_rx_queues; i++) {
738 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739 reg_val &= ~IXGBE_RXDCTL_ENABLE;
740 reg_val |= IXGBE_RXDCTL_SWFLSH;
741 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742 }
743
744 /* flush all queues disables */
745 IXGBE_WRITE_FLUSH(hw);
746 usleep_range(1000, 2000);
747
748 /*
749 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
750 * access and verify no pending requests
751 */
752 return ixgbe_disable_pcie_master(hw);
753}
754
755/**
756 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757 * @hw: pointer to hardware structure
758 *
759 * Store the index for the link active LED. This will be used to support
760 * blinking the LED.
761 **/
762s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763{
764 struct ixgbe_mac_info *mac = &hw->mac;
765 u32 led_reg, led_mode;
766 u16 i;
767
768 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769
770 /* Get LED link active from the LEDCTL register */
771 for (i = 0; i < 4; i++) {
772 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773
774 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775 IXGBE_LED_LINK_ACTIVE) {
776 mac->led_link_act = i;
777 return 0;
778 }
779 }
780
781 /* If LEDCTL register does not have the LED link active set, then use
782 * known MAC defaults.
783 */
784 switch (hw->mac.type) {
785 case ixgbe_mac_x550em_a:
786 mac->led_link_act = 0;
787 break;
788 case ixgbe_mac_X550EM_x:
789 mac->led_link_act = 1;
790 break;
791 default:
792 mac->led_link_act = 2;
793 }
794
795 return 0;
796}
797
798/**
799 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
800 * @hw: pointer to hardware structure
801 * @index: led number to turn on
802 **/
803s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804{
805 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806
807 if (index > 3)
808 return IXGBE_ERR_PARAM;
809
810 /* To turn on the LED, set mode to ON. */
811 led_reg &= ~IXGBE_LED_MODE_MASK(index);
812 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814 IXGBE_WRITE_FLUSH(hw);
815
816 return 0;
817}
818
819/**
820 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
821 * @hw: pointer to hardware structure
822 * @index: led number to turn off
823 **/
824s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825{
826 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827
828 if (index > 3)
829 return IXGBE_ERR_PARAM;
830
831 /* To turn off the LED, set mode to OFF. */
832 led_reg &= ~IXGBE_LED_MODE_MASK(index);
833 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835 IXGBE_WRITE_FLUSH(hw);
836
837 return 0;
838}
839
840/**
841 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842 * @hw: pointer to hardware structure
843 *
844 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
845 * ixgbe_hw struct in order to set up EEPROM access.
846 **/
847s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848{
849 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850 u32 eec;
851 u16 eeprom_size;
852
853 if (eeprom->type == ixgbe_eeprom_uninitialized) {
854 eeprom->type = ixgbe_eeprom_none;
855 /* Set default semaphore delay to 10ms which is a well
856 * tested value */
857 eeprom->semaphore_delay = 10;
858 /* Clear EEPROM page size, it will be initialized as needed */
859 eeprom->word_page_size = 0;
860
861 /*
862 * Check for EEPROM present first.
863 * If not present leave as none
864 */
865 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866 if (eec & IXGBE_EEC_PRES) {
867 eeprom->type = ixgbe_eeprom_spi;
868
869 /*
870 * SPI EEPROM is assumed here. This code would need to
871 * change if a future EEPROM is not SPI.
872 */
873 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
874 IXGBE_EEC_SIZE_SHIFT);
875 eeprom->word_size = BIT(eeprom_size +
876 IXGBE_EEPROM_WORD_SIZE_SHIFT);
877 }
878
879 if (eec & IXGBE_EEC_ADDR_SIZE)
880 eeprom->address_bits = 16;
881 else
882 eeprom->address_bits = 8;
883 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
884 eeprom->type, eeprom->word_size, eeprom->address_bits);
885 }
886
887 return 0;
888}
889
890/**
891 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
892 * @hw: pointer to hardware structure
893 * @offset: offset within the EEPROM to write
894 * @words: number of words
895 * @data: 16 bit word(s) to write to EEPROM
896 *
897 * Reads 16 bit word(s) from EEPROM through bit-bang method
898 **/
899s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
900 u16 words, u16 *data)
901{
902 s32 status;
903 u16 i, count;
904
905 hw->eeprom.ops.init_params(hw);
906
907 if (words == 0)
908 return IXGBE_ERR_INVALID_ARGUMENT;
909
910 if (offset + words > hw->eeprom.word_size)
911 return IXGBE_ERR_EEPROM;
912
913 /*
914 * The EEPROM page size cannot be queried from the chip. We do lazy
915 * initialization. It is worth to do that when we write large buffer.
916 */
917 if ((hw->eeprom.word_page_size == 0) &&
918 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
919 ixgbe_detect_eeprom_page_size_generic(hw, offset);
920
921 /*
922 * We cannot hold synchronization semaphores for too long
923 * to avoid other entity starvation. However it is more efficient
924 * to read in bursts than synchronizing access for each word.
925 */
926 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
927 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
928 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
929 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
930 count, &data[i]);
931
932 if (status != 0)
933 break;
934 }
935
936 return status;
937}
938
939/**
940 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
941 * @hw: pointer to hardware structure
942 * @offset: offset within the EEPROM to be written to
943 * @words: number of word(s)
944 * @data: 16 bit word(s) to be written to the EEPROM
945 *
946 * If ixgbe_eeprom_update_checksum is not called after this function, the
947 * EEPROM will most likely contain an invalid checksum.
948 **/
949static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
950 u16 words, u16 *data)
951{
952 s32 status;
953 u16 word;
954 u16 page_size;
955 u16 i;
956 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
957
958 /* Prepare the EEPROM for writing */
959 status = ixgbe_acquire_eeprom(hw);
960 if (status)
961 return status;
962
963 if (ixgbe_ready_eeprom(hw) != 0) {
964 ixgbe_release_eeprom(hw);
965 return IXGBE_ERR_EEPROM;
966 }
967
968 for (i = 0; i < words; i++) {
969 ixgbe_standby_eeprom(hw);
970
971 /* Send the WRITE ENABLE command (8 bit opcode) */
972 ixgbe_shift_out_eeprom_bits(hw,
973 IXGBE_EEPROM_WREN_OPCODE_SPI,
974 IXGBE_EEPROM_OPCODE_BITS);
975
976 ixgbe_standby_eeprom(hw);
977
978 /* Some SPI eeproms use the 8th address bit embedded
979 * in the opcode
980 */
981 if ((hw->eeprom.address_bits == 8) &&
982 ((offset + i) >= 128))
983 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
984
985 /* Send the Write command (8-bit opcode + addr) */
986 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
987 IXGBE_EEPROM_OPCODE_BITS);
988 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
989 hw->eeprom.address_bits);
990
991 page_size = hw->eeprom.word_page_size;
992
993 /* Send the data in burst via SPI */
994 do {
995 word = data[i];
996 word = (word >> 8) | (word << 8);
997 ixgbe_shift_out_eeprom_bits(hw, word, 16);
998
999 if (page_size == 0)
1000 break;
1001
1002 /* do not wrap around page */
1003 if (((offset + i) & (page_size - 1)) ==
1004 (page_size - 1))
1005 break;
1006 } while (++i < words);
1007
1008 ixgbe_standby_eeprom(hw);
1009 usleep_range(10000, 20000);
1010 }
1011 /* Done with writing - release the EEPROM */
1012 ixgbe_release_eeprom(hw);
1013
1014 return 0;
1015}
1016
1017/**
1018 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1019 * @hw: pointer to hardware structure
1020 * @offset: offset within the EEPROM to be written to
1021 * @data: 16 bit word to be written to the EEPROM
1022 *
1023 * If ixgbe_eeprom_update_checksum is not called after this function, the
1024 * EEPROM will most likely contain an invalid checksum.
1025 **/
1026s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1027{
1028 hw->eeprom.ops.init_params(hw);
1029
1030 if (offset >= hw->eeprom.word_size)
1031 return IXGBE_ERR_EEPROM;
1032
1033 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1034}
1035
1036/**
1037 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1038 * @hw: pointer to hardware structure
1039 * @offset: offset within the EEPROM to be read
1040 * @words: number of word(s)
1041 * @data: read 16 bit words(s) from EEPROM
1042 *
1043 * Reads 16 bit word(s) from EEPROM through bit-bang method
1044 **/
1045s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1046 u16 words, u16 *data)
1047{
1048 s32 status;
1049 u16 i, count;
1050
1051 hw->eeprom.ops.init_params(hw);
1052
1053 if (words == 0)
1054 return IXGBE_ERR_INVALID_ARGUMENT;
1055
1056 if (offset + words > hw->eeprom.word_size)
1057 return IXGBE_ERR_EEPROM;
1058
1059 /*
1060 * We cannot hold synchronization semaphores for too long
1061 * to avoid other entity starvation. However it is more efficient
1062 * to read in bursts than synchronizing access for each word.
1063 */
1064 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1065 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1066 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1067
1068 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1069 count, &data[i]);
1070
1071 if (status)
1072 return status;
1073 }
1074
1075 return 0;
1076}
1077
1078/**
1079 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1080 * @hw: pointer to hardware structure
1081 * @offset: offset within the EEPROM to be read
1082 * @words: number of word(s)
1083 * @data: read 16 bit word(s) from EEPROM
1084 *
1085 * Reads 16 bit word(s) from EEPROM through bit-bang method
1086 **/
1087static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1088 u16 words, u16 *data)
1089{
1090 s32 status;
1091 u16 word_in;
1092 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1093 u16 i;
1094
1095 /* Prepare the EEPROM for reading */
1096 status = ixgbe_acquire_eeprom(hw);
1097 if (status)
1098 return status;
1099
1100 if (ixgbe_ready_eeprom(hw) != 0) {
1101 ixgbe_release_eeprom(hw);
1102 return IXGBE_ERR_EEPROM;
1103 }
1104
1105 for (i = 0; i < words; i++) {
1106 ixgbe_standby_eeprom(hw);
1107 /* Some SPI eeproms use the 8th address bit embedded
1108 * in the opcode
1109 */
1110 if ((hw->eeprom.address_bits == 8) &&
1111 ((offset + i) >= 128))
1112 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1113
1114 /* Send the READ command (opcode + addr) */
1115 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1116 IXGBE_EEPROM_OPCODE_BITS);
1117 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1118 hw->eeprom.address_bits);
1119
1120 /* Read the data. */
1121 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1122 data[i] = (word_in >> 8) | (word_in << 8);
1123 }
1124
1125 /* End this read operation */
1126 ixgbe_release_eeprom(hw);
1127
1128 return 0;
1129}
1130
1131/**
1132 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1133 * @hw: pointer to hardware structure
1134 * @offset: offset within the EEPROM to be read
1135 * @data: read 16 bit value from EEPROM
1136 *
1137 * Reads 16 bit value from EEPROM through bit-bang method
1138 **/
1139s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1140 u16 *data)
1141{
1142 hw->eeprom.ops.init_params(hw);
1143
1144 if (offset >= hw->eeprom.word_size)
1145 return IXGBE_ERR_EEPROM;
1146
1147 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1148}
1149
1150/**
1151 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1152 * @hw: pointer to hardware structure
1153 * @offset: offset of word in the EEPROM to read
1154 * @words: number of word(s)
1155 * @data: 16 bit word(s) from the EEPROM
1156 *
1157 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1158 **/
1159s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1160 u16 words, u16 *data)
1161{
1162 u32 eerd;
1163 s32 status;
1164 u32 i;
1165
1166 hw->eeprom.ops.init_params(hw);
1167
1168 if (words == 0)
1169 return IXGBE_ERR_INVALID_ARGUMENT;
1170
1171 if (offset >= hw->eeprom.word_size)
1172 return IXGBE_ERR_EEPROM;
1173
1174 for (i = 0; i < words; i++) {
1175 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1176 IXGBE_EEPROM_RW_REG_START;
1177
1178 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1179 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1180
1181 if (status == 0) {
1182 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1183 IXGBE_EEPROM_RW_REG_DATA);
1184 } else {
1185 hw_dbg(hw, "Eeprom read timed out\n");
1186 return status;
1187 }
1188 }
1189
1190 return 0;
1191}
1192
1193/**
1194 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1195 * @hw: pointer to hardware structure
1196 * @offset: offset within the EEPROM to be used as a scratch pad
1197 *
1198 * Discover EEPROM page size by writing marching data at given offset.
1199 * This function is called only when we are writing a new large buffer
1200 * at given offset so the data would be overwritten anyway.
1201 **/
1202static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1203 u16 offset)
1204{
1205 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1206 s32 status;
1207 u16 i;
1208
1209 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1210 data[i] = i;
1211
1212 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1213 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1214 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1215 hw->eeprom.word_page_size = 0;
1216 if (status)
1217 return status;
1218
1219 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1220 if (status)
1221 return status;
1222
1223 /*
1224 * When writing in burst more than the actual page size
1225 * EEPROM address wraps around current page.
1226 */
1227 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1228
1229 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1230 hw->eeprom.word_page_size);
1231 return 0;
1232}
1233
1234/**
1235 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1236 * @hw: pointer to hardware structure
1237 * @offset: offset of word in the EEPROM to read
1238 * @data: word read from the EEPROM
1239 *
1240 * Reads a 16 bit word from the EEPROM using the EERD register.
1241 **/
1242s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1243{
1244 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1245}
1246
1247/**
1248 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1249 * @hw: pointer to hardware structure
1250 * @offset: offset of word in the EEPROM to write
1251 * @words: number of words
1252 * @data: word(s) write to the EEPROM
1253 *
1254 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1255 **/
1256s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1257 u16 words, u16 *data)
1258{
1259 u32 eewr;
1260 s32 status;
1261 u16 i;
1262
1263 hw->eeprom.ops.init_params(hw);
1264
1265 if (words == 0)
1266 return IXGBE_ERR_INVALID_ARGUMENT;
1267
1268 if (offset >= hw->eeprom.word_size)
1269 return IXGBE_ERR_EEPROM;
1270
1271 for (i = 0; i < words; i++) {
1272 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1273 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1274 IXGBE_EEPROM_RW_REG_START;
1275
1276 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1277 if (status) {
1278 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1279 return status;
1280 }
1281
1282 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1283
1284 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1285 if (status) {
1286 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1287 return status;
1288 }
1289 }
1290
1291 return 0;
1292}
1293
1294/**
1295 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1296 * @hw: pointer to hardware structure
1297 * @offset: offset of word in the EEPROM to write
1298 * @data: word write to the EEPROM
1299 *
1300 * Write a 16 bit word to the EEPROM using the EEWR register.
1301 **/
1302s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1303{
1304 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1305}
1306
1307/**
1308 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1309 * @hw: pointer to hardware structure
1310 * @ee_reg: EEPROM flag for polling
1311 *
1312 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1313 * read or write is done respectively.
1314 **/
1315static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1316{
1317 u32 i;
1318 u32 reg;
1319
1320 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1321 if (ee_reg == IXGBE_NVM_POLL_READ)
1322 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1323 else
1324 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1325
1326 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1327 return 0;
1328 }
1329 udelay(5);
1330 }
1331 return IXGBE_ERR_EEPROM;
1332}
1333
1334/**
1335 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1336 * @hw: pointer to hardware structure
1337 *
1338 * Prepares EEPROM for access using bit-bang method. This function should
1339 * be called before issuing a command to the EEPROM.
1340 **/
1341static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1342{
1343 u32 eec;
1344 u32 i;
1345
1346 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1347 return IXGBE_ERR_SWFW_SYNC;
1348
1349 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1350
1351 /* Request EEPROM Access */
1352 eec |= IXGBE_EEC_REQ;
1353 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354
1355 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1356 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1357 if (eec & IXGBE_EEC_GNT)
1358 break;
1359 udelay(5);
1360 }
1361
1362 /* Release if grant not acquired */
1363 if (!(eec & IXGBE_EEC_GNT)) {
1364 eec &= ~IXGBE_EEC_REQ;
1365 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1366 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1367
1368 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1369 return IXGBE_ERR_EEPROM;
1370 }
1371
1372 /* Setup EEPROM for Read/Write */
1373 /* Clear CS and SK */
1374 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1375 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1376 IXGBE_WRITE_FLUSH(hw);
1377 udelay(1);
1378 return 0;
1379}
1380
1381/**
1382 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1383 * @hw: pointer to hardware structure
1384 *
1385 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1386 **/
1387static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1388{
1389 u32 timeout = 2000;
1390 u32 i;
1391 u32 swsm;
1392
1393 /* Get SMBI software semaphore between device drivers first */
1394 for (i = 0; i < timeout; i++) {
1395 /*
1396 * If the SMBI bit is 0 when we read it, then the bit will be
1397 * set and we have the semaphore
1398 */
1399 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1400 if (!(swsm & IXGBE_SWSM_SMBI))
1401 break;
1402 usleep_range(50, 100);
1403 }
1404
1405 if (i == timeout) {
1406 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1407 /* this release is particularly important because our attempts
1408 * above to get the semaphore may have succeeded, and if there
1409 * was a timeout, we should unconditionally clear the semaphore
1410 * bits to free the driver to make progress
1411 */
1412 ixgbe_release_eeprom_semaphore(hw);
1413
1414 usleep_range(50, 100);
1415 /* one last try
1416 * If the SMBI bit is 0 when we read it, then the bit will be
1417 * set and we have the semaphore
1418 */
1419 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420 if (swsm & IXGBE_SWSM_SMBI) {
1421 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1422 return IXGBE_ERR_EEPROM;
1423 }
1424 }
1425
1426 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1427 for (i = 0; i < timeout; i++) {
1428 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1429
1430 /* Set the SW EEPROM semaphore bit to request access */
1431 swsm |= IXGBE_SWSM_SWESMBI;
1432 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1433
1434 /* If we set the bit successfully then we got the
1435 * semaphore.
1436 */
1437 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1438 if (swsm & IXGBE_SWSM_SWESMBI)
1439 break;
1440
1441 usleep_range(50, 100);
1442 }
1443
1444 /* Release semaphores and return error if SW EEPROM semaphore
1445 * was not granted because we don't have access to the EEPROM
1446 */
1447 if (i >= timeout) {
1448 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1449 ixgbe_release_eeprom_semaphore(hw);
1450 return IXGBE_ERR_EEPROM;
1451 }
1452
1453 return 0;
1454}
1455
1456/**
1457 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1458 * @hw: pointer to hardware structure
1459 *
1460 * This function clears hardware semaphore bits.
1461 **/
1462static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1463{
1464 u32 swsm;
1465
1466 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1467
1468 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1469 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1470 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1471 IXGBE_WRITE_FLUSH(hw);
1472}
1473
1474/**
1475 * ixgbe_ready_eeprom - Polls for EEPROM ready
1476 * @hw: pointer to hardware structure
1477 **/
1478static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1479{
1480 u16 i;
1481 u8 spi_stat_reg;
1482
1483 /*
1484 * Read "Status Register" repeatedly until the LSB is cleared. The
1485 * EEPROM will signal that the command has been completed by clearing
1486 * bit 0 of the internal status register. If it's not cleared within
1487 * 5 milliseconds, then error out.
1488 */
1489 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1490 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1491 IXGBE_EEPROM_OPCODE_BITS);
1492 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1493 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1494 break;
1495
1496 udelay(5);
1497 ixgbe_standby_eeprom(hw);
1498 }
1499
1500 /*
1501 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1502 * devices (and only 0-5mSec on 5V devices)
1503 */
1504 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1505 hw_dbg(hw, "SPI EEPROM Status error\n");
1506 return IXGBE_ERR_EEPROM;
1507 }
1508
1509 return 0;
1510}
1511
1512/**
1513 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1514 * @hw: pointer to hardware structure
1515 **/
1516static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1517{
1518 u32 eec;
1519
1520 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1521
1522 /* Toggle CS to flush commands */
1523 eec |= IXGBE_EEC_CS;
1524 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1525 IXGBE_WRITE_FLUSH(hw);
1526 udelay(1);
1527 eec &= ~IXGBE_EEC_CS;
1528 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529 IXGBE_WRITE_FLUSH(hw);
1530 udelay(1);
1531}
1532
1533/**
1534 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1535 * @hw: pointer to hardware structure
1536 * @data: data to send to the EEPROM
1537 * @count: number of bits to shift out
1538 **/
1539static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1540 u16 count)
1541{
1542 u32 eec;
1543 u32 mask;
1544 u32 i;
1545
1546 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547
1548 /*
1549 * Mask is used to shift "count" bits of "data" out to the EEPROM
1550 * one bit at a time. Determine the starting bit based on count
1551 */
1552 mask = BIT(count - 1);
1553
1554 for (i = 0; i < count; i++) {
1555 /*
1556 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1557 * "1", and then raising and then lowering the clock (the SK
1558 * bit controls the clock input to the EEPROM). A "0" is
1559 * shifted out to the EEPROM by setting "DI" to "0" and then
1560 * raising and then lowering the clock.
1561 */
1562 if (data & mask)
1563 eec |= IXGBE_EEC_DI;
1564 else
1565 eec &= ~IXGBE_EEC_DI;
1566
1567 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1568 IXGBE_WRITE_FLUSH(hw);
1569
1570 udelay(1);
1571
1572 ixgbe_raise_eeprom_clk(hw, &eec);
1573 ixgbe_lower_eeprom_clk(hw, &eec);
1574
1575 /*
1576 * Shift mask to signify next bit of data to shift in to the
1577 * EEPROM
1578 */
1579 mask = mask >> 1;
1580 }
1581
1582 /* We leave the "DI" bit set to "0" when we leave this routine. */
1583 eec &= ~IXGBE_EEC_DI;
1584 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1585 IXGBE_WRITE_FLUSH(hw);
1586}
1587
1588/**
1589 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1590 * @hw: pointer to hardware structure
1591 * @count: number of bits to shift
1592 **/
1593static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1594{
1595 u32 eec;
1596 u32 i;
1597 u16 data = 0;
1598
1599 /*
1600 * In order to read a register from the EEPROM, we need to shift
1601 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1602 * the clock input to the EEPROM (setting the SK bit), and then reading
1603 * the value of the "DO" bit. During this "shifting in" process the
1604 * "DI" bit should always be clear.
1605 */
1606 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1607
1608 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1609
1610 for (i = 0; i < count; i++) {
1611 data = data << 1;
1612 ixgbe_raise_eeprom_clk(hw, &eec);
1613
1614 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1615
1616 eec &= ~(IXGBE_EEC_DI);
1617 if (eec & IXGBE_EEC_DO)
1618 data |= 1;
1619
1620 ixgbe_lower_eeprom_clk(hw, &eec);
1621 }
1622
1623 return data;
1624}
1625
1626/**
1627 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1628 * @hw: pointer to hardware structure
1629 * @eec: EEC register's current value
1630 **/
1631static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1632{
1633 /*
1634 * Raise the clock input to the EEPROM
1635 * (setting the SK bit), then delay
1636 */
1637 *eec = *eec | IXGBE_EEC_SK;
1638 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1639 IXGBE_WRITE_FLUSH(hw);
1640 udelay(1);
1641}
1642
1643/**
1644 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1645 * @hw: pointer to hardware structure
1646 * @eec: EEC's current value
1647 **/
1648static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1649{
1650 /*
1651 * Lower the clock input to the EEPROM (clearing the SK bit), then
1652 * delay
1653 */
1654 *eec = *eec & ~IXGBE_EEC_SK;
1655 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1656 IXGBE_WRITE_FLUSH(hw);
1657 udelay(1);
1658}
1659
1660/**
1661 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1662 * @hw: pointer to hardware structure
1663 **/
1664static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1665{
1666 u32 eec;
1667
1668 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1669
1670 eec |= IXGBE_EEC_CS; /* Pull CS high */
1671 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1672
1673 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1674 IXGBE_WRITE_FLUSH(hw);
1675
1676 udelay(1);
1677
1678 /* Stop requesting EEPROM access */
1679 eec &= ~IXGBE_EEC_REQ;
1680 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1681
1682 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1683
1684 /*
1685 * Delay before attempt to obtain semaphore again to allow FW
1686 * access. semaphore_delay is in ms we need us for usleep_range
1687 */
1688 usleep_range(hw->eeprom.semaphore_delay * 1000,
1689 hw->eeprom.semaphore_delay * 2000);
1690}
1691
1692/**
1693 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1694 * @hw: pointer to hardware structure
1695 **/
1696s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1697{
1698 u16 i;
1699 u16 j;
1700 u16 checksum = 0;
1701 u16 length = 0;
1702 u16 pointer = 0;
1703 u16 word = 0;
1704
1705 /* Include 0x0-0x3F in the checksum */
1706 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1707 if (hw->eeprom.ops.read(hw, i, &word)) {
1708 hw_dbg(hw, "EEPROM read failed\n");
1709 break;
1710 }
1711 checksum += word;
1712 }
1713
1714 /* Include all data from pointers except for the fw pointer */
1715 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1716 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1717 hw_dbg(hw, "EEPROM read failed\n");
1718 return IXGBE_ERR_EEPROM;
1719 }
1720
1721 /* If the pointer seems invalid */
1722 if (pointer == 0xFFFF || pointer == 0)
1723 continue;
1724
1725 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1726 hw_dbg(hw, "EEPROM read failed\n");
1727 return IXGBE_ERR_EEPROM;
1728 }
1729
1730 if (length == 0xFFFF || length == 0)
1731 continue;
1732
1733 for (j = pointer + 1; j <= pointer + length; j++) {
1734 if (hw->eeprom.ops.read(hw, j, &word)) {
1735 hw_dbg(hw, "EEPROM read failed\n");
1736 return IXGBE_ERR_EEPROM;
1737 }
1738 checksum += word;
1739 }
1740 }
1741
1742 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1743
1744 return (s32)checksum;
1745}
1746
1747/**
1748 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1749 * @hw: pointer to hardware structure
1750 * @checksum_val: calculated checksum
1751 *
1752 * Performs checksum calculation and validates the EEPROM checksum. If the
1753 * caller does not need checksum_val, the value can be NULL.
1754 **/
1755s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1756 u16 *checksum_val)
1757{
1758 s32 status;
1759 u16 checksum;
1760 u16 read_checksum = 0;
1761
1762 /*
1763 * Read the first word from the EEPROM. If this times out or fails, do
1764 * not continue or we could be in for a very long wait while every
1765 * EEPROM read fails
1766 */
1767 status = hw->eeprom.ops.read(hw, 0, &checksum);
1768 if (status) {
1769 hw_dbg(hw, "EEPROM read failed\n");
1770 return status;
1771 }
1772
1773 status = hw->eeprom.ops.calc_checksum(hw);
1774 if (status < 0)
1775 return status;
1776
1777 checksum = (u16)(status & 0xffff);
1778
1779 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1780 if (status) {
1781 hw_dbg(hw, "EEPROM read failed\n");
1782 return status;
1783 }
1784
1785 /* Verify read checksum from EEPROM is the same as
1786 * calculated checksum
1787 */
1788 if (read_checksum != checksum)
1789 status = IXGBE_ERR_EEPROM_CHECKSUM;
1790
1791 /* If the user cares, return the calculated checksum */
1792 if (checksum_val)
1793 *checksum_val = checksum;
1794
1795 return status;
1796}
1797
1798/**
1799 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1800 * @hw: pointer to hardware structure
1801 **/
1802s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1803{
1804 s32 status;
1805 u16 checksum;
1806
1807 /*
1808 * Read the first word from the EEPROM. If this times out or fails, do
1809 * not continue or we could be in for a very long wait while every
1810 * EEPROM read fails
1811 */
1812 status = hw->eeprom.ops.read(hw, 0, &checksum);
1813 if (status) {
1814 hw_dbg(hw, "EEPROM read failed\n");
1815 return status;
1816 }
1817
1818 status = hw->eeprom.ops.calc_checksum(hw);
1819 if (status < 0)
1820 return status;
1821
1822 checksum = (u16)(status & 0xffff);
1823
1824 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1825
1826 return status;
1827}
1828
1829/**
1830 * ixgbe_set_rar_generic - Set Rx address register
1831 * @hw: pointer to hardware structure
1832 * @index: Receive address register to write
1833 * @addr: Address to put into receive address register
1834 * @vmdq: VMDq "set" or "pool" index
1835 * @enable_addr: set flag that address is active
1836 *
1837 * Puts an ethernet address into a receive address register.
1838 **/
1839s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1840 u32 enable_addr)
1841{
1842 u32 rar_low, rar_high;
1843 u32 rar_entries = hw->mac.num_rar_entries;
1844
1845 /* Make sure we are using a valid rar index range */
1846 if (index >= rar_entries) {
1847 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1848 return IXGBE_ERR_INVALID_ARGUMENT;
1849 }
1850
1851 /* setup VMDq pool selection before this RAR gets enabled */
1852 hw->mac.ops.set_vmdq(hw, index, vmdq);
1853
1854 /*
1855 * HW expects these in little endian so we reverse the byte
1856 * order from network order (big endian) to little endian
1857 */
1858 rar_low = ((u32)addr[0] |
1859 ((u32)addr[1] << 8) |
1860 ((u32)addr[2] << 16) |
1861 ((u32)addr[3] << 24));
1862 /*
1863 * Some parts put the VMDq setting in the extra RAH bits,
1864 * so save everything except the lower 16 bits that hold part
1865 * of the address and the address valid bit.
1866 */
1867 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1868 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1869 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1870
1871 if (enable_addr != 0)
1872 rar_high |= IXGBE_RAH_AV;
1873
1874 /* Record lower 32 bits of MAC address and then make
1875 * sure that write is flushed to hardware before writing
1876 * the upper 16 bits and setting the valid bit.
1877 */
1878 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1879 IXGBE_WRITE_FLUSH(hw);
1880 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1881
1882 return 0;
1883}
1884
1885/**
1886 * ixgbe_clear_rar_generic - Remove Rx address register
1887 * @hw: pointer to hardware structure
1888 * @index: Receive address register to write
1889 *
1890 * Clears an ethernet address from a receive address register.
1891 **/
1892s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1893{
1894 u32 rar_high;
1895 u32 rar_entries = hw->mac.num_rar_entries;
1896
1897 /* Make sure we are using a valid rar index range */
1898 if (index >= rar_entries) {
1899 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1900 return IXGBE_ERR_INVALID_ARGUMENT;
1901 }
1902
1903 /*
1904 * Some parts put the VMDq setting in the extra RAH bits,
1905 * so save everything except the lower 16 bits that hold part
1906 * of the address and the address valid bit.
1907 */
1908 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1909 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1910
1911 /* Clear the address valid bit and upper 16 bits of the address
1912 * before clearing the lower bits. This way we aren't updating
1913 * a live filter.
1914 */
1915 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1916 IXGBE_WRITE_FLUSH(hw);
1917 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1918
1919 /* clear VMDq pool/queue selection for this RAR */
1920 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1921
1922 return 0;
1923}
1924
1925/**
1926 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1927 * @hw: pointer to hardware structure
1928 *
1929 * Places the MAC address in receive address register 0 and clears the rest
1930 * of the receive address registers. Clears the multicast table. Assumes
1931 * the receiver is in reset when the routine is called.
1932 **/
1933s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1934{
1935 u32 i;
1936 u32 rar_entries = hw->mac.num_rar_entries;
1937
1938 /*
1939 * If the current mac address is valid, assume it is a software override
1940 * to the permanent address.
1941 * Otherwise, use the permanent address from the eeprom.
1942 */
1943 if (!is_valid_ether_addr(hw->mac.addr)) {
1944 /* Get the MAC address from the RAR0 for later reference */
1945 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1946
1947 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1948 } else {
1949 /* Setup the receive address. */
1950 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1951 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1952
1953 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1954 }
1955
1956 /* clear VMDq pool/queue selection for RAR 0 */
1957 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1958
1959 hw->addr_ctrl.overflow_promisc = 0;
1960
1961 hw->addr_ctrl.rar_used_count = 1;
1962
1963 /* Zero out the other receive addresses. */
1964 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1965 for (i = 1; i < rar_entries; i++) {
1966 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1967 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1968 }
1969
1970 /* Clear the MTA */
1971 hw->addr_ctrl.mta_in_use = 0;
1972 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1973
1974 hw_dbg(hw, " Clearing MTA\n");
1975 for (i = 0; i < hw->mac.mcft_size; i++)
1976 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1977
1978 if (hw->mac.ops.init_uta_tables)
1979 hw->mac.ops.init_uta_tables(hw);
1980
1981 return 0;
1982}
1983
1984/**
1985 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1986 * @hw: pointer to hardware structure
1987 * @mc_addr: the multicast address
1988 *
1989 * Extracts the 12 bits, from a multicast address, to determine which
1990 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1991 * incoming rx multicast addresses, to determine the bit-vector to check in
1992 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1993 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1994 * to mc_filter_type.
1995 **/
1996static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1997{
1998 u32 vector = 0;
1999
2000 switch (hw->mac.mc_filter_type) {
2001 case 0: /* use bits [47:36] of the address */
2002 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2003 break;
2004 case 1: /* use bits [46:35] of the address */
2005 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2006 break;
2007 case 2: /* use bits [45:34] of the address */
2008 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2009 break;
2010 case 3: /* use bits [43:32] of the address */
2011 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2012 break;
2013 default: /* Invalid mc_filter_type */
2014 hw_dbg(hw, "MC filter type param set incorrectly\n");
2015 break;
2016 }
2017
2018 /* vector can only be 12-bits or boundary will be exceeded */
2019 vector &= 0xFFF;
2020 return vector;
2021}
2022
2023/**
2024 * ixgbe_set_mta - Set bit-vector in multicast table
2025 * @hw: pointer to hardware structure
2026 * @mc_addr: Multicast address
2027 *
2028 * Sets the bit-vector in the multicast table.
2029 **/
2030static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2031{
2032 u32 vector;
2033 u32 vector_bit;
2034 u32 vector_reg;
2035
2036 hw->addr_ctrl.mta_in_use++;
2037
2038 vector = ixgbe_mta_vector(hw, mc_addr);
2039 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2040
2041 /*
2042 * The MTA is a register array of 128 32-bit registers. It is treated
2043 * like an array of 4096 bits. We want to set bit
2044 * BitArray[vector_value]. So we figure out what register the bit is
2045 * in, read it, OR in the new bit, then write back the new value. The
2046 * register is determined by the upper 7 bits of the vector value and
2047 * the bit within that register are determined by the lower 5 bits of
2048 * the value.
2049 */
2050 vector_reg = (vector >> 5) & 0x7F;
2051 vector_bit = vector & 0x1F;
2052 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2053}
2054
2055/**
2056 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2057 * @hw: pointer to hardware structure
2058 * @netdev: pointer to net device structure
2059 *
2060 * The given list replaces any existing list. Clears the MC addrs from receive
2061 * address registers and the multicast table. Uses unused receive address
2062 * registers for the first multicast addresses, and hashes the rest into the
2063 * multicast table.
2064 **/
2065s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2066 struct net_device *netdev)
2067{
2068 struct netdev_hw_addr *ha;
2069 u32 i;
2070
2071 /*
2072 * Set the new number of MC addresses that we are being requested to
2073 * use.
2074 */
2075 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2076 hw->addr_ctrl.mta_in_use = 0;
2077
2078 /* Clear mta_shadow */
2079 hw_dbg(hw, " Clearing MTA\n");
2080 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2081
2082 /* Update mta shadow */
2083 netdev_for_each_mc_addr(ha, netdev) {
2084 hw_dbg(hw, " Adding the multicast addresses:\n");
2085 ixgbe_set_mta(hw, ha->addr);
2086 }
2087
2088 /* Enable mta */
2089 for (i = 0; i < hw->mac.mcft_size; i++)
2090 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2091 hw->mac.mta_shadow[i]);
2092
2093 if (hw->addr_ctrl.mta_in_use > 0)
2094 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2095 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2096
2097 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2098 return 0;
2099}
2100
2101/**
2102 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2103 * @hw: pointer to hardware structure
2104 *
2105 * Enables multicast address in RAR and the use of the multicast hash table.
2106 **/
2107s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2108{
2109 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2110
2111 if (a->mta_in_use > 0)
2112 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2113 hw->mac.mc_filter_type);
2114
2115 return 0;
2116}
2117
2118/**
2119 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2120 * @hw: pointer to hardware structure
2121 *
2122 * Disables multicast address in RAR and the use of the multicast hash table.
2123 **/
2124s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2125{
2126 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127
2128 if (a->mta_in_use > 0)
2129 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2130
2131 return 0;
2132}
2133
2134/**
2135 * ixgbe_fc_enable_generic - Enable flow control
2136 * @hw: pointer to hardware structure
2137 *
2138 * Enable flow control according to the current settings.
2139 **/
2140s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2141{
2142 u32 mflcn_reg, fccfg_reg;
2143 u32 reg;
2144 u32 fcrtl, fcrth;
2145 int i;
2146
2147 /* Validate the water mark configuration. */
2148 if (!hw->fc.pause_time)
2149 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2150
2151 /* Low water mark of zero causes XOFF floods */
2152 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2153 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2154 hw->fc.high_water[i]) {
2155 if (!hw->fc.low_water[i] ||
2156 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2157 hw_dbg(hw, "Invalid water mark configuration\n");
2158 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2159 }
2160 }
2161 }
2162
2163 /* Negotiate the fc mode to use */
2164 hw->mac.ops.fc_autoneg(hw);
2165
2166 /* Disable any previous flow control settings */
2167 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2168 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2169
2170 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2171 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2172
2173 /*
2174 * The possible values of fc.current_mode are:
2175 * 0: Flow control is completely disabled
2176 * 1: Rx flow control is enabled (we can receive pause frames,
2177 * but not send pause frames).
2178 * 2: Tx flow control is enabled (we can send pause frames but
2179 * we do not support receiving pause frames).
2180 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2181 * other: Invalid.
2182 */
2183 switch (hw->fc.current_mode) {
2184 case ixgbe_fc_none:
2185 /*
2186 * Flow control is disabled by software override or autoneg.
2187 * The code below will actually disable it in the HW.
2188 */
2189 break;
2190 case ixgbe_fc_rx_pause:
2191 /*
2192 * Rx Flow control is enabled and Tx Flow control is
2193 * disabled by software override. Since there really
2194 * isn't a way to advertise that we are capable of RX
2195 * Pause ONLY, we will advertise that we support both
2196 * symmetric and asymmetric Rx PAUSE. Later, we will
2197 * disable the adapter's ability to send PAUSE frames.
2198 */
2199 mflcn_reg |= IXGBE_MFLCN_RFCE;
2200 break;
2201 case ixgbe_fc_tx_pause:
2202 /*
2203 * Tx Flow control is enabled, and Rx Flow control is
2204 * disabled by software override.
2205 */
2206 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2207 break;
2208 case ixgbe_fc_full:
2209 /* Flow control (both Rx and Tx) is enabled by SW override. */
2210 mflcn_reg |= IXGBE_MFLCN_RFCE;
2211 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2212 break;
2213 default:
2214 hw_dbg(hw, "Flow control param set incorrectly\n");
2215 return IXGBE_ERR_CONFIG;
2216 }
2217
2218 /* Set 802.3x based flow control settings. */
2219 mflcn_reg |= IXGBE_MFLCN_DPF;
2220 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2221 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2222
2223 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2224 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2225 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2226 hw->fc.high_water[i]) {
2227 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2228 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2229 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2230 } else {
2231 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2232 /*
2233 * In order to prevent Tx hangs when the internal Tx
2234 * switch is enabled we must set the high water mark
2235 * to the Rx packet buffer size - 24KB. This allows
2236 * the Tx switch to function even under heavy Rx
2237 * workloads.
2238 */
2239 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2240 }
2241
2242 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2243 }
2244
2245 /* Configure pause time (2 TCs per register) */
2246 reg = hw->fc.pause_time * 0x00010001U;
2247 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2248 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2249
2250 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2251
2252 return 0;
2253}
2254
2255/**
2256 * ixgbe_negotiate_fc - Negotiate flow control
2257 * @hw: pointer to hardware structure
2258 * @adv_reg: flow control advertised settings
2259 * @lp_reg: link partner's flow control settings
2260 * @adv_sym: symmetric pause bit in advertisement
2261 * @adv_asm: asymmetric pause bit in advertisement
2262 * @lp_sym: symmetric pause bit in link partner advertisement
2263 * @lp_asm: asymmetric pause bit in link partner advertisement
2264 *
2265 * Find the intersection between advertised settings and link partner's
2266 * advertised settings
2267 **/
2268s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2269 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2270{
2271 if ((!(adv_reg)) || (!(lp_reg)))
2272 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2273
2274 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2275 /*
2276 * Now we need to check if the user selected Rx ONLY
2277 * of pause frames. In this case, we had to advertise
2278 * FULL flow control because we could not advertise RX
2279 * ONLY. Hence, we must now check to see if we need to
2280 * turn OFF the TRANSMISSION of PAUSE frames.
2281 */
2282 if (hw->fc.requested_mode == ixgbe_fc_full) {
2283 hw->fc.current_mode = ixgbe_fc_full;
2284 hw_dbg(hw, "Flow Control = FULL.\n");
2285 } else {
2286 hw->fc.current_mode = ixgbe_fc_rx_pause;
2287 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2288 }
2289 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2290 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2291 hw->fc.current_mode = ixgbe_fc_tx_pause;
2292 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2293 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2294 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2295 hw->fc.current_mode = ixgbe_fc_rx_pause;
2296 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2297 } else {
2298 hw->fc.current_mode = ixgbe_fc_none;
2299 hw_dbg(hw, "Flow Control = NONE.\n");
2300 }
2301 return 0;
2302}
2303
2304/**
2305 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2306 * @hw: pointer to hardware structure
2307 *
2308 * Enable flow control according on 1 gig fiber.
2309 **/
2310static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2311{
2312 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2313 s32 ret_val;
2314
2315 /*
2316 * On multispeed fiber at 1g, bail out if
2317 * - link is up but AN did not complete, or if
2318 * - link is up and AN completed but timed out
2319 */
2320
2321 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2322 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2323 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2324 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2325
2326 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2327 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2328
2329 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2330 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2331 IXGBE_PCS1GANA_ASM_PAUSE,
2332 IXGBE_PCS1GANA_SYM_PAUSE,
2333 IXGBE_PCS1GANA_ASM_PAUSE);
2334
2335 return ret_val;
2336}
2337
2338/**
2339 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2340 * @hw: pointer to hardware structure
2341 *
2342 * Enable flow control according to IEEE clause 37.
2343 **/
2344static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2345{
2346 u32 links2, anlp1_reg, autoc_reg, links;
2347 s32 ret_val;
2348
2349 /*
2350 * On backplane, bail out if
2351 * - backplane autoneg was not completed, or if
2352 * - we are 82599 and link partner is not AN enabled
2353 */
2354 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2355 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2356 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2357
2358 if (hw->mac.type == ixgbe_mac_82599EB) {
2359 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2360 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2361 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2362 }
2363 /*
2364 * Read the 10g AN autoc and LP ability registers and resolve
2365 * local flow control settings accordingly
2366 */
2367 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2368 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2369
2370 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2371 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2372 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2373
2374 return ret_val;
2375}
2376
2377/**
2378 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2379 * @hw: pointer to hardware structure
2380 *
2381 * Enable flow control according to IEEE clause 37.
2382 **/
2383static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2384{
2385 u16 technology_ability_reg = 0;
2386 u16 lp_technology_ability_reg = 0;
2387
2388 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2389 MDIO_MMD_AN,
2390 &technology_ability_reg);
2391 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2392 MDIO_MMD_AN,
2393 &lp_technology_ability_reg);
2394
2395 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2396 (u32)lp_technology_ability_reg,
2397 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2398 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2399}
2400
2401/**
2402 * ixgbe_fc_autoneg - Configure flow control
2403 * @hw: pointer to hardware structure
2404 *
2405 * Compares our advertised flow control capabilities to those advertised by
2406 * our link partner, and determines the proper flow control mode to use.
2407 **/
2408void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2409{
2410 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2411 ixgbe_link_speed speed;
2412 bool link_up;
2413
2414 /*
2415 * AN should have completed when the cable was plugged in.
2416 * Look for reasons to bail out. Bail out if:
2417 * - FC autoneg is disabled, or if
2418 * - link is not up.
2419 *
2420 * Since we're being called from an LSC, link is already known to be up.
2421 * So use link_up_wait_to_complete=false.
2422 */
2423 if (hw->fc.disable_fc_autoneg)
2424 goto out;
2425
2426 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2427 if (!link_up)
2428 goto out;
2429
2430 switch (hw->phy.media_type) {
2431 /* Autoneg flow control on fiber adapters */
2432 case ixgbe_media_type_fiber:
2433 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2434 ret_val = ixgbe_fc_autoneg_fiber(hw);
2435 break;
2436
2437 /* Autoneg flow control on backplane adapters */
2438 case ixgbe_media_type_backplane:
2439 ret_val = ixgbe_fc_autoneg_backplane(hw);
2440 break;
2441
2442 /* Autoneg flow control on copper adapters */
2443 case ixgbe_media_type_copper:
2444 if (ixgbe_device_supports_autoneg_fc(hw))
2445 ret_val = ixgbe_fc_autoneg_copper(hw);
2446 break;
2447
2448 default:
2449 break;
2450 }
2451
2452out:
2453 if (ret_val == 0) {
2454 hw->fc.fc_was_autonegged = true;
2455 } else {
2456 hw->fc.fc_was_autonegged = false;
2457 hw->fc.current_mode = hw->fc.requested_mode;
2458 }
2459}
2460
2461/**
2462 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2463 * @hw: pointer to hardware structure
2464 *
2465 * System-wide timeout range is encoded in PCIe Device Control2 register.
2466 *
2467 * Add 10% to specified maximum and return the number of times to poll for
2468 * completion timeout, in units of 100 microsec. Never return less than
2469 * 800 = 80 millisec.
2470 **/
2471static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2472{
2473 s16 devctl2;
2474 u32 pollcnt;
2475
2476 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2477 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2478
2479 switch (devctl2) {
2480 case IXGBE_PCIDEVCTRL2_65_130ms:
2481 pollcnt = 1300; /* 130 millisec */
2482 break;
2483 case IXGBE_PCIDEVCTRL2_260_520ms:
2484 pollcnt = 5200; /* 520 millisec */
2485 break;
2486 case IXGBE_PCIDEVCTRL2_1_2s:
2487 pollcnt = 20000; /* 2 sec */
2488 break;
2489 case IXGBE_PCIDEVCTRL2_4_8s:
2490 pollcnt = 80000; /* 8 sec */
2491 break;
2492 case IXGBE_PCIDEVCTRL2_17_34s:
2493 pollcnt = 34000; /* 34 sec */
2494 break;
2495 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2496 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2497 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2498 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2499 default:
2500 pollcnt = 800; /* 80 millisec minimum */
2501 break;
2502 }
2503
2504 /* add 10% to spec maximum */
2505 return (pollcnt * 11) / 10;
2506}
2507
2508/**
2509 * ixgbe_disable_pcie_master - Disable PCI-express master access
2510 * @hw: pointer to hardware structure
2511 *
2512 * Disables PCI-Express master access and verifies there are no pending
2513 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2514 * bit hasn't caused the master requests to be disabled, else 0
2515 * is returned signifying master requests disabled.
2516 **/
2517static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2518{
2519 u32 i, poll;
2520 u16 value;
2521
2522 /* Always set this bit to ensure any future transactions are blocked */
2523 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2524
2525 /* Poll for bit to read as set */
2526 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2527 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2528 break;
2529 usleep_range(100, 120);
2530 }
2531 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2532 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2533 goto gio_disable_fail;
2534 }
2535
2536 /* Exit if master requests are blocked */
2537 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2538 ixgbe_removed(hw->hw_addr))
2539 return 0;
2540
2541 /* Poll for master request bit to clear */
2542 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543 udelay(100);
2544 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2545 return 0;
2546 }
2547
2548 /*
2549 * Two consecutive resets are required via CTRL.RST per datasheet
2550 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2551 * of this need. The first reset prevents new master requests from
2552 * being issued by our device. We then must wait 1usec or more for any
2553 * remaining completions from the PCIe bus to trickle in, and then reset
2554 * again to clear out any effects they may have had on our device.
2555 */
2556 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2557gio_disable_fail:
2558 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2559
2560 if (hw->mac.type >= ixgbe_mac_X550)
2561 return 0;
2562
2563 /*
2564 * Before proceeding, make sure that the PCIe block does not have
2565 * transactions pending.
2566 */
2567 poll = ixgbe_pcie_timeout_poll(hw);
2568 for (i = 0; i < poll; i++) {
2569 udelay(100);
2570 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2571 if (ixgbe_removed(hw->hw_addr))
2572 return 0;
2573 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2574 return 0;
2575 }
2576
2577 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2578 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2579}
2580
2581/**
2582 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2583 * @hw: pointer to hardware structure
2584 * @mask: Mask to specify which semaphore to acquire
2585 *
2586 * Acquires the SWFW semaphore through the GSSR register for the specified
2587 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2588 **/
2589s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2590{
2591 u32 gssr = 0;
2592 u32 swmask = mask;
2593 u32 fwmask = mask << 5;
2594 u32 timeout = 200;
2595 u32 i;
2596
2597 for (i = 0; i < timeout; i++) {
2598 /*
2599 * SW NVM semaphore bit is used for access to all
2600 * SW_FW_SYNC bits (not just NVM)
2601 */
2602 if (ixgbe_get_eeprom_semaphore(hw))
2603 return IXGBE_ERR_SWFW_SYNC;
2604
2605 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2606 if (!(gssr & (fwmask | swmask))) {
2607 gssr |= swmask;
2608 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2609 ixgbe_release_eeprom_semaphore(hw);
2610 return 0;
2611 } else {
2612 /* Resource is currently in use by FW or SW */
2613 ixgbe_release_eeprom_semaphore(hw);
2614 usleep_range(5000, 10000);
2615 }
2616 }
2617
2618 /* If time expired clear the bits holding the lock and retry */
2619 if (gssr & (fwmask | swmask))
2620 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2621
2622 usleep_range(5000, 10000);
2623 return IXGBE_ERR_SWFW_SYNC;
2624}
2625
2626/**
2627 * ixgbe_release_swfw_sync - Release SWFW semaphore
2628 * @hw: pointer to hardware structure
2629 * @mask: Mask to specify which semaphore to release
2630 *
2631 * Releases the SWFW semaphore through the GSSR register for the specified
2632 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2633 **/
2634void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2635{
2636 u32 gssr;
2637 u32 swmask = mask;
2638
2639 ixgbe_get_eeprom_semaphore(hw);
2640
2641 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2642 gssr &= ~swmask;
2643 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2644
2645 ixgbe_release_eeprom_semaphore(hw);
2646}
2647
2648/**
2649 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2650 * @hw: pointer to hardware structure
2651 * @reg_val: Value we read from AUTOC
2652 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2653 * true in this the generic case.
2654 *
2655 * The default case requires no protection so just to the register read.
2656 **/
2657s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2658{
2659 *locked = false;
2660 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2661 return 0;
2662}
2663
2664/**
2665 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2666 * @hw: pointer to hardware structure
2667 * @reg_val: value to write to AUTOC
2668 * @locked: bool to indicate whether the SW/FW lock was already taken by
2669 * previous read.
2670 **/
2671s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2672{
2673 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2674 return 0;
2675}
2676
2677/**
2678 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2679 * @hw: pointer to hardware structure
2680 *
2681 * Stops the receive data path and waits for the HW to internally
2682 * empty the Rx security block.
2683 **/
2684s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2685{
2686#define IXGBE_MAX_SECRX_POLL 40
2687 int i;
2688 int secrxreg;
2689
2690 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2691 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2692 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2693 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2694 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2695 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2696 break;
2697 else
2698 /* Use interrupt-safe sleep just in case */
2699 udelay(1000);
2700 }
2701
2702 /* For informational purposes only */
2703 if (i >= IXGBE_MAX_SECRX_POLL)
2704 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2705
2706 return 0;
2707
2708}
2709
2710/**
2711 * ixgbe_enable_rx_buff_generic - Enables the receive data path
2712 * @hw: pointer to hardware structure
2713 *
2714 * Enables the receive data path
2715 **/
2716s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2717{
2718 u32 secrxreg;
2719
2720 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2721 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2722 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2723 IXGBE_WRITE_FLUSH(hw);
2724
2725 return 0;
2726}
2727
2728/**
2729 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2730 * @hw: pointer to hardware structure
2731 * @regval: register value to write to RXCTRL
2732 *
2733 * Enables the Rx DMA unit
2734 **/
2735s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2736{
2737 if (regval & IXGBE_RXCTRL_RXEN)
2738 hw->mac.ops.enable_rx(hw);
2739 else
2740 hw->mac.ops.disable_rx(hw);
2741
2742 return 0;
2743}
2744
2745/**
2746 * ixgbe_blink_led_start_generic - Blink LED based on index.
2747 * @hw: pointer to hardware structure
2748 * @index: led number to blink
2749 **/
2750s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2751{
2752 ixgbe_link_speed speed = 0;
2753 bool link_up = false;
2754 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2755 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2756 bool locked = false;
2757 s32 ret_val;
2758
2759 if (index > 3)
2760 return IXGBE_ERR_PARAM;
2761
2762 /*
2763 * Link must be up to auto-blink the LEDs;
2764 * Force it if link is down.
2765 */
2766 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2767
2768 if (!link_up) {
2769 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2770 if (ret_val)
2771 return ret_val;
2772
2773 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2774 autoc_reg |= IXGBE_AUTOC_FLU;
2775
2776 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2777 if (ret_val)
2778 return ret_val;
2779
2780 IXGBE_WRITE_FLUSH(hw);
2781
2782 usleep_range(10000, 20000);
2783 }
2784
2785 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2786 led_reg |= IXGBE_LED_BLINK(index);
2787 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2788 IXGBE_WRITE_FLUSH(hw);
2789
2790 return 0;
2791}
2792
2793/**
2794 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2795 * @hw: pointer to hardware structure
2796 * @index: led number to stop blinking
2797 **/
2798s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2799{
2800 u32 autoc_reg = 0;
2801 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2802 bool locked = false;
2803 s32 ret_val;
2804
2805 if (index > 3)
2806 return IXGBE_ERR_PARAM;
2807
2808 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2809 if (ret_val)
2810 return ret_val;
2811
2812 autoc_reg &= ~IXGBE_AUTOC_FLU;
2813 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2814
2815 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2816 if (ret_val)
2817 return ret_val;
2818
2819 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2820 led_reg &= ~IXGBE_LED_BLINK(index);
2821 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2822 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2823 IXGBE_WRITE_FLUSH(hw);
2824
2825 return 0;
2826}
2827
2828/**
2829 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2830 * @hw: pointer to hardware structure
2831 * @san_mac_offset: SAN MAC address offset
2832 *
2833 * This function will read the EEPROM location for the SAN MAC address
2834 * pointer, and returns the value at that location. This is used in both
2835 * get and set mac_addr routines.
2836 **/
2837static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2838 u16 *san_mac_offset)
2839{
2840 s32 ret_val;
2841
2842 /*
2843 * First read the EEPROM pointer to see if the MAC addresses are
2844 * available.
2845 */
2846 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2847 san_mac_offset);
2848 if (ret_val)
2849 hw_err(hw, "eeprom read at offset %d failed\n",
2850 IXGBE_SAN_MAC_ADDR_PTR);
2851
2852 return ret_val;
2853}
2854
2855/**
2856 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2857 * @hw: pointer to hardware structure
2858 * @san_mac_addr: SAN MAC address
2859 *
2860 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2861 * per-port, so set_lan_id() must be called before reading the addresses.
2862 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2863 * upon for non-SFP connections, so we must call it here.
2864 **/
2865s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2866{
2867 u16 san_mac_data, san_mac_offset;
2868 u8 i;
2869 s32 ret_val;
2870
2871 /*
2872 * First read the EEPROM pointer to see if the MAC addresses are
2873 * available. If they're not, no point in calling set_lan_id() here.
2874 */
2875 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2876 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2877
2878 goto san_mac_addr_clr;
2879
2880 /* make sure we know which port we need to program */
2881 hw->mac.ops.set_lan_id(hw);
2882 /* apply the port offset to the address offset */
2883 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2884 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2885 for (i = 0; i < 3; i++) {
2886 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2887 &san_mac_data);
2888 if (ret_val) {
2889 hw_err(hw, "eeprom read at offset %d failed\n",
2890 san_mac_offset);
2891 goto san_mac_addr_clr;
2892 }
2893 san_mac_addr[i * 2] = (u8)(san_mac_data);
2894 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2895 san_mac_offset++;
2896 }
2897 return 0;
2898
2899san_mac_addr_clr:
2900 /* No addresses available in this EEPROM. It's not necessarily an
2901 * error though, so just wipe the local address and return.
2902 */
2903 for (i = 0; i < 6; i++)
2904 san_mac_addr[i] = 0xFF;
2905 return ret_val;
2906}
2907
2908/**
2909 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2910 * @hw: pointer to hardware structure
2911 *
2912 * Read PCIe configuration space, and get the MSI-X vector count from
2913 * the capabilities table.
2914 **/
2915u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2916{
2917 u16 msix_count;
2918 u16 max_msix_count;
2919 u16 pcie_offset;
2920
2921 switch (hw->mac.type) {
2922 case ixgbe_mac_82598EB:
2923 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2924 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2925 break;
2926 case ixgbe_mac_82599EB:
2927 case ixgbe_mac_X540:
2928 case ixgbe_mac_X550:
2929 case ixgbe_mac_X550EM_x:
2930 case ixgbe_mac_x550em_a:
2931 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2932 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2933 break;
2934 default:
2935 return 1;
2936 }
2937
2938 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2939 if (ixgbe_removed(hw->hw_addr))
2940 msix_count = 0;
2941 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2942
2943 /* MSI-X count is zero-based in HW */
2944 msix_count++;
2945
2946 if (msix_count > max_msix_count)
2947 msix_count = max_msix_count;
2948
2949 return msix_count;
2950}
2951
2952/**
2953 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2954 * @hw: pointer to hardware struct
2955 * @rar: receive address register index to disassociate
2956 * @vmdq: VMDq pool index to remove from the rar
2957 **/
2958s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2959{
2960 u32 mpsar_lo, mpsar_hi;
2961 u32 rar_entries = hw->mac.num_rar_entries;
2962
2963 /* Make sure we are using a valid rar index range */
2964 if (rar >= rar_entries) {
2965 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2966 return IXGBE_ERR_INVALID_ARGUMENT;
2967 }
2968
2969 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2970 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2971
2972 if (ixgbe_removed(hw->hw_addr))
2973 return 0;
2974
2975 if (!mpsar_lo && !mpsar_hi)
2976 return 0;
2977
2978 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2979 if (mpsar_lo) {
2980 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2981 mpsar_lo = 0;
2982 }
2983 if (mpsar_hi) {
2984 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2985 mpsar_hi = 0;
2986 }
2987 } else if (vmdq < 32) {
2988 mpsar_lo &= ~BIT(vmdq);
2989 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2990 } else {
2991 mpsar_hi &= ~BIT(vmdq - 32);
2992 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2993 }
2994
2995 /* was that the last pool using this rar? */
2996 if (mpsar_lo == 0 && mpsar_hi == 0 &&
2997 rar != 0 && rar != hw->mac.san_mac_rar_index)
2998 hw->mac.ops.clear_rar(hw, rar);
2999
3000 return 0;
3001}
3002
3003/**
3004 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3005 * @hw: pointer to hardware struct
3006 * @rar: receive address register index to associate with a VMDq index
3007 * @vmdq: VMDq pool index
3008 **/
3009s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3010{
3011 u32 mpsar;
3012 u32 rar_entries = hw->mac.num_rar_entries;
3013
3014 /* Make sure we are using a valid rar index range */
3015 if (rar >= rar_entries) {
3016 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3017 return IXGBE_ERR_INVALID_ARGUMENT;
3018 }
3019
3020 if (vmdq < 32) {
3021 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3022 mpsar |= BIT(vmdq);
3023 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3024 } else {
3025 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3026 mpsar |= BIT(vmdq - 32);
3027 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3028 }
3029 return 0;
3030}
3031
3032/**
3033 * ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3034 * @hw: pointer to hardware struct
3035 * @vmdq: VMDq pool index
3036 *
3037 * This function should only be involved in the IOV mode.
3038 * In IOV mode, Default pool is next pool after the number of
3039 * VFs advertized and not 0.
3040 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3041 **/
3042s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3043{
3044 u32 rar = hw->mac.san_mac_rar_index;
3045
3046 if (vmdq < 32) {
3047 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3048 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3049 } else {
3050 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3051 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3052 }
3053
3054 return 0;
3055}
3056
3057/**
3058 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3059 * @hw: pointer to hardware structure
3060 **/
3061s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3062{
3063 int i;
3064
3065 for (i = 0; i < 128; i++)
3066 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3067
3068 return 0;
3069}
3070
3071/**
3072 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3073 * @hw: pointer to hardware structure
3074 * @vlan: VLAN id to write to VLAN filter
3075 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3076 * vlanid not found
3077 *
3078 * return the VLVF index where this VLAN id should be placed
3079 *
3080 **/
3081static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3082{
3083 s32 regindex, first_empty_slot;
3084 u32 bits;
3085
3086 /* short cut the special case */
3087 if (vlan == 0)
3088 return 0;
3089
3090 /* if vlvf_bypass is set we don't want to use an empty slot, we
3091 * will simply bypass the VLVF if there are no entries present in the
3092 * VLVF that contain our VLAN
3093 */
3094 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3095
3096 /* add VLAN enable bit for comparison */
3097 vlan |= IXGBE_VLVF_VIEN;
3098
3099 /* Search for the vlan id in the VLVF entries. Save off the first empty
3100 * slot found along the way.
3101 *
3102 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3103 */
3104 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3105 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3106 if (bits == vlan)
3107 return regindex;
3108 if (!first_empty_slot && !bits)
3109 first_empty_slot = regindex;
3110 }
3111
3112 /* If we are here then we didn't find the VLAN. Return first empty
3113 * slot we found during our search, else error.
3114 */
3115 if (!first_empty_slot)
3116 hw_dbg(hw, "No space in VLVF.\n");
3117
3118 return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3119}
3120
3121/**
3122 * ixgbe_set_vfta_generic - Set VLAN filter table
3123 * @hw: pointer to hardware structure
3124 * @vlan: VLAN id to write to VLAN filter
3125 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3126 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3127 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3128 *
3129 * Turn on/off specified VLAN in the VLAN filter table.
3130 **/
3131s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3132 bool vlan_on, bool vlvf_bypass)
3133{
3134 u32 regidx, vfta_delta, vfta, bits;
3135 s32 vlvf_index;
3136
3137 if ((vlan > 4095) || (vind > 63))
3138 return IXGBE_ERR_PARAM;
3139
3140 /*
3141 * this is a 2 part operation - first the VFTA, then the
3142 * VLVF and VLVFB if VT Mode is set
3143 * We don't write the VFTA until we know the VLVF part succeeded.
3144 */
3145
3146 /* Part 1
3147 * The VFTA is a bitstring made up of 128 32-bit registers
3148 * that enable the particular VLAN id, much like the MTA:
3149 * bits[11-5]: which register
3150 * bits[4-0]: which bit in the register
3151 */
3152 regidx = vlan / 32;
3153 vfta_delta = BIT(vlan % 32);
3154 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3155
3156 /* vfta_delta represents the difference between the current value
3157 * of vfta and the value we want in the register. Since the diff
3158 * is an XOR mask we can just update vfta using an XOR.
3159 */
3160 vfta_delta &= vlan_on ? ~vfta : vfta;
3161 vfta ^= vfta_delta;
3162
3163 /* Part 2
3164 * If VT Mode is set
3165 * Either vlan_on
3166 * make sure the vlan is in VLVF
3167 * set the vind bit in the matching VLVFB
3168 * Or !vlan_on
3169 * clear the pool bit and possibly the vind
3170 */
3171 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3172 goto vfta_update;
3173
3174 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3175 if (vlvf_index < 0) {
3176 if (vlvf_bypass)
3177 goto vfta_update;
3178 return vlvf_index;
3179 }
3180
3181 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3182
3183 /* set the pool bit */
3184 bits |= BIT(vind % 32);
3185 if (vlan_on)
3186 goto vlvf_update;
3187
3188 /* clear the pool bit */
3189 bits ^= BIT(vind % 32);
3190
3191 if (!bits &&
3192 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3193 /* Clear VFTA first, then disable VLVF. Otherwise
3194 * we run the risk of stray packets leaking into
3195 * the PF via the default pool
3196 */
3197 if (vfta_delta)
3198 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3199
3200 /* disable VLVF and clear remaining bit from pool */
3201 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3202 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3203
3204 return 0;
3205 }
3206
3207 /* If there are still bits set in the VLVFB registers
3208 * for the VLAN ID indicated we need to see if the
3209 * caller is requesting that we clear the VFTA entry bit.
3210 * If the caller has requested that we clear the VFTA
3211 * entry bit but there are still pools/VFs using this VLAN
3212 * ID entry then ignore the request. We're not worried
3213 * about the case where we're turning the VFTA VLAN ID
3214 * entry bit on, only when requested to turn it off as
3215 * there may be multiple pools and/or VFs using the
3216 * VLAN ID entry. In that case we cannot clear the
3217 * VFTA bit until all pools/VFs using that VLAN ID have also
3218 * been cleared. This will be indicated by "bits" being
3219 * zero.
3220 */
3221 vfta_delta = 0;
3222
3223vlvf_update:
3224 /* record pool change and enable VLAN ID if not already enabled */
3225 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3226 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3227
3228vfta_update:
3229 /* Update VFTA now that we are ready for traffic */
3230 if (vfta_delta)
3231 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3232
3233 return 0;
3234}
3235
3236/**
3237 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3238 * @hw: pointer to hardware structure
3239 *
3240 * Clears the VLAN filer table, and the VMDq index associated with the filter
3241 **/
3242s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3243{
3244 u32 offset;
3245
3246 for (offset = 0; offset < hw->mac.vft_size; offset++)
3247 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3248
3249 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3250 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3251 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3252 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3253 }
3254
3255 return 0;
3256}
3257
3258/**
3259 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3260 * @hw: pointer to hardware structure
3261 *
3262 * Contains the logic to identify if we need to verify link for the
3263 * crosstalk fix
3264 **/
3265static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3266{
3267 /* Does FW say we need the fix */
3268 if (!hw->need_crosstalk_fix)
3269 return false;
3270
3271 /* Only consider SFP+ PHYs i.e. media type fiber */
3272 switch (hw->mac.ops.get_media_type(hw)) {
3273 case ixgbe_media_type_fiber:
3274 case ixgbe_media_type_fiber_qsfp:
3275 break;
3276 default:
3277 return false;
3278 }
3279
3280 return true;
3281}
3282
3283/**
3284 * ixgbe_check_mac_link_generic - Determine link and speed status
3285 * @hw: pointer to hardware structure
3286 * @speed: pointer to link speed
3287 * @link_up: true when link is up
3288 * @link_up_wait_to_complete: bool used to wait for link up or not
3289 *
3290 * Reads the links register to determine if link is up and the current speed
3291 **/
3292s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3293 bool *link_up, bool link_up_wait_to_complete)
3294{
3295 u32 links_reg, links_orig;
3296 u32 i;
3297
3298 /* If Crosstalk fix enabled do the sanity check of making sure
3299 * the SFP+ cage is full.
3300 */
3301 if (ixgbe_need_crosstalk_fix(hw)) {
3302 u32 sfp_cage_full;
3303
3304 switch (hw->mac.type) {
3305 case ixgbe_mac_82599EB:
3306 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3307 IXGBE_ESDP_SDP2;
3308 break;
3309 case ixgbe_mac_X550EM_x:
3310 case ixgbe_mac_x550em_a:
3311 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3312 IXGBE_ESDP_SDP0;
3313 break;
3314 default:
3315 /* sanity check - No SFP+ devices here */
3316 sfp_cage_full = false;
3317 break;
3318 }
3319
3320 if (!sfp_cage_full) {
3321 *link_up = false;
3322 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3323 return 0;
3324 }
3325 }
3326
3327 /* clear the old state */
3328 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3329
3330 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3331
3332 if (links_orig != links_reg) {
3333 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3334 links_orig, links_reg);
3335 }
3336
3337 if (link_up_wait_to_complete) {
3338 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3339 if (links_reg & IXGBE_LINKS_UP) {
3340 *link_up = true;
3341 break;
3342 } else {
3343 *link_up = false;
3344 }
3345 msleep(100);
3346 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347 }
3348 } else {
3349 if (links_reg & IXGBE_LINKS_UP)
3350 *link_up = true;
3351 else
3352 *link_up = false;
3353 }
3354
3355 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3356 case IXGBE_LINKS_SPEED_10G_82599:
3357 if ((hw->mac.type >= ixgbe_mac_X550) &&
3358 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3359 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3360 else
3361 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3362 break;
3363 case IXGBE_LINKS_SPEED_1G_82599:
3364 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3365 break;
3366 case IXGBE_LINKS_SPEED_100_82599:
3367 if ((hw->mac.type >= ixgbe_mac_X550) &&
3368 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3369 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3370 else
3371 *speed = IXGBE_LINK_SPEED_100_FULL;
3372 break;
3373 case IXGBE_LINKS_SPEED_10_X550EM_A:
3374 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3375 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3376 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3377 *speed = IXGBE_LINK_SPEED_10_FULL;
3378 }
3379 break;
3380 default:
3381 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3382 }
3383
3384 return 0;
3385}
3386
3387/**
3388 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3389 * the EEPROM
3390 * @hw: pointer to hardware structure
3391 * @wwnn_prefix: the alternative WWNN prefix
3392 * @wwpn_prefix: the alternative WWPN prefix
3393 *
3394 * This function will read the EEPROM from the alternative SAN MAC address
3395 * block to check the support for the alternative WWNN/WWPN prefix support.
3396 **/
3397s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3398 u16 *wwpn_prefix)
3399{
3400 u16 offset, caps;
3401 u16 alt_san_mac_blk_offset;
3402
3403 /* clear output first */
3404 *wwnn_prefix = 0xFFFF;
3405 *wwpn_prefix = 0xFFFF;
3406
3407 /* check if alternative SAN MAC is supported */
3408 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3409 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3410 goto wwn_prefix_err;
3411
3412 if ((alt_san_mac_blk_offset == 0) ||
3413 (alt_san_mac_blk_offset == 0xFFFF))
3414 return 0;
3415
3416 /* check capability in alternative san mac address block */
3417 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3418 if (hw->eeprom.ops.read(hw, offset, &caps))
3419 goto wwn_prefix_err;
3420 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3421 return 0;
3422
3423 /* get the corresponding prefix for WWNN/WWPN */
3424 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3425 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3426 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3427
3428 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3429 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3430 goto wwn_prefix_err;
3431
3432 return 0;
3433
3434wwn_prefix_err:
3435 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3436 return 0;
3437}
3438
3439/**
3440 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3441 * @hw: pointer to hardware structure
3442 * @enable: enable or disable switch for MAC anti-spoofing
3443 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3444 *
3445 **/
3446void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3447{
3448 int vf_target_reg = vf >> 3;
3449 int vf_target_shift = vf % 8;
3450 u32 pfvfspoof;
3451
3452 if (hw->mac.type == ixgbe_mac_82598EB)
3453 return;
3454
3455 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3456 if (enable)
3457 pfvfspoof |= BIT(vf_target_shift);
3458 else
3459 pfvfspoof &= ~BIT(vf_target_shift);
3460 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3461}
3462
3463/**
3464 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3465 * @hw: pointer to hardware structure
3466 * @enable: enable or disable switch for VLAN anti-spoofing
3467 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3468 *
3469 **/
3470void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3471{
3472 int vf_target_reg = vf >> 3;
3473 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3474 u32 pfvfspoof;
3475
3476 if (hw->mac.type == ixgbe_mac_82598EB)
3477 return;
3478
3479 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3480 if (enable)
3481 pfvfspoof |= BIT(vf_target_shift);
3482 else
3483 pfvfspoof &= ~BIT(vf_target_shift);
3484 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3485}
3486
3487/**
3488 * ixgbe_get_device_caps_generic - Get additional device capabilities
3489 * @hw: pointer to hardware structure
3490 * @device_caps: the EEPROM word with the extra device capabilities
3491 *
3492 * This function will read the EEPROM location for the device capabilities,
3493 * and return the word through device_caps.
3494 **/
3495s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3496{
3497 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3498
3499 return 0;
3500}
3501
3502/**
3503 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3504 * @hw: pointer to hardware structure
3505 * @num_pb: number of packet buffers to allocate
3506 * @headroom: reserve n KB of headroom
3507 * @strategy: packet buffer allocation strategy
3508 **/
3509void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3510 int num_pb,
3511 u32 headroom,
3512 int strategy)
3513{
3514 u32 pbsize = hw->mac.rx_pb_size;
3515 int i = 0;
3516 u32 rxpktsize, txpktsize, txpbthresh;
3517
3518 /* Reserve headroom */
3519 pbsize -= headroom;
3520
3521 if (!num_pb)
3522 num_pb = 1;
3523
3524 /* Divide remaining packet buffer space amongst the number
3525 * of packet buffers requested using supplied strategy.
3526 */
3527 switch (strategy) {
3528 case (PBA_STRATEGY_WEIGHTED):
3529 /* pba_80_48 strategy weight first half of packet buffer with
3530 * 5/8 of the packet buffer space.
3531 */
3532 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3533 pbsize -= rxpktsize * (num_pb / 2);
3534 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3535 for (; i < (num_pb / 2); i++)
3536 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3537 fallthrough; /* configure remaining packet buffers */
3538 case (PBA_STRATEGY_EQUAL):
3539 /* Divide the remaining Rx packet buffer evenly among the TCs */
3540 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3541 for (; i < num_pb; i++)
3542 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3543 break;
3544 default:
3545 break;
3546 }
3547
3548 /*
3549 * Setup Tx packet buffer and threshold equally for all TCs
3550 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3551 * 10 since the largest packet we support is just over 9K.
3552 */
3553 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3554 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3555 for (i = 0; i < num_pb; i++) {
3556 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3557 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3558 }
3559
3560 /* Clear unused TCs, if any, to zero buffer size*/
3561 for (; i < IXGBE_MAX_PB; i++) {
3562 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3563 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3564 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3565 }
3566}
3567
3568/**
3569 * ixgbe_calculate_checksum - Calculate checksum for buffer
3570 * @buffer: pointer to EEPROM
3571 * @length: size of EEPROM to calculate a checksum for
3572 *
3573 * Calculates the checksum for some buffer on a specified length. The
3574 * checksum calculated is returned.
3575 **/
3576u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3577{
3578 u32 i;
3579 u8 sum = 0;
3580
3581 if (!buffer)
3582 return 0;
3583
3584 for (i = 0; i < length; i++)
3585 sum += buffer[i];
3586
3587 return (u8) (0 - sum);
3588}
3589
3590/**
3591 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
3592 * @hw: pointer to the HW structure
3593 * @buffer: command to write and where the return status will be placed
3594 * @length: length of buffer, must be multiple of 4 bytes
3595 * @timeout: time in ms to wait for command completion
3596 *
3597 * Communicates with the manageability block. On success return 0
3598 * else returns semaphore error when encountering an error acquiring
3599 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3600 *
3601 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3602 * by the caller.
3603 **/
3604s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3605 u32 timeout)
3606{
3607 u32 hicr, i, fwsts;
3608 u16 dword_len;
3609
3610 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3611 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3612 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3613 }
3614
3615 /* Set bit 9 of FWSTS clearing FW reset indication */
3616 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3617 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3618
3619 /* Check that the host interface is enabled. */
3620 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3621 if (!(hicr & IXGBE_HICR_EN)) {
3622 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3623 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3624 }
3625
3626 /* Calculate length in DWORDs. We must be DWORD aligned */
3627 if (length % sizeof(u32)) {
3628 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3629 return IXGBE_ERR_INVALID_ARGUMENT;
3630 }
3631
3632 dword_len = length >> 2;
3633
3634 /* The device driver writes the relevant command block
3635 * into the ram area.
3636 */
3637 for (i = 0; i < dword_len; i++)
3638 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3639 i, (__force u32)cpu_to_le32(buffer[i]));
3640
3641 /* Setting this bit tells the ARC that a new command is pending. */
3642 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3643
3644 for (i = 0; i < timeout; i++) {
3645 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3646 if (!(hicr & IXGBE_HICR_C))
3647 break;
3648 usleep_range(1000, 2000);
3649 }
3650
3651 /* Check command successful completion. */
3652 if ((timeout && i == timeout) ||
3653 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3654 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3655
3656 return 0;
3657}
3658
3659/**
3660 * ixgbe_host_interface_command - Issue command to manageability block
3661 * @hw: pointer to the HW structure
3662 * @buffer: contains the command to write and where the return status will
3663 * be placed
3664 * @length: length of buffer, must be multiple of 4 bytes
3665 * @timeout: time in ms to wait for command completion
3666 * @return_data: read and return data from the buffer (true) or not (false)
3667 * Needed because FW structures are big endian and decoding of
3668 * these fields can be 8 bit or 16 bit based on command. Decoding
3669 * is not easily understood without making a table of commands.
3670 * So we will leave this up to the caller to read back the data
3671 * in these cases.
3672 *
3673 * Communicates with the manageability block. On success return 0
3674 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3675 **/
3676s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3677 u32 length, u32 timeout,
3678 bool return_data)
3679{
3680 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3681 struct ixgbe_hic_hdr *hdr = buffer;
3682 u32 *u32arr = buffer;
3683 u16 buf_len, dword_len;
3684 s32 status;
3685 u32 bi;
3686
3687 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3688 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3689 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3690 }
3691 /* Take management host interface semaphore */
3692 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3693 if (status)
3694 return status;
3695
3696 status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3697 if (status)
3698 goto rel_out;
3699
3700 if (!return_data)
3701 goto rel_out;
3702
3703 /* Calculate length in DWORDs */
3704 dword_len = hdr_size >> 2;
3705
3706 /* first pull in the header so we know the buffer length */
3707 for (bi = 0; bi < dword_len; bi++) {
3708 u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3709 le32_to_cpus(&u32arr[bi]);
3710 }
3711
3712 /* If there is any thing in data position pull it in */
3713 buf_len = hdr->buf_len;
3714 if (!buf_len)
3715 goto rel_out;
3716
3717 if (length < round_up(buf_len, 4) + hdr_size) {
3718 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3719 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3720 goto rel_out;
3721 }
3722
3723 /* Calculate length in DWORDs, add 3 for odd lengths */
3724 dword_len = (buf_len + 3) >> 2;
3725
3726 /* Pull in the rest of the buffer (bi is where we left off) */
3727 for (; bi <= dword_len; bi++) {
3728 u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3729 le32_to_cpus(&u32arr[bi]);
3730 }
3731
3732rel_out:
3733 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3734
3735 return status;
3736}
3737
3738/**
3739 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3740 * @hw: pointer to the HW structure
3741 * @maj: driver version major number
3742 * @min: driver version minor number
3743 * @build: driver version build number
3744 * @sub: driver version sub build number
3745 * @len: length of driver_ver string
3746 * @driver_ver: driver string
3747 *
3748 * Sends driver version number to firmware through the manageability
3749 * block. On success return 0
3750 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3751 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3752 **/
3753s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3754 u8 build, u8 sub, __always_unused u16 len,
3755 __always_unused const char *driver_ver)
3756{
3757 struct ixgbe_hic_drv_info fw_cmd;
3758 int i;
3759 s32 ret_val;
3760
3761 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3762 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3763 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3764 fw_cmd.port_num = hw->bus.func;
3765 fw_cmd.ver_maj = maj;
3766 fw_cmd.ver_min = min;
3767 fw_cmd.ver_build = build;
3768 fw_cmd.ver_sub = sub;
3769 fw_cmd.hdr.checksum = 0;
3770 fw_cmd.pad = 0;
3771 fw_cmd.pad2 = 0;
3772 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3773 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3774
3775 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3776 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3777 sizeof(fw_cmd),
3778 IXGBE_HI_COMMAND_TIMEOUT,
3779 true);
3780 if (ret_val != 0)
3781 continue;
3782
3783 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3784 FW_CEM_RESP_STATUS_SUCCESS)
3785 ret_val = 0;
3786 else
3787 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3788
3789 break;
3790 }
3791
3792 return ret_val;
3793}
3794
3795/**
3796 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3797 * @hw: pointer to the hardware structure
3798 *
3799 * The 82599 and x540 MACs can experience issues if TX work is still pending
3800 * when a reset occurs. This function prevents this by flushing the PCIe
3801 * buffers on the system.
3802 **/
3803void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3804{
3805 u32 gcr_ext, hlreg0, i, poll;
3806 u16 value;
3807
3808 /*
3809 * If double reset is not requested then all transactions should
3810 * already be clear and as such there is no work to do
3811 */
3812 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3813 return;
3814
3815 /*
3816 * Set loopback enable to prevent any transmits from being sent
3817 * should the link come up. This assumes that the RXCTRL.RXEN bit
3818 * has already been cleared.
3819 */
3820 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3821 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3822
3823 /* wait for a last completion before clearing buffers */
3824 IXGBE_WRITE_FLUSH(hw);
3825 usleep_range(3000, 6000);
3826
3827 /* Before proceeding, make sure that the PCIe block does not have
3828 * transactions pending.
3829 */
3830 poll = ixgbe_pcie_timeout_poll(hw);
3831 for (i = 0; i < poll; i++) {
3832 usleep_range(100, 200);
3833 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3834 if (ixgbe_removed(hw->hw_addr))
3835 break;
3836 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3837 break;
3838 }
3839
3840 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3841 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3842 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3843 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3844
3845 /* Flush all writes and allow 20usec for all transactions to clear */
3846 IXGBE_WRITE_FLUSH(hw);
3847 udelay(20);
3848
3849 /* restore previous register values */
3850 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3851 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3852}
3853
3854static const u8 ixgbe_emc_temp_data[4] = {
3855 IXGBE_EMC_INTERNAL_DATA,
3856 IXGBE_EMC_DIODE1_DATA,
3857 IXGBE_EMC_DIODE2_DATA,
3858 IXGBE_EMC_DIODE3_DATA
3859};
3860static const u8 ixgbe_emc_therm_limit[4] = {
3861 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3862 IXGBE_EMC_DIODE1_THERM_LIMIT,
3863 IXGBE_EMC_DIODE2_THERM_LIMIT,
3864 IXGBE_EMC_DIODE3_THERM_LIMIT
3865};
3866
3867/**
3868 * ixgbe_get_ets_data - Extracts the ETS bit data
3869 * @hw: pointer to hardware structure
3870 * @ets_cfg: extected ETS data
3871 * @ets_offset: offset of ETS data
3872 *
3873 * Returns error code.
3874 **/
3875static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3876 u16 *ets_offset)
3877{
3878 s32 status;
3879
3880 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3881 if (status)
3882 return status;
3883
3884 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3885 return IXGBE_NOT_IMPLEMENTED;
3886
3887 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3888 if (status)
3889 return status;
3890
3891 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3892 return IXGBE_NOT_IMPLEMENTED;
3893
3894 return 0;
3895}
3896
3897/**
3898 * ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3899 * @hw: pointer to hardware structure
3900 *
3901 * Returns the thermal sensor data structure
3902 **/
3903s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3904{
3905 s32 status;
3906 u16 ets_offset;
3907 u16 ets_cfg;
3908 u16 ets_sensor;
3909 u8 num_sensors;
3910 u8 i;
3911 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3912
3913 /* Only support thermal sensors attached to physical port 0 */
3914 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3915 return IXGBE_NOT_IMPLEMENTED;
3916
3917 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3918 if (status)
3919 return status;
3920
3921 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3922 if (num_sensors > IXGBE_MAX_SENSORS)
3923 num_sensors = IXGBE_MAX_SENSORS;
3924
3925 for (i = 0; i < num_sensors; i++) {
3926 u8 sensor_index;
3927 u8 sensor_location;
3928
3929 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3930 &ets_sensor);
3931 if (status)
3932 return status;
3933
3934 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3935 IXGBE_ETS_DATA_INDEX_SHIFT);
3936 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3937 IXGBE_ETS_DATA_LOC_SHIFT);
3938
3939 if (sensor_location != 0) {
3940 status = hw->phy.ops.read_i2c_byte(hw,
3941 ixgbe_emc_temp_data[sensor_index],
3942 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3943 &data->sensor[i].temp);
3944 if (status)
3945 return status;
3946 }
3947 }
3948
3949 return 0;
3950}
3951
3952/**
3953 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3954 * @hw: pointer to hardware structure
3955 *
3956 * Inits the thermal sensor thresholds according to the NVM map
3957 * and save off the threshold and location values into mac.thermal_sensor_data
3958 **/
3959s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3960{
3961 s32 status;
3962 u16 ets_offset;
3963 u16 ets_cfg;
3964 u16 ets_sensor;
3965 u8 low_thresh_delta;
3966 u8 num_sensors;
3967 u8 therm_limit;
3968 u8 i;
3969 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3970
3971 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3972
3973 /* Only support thermal sensors attached to physical port 0 */
3974 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3975 return IXGBE_NOT_IMPLEMENTED;
3976
3977 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3978 if (status)
3979 return status;
3980
3981 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3982 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3983 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3984 if (num_sensors > IXGBE_MAX_SENSORS)
3985 num_sensors = IXGBE_MAX_SENSORS;
3986
3987 for (i = 0; i < num_sensors; i++) {
3988 u8 sensor_index;
3989 u8 sensor_location;
3990
3991 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3992 hw_err(hw, "eeprom read at offset %d failed\n",
3993 ets_offset + 1 + i);
3994 continue;
3995 }
3996 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3997 IXGBE_ETS_DATA_INDEX_SHIFT);
3998 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3999 IXGBE_ETS_DATA_LOC_SHIFT);
4000 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4001
4002 hw->phy.ops.write_i2c_byte(hw,
4003 ixgbe_emc_therm_limit[sensor_index],
4004 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4005
4006 if (sensor_location == 0)
4007 continue;
4008
4009 data->sensor[i].location = sensor_location;
4010 data->sensor[i].caution_thresh = therm_limit;
4011 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4012 }
4013
4014 return 0;
4015}
4016
4017/**
4018 * ixgbe_get_orom_version - Return option ROM from EEPROM
4019 *
4020 * @hw: pointer to hardware structure
4021 * @nvm_ver: pointer to output structure
4022 *
4023 * if valid option ROM version, nvm_ver->or_valid set to true
4024 * else nvm_ver->or_valid is false.
4025 **/
4026void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4027 struct ixgbe_nvm_version *nvm_ver)
4028{
4029 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4030
4031 nvm_ver->or_valid = false;
4032 /* Option Rom may or may not be present. Start with pointer */
4033 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4034
4035 /* make sure offset is valid */
4036 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4037 return;
4038
4039 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4040 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4041
4042 /* option rom exists and is valid */
4043 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4044 eeprom_cfg_blkl == NVM_VER_INVALID ||
4045 eeprom_cfg_blkh == NVM_VER_INVALID)
4046 return;
4047
4048 nvm_ver->or_valid = true;
4049 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4050 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4051 (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4052 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4053}
4054
4055/**
4056 * ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4057 * @hw: pointer to hardware structure
4058 * @nvm_ver: pointer to output structure
4059 *
4060 * if valid OEM product version, nvm_ver->oem_valid set to true
4061 * else nvm_ver->oem_valid is false.
4062 **/
4063void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4064 struct ixgbe_nvm_version *nvm_ver)
4065{
4066 u16 rel_num, prod_ver, mod_len, cap, offset;
4067
4068 nvm_ver->oem_valid = false;
4069 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4070
4071 /* Return is offset to OEM Product Version block is invalid */
4072 if (offset == 0x0 || offset == NVM_INVALID_PTR)
4073 return;
4074
4075 /* Read product version block */
4076 hw->eeprom.ops.read(hw, offset, &mod_len);
4077 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4078
4079 /* Return if OEM product version block is invalid */
4080 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4081 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4082 return;
4083
4084 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4085 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4086
4087 /* Return if version is invalid */
4088 if ((rel_num | prod_ver) == 0x0 ||
4089 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4090 return;
4091
4092 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4093 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4094 nvm_ver->oem_release = rel_num;
4095 nvm_ver->oem_valid = true;
4096}
4097
4098/**
4099 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
4100 *
4101 * @hw: pointer to hardware structure
4102 * @nvm_ver: pointer to output structure
4103 *
4104 * word read errors will return 0xFFFF
4105 **/
4106void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4107 struct ixgbe_nvm_version *nvm_ver)
4108{
4109 u16 etk_id_l, etk_id_h;
4110
4111 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4112 etk_id_l = NVM_VER_INVALID;
4113 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4114 etk_id_h = NVM_VER_INVALID;
4115
4116 /* The word order for the version format is determined by high order
4117 * word bit 15.
4118 */
4119 if ((etk_id_h & NVM_ETK_VALID) == 0) {
4120 nvm_ver->etk_id = etk_id_h;
4121 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4122 } else {
4123 nvm_ver->etk_id = etk_id_l;
4124 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4125 }
4126}
4127
4128void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4129{
4130 u32 rxctrl;
4131
4132 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4133 if (rxctrl & IXGBE_RXCTRL_RXEN) {
4134 if (hw->mac.type != ixgbe_mac_82598EB) {
4135 u32 pfdtxgswc;
4136
4137 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4138 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4139 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4140 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4141 hw->mac.set_lben = true;
4142 } else {
4143 hw->mac.set_lben = false;
4144 }
4145 }
4146 rxctrl &= ~IXGBE_RXCTRL_RXEN;
4147 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4148 }
4149}
4150
4151void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4152{
4153 u32 rxctrl;
4154
4155 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4156 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4157
4158 if (hw->mac.type != ixgbe_mac_82598EB) {
4159 if (hw->mac.set_lben) {
4160 u32 pfdtxgswc;
4161
4162 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4163 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4164 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4165 hw->mac.set_lben = false;
4166 }
4167 }
4168}
4169
4170/** ixgbe_mng_present - returns true when management capability is present
4171 * @hw: pointer to hardware structure
4172 **/
4173bool ixgbe_mng_present(struct ixgbe_hw *hw)
4174{
4175 u32 fwsm;
4176
4177 if (hw->mac.type < ixgbe_mac_82599EB)
4178 return false;
4179
4180 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4181
4182 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4183}
4184
4185/**
4186 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4187 * @hw: pointer to hardware structure
4188 * @speed: new link speed
4189 * @autoneg_wait_to_complete: true when waiting for completion is needed
4190 *
4191 * Set the link speed in the MAC and/or PHY register and restarts link.
4192 */
4193s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4194 ixgbe_link_speed speed,
4195 bool autoneg_wait_to_complete)
4196{
4197 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4198 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4199 s32 status = 0;
4200 u32 speedcnt = 0;
4201 u32 i = 0;
4202 bool autoneg, link_up = false;
4203
4204 /* Mask off requested but non-supported speeds */
4205 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4206 if (status)
4207 return status;
4208
4209 speed &= link_speed;
4210
4211 /* Try each speed one by one, highest priority first. We do this in
4212 * software because 10Gb fiber doesn't support speed autonegotiation.
4213 */
4214 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4215 speedcnt++;
4216 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4217
4218 /* Set the module link speed */
4219 switch (hw->phy.media_type) {
4220 case ixgbe_media_type_fiber:
4221 hw->mac.ops.set_rate_select_speed(hw,
4222 IXGBE_LINK_SPEED_10GB_FULL);
4223 break;
4224 case ixgbe_media_type_fiber_qsfp:
4225 /* QSFP module automatically detects MAC link speed */
4226 break;
4227 default:
4228 hw_dbg(hw, "Unexpected media type\n");
4229 break;
4230 }
4231
4232 /* Allow module to change analog characteristics (1G->10G) */
4233 msleep(40);
4234
4235 status = hw->mac.ops.setup_mac_link(hw,
4236 IXGBE_LINK_SPEED_10GB_FULL,
4237 autoneg_wait_to_complete);
4238 if (status)
4239 return status;
4240
4241 /* Flap the Tx laser if it has not already been done */
4242 if (hw->mac.ops.flap_tx_laser)
4243 hw->mac.ops.flap_tx_laser(hw);
4244
4245 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
4246 * Section 73.10.2, we may have to wait up to 500ms if KR is
4247 * attempted. 82599 uses the same timing for 10g SFI.
4248 */
4249 for (i = 0; i < 5; i++) {
4250 /* Wait for the link partner to also set speed */
4251 msleep(100);
4252
4253 /* If we have link, just jump out */
4254 status = hw->mac.ops.check_link(hw, &link_speed,
4255 &link_up, false);
4256 if (status)
4257 return status;
4258
4259 if (link_up)
4260 goto out;
4261 }
4262 }
4263
4264 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4265 speedcnt++;
4266 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4267 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4268
4269 /* Set the module link speed */
4270 switch (hw->phy.media_type) {
4271 case ixgbe_media_type_fiber:
4272 hw->mac.ops.set_rate_select_speed(hw,
4273 IXGBE_LINK_SPEED_1GB_FULL);
4274 break;
4275 case ixgbe_media_type_fiber_qsfp:
4276 /* QSFP module automatically detects link speed */
4277 break;
4278 default:
4279 hw_dbg(hw, "Unexpected media type\n");
4280 break;
4281 }
4282
4283 /* Allow module to change analog characteristics (10G->1G) */
4284 msleep(40);
4285
4286 status = hw->mac.ops.setup_mac_link(hw,
4287 IXGBE_LINK_SPEED_1GB_FULL,
4288 autoneg_wait_to_complete);
4289 if (status)
4290 return status;
4291
4292 /* Flap the Tx laser if it has not already been done */
4293 if (hw->mac.ops.flap_tx_laser)
4294 hw->mac.ops.flap_tx_laser(hw);
4295
4296 /* Wait for the link partner to also set speed */
4297 msleep(100);
4298
4299 /* If we have link, just jump out */
4300 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4301 false);
4302 if (status)
4303 return status;
4304
4305 if (link_up)
4306 goto out;
4307 }
4308
4309 /* We didn't get link. Configure back to the highest speed we tried,
4310 * (if there was more than one). We call ourselves back with just the
4311 * single highest speed that the user requested.
4312 */
4313 if (speedcnt > 1)
4314 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4315 highest_link_speed,
4316 autoneg_wait_to_complete);
4317
4318out:
4319 /* Set autoneg_advertised value based on input link speed */
4320 hw->phy.autoneg_advertised = 0;
4321
4322 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4323 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4324
4325 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4326 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4327
4328 return status;
4329}
4330
4331/**
4332 * ixgbe_set_soft_rate_select_speed - Set module link speed
4333 * @hw: pointer to hardware structure
4334 * @speed: link speed to set
4335 *
4336 * Set module link speed via the soft rate select.
4337 */
4338void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4339 ixgbe_link_speed speed)
4340{
4341 s32 status;
4342 u8 rs, eeprom_data;
4343
4344 switch (speed) {
4345 case IXGBE_LINK_SPEED_10GB_FULL:
4346 /* one bit mask same as setting on */
4347 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4348 break;
4349 case IXGBE_LINK_SPEED_1GB_FULL:
4350 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4351 break;
4352 default:
4353 hw_dbg(hw, "Invalid fixed module speed\n");
4354 return;
4355 }
4356
4357 /* Set RS0 */
4358 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4359 IXGBE_I2C_EEPROM_DEV_ADDR2,
4360 &eeprom_data);
4361 if (status) {
4362 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4363 return;
4364 }
4365
4366 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4367
4368 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4369 IXGBE_I2C_EEPROM_DEV_ADDR2,
4370 eeprom_data);
4371 if (status) {
4372 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4373 return;
4374 }
4375
4376 /* Set RS1 */
4377 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4378 IXGBE_I2C_EEPROM_DEV_ADDR2,
4379 &eeprom_data);
4380 if (status) {
4381 hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4382 return;
4383 }
4384
4385 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386
4387 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4388 IXGBE_I2C_EEPROM_DEV_ADDR2,
4389 eeprom_data);
4390 if (status) {
4391 hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4392 return;
4393 }
4394}