Linux Audio

Check our new training course

Loading...
v4.6
  1/*******************************************************************************
  2
  3  Intel(R) 82576 Virtual Function Linux driver
  4  Copyright(c) 2009 - 2012 Intel Corporation.
  5
  6  This program is free software; you can redistribute it and/or modify it
  7  under the terms and conditions of the GNU General Public License,
  8  version 2, as published by the Free Software Foundation.
  9
 10  This program is distributed in the hope it will be useful, but WITHOUT
 11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  more details.
 14
 15  You should have received a copy of the GNU General Public License along with
 16  this program; if not, see <http://www.gnu.org/licenses/>.
 17
 18  The full GNU General Public License is included in this distribution in
 19  the file called "COPYING".
 20
 21  Contact Information:
 22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 24
 25*******************************************************************************/
 26
 27#include "vf.h"
 28
 29static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
 30static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 31				     u16 *duplex);
 32static s32 e1000_init_hw_vf(struct e1000_hw *hw);
 33static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
 34
 35static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
 36					 u32, u32, u32);
 37static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
 38static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
 
 39static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
 40
 41/**
 42 *  e1000_init_mac_params_vf - Inits MAC params
 43 *  @hw: pointer to the HW structure
 44 **/
 45static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
 46{
 47	struct e1000_mac_info *mac = &hw->mac;
 48
 49	/* VF's have no MTA Registers - PF feature only */
 50	mac->mta_reg_count = 128;
 51	/* VF's have no access to RAR entries  */
 52	mac->rar_entry_count = 1;
 53
 54	/* Function pointers */
 55	/* reset */
 56	mac->ops.reset_hw = e1000_reset_hw_vf;
 57	/* hw initialization */
 58	mac->ops.init_hw = e1000_init_hw_vf;
 59	/* check for link */
 60	mac->ops.check_for_link = e1000_check_for_link_vf;
 61	/* link info */
 62	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
 63	/* multicast address update */
 64	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
 65	/* set mac address */
 66	mac->ops.rar_set = e1000_rar_set_vf;
 67	/* read mac address */
 68	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
 
 
 69	/* set vlan filter table array */
 70	mac->ops.set_vfta = e1000_set_vfta_vf;
 71
 72	return E1000_SUCCESS;
 73}
 74
 75/**
 76 *  e1000_init_function_pointers_vf - Inits function pointers
 77 *  @hw: pointer to the HW structure
 78 **/
 79void e1000_init_function_pointers_vf(struct e1000_hw *hw)
 80{
 81	hw->mac.ops.init_params = e1000_init_mac_params_vf;
 82	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
 83}
 84
 85/**
 86 *  e1000_get_link_up_info_vf - Gets link info.
 87 *  @hw: pointer to the HW structure
 88 *  @speed: pointer to 16 bit value to store link speed.
 89 *  @duplex: pointer to 16 bit value to store duplex.
 90 *
 91 *  Since we cannot read the PHY and get accurate link info, we must rely upon
 92 *  the status register's data which is often stale and inaccurate.
 93 **/
 94static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 95				     u16 *duplex)
 96{
 97	s32 status;
 98
 99	status = er32(STATUS);
100	if (status & E1000_STATUS_SPEED_1000)
101		*speed = SPEED_1000;
102	else if (status & E1000_STATUS_SPEED_100)
103		*speed = SPEED_100;
104	else
105		*speed = SPEED_10;
106
107	if (status & E1000_STATUS_FD)
108		*duplex = FULL_DUPLEX;
109	else
110		*duplex = HALF_DUPLEX;
111
112	return E1000_SUCCESS;
113}
114
115/**
116 *  e1000_reset_hw_vf - Resets the HW
117 *  @hw: pointer to the HW structure
118 *
119 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
120 *  This is all the reset we can perform on a VF.
121 **/
122static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
123{
124	struct e1000_mbx_info *mbx = &hw->mbx;
125	u32 timeout = E1000_VF_INIT_TIMEOUT;
126	u32 ret_val = -E1000_ERR_MAC_INIT;
127	u32 msgbuf[3];
128	u8 *addr = (u8 *)(&msgbuf[1]);
129	u32 ctrl;
130
131	/* assert VF queue/interrupt reset */
132	ctrl = er32(CTRL);
133	ew32(CTRL, ctrl | E1000_CTRL_RST);
134
135	/* we cannot initialize while the RSTI / RSTD bits are asserted */
136	while (!mbx->ops.check_for_rst(hw) && timeout) {
137		timeout--;
138		udelay(5);
139	}
140
141	if (timeout) {
142		/* mailbox timeout can now become active */
143		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
144
145		/* notify PF of VF reset completion */
146		msgbuf[0] = E1000_VF_RESET;
147		mbx->ops.write_posted(hw, msgbuf, 1);
148
149		msleep(10);
150
151		/* set our "perm_addr" based on info provided by PF */
152		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
153		if (!ret_val) {
154			if (msgbuf[0] == (E1000_VF_RESET |
155					  E1000_VT_MSGTYPE_ACK))
156				memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
157			else
158				ret_val = -E1000_ERR_MAC_INIT;
159		}
160	}
161
162	return ret_val;
163}
164
165/**
166 *  e1000_init_hw_vf - Inits the HW
167 *  @hw: pointer to the HW structure
168 *
169 *  Not much to do here except clear the PF Reset indication if there is one.
170 **/
171static s32 e1000_init_hw_vf(struct e1000_hw *hw)
172{
173	/* attempt to set and restore our mac address */
174	e1000_rar_set_vf(hw, hw->mac.addr, 0);
175
176	return E1000_SUCCESS;
177}
178
179/**
180 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
181 *  @hw: pointer to the HW structure
182 *  @mc_addr: pointer to a multicast address
183 *
184 *  Generates a multicast address hash value which is used to determine
185 *  the multicast filter table array address and new table value.  See
186 *  e1000_mta_set_generic()
187 **/
188static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
189{
190	u32 hash_value, hash_mask;
191	u8 bit_shift = 0;
192
193	/* Register count multiplied by bits per register */
194	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
195
196	/* The bit_shift is the number of left-shifts
197	 * where 0xFF would still fall within the hash mask.
198	 */
199	while (hash_mask >> bit_shift != 0xFF)
200		bit_shift++;
201
202	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
203				  (((u16)mc_addr[5]) << bit_shift)));
204
205	return hash_value;
206}
207
208/**
209 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
210 *  @hw: pointer to the HW structure
211 *  @mc_addr_list: array of multicast addresses to program
212 *  @mc_addr_count: number of multicast addresses to program
213 *  @rar_used_count: the first RAR register free to program
214 *  @rar_count: total number of supported Receive Address Registers
215 *
216 *  Updates the Receive Address Registers and Multicast Table Array.
217 *  The caller must have a packed mc_addr_list of multicast addresses.
218 *  The parameter rar_count will usually be hw->mac.rar_entry_count
219 *  unless there are workarounds that change this.
220 **/
221static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
222					 u8 *mc_addr_list, u32 mc_addr_count,
223					 u32 rar_used_count, u32 rar_count)
224{
225	struct e1000_mbx_info *mbx = &hw->mbx;
226	u32 msgbuf[E1000_VFMAILBOX_SIZE];
227	u16 *hash_list = (u16 *)&msgbuf[1];
228	u32 hash_value;
229	u32 cnt, i;
 
230
231	/* Each entry in the list uses 1 16 bit word.  We have 30
232	 * 16 bit words available in our HW msg buffer (minus 1 for the
233	 * msg type).  That's 30 hash values if we pack 'em right.  If
234	 * there are more than 30 MC addresses to add then punt the
235	 * extras for now and then add code to handle more than 30 later.
236	 * It would be unusual for a server to request that many multi-cast
237	 * addresses except for in large enterprise network environments.
238	 */
239
240	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
241	msgbuf[0] = E1000_VF_SET_MULTICAST;
242	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
243
244	for (i = 0; i < cnt; i++) {
245		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
246		hash_list[i] = hash_value & 0x0FFFF;
247		mc_addr_list += ETH_ALEN;
248	}
249
250	mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
 
 
251}
252
253/**
254 *  e1000_set_vfta_vf - Set/Unset vlan filter table address
255 *  @hw: pointer to the HW structure
256 *  @vid: determines the vfta register and bit to set/unset
257 *  @set: if true then set bit, else clear bit
258 **/
259static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
260{
261	struct e1000_mbx_info *mbx = &hw->mbx;
262	u32 msgbuf[2];
263	s32 err;
264
265	msgbuf[0] = E1000_VF_SET_VLAN;
266	msgbuf[1] = vid;
267	/* Setting the 8 bit field MSG INFO to true indicates "add" */
268	if (set)
269		msgbuf[0] |= 1 << E1000_VT_MSGINFO_SHIFT;
270
271	mbx->ops.write_posted(hw, msgbuf, 2);
272
273	err = mbx->ops.read_posted(hw, msgbuf, 2);
274
275	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
276
277	/* if nacked the vlan was rejected */
278	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
279		err = -E1000_ERR_MAC_INIT;
280
281	return err;
282}
283
284/**
285 *  e1000_rlpml_set_vf - Set the maximum receive packet length
286 *  @hw: pointer to the HW structure
287 *  @max_size: value to assign to max frame size
288 **/
289void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
290{
291	struct e1000_mbx_info *mbx = &hw->mbx;
292	u32 msgbuf[2];
 
293
294	msgbuf[0] = E1000_VF_SET_LPE;
295	msgbuf[1] = max_size;
296
297	mbx->ops.write_posted(hw, msgbuf, 2);
 
 
298}
299
300/**
301 *  e1000_rar_set_vf - set device MAC address
302 *  @hw: pointer to the HW structure
303 *  @addr: pointer to the receive address
304 *  @index: receive address array register
305 **/
306static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
307{
308	struct e1000_mbx_info *mbx = &hw->mbx;
309	u32 msgbuf[3];
310	u8 *msg_addr = (u8 *)(&msgbuf[1]);
311	s32 ret_val;
312
313	memset(msgbuf, 0, 12);
314	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
315	memcpy(msg_addr, addr, ETH_ALEN);
316	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
317
318	if (!ret_val)
319		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
320
321	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
322
323	/* if nacked the address was rejected, use "perm_addr" */
324	if (!ret_val &&
325	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
326		e1000_read_mac_addr_vf(hw);
327}
328
329/**
330 *  e1000_read_mac_addr_vf - Read device MAC address
331 *  @hw: pointer to the HW structure
332 **/
333static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
334{
335	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
336
337	return E1000_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338}
339
340/**
341 *  e1000_check_for_link_vf - Check for link for a virtual interface
342 *  @hw: pointer to the HW structure
343 *
344 *  Checks to see if the underlying PF is still talking to the VF and
345 *  if it is then it reports the link state to the hardware, otherwise
346 *  it reports link down and returns an error.
347 **/
348static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
349{
350	struct e1000_mbx_info *mbx = &hw->mbx;
351	struct e1000_mac_info *mac = &hw->mac;
352	s32 ret_val = E1000_SUCCESS;
353	u32 in_msg = 0;
354
355	/* We only want to run this if there has been a rst asserted.
356	 * in this case that could mean a link change, device reset,
357	 * or a virtual function reset
358	 */
359
360	/* If we were hit with a reset or timeout drop the link */
361	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
362		mac->get_link_status = true;
363
364	if (!mac->get_link_status)
365		goto out;
366
367	/* if link status is down no point in checking to see if PF is up */
368	if (!(er32(STATUS) & E1000_STATUS_LU))
369		goto out;
370
371	/* if the read failed it could just be a mailbox collision, best wait
372	 * until we are called again and don't report an error
373	 */
374	if (mbx->ops.read(hw, &in_msg, 1))
375		goto out;
376
377	/* if incoming message isn't clear to send we are waiting on response */
378	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
379		/* msg is not CTS and is NACK we must have lost CTS status */
380		if (in_msg & E1000_VT_MSGTYPE_NACK)
381			ret_val = -E1000_ERR_MAC_INIT;
382		goto out;
383	}
384
385	/* the PF is talking, if we timed out in the past we reinit */
386	if (!mbx->timeout) {
387		ret_val = -E1000_ERR_MAC_INIT;
388		goto out;
389	}
390
391	/* if we passed all the tests above then the link is up and we no
392	 * longer need to check for link
393	 */
394	mac->get_link_status = false;
395
396out:
397	return ret_val;
398}
399
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright(c) 2009 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  3
  4#include "vf.h"
  5
  6static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
  7static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
  8				     u16 *duplex);
  9static s32 e1000_init_hw_vf(struct e1000_hw *hw);
 10static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
 11
 12static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
 13					 u32, u32, u32);
 14static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
 15static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
 16static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
 17static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
 18
 19/**
 20 *  e1000_init_mac_params_vf - Inits MAC params
 21 *  @hw: pointer to the HW structure
 22 **/
 23static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
 24{
 25	struct e1000_mac_info *mac = &hw->mac;
 26
 27	/* VF's have no MTA Registers - PF feature only */
 28	mac->mta_reg_count = 128;
 29	/* VF's have no access to RAR entries  */
 30	mac->rar_entry_count = 1;
 31
 32	/* Function pointers */
 33	/* reset */
 34	mac->ops.reset_hw = e1000_reset_hw_vf;
 35	/* hw initialization */
 36	mac->ops.init_hw = e1000_init_hw_vf;
 37	/* check for link */
 38	mac->ops.check_for_link = e1000_check_for_link_vf;
 39	/* link info */
 40	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
 41	/* multicast address update */
 42	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
 43	/* set mac address */
 44	mac->ops.rar_set = e1000_rar_set_vf;
 45	/* read mac address */
 46	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
 47	/* set mac filter */
 48	mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
 49	/* set vlan filter table array */
 50	mac->ops.set_vfta = e1000_set_vfta_vf;
 51
 52	return E1000_SUCCESS;
 53}
 54
 55/**
 56 *  e1000_init_function_pointers_vf - Inits function pointers
 57 *  @hw: pointer to the HW structure
 58 **/
 59void e1000_init_function_pointers_vf(struct e1000_hw *hw)
 60{
 61	hw->mac.ops.init_params = e1000_init_mac_params_vf;
 62	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
 63}
 64
 65/**
 66 *  e1000_get_link_up_info_vf - Gets link info.
 67 *  @hw: pointer to the HW structure
 68 *  @speed: pointer to 16 bit value to store link speed.
 69 *  @duplex: pointer to 16 bit value to store duplex.
 70 *
 71 *  Since we cannot read the PHY and get accurate link info, we must rely upon
 72 *  the status register's data which is often stale and inaccurate.
 73 **/
 74static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 75				     u16 *duplex)
 76{
 77	s32 status;
 78
 79	status = er32(STATUS);
 80	if (status & E1000_STATUS_SPEED_1000)
 81		*speed = SPEED_1000;
 82	else if (status & E1000_STATUS_SPEED_100)
 83		*speed = SPEED_100;
 84	else
 85		*speed = SPEED_10;
 86
 87	if (status & E1000_STATUS_FD)
 88		*duplex = FULL_DUPLEX;
 89	else
 90		*duplex = HALF_DUPLEX;
 91
 92	return E1000_SUCCESS;
 93}
 94
 95/**
 96 *  e1000_reset_hw_vf - Resets the HW
 97 *  @hw: pointer to the HW structure
 98 *
 99 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
100 *  This is all the reset we can perform on a VF.
101 **/
102static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
103{
104	struct e1000_mbx_info *mbx = &hw->mbx;
105	u32 timeout = E1000_VF_INIT_TIMEOUT;
106	u32 ret_val = -E1000_ERR_MAC_INIT;
107	u32 msgbuf[3];
108	u8 *addr = (u8 *)(&msgbuf[1]);
109	u32 ctrl;
110
111	/* assert VF queue/interrupt reset */
112	ctrl = er32(CTRL);
113	ew32(CTRL, ctrl | E1000_CTRL_RST);
114
115	/* we cannot initialize while the RSTI / RSTD bits are asserted */
116	while (!mbx->ops.check_for_rst(hw) && timeout) {
117		timeout--;
118		udelay(5);
119	}
120
121	if (timeout) {
122		/* mailbox timeout can now become active */
123		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
124
125		/* notify PF of VF reset completion */
126		msgbuf[0] = E1000_VF_RESET;
127		mbx->ops.write_posted(hw, msgbuf, 1);
128
129		mdelay(10);
130
131		/* set our "perm_addr" based on info provided by PF */
132		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
133		if (!ret_val) {
134			if (msgbuf[0] == (E1000_VF_RESET |
135					  E1000_VT_MSGTYPE_ACK))
136				memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
137			else
138				ret_val = -E1000_ERR_MAC_INIT;
139		}
140	}
141
142	return ret_val;
143}
144
145/**
146 *  e1000_init_hw_vf - Inits the HW
147 *  @hw: pointer to the HW structure
148 *
149 *  Not much to do here except clear the PF Reset indication if there is one.
150 **/
151static s32 e1000_init_hw_vf(struct e1000_hw *hw)
152{
153	/* attempt to set and restore our mac address */
154	e1000_rar_set_vf(hw, hw->mac.addr, 0);
155
156	return E1000_SUCCESS;
157}
158
159/**
160 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
161 *  @hw: pointer to the HW structure
162 *  @mc_addr: pointer to a multicast address
163 *
164 *  Generates a multicast address hash value which is used to determine
165 *  the multicast filter table array address and new table value.  See
166 *  e1000_mta_set_generic()
167 **/
168static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
169{
170	u32 hash_value, hash_mask;
171	u8 bit_shift = 0;
172
173	/* Register count multiplied by bits per register */
174	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
175
176	/* The bit_shift is the number of left-shifts
177	 * where 0xFF would still fall within the hash mask.
178	 */
179	while (hash_mask >> bit_shift != 0xFF)
180		bit_shift++;
181
182	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
183				  (((u16)mc_addr[5]) << bit_shift)));
184
185	return hash_value;
186}
187
188/**
189 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
190 *  @hw: pointer to the HW structure
191 *  @mc_addr_list: array of multicast addresses to program
192 *  @mc_addr_count: number of multicast addresses to program
193 *  @rar_used_count: the first RAR register free to program
194 *  @rar_count: total number of supported Receive Address Registers
195 *
196 *  Updates the Receive Address Registers and Multicast Table Array.
197 *  The caller must have a packed mc_addr_list of multicast addresses.
198 *  The parameter rar_count will usually be hw->mac.rar_entry_count
199 *  unless there are workarounds that change this.
200 **/
201static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
202					 u8 *mc_addr_list, u32 mc_addr_count,
203					 u32 rar_used_count, u32 rar_count)
204{
205	struct e1000_mbx_info *mbx = &hw->mbx;
206	u32 msgbuf[E1000_VFMAILBOX_SIZE];
207	u16 *hash_list = (u16 *)&msgbuf[1];
208	u32 hash_value;
209	u32 cnt, i;
210	s32 ret_val;
211
212	/* Each entry in the list uses 1 16 bit word.  We have 30
213	 * 16 bit words available in our HW msg buffer (minus 1 for the
214	 * msg type).  That's 30 hash values if we pack 'em right.  If
215	 * there are more than 30 MC addresses to add then punt the
216	 * extras for now and then add code to handle more than 30 later.
217	 * It would be unusual for a server to request that many multi-cast
218	 * addresses except for in large enterprise network environments.
219	 */
220
221	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
222	msgbuf[0] = E1000_VF_SET_MULTICAST;
223	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
224
225	for (i = 0; i < cnt; i++) {
226		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
227		hash_list[i] = hash_value & 0x0FFFF;
228		mc_addr_list += ETH_ALEN;
229	}
230
231	ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
232	if (!ret_val)
233		mbx->ops.read_posted(hw, msgbuf, 1);
234}
235
236/**
237 *  e1000_set_vfta_vf - Set/Unset vlan filter table address
238 *  @hw: pointer to the HW structure
239 *  @vid: determines the vfta register and bit to set/unset
240 *  @set: if true then set bit, else clear bit
241 **/
242static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
243{
244	struct e1000_mbx_info *mbx = &hw->mbx;
245	u32 msgbuf[2];
246	s32 err;
247
248	msgbuf[0] = E1000_VF_SET_VLAN;
249	msgbuf[1] = vid;
250	/* Setting the 8 bit field MSG INFO to true indicates "add" */
251	if (set)
252		msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
253
254	mbx->ops.write_posted(hw, msgbuf, 2);
255
256	err = mbx->ops.read_posted(hw, msgbuf, 2);
257
258	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
259
260	/* if nacked the vlan was rejected */
261	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
262		err = -E1000_ERR_MAC_INIT;
263
264	return err;
265}
266
267/**
268 *  e1000_rlpml_set_vf - Set the maximum receive packet length
269 *  @hw: pointer to the HW structure
270 *  @max_size: value to assign to max frame size
271 **/
272void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
273{
274	struct e1000_mbx_info *mbx = &hw->mbx;
275	u32 msgbuf[2];
276	s32 ret_val;
277
278	msgbuf[0] = E1000_VF_SET_LPE;
279	msgbuf[1] = max_size;
280
281	ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
282	if (!ret_val)
283		mbx->ops.read_posted(hw, msgbuf, 1);
284}
285
286/**
287 *  e1000_rar_set_vf - set device MAC address
288 *  @hw: pointer to the HW structure
289 *  @addr: pointer to the receive address
290 *  @index: receive address array register
291 **/
292static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
293{
294	struct e1000_mbx_info *mbx = &hw->mbx;
295	u32 msgbuf[3];
296	u8 *msg_addr = (u8 *)(&msgbuf[1]);
297	s32 ret_val;
298
299	memset(msgbuf, 0, 12);
300	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
301	memcpy(msg_addr, addr, ETH_ALEN);
302	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
303
304	if (!ret_val)
305		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
306
307	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
308
309	/* if nacked the address was rejected, use "perm_addr" */
310	if (!ret_val &&
311	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
312		e1000_read_mac_addr_vf(hw);
313}
314
315/**
316 *  e1000_read_mac_addr_vf - Read device MAC address
317 *  @hw: pointer to the HW structure
318 **/
319static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
320{
321	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
322
323	return E1000_SUCCESS;
324}
325
326/**
327 *  e1000_set_uc_addr_vf - Set or clear unicast filters
328 *  @hw: pointer to the HW structure
329 *  @sub_cmd: add or clear filters
330 *  @addr: pointer to the filter MAC address
331 **/
332static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
333{
334	struct e1000_mbx_info *mbx = &hw->mbx;
335	u32 msgbuf[3], msgbuf_chk;
336	u8 *msg_addr = (u8 *)(&msgbuf[1]);
337	s32 ret_val;
338
339	memset(msgbuf, 0, sizeof(msgbuf));
340	msgbuf[0] |= sub_cmd;
341	msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
342	msgbuf_chk = msgbuf[0];
343
344	if (addr)
345		memcpy(msg_addr, addr, ETH_ALEN);
346
347	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
348
349	if (!ret_val)
350		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
351
352	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
353
354	if (!ret_val) {
355		msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
356
357		if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
358			return -ENOSPC;
359	}
360
361	return ret_val;
362}
363
364/**
365 *  e1000_check_for_link_vf - Check for link for a virtual interface
366 *  @hw: pointer to the HW structure
367 *
368 *  Checks to see if the underlying PF is still talking to the VF and
369 *  if it is then it reports the link state to the hardware, otherwise
370 *  it reports link down and returns an error.
371 **/
372static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
373{
374	struct e1000_mbx_info *mbx = &hw->mbx;
375	struct e1000_mac_info *mac = &hw->mac;
376	s32 ret_val = E1000_SUCCESS;
377	u32 in_msg = 0;
378
379	/* We only want to run this if there has been a rst asserted.
380	 * in this case that could mean a link change, device reset,
381	 * or a virtual function reset
382	 */
383
384	/* If we were hit with a reset or timeout drop the link */
385	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
386		mac->get_link_status = true;
387
388	if (!mac->get_link_status)
389		goto out;
390
391	/* if link status is down no point in checking to see if PF is up */
392	if (!(er32(STATUS) & E1000_STATUS_LU))
393		goto out;
394
395	/* if the read failed it could just be a mailbox collision, best wait
396	 * until we are called again and don't report an error
397	 */
398	if (mbx->ops.read(hw, &in_msg, 1))
399		goto out;
400
401	/* if incoming message isn't clear to send we are waiting on response */
402	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
403		/* msg is not CTS and is NACK we must have lost CTS status */
404		if (in_msg & E1000_VT_MSGTYPE_NACK)
405			ret_val = -E1000_ERR_MAC_INIT;
406		goto out;
407	}
408
409	/* the PF is talking, if we timed out in the past we reinit */
410	if (!mbx->timeout) {
411		ret_val = -E1000_ERR_MAC_INIT;
412		goto out;
413	}
414
415	/* if we passed all the tests above then the link is up and we no
416	 * longer need to check for link
417	 */
418	mac->get_link_status = false;
419
420out:
421	return ret_val;
422}
423