Linux Audio

Check our new training course

Loading...
v4.6
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22#include "e1000.h"
  23
  24static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  25static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  26					  u16 *data, bool read, bool page_set);
  27static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  28static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  29					  u16 *data, bool read);
  30
  31/* Cable length tables */
  32static const u16 e1000_m88_cable_length_table[] = {
  33	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  34};
  35
  36#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  37		ARRAY_SIZE(e1000_m88_cable_length_table)
  38
  39static const u16 e1000_igp_2_cable_length_table[] = {
  40	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  41	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  42	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  43	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  44	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  45	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  46	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  47	124
  48};
  49
  50#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  51		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  52
  53/**
  54 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Read the PHY management control register and check whether a PHY reset
  58 *  is blocked.  If a reset is not blocked return 0, otherwise
  59 *  return E1000_BLK_PHY_RESET (12).
  60 **/
  61s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  62{
  63	u32 manc;
  64
  65	manc = er32(MANC);
  66
  67	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  68}
  69
  70/**
  71 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  72 *  @hw: pointer to the HW structure
  73 *
  74 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  75 *  revision in the hardware structure.
  76 **/
  77s32 e1000e_get_phy_id(struct e1000_hw *hw)
  78{
  79	struct e1000_phy_info *phy = &hw->phy;
  80	s32 ret_val = 0;
  81	u16 phy_id;
  82	u16 retry_count = 0;
  83
  84	if (!phy->ops.read_reg)
  85		return 0;
  86
  87	while (retry_count < 2) {
  88		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  89		if (ret_val)
  90			return ret_val;
  91
  92		phy->id = (u32)(phy_id << 16);
  93		usleep_range(20, 40);
  94		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  95		if (ret_val)
  96			return ret_val;
  97
  98		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  99		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 100
 101		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 102			return 0;
 103
 104		retry_count++;
 105	}
 106
 107	return 0;
 108}
 109
 110/**
 111 *  e1000e_phy_reset_dsp - Reset PHY DSP
 112 *  @hw: pointer to the HW structure
 113 *
 114 *  Reset the digital signal processor.
 115 **/
 116s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 117{
 118	s32 ret_val;
 119
 120	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 121	if (ret_val)
 122		return ret_val;
 123
 124	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 125}
 126
 127/**
 128 *  e1000e_read_phy_reg_mdic - Read MDI control register
 129 *  @hw: pointer to the HW structure
 130 *  @offset: register offset to be read
 131 *  @data: pointer to the read data
 132 *
 133 *  Reads the MDI control register in the PHY at offset and stores the
 134 *  information read to data.
 135 **/
 136s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 137{
 138	struct e1000_phy_info *phy = &hw->phy;
 139	u32 i, mdic = 0;
 140
 141	if (offset > MAX_PHY_REG_ADDRESS) {
 142		e_dbg("PHY Address %d is out of range\n", offset);
 143		return -E1000_ERR_PARAM;
 144	}
 145
 146	/* Set up Op-code, Phy Address, and register offset in the MDI
 147	 * Control register.  The MAC will take care of interfacing with the
 148	 * PHY to retrieve the desired data.
 149	 */
 150	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 151		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 152		(E1000_MDIC_OP_READ));
 153
 154	ew32(MDIC, mdic);
 155
 156	/* Poll the ready bit to see if the MDI read completed
 157	 * Increasing the time out as testing showed failures with
 158	 * the lower time out
 159	 */
 160	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 161		udelay(50);
 162		mdic = er32(MDIC);
 163		if (mdic & E1000_MDIC_READY)
 164			break;
 165	}
 166	if (!(mdic & E1000_MDIC_READY)) {
 167		e_dbg("MDI Read did not complete\n");
 168		return -E1000_ERR_PHY;
 169	}
 170	if (mdic & E1000_MDIC_ERROR) {
 171		e_dbg("MDI Error\n");
 172		return -E1000_ERR_PHY;
 173	}
 174	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 175		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 176		      offset,
 177		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 178		return -E1000_ERR_PHY;
 179	}
 180	*data = (u16)mdic;
 181
 182	/* Allow some time after each MDIC transaction to avoid
 183	 * reading duplicate data in the next MDIC transaction.
 184	 */
 185	if (hw->mac.type == e1000_pch2lan)
 186		udelay(100);
 187
 188	return 0;
 189}
 190
 191/**
 192 *  e1000e_write_phy_reg_mdic - Write MDI control register
 193 *  @hw: pointer to the HW structure
 194 *  @offset: register offset to write to
 195 *  @data: data to write to register at offset
 196 *
 197 *  Writes data to MDI control register in the PHY at offset.
 198 **/
 199s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 200{
 201	struct e1000_phy_info *phy = &hw->phy;
 202	u32 i, mdic = 0;
 203
 204	if (offset > MAX_PHY_REG_ADDRESS) {
 205		e_dbg("PHY Address %d is out of range\n", offset);
 206		return -E1000_ERR_PARAM;
 207	}
 208
 209	/* Set up Op-code, Phy Address, and register offset in the MDI
 210	 * Control register.  The MAC will take care of interfacing with the
 211	 * PHY to retrieve the desired data.
 212	 */
 213	mdic = (((u32)data) |
 214		(offset << E1000_MDIC_REG_SHIFT) |
 215		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 216		(E1000_MDIC_OP_WRITE));
 217
 218	ew32(MDIC, mdic);
 219
 220	/* Poll the ready bit to see if the MDI read completed
 221	 * Increasing the time out as testing showed failures with
 222	 * the lower time out
 223	 */
 224	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 225		udelay(50);
 226		mdic = er32(MDIC);
 227		if (mdic & E1000_MDIC_READY)
 228			break;
 229	}
 230	if (!(mdic & E1000_MDIC_READY)) {
 231		e_dbg("MDI Write did not complete\n");
 232		return -E1000_ERR_PHY;
 233	}
 234	if (mdic & E1000_MDIC_ERROR) {
 235		e_dbg("MDI Error\n");
 236		return -E1000_ERR_PHY;
 237	}
 238	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 239		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 240		      offset,
 241		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 242		return -E1000_ERR_PHY;
 243	}
 244
 245	/* Allow some time after each MDIC transaction to avoid
 246	 * reading duplicate data in the next MDIC transaction.
 247	 */
 248	if (hw->mac.type == e1000_pch2lan)
 249		udelay(100);
 250
 251	return 0;
 252}
 253
 254/**
 255 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 256 *  @hw: pointer to the HW structure
 257 *  @offset: register offset to be read
 258 *  @data: pointer to the read data
 259 *
 260 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 261 *  and storing the retrieved information in data.  Release any acquired
 262 *  semaphores before exiting.
 263 **/
 264s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 265{
 266	s32 ret_val;
 267
 268	ret_val = hw->phy.ops.acquire(hw);
 269	if (ret_val)
 270		return ret_val;
 271
 272	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 273					   data);
 274
 275	hw->phy.ops.release(hw);
 276
 277	return ret_val;
 278}
 279
 280/**
 281 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 282 *  @hw: pointer to the HW structure
 283 *  @offset: register offset to write to
 284 *  @data: data to write at register offset
 285 *
 286 *  Acquires semaphore, if necessary, then writes the data to PHY register
 287 *  at the offset.  Release any acquired semaphores before exiting.
 288 **/
 289s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 290{
 291	s32 ret_val;
 292
 293	ret_val = hw->phy.ops.acquire(hw);
 294	if (ret_val)
 295		return ret_val;
 296
 297	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 298					    data);
 299
 300	hw->phy.ops.release(hw);
 301
 302	return ret_val;
 303}
 304
 305/**
 306 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 307 *  @hw: pointer to the HW structure
 308 *  @page: page to set (shifted left when necessary)
 309 *
 310 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 311 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 312 *  must set it appropriately (if necessary) after this function returns.
 313 **/
 314s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 315{
 316	e_dbg("Setting page 0x%x\n", page);
 317
 318	hw->phy.addr = 1;
 319
 320	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 321}
 322
 323/**
 324 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 325 *  @hw: pointer to the HW structure
 326 *  @offset: register offset to be read
 327 *  @data: pointer to the read data
 328 *  @locked: semaphore has already been acquired or not
 329 *
 330 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 331 *  and stores the retrieved information in data.  Release any acquired
 332 *  semaphores before exiting.
 333 **/
 334static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 335				     bool locked)
 336{
 337	s32 ret_val = 0;
 338
 339	if (!locked) {
 340		if (!hw->phy.ops.acquire)
 341			return 0;
 342
 343		ret_val = hw->phy.ops.acquire(hw);
 344		if (ret_val)
 345			return ret_val;
 346	}
 347
 348	if (offset > MAX_PHY_MULTI_PAGE_REG)
 349		ret_val = e1000e_write_phy_reg_mdic(hw,
 350						    IGP01E1000_PHY_PAGE_SELECT,
 351						    (u16)offset);
 352	if (!ret_val)
 353		ret_val = e1000e_read_phy_reg_mdic(hw,
 354						   MAX_PHY_REG_ADDRESS & offset,
 355						   data);
 356	if (!locked)
 357		hw->phy.ops.release(hw);
 358
 359	return ret_val;
 360}
 361
 362/**
 363 *  e1000e_read_phy_reg_igp - Read igp PHY register
 364 *  @hw: pointer to the HW structure
 365 *  @offset: register offset to be read
 366 *  @data: pointer to the read data
 367 *
 368 *  Acquires semaphore then reads the PHY register at offset and stores the
 369 *  retrieved information in data.
 370 *  Release the acquired semaphore before exiting.
 371 **/
 372s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 373{
 374	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 375}
 376
 377/**
 378 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 379 *  @hw: pointer to the HW structure
 380 *  @offset: register offset to be read
 381 *  @data: pointer to the read data
 382 *
 383 *  Reads the PHY register at offset and stores the retrieved information
 384 *  in data.  Assumes semaphore already acquired.
 385 **/
 386s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 387{
 388	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 389}
 390
 391/**
 392 *  e1000e_write_phy_reg_igp - Write igp PHY register
 393 *  @hw: pointer to the HW structure
 394 *  @offset: register offset to write to
 395 *  @data: data to write at register offset
 396 *  @locked: semaphore has already been acquired or not
 397 *
 398 *  Acquires semaphore, if necessary, then writes the data to PHY register
 399 *  at the offset.  Release any acquired semaphores before exiting.
 400 **/
 401static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 402				      bool locked)
 403{
 404	s32 ret_val = 0;
 405
 406	if (!locked) {
 407		if (!hw->phy.ops.acquire)
 408			return 0;
 409
 410		ret_val = hw->phy.ops.acquire(hw);
 411		if (ret_val)
 412			return ret_val;
 413	}
 414
 415	if (offset > MAX_PHY_MULTI_PAGE_REG)
 416		ret_val = e1000e_write_phy_reg_mdic(hw,
 417						    IGP01E1000_PHY_PAGE_SELECT,
 418						    (u16)offset);
 419	if (!ret_val)
 420		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 421						    offset, data);
 422	if (!locked)
 423		hw->phy.ops.release(hw);
 424
 425	return ret_val;
 426}
 427
 428/**
 429 *  e1000e_write_phy_reg_igp - Write igp PHY register
 430 *  @hw: pointer to the HW structure
 431 *  @offset: register offset to write to
 432 *  @data: data to write at register offset
 433 *
 434 *  Acquires semaphore then writes the data to PHY register
 435 *  at the offset.  Release any acquired semaphores before exiting.
 436 **/
 437s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 438{
 439	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 440}
 441
 442/**
 443 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 444 *  @hw: pointer to the HW structure
 445 *  @offset: register offset to write to
 446 *  @data: data to write at register offset
 447 *
 448 *  Writes the data to PHY register at the offset.
 449 *  Assumes semaphore already acquired.
 450 **/
 451s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 452{
 453	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 454}
 455
 456/**
 457 *  __e1000_read_kmrn_reg - Read kumeran register
 458 *  @hw: pointer to the HW structure
 459 *  @offset: register offset to be read
 460 *  @data: pointer to the read data
 461 *  @locked: semaphore has already been acquired or not
 462 *
 463 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 464 *  using the kumeran interface.  The information retrieved is stored in data.
 465 *  Release any acquired semaphores before exiting.
 466 **/
 467static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 468				 bool locked)
 469{
 470	u32 kmrnctrlsta;
 471
 472	if (!locked) {
 473		s32 ret_val = 0;
 474
 475		if (!hw->phy.ops.acquire)
 476			return 0;
 477
 478		ret_val = hw->phy.ops.acquire(hw);
 479		if (ret_val)
 480			return ret_val;
 481	}
 482
 483	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 484		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 485	ew32(KMRNCTRLSTA, kmrnctrlsta);
 486	e1e_flush();
 487
 488	udelay(2);
 489
 490	kmrnctrlsta = er32(KMRNCTRLSTA);
 491	*data = (u16)kmrnctrlsta;
 492
 493	if (!locked)
 494		hw->phy.ops.release(hw);
 495
 496	return 0;
 497}
 498
 499/**
 500 *  e1000e_read_kmrn_reg -  Read kumeran register
 501 *  @hw: pointer to the HW structure
 502 *  @offset: register offset to be read
 503 *  @data: pointer to the read data
 504 *
 505 *  Acquires semaphore then reads the PHY register at offset using the
 506 *  kumeran interface.  The information retrieved is stored in data.
 507 *  Release the acquired semaphore before exiting.
 508 **/
 509s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 510{
 511	return __e1000_read_kmrn_reg(hw, offset, data, false);
 512}
 513
 514/**
 515 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 516 *  @hw: pointer to the HW structure
 517 *  @offset: register offset to be read
 518 *  @data: pointer to the read data
 519 *
 520 *  Reads the PHY register at offset using the kumeran interface.  The
 521 *  information retrieved is stored in data.
 522 *  Assumes semaphore already acquired.
 523 **/
 524s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 525{
 526	return __e1000_read_kmrn_reg(hw, offset, data, true);
 527}
 528
 529/**
 530 *  __e1000_write_kmrn_reg - Write kumeran register
 531 *  @hw: pointer to the HW structure
 532 *  @offset: register offset to write to
 533 *  @data: data to write at register offset
 534 *  @locked: semaphore has already been acquired or not
 535 *
 536 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 537 *  at the offset using the kumeran interface.  Release any acquired semaphores
 538 *  before exiting.
 539 **/
 540static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 541				  bool locked)
 542{
 543	u32 kmrnctrlsta;
 544
 545	if (!locked) {
 546		s32 ret_val = 0;
 547
 548		if (!hw->phy.ops.acquire)
 549			return 0;
 550
 551		ret_val = hw->phy.ops.acquire(hw);
 552		if (ret_val)
 553			return ret_val;
 554	}
 555
 556	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 557		       E1000_KMRNCTRLSTA_OFFSET) | data;
 558	ew32(KMRNCTRLSTA, kmrnctrlsta);
 559	e1e_flush();
 560
 561	udelay(2);
 562
 563	if (!locked)
 564		hw->phy.ops.release(hw);
 565
 566	return 0;
 567}
 568
 569/**
 570 *  e1000e_write_kmrn_reg -  Write kumeran register
 571 *  @hw: pointer to the HW structure
 572 *  @offset: register offset to write to
 573 *  @data: data to write at register offset
 574 *
 575 *  Acquires semaphore then writes the data to the PHY register at the offset
 576 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 577 **/
 578s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 579{
 580	return __e1000_write_kmrn_reg(hw, offset, data, false);
 581}
 582
 583/**
 584 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 585 *  @hw: pointer to the HW structure
 586 *  @offset: register offset to write to
 587 *  @data: data to write at register offset
 588 *
 589 *  Write the data to PHY register at the offset using the kumeran interface.
 590 *  Assumes semaphore already acquired.
 591 **/
 592s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 593{
 594	return __e1000_write_kmrn_reg(hw, offset, data, true);
 595}
 596
 597/**
 598 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 599 *  @hw: pointer to the HW structure
 600 *
 601 *  Sets up Master/slave mode
 602 **/
 603static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 604{
 605	s32 ret_val;
 606	u16 phy_data;
 607
 608	/* Resolve Master/Slave mode */
 609	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 610	if (ret_val)
 611		return ret_val;
 612
 613	/* load defaults for future use */
 614	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 615	    ((phy_data & CTL1000_AS_MASTER) ?
 616	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 617
 618	switch (hw->phy.ms_type) {
 619	case e1000_ms_force_master:
 620		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 621		break;
 622	case e1000_ms_force_slave:
 623		phy_data |= CTL1000_ENABLE_MASTER;
 624		phy_data &= ~(CTL1000_AS_MASTER);
 625		break;
 626	case e1000_ms_auto:
 627		phy_data &= ~CTL1000_ENABLE_MASTER;
 628		/* fall-through */
 629	default:
 630		break;
 631	}
 632
 633	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 634}
 635
 636/**
 637 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 638 *  @hw: pointer to the HW structure
 639 *
 640 *  Sets up Carrier-sense on Transmit and downshift values.
 641 **/
 642s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 643{
 644	s32 ret_val;
 645	u16 phy_data;
 646
 647	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 648	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 649	if (ret_val)
 650		return ret_val;
 651
 652	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 653
 654	/* Enable downshift */
 655	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 656
 657	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 658	if (ret_val)
 659		return ret_val;
 660
 661	/* Set MDI/MDIX mode */
 662	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 663	if (ret_val)
 664		return ret_val;
 665	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 666	/* Options:
 667	 *   0 - Auto (default)
 668	 *   1 - MDI mode
 669	 *   2 - MDI-X mode
 670	 */
 671	switch (hw->phy.mdix) {
 672	case 1:
 673		break;
 674	case 2:
 675		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 676		break;
 677	case 0:
 678	default:
 679		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 680		break;
 681	}
 682	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 683	if (ret_val)
 684		return ret_val;
 685
 686	return e1000_set_master_slave_mode(hw);
 687}
 688
 689/**
 690 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 691 *  @hw: pointer to the HW structure
 692 *
 693 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 694 *  and downshift values are set also.
 695 **/
 696s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 697{
 698	struct e1000_phy_info *phy = &hw->phy;
 699	s32 ret_val;
 700	u16 phy_data;
 701
 702	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 703	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 704	if (ret_val)
 705		return ret_val;
 706
 707	/* For BM PHY this bit is downshift enable */
 708	if (phy->type != e1000_phy_bm)
 709		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 710
 711	/* Options:
 712	 *   MDI/MDI-X = 0 (default)
 713	 *   0 - Auto for all speeds
 714	 *   1 - MDI mode
 715	 *   2 - MDI-X mode
 716	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 717	 */
 718	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 719
 720	switch (phy->mdix) {
 721	case 1:
 722		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 723		break;
 724	case 2:
 725		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 726		break;
 727	case 3:
 728		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 729		break;
 730	case 0:
 731	default:
 732		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 733		break;
 734	}
 735
 736	/* Options:
 737	 *   disable_polarity_correction = 0 (default)
 738	 *       Automatic Correction for Reversed Cable Polarity
 739	 *   0 - Disabled
 740	 *   1 - Enabled
 741	 */
 742	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 743	if (phy->disable_polarity_correction)
 744		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 745
 746	/* Enable downshift on BM (disabled by default) */
 747	if (phy->type == e1000_phy_bm) {
 748		/* For 82574/82583, first disable then enable downshift */
 749		if (phy->id == BME1000_E_PHY_ID_R2) {
 750			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 751			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 752					   phy_data);
 753			if (ret_val)
 754				return ret_val;
 755			/* Commit the changes. */
 756			ret_val = phy->ops.commit(hw);
 757			if (ret_val) {
 758				e_dbg("Error committing the PHY changes\n");
 759				return ret_val;
 760			}
 761		}
 762
 763		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 764	}
 765
 766	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 767	if (ret_val)
 768		return ret_val;
 769
 770	if ((phy->type == e1000_phy_m88) &&
 771	    (phy->revision < E1000_REVISION_4) &&
 772	    (phy->id != BME1000_E_PHY_ID_R2)) {
 773		/* Force TX_CLK in the Extended PHY Specific Control Register
 774		 * to 25MHz clock.
 775		 */
 776		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 777		if (ret_val)
 778			return ret_val;
 779
 780		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 781
 782		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 783			/* 82573L PHY - set the downshift counter to 5x. */
 784			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 785			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 786		} else {
 787			/* Configure Master and Slave downshift values */
 788			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 789				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 790			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 791				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 792		}
 793		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 794		if (ret_val)
 795			return ret_val;
 796	}
 797
 798	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 799		/* Set PHY page 0, register 29 to 0x0003 */
 800		ret_val = e1e_wphy(hw, 29, 0x0003);
 801		if (ret_val)
 802			return ret_val;
 803
 804		/* Set PHY page 0, register 30 to 0x0000 */
 805		ret_val = e1e_wphy(hw, 30, 0x0000);
 806		if (ret_val)
 807			return ret_val;
 808	}
 809
 810	/* Commit the changes. */
 811	if (phy->ops.commit) {
 812		ret_val = phy->ops.commit(hw);
 813		if (ret_val) {
 814			e_dbg("Error committing the PHY changes\n");
 815			return ret_val;
 816		}
 817	}
 818
 819	if (phy->type == e1000_phy_82578) {
 820		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 821		if (ret_val)
 822			return ret_val;
 823
 824		/* 82578 PHY - set the downshift count to 1x. */
 825		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 826		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 827		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 828		if (ret_val)
 829			return ret_val;
 830	}
 831
 832	return 0;
 833}
 834
 835/**
 836 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 837 *  @hw: pointer to the HW structure
 838 *
 839 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 840 *  igp PHY's.
 841 **/
 842s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 843{
 844	struct e1000_phy_info *phy = &hw->phy;
 845	s32 ret_val;
 846	u16 data;
 847
 848	ret_val = e1000_phy_hw_reset(hw);
 849	if (ret_val) {
 850		e_dbg("Error resetting the PHY.\n");
 851		return ret_val;
 852	}
 853
 854	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 855	 * timeout issues when LFS is enabled.
 856	 */
 857	msleep(100);
 858
 859	/* disable lplu d0 during driver init */
 860	if (hw->phy.ops.set_d0_lplu_state) {
 861		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 862		if (ret_val) {
 863			e_dbg("Error Disabling LPLU D0\n");
 864			return ret_val;
 865		}
 866	}
 867	/* Configure mdi-mdix settings */
 868	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 869	if (ret_val)
 870		return ret_val;
 871
 872	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 873
 874	switch (phy->mdix) {
 875	case 1:
 876		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 877		break;
 878	case 2:
 879		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 880		break;
 881	case 0:
 882	default:
 883		data |= IGP01E1000_PSCR_AUTO_MDIX;
 884		break;
 885	}
 886	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 887	if (ret_val)
 888		return ret_val;
 889
 890	/* set auto-master slave resolution settings */
 891	if (hw->mac.autoneg) {
 892		/* when autonegotiation advertisement is only 1000Mbps then we
 893		 * should disable SmartSpeed and enable Auto MasterSlave
 894		 * resolution as hardware default.
 895		 */
 896		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 897			/* Disable SmartSpeed */
 898			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 899					   &data);
 900			if (ret_val)
 901				return ret_val;
 902
 903			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 904			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 905					   data);
 906			if (ret_val)
 907				return ret_val;
 908
 909			/* Set auto Master/Slave resolution process */
 910			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 911			if (ret_val)
 912				return ret_val;
 913
 914			data &= ~CTL1000_ENABLE_MASTER;
 915			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 916			if (ret_val)
 917				return ret_val;
 918		}
 919
 920		ret_val = e1000_set_master_slave_mode(hw);
 921	}
 922
 923	return ret_val;
 924}
 925
 926/**
 927 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 928 *  @hw: pointer to the HW structure
 929 *
 930 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 931 *  register and if the PHY is already setup for auto-negotiation, then
 932 *  return successful.  Otherwise, setup advertisement and flow control to
 933 *  the appropriate values for the wanted auto-negotiation.
 934 **/
 935static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 936{
 937	struct e1000_phy_info *phy = &hw->phy;
 938	s32 ret_val;
 939	u16 mii_autoneg_adv_reg;
 940	u16 mii_1000t_ctrl_reg = 0;
 941
 942	phy->autoneg_advertised &= phy->autoneg_mask;
 943
 944	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 945	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 946	if (ret_val)
 947		return ret_val;
 948
 949	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 950		/* Read the MII 1000Base-T Control Register (Address 9). */
 951		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 952		if (ret_val)
 953			return ret_val;
 954	}
 955
 956	/* Need to parse both autoneg_advertised and fc and set up
 957	 * the appropriate PHY registers.  First we will parse for
 958	 * autoneg_advertised software override.  Since we can advertise
 959	 * a plethora of combinations, we need to check each bit
 960	 * individually.
 961	 */
 962
 963	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 964	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 965	 * the  1000Base-T Control Register (Address 9).
 966	 */
 967	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 968				 ADVERTISE_100HALF |
 969				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 970	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 971
 972	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 973
 974	/* Do we want to advertise 10 Mb Half Duplex? */
 975	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 976		e_dbg("Advertise 10mb Half duplex\n");
 977		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 978	}
 979
 980	/* Do we want to advertise 10 Mb Full Duplex? */
 981	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 982		e_dbg("Advertise 10mb Full duplex\n");
 983		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 984	}
 985
 986	/* Do we want to advertise 100 Mb Half Duplex? */
 987	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 988		e_dbg("Advertise 100mb Half duplex\n");
 989		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 990	}
 991
 992	/* Do we want to advertise 100 Mb Full Duplex? */
 993	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 994		e_dbg("Advertise 100mb Full duplex\n");
 995		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 996	}
 997
 998	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 999	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1000		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1001
1002	/* Do we want to advertise 1000 Mb Full Duplex? */
1003	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1004		e_dbg("Advertise 1000mb Full duplex\n");
1005		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1006	}
1007
1008	/* Check for a software override of the flow control settings, and
1009	 * setup the PHY advertisement registers accordingly.  If
1010	 * auto-negotiation is enabled, then software will have to set the
1011	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1012	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1013	 * negotiation.
1014	 *
1015	 * The possible values of the "fc" parameter are:
1016	 *      0:  Flow control is completely disabled
1017	 *      1:  Rx flow control is enabled (we can receive pause frames
1018	 *          but not send pause frames).
1019	 *      2:  Tx flow control is enabled (we can send pause frames
1020	 *          but we do not support receiving pause frames).
1021	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1022	 *  other:  No software override.  The flow control configuration
1023	 *          in the EEPROM is used.
1024	 */
1025	switch (hw->fc.current_mode) {
1026	case e1000_fc_none:
1027		/* Flow control (Rx & Tx) is completely disabled by a
1028		 * software over-ride.
1029		 */
1030		mii_autoneg_adv_reg &=
1031		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1032		break;
1033	case e1000_fc_rx_pause:
1034		/* Rx Flow control is enabled, and Tx Flow control is
1035		 * disabled, by a software over-ride.
1036		 *
1037		 * Since there really isn't a way to advertise that we are
1038		 * capable of Rx Pause ONLY, we will advertise that we
1039		 * support both symmetric and asymmetric Rx PAUSE.  Later
1040		 * (in e1000e_config_fc_after_link_up) we will disable the
1041		 * hw's ability to send PAUSE frames.
1042		 */
1043		mii_autoneg_adv_reg |=
1044		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1045		break;
1046	case e1000_fc_tx_pause:
1047		/* Tx Flow control is enabled, and Rx Flow control is
1048		 * disabled, by a software over-ride.
1049		 */
1050		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1051		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1052		break;
1053	case e1000_fc_full:
1054		/* Flow control (both Rx and Tx) is enabled by a software
1055		 * over-ride.
1056		 */
1057		mii_autoneg_adv_reg |=
1058		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1059		break;
1060	default:
1061		e_dbg("Flow control param set incorrectly\n");
1062		return -E1000_ERR_CONFIG;
1063	}
1064
1065	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1066	if (ret_val)
1067		return ret_val;
1068
1069	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1070
1071	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1072		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1073
1074	return ret_val;
1075}
1076
1077/**
1078 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1079 *  @hw: pointer to the HW structure
1080 *
1081 *  Performs initial bounds checking on autoneg advertisement parameter, then
1082 *  configure to advertise the full capability.  Setup the PHY to autoneg
1083 *  and restart the negotiation process between the link partner.  If
1084 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1085 **/
1086static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1087{
1088	struct e1000_phy_info *phy = &hw->phy;
1089	s32 ret_val;
1090	u16 phy_ctrl;
1091
1092	/* Perform some bounds checking on the autoneg advertisement
1093	 * parameter.
1094	 */
1095	phy->autoneg_advertised &= phy->autoneg_mask;
1096
1097	/* If autoneg_advertised is zero, we assume it was not defaulted
1098	 * by the calling code so we set to advertise full capability.
1099	 */
1100	if (!phy->autoneg_advertised)
1101		phy->autoneg_advertised = phy->autoneg_mask;
1102
1103	e_dbg("Reconfiguring auto-neg advertisement params\n");
1104	ret_val = e1000_phy_setup_autoneg(hw);
1105	if (ret_val) {
1106		e_dbg("Error Setting up Auto-Negotiation\n");
1107		return ret_val;
1108	}
1109	e_dbg("Restarting Auto-Neg\n");
1110
1111	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1112	 * the Auto Neg Restart bit in the PHY control register.
1113	 */
1114	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1115	if (ret_val)
1116		return ret_val;
1117
1118	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1119	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1120	if (ret_val)
1121		return ret_val;
1122
1123	/* Does the user want to wait for Auto-Neg to complete here, or
1124	 * check at a later time (for example, callback routine).
1125	 */
1126	if (phy->autoneg_wait_to_complete) {
1127		ret_val = e1000_wait_autoneg(hw);
1128		if (ret_val) {
1129			e_dbg("Error while waiting for autoneg to complete\n");
1130			return ret_val;
1131		}
1132	}
1133
1134	hw->mac.get_link_status = true;
1135
1136	return ret_val;
1137}
1138
1139/**
1140 *  e1000e_setup_copper_link - Configure copper link settings
1141 *  @hw: pointer to the HW structure
1142 *
1143 *  Calls the appropriate function to configure the link for auto-neg or forced
1144 *  speed and duplex.  Then we check for link, once link is established calls
1145 *  to configure collision distance and flow control are called.  If link is
1146 *  not established, we return -E1000_ERR_PHY (-2).
1147 **/
1148s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1149{
1150	s32 ret_val;
1151	bool link;
1152
1153	if (hw->mac.autoneg) {
1154		/* Setup autoneg and flow control advertisement and perform
1155		 * autonegotiation.
1156		 */
1157		ret_val = e1000_copper_link_autoneg(hw);
1158		if (ret_val)
1159			return ret_val;
1160	} else {
1161		/* PHY will be set to 10H, 10F, 100H or 100F
1162		 * depending on user settings.
1163		 */
1164		e_dbg("Forcing Speed and Duplex\n");
1165		ret_val = hw->phy.ops.force_speed_duplex(hw);
1166		if (ret_val) {
1167			e_dbg("Error Forcing Speed and Duplex\n");
1168			return ret_val;
1169		}
1170	}
1171
1172	/* Check link status. Wait up to 100 microseconds for link to become
1173	 * valid.
1174	 */
1175	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1176					      &link);
1177	if (ret_val)
1178		return ret_val;
1179
1180	if (link) {
1181		e_dbg("Valid link established!!!\n");
1182		hw->mac.ops.config_collision_dist(hw);
1183		ret_val = e1000e_config_fc_after_link_up(hw);
1184	} else {
1185		e_dbg("Unable to establish link!!!\n");
1186	}
1187
1188	return ret_val;
1189}
1190
1191/**
1192 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1193 *  @hw: pointer to the HW structure
1194 *
1195 *  Calls the PHY setup function to force speed and duplex.  Clears the
1196 *  auto-crossover to force MDI manually.  Waits for link and returns
1197 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1198 **/
1199s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1200{
1201	struct e1000_phy_info *phy = &hw->phy;
1202	s32 ret_val;
1203	u16 phy_data;
1204	bool link;
1205
1206	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1207	if (ret_val)
1208		return ret_val;
1209
1210	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1211
1212	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1213	if (ret_val)
1214		return ret_val;
1215
1216	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1217	 * forced whenever speed and duplex are forced.
1218	 */
1219	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1220	if (ret_val)
1221		return ret_val;
1222
1223	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1224	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1225
1226	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1227	if (ret_val)
1228		return ret_val;
1229
1230	e_dbg("IGP PSCR: %X\n", phy_data);
1231
1232	udelay(1);
1233
1234	if (phy->autoneg_wait_to_complete) {
1235		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1236
1237		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1238						      100000, &link);
1239		if (ret_val)
1240			return ret_val;
1241
1242		if (!link)
1243			e_dbg("Link taking longer than expected.\n");
1244
1245		/* Try once more */
1246		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1247						      100000, &link);
1248	}
1249
1250	return ret_val;
1251}
1252
1253/**
1254 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1255 *  @hw: pointer to the HW structure
1256 *
1257 *  Calls the PHY setup function to force speed and duplex.  Clears the
1258 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1259 *  changes.  If time expires while waiting for link up, we reset the DSP.
1260 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1261 *  successful completion, else return corresponding error code.
1262 **/
1263s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1264{
1265	struct e1000_phy_info *phy = &hw->phy;
1266	s32 ret_val;
1267	u16 phy_data;
1268	bool link;
1269
1270	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1271	 * forced whenever speed and duplex are forced.
1272	 */
1273	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1274	if (ret_val)
1275		return ret_val;
1276
1277	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1278	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279	if (ret_val)
1280		return ret_val;
1281
1282	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1283
1284	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1285	if (ret_val)
1286		return ret_val;
1287
1288	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1289
1290	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1291	if (ret_val)
1292		return ret_val;
1293
1294	/* Reset the phy to commit changes. */
1295	if (hw->phy.ops.commit) {
1296		ret_val = hw->phy.ops.commit(hw);
1297		if (ret_val)
1298			return ret_val;
1299	}
1300
1301	if (phy->autoneg_wait_to_complete) {
1302		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1303
1304		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1305						      100000, &link);
1306		if (ret_val)
1307			return ret_val;
1308
1309		if (!link) {
1310			if (hw->phy.type != e1000_phy_m88) {
1311				e_dbg("Link taking longer than expected.\n");
1312			} else {
1313				/* We didn't get link.
1314				 * Reset the DSP and cross our fingers.
1315				 */
1316				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1317						   0x001d);
1318				if (ret_val)
1319					return ret_val;
1320				ret_val = e1000e_phy_reset_dsp(hw);
1321				if (ret_val)
1322					return ret_val;
1323			}
1324		}
1325
1326		/* Try once more */
1327		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1328						      100000, &link);
1329		if (ret_val)
1330			return ret_val;
1331	}
1332
1333	if (hw->phy.type != e1000_phy_m88)
1334		return 0;
1335
1336	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1337	if (ret_val)
1338		return ret_val;
1339
1340	/* Resetting the phy means we need to re-force TX_CLK in the
1341	 * Extended PHY Specific Control Register to 25MHz clock from
1342	 * the reset value of 2.5MHz.
1343	 */
1344	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1345	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1346	if (ret_val)
1347		return ret_val;
1348
1349	/* In addition, we must re-enable CRS on Tx for both half and full
1350	 * duplex.
1351	 */
1352	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1353	if (ret_val)
1354		return ret_val;
1355
1356	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1357	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1358
1359	return ret_val;
1360}
1361
1362/**
1363 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1364 *  @hw: pointer to the HW structure
1365 *
1366 *  Forces the speed and duplex settings of the PHY.
1367 *  This is a function pointer entry point only called by
1368 *  PHY setup routines.
1369 **/
1370s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1371{
1372	struct e1000_phy_info *phy = &hw->phy;
1373	s32 ret_val;
1374	u16 data;
1375	bool link;
1376
1377	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1378	if (ret_val)
1379		return ret_val;
1380
1381	e1000e_phy_force_speed_duplex_setup(hw, &data);
1382
1383	ret_val = e1e_wphy(hw, MII_BMCR, data);
1384	if (ret_val)
1385		return ret_val;
1386
1387	/* Disable MDI-X support for 10/100 */
1388	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1389	if (ret_val)
1390		return ret_val;
1391
1392	data &= ~IFE_PMC_AUTO_MDIX;
1393	data &= ~IFE_PMC_FORCE_MDIX;
1394
1395	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1396	if (ret_val)
1397		return ret_val;
1398
1399	e_dbg("IFE PMC: %X\n", data);
1400
1401	udelay(1);
1402
1403	if (phy->autoneg_wait_to_complete) {
1404		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1405
1406		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1407						      100000, &link);
1408		if (ret_val)
1409			return ret_val;
1410
1411		if (!link)
1412			e_dbg("Link taking longer than expected.\n");
1413
1414		/* Try once more */
1415		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1416						      100000, &link);
1417		if (ret_val)
1418			return ret_val;
1419	}
1420
1421	return 0;
1422}
1423
1424/**
1425 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1426 *  @hw: pointer to the HW structure
1427 *  @phy_ctrl: pointer to current value of MII_BMCR
1428 *
1429 *  Forces speed and duplex on the PHY by doing the following: disable flow
1430 *  control, force speed/duplex on the MAC, disable auto speed detection,
1431 *  disable auto-negotiation, configure duplex, configure speed, configure
1432 *  the collision distance, write configuration to CTRL register.  The
1433 *  caller must write to the MII_BMCR register for these settings to
1434 *  take affect.
1435 **/
1436void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1437{
1438	struct e1000_mac_info *mac = &hw->mac;
1439	u32 ctrl;
1440
1441	/* Turn off flow control when forcing speed/duplex */
1442	hw->fc.current_mode = e1000_fc_none;
1443
1444	/* Force speed/duplex on the mac */
1445	ctrl = er32(CTRL);
1446	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1447	ctrl &= ~E1000_CTRL_SPD_SEL;
1448
1449	/* Disable Auto Speed Detection */
1450	ctrl &= ~E1000_CTRL_ASDE;
1451
1452	/* Disable autoneg on the phy */
1453	*phy_ctrl &= ~BMCR_ANENABLE;
1454
1455	/* Forcing Full or Half Duplex? */
1456	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1457		ctrl &= ~E1000_CTRL_FD;
1458		*phy_ctrl &= ~BMCR_FULLDPLX;
1459		e_dbg("Half Duplex\n");
1460	} else {
1461		ctrl |= E1000_CTRL_FD;
1462		*phy_ctrl |= BMCR_FULLDPLX;
1463		e_dbg("Full Duplex\n");
1464	}
1465
1466	/* Forcing 10mb or 100mb? */
1467	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1468		ctrl |= E1000_CTRL_SPD_100;
1469		*phy_ctrl |= BMCR_SPEED100;
1470		*phy_ctrl &= ~BMCR_SPEED1000;
1471		e_dbg("Forcing 100mb\n");
1472	} else {
1473		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1474		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1475		e_dbg("Forcing 10mb\n");
1476	}
1477
1478	hw->mac.ops.config_collision_dist(hw);
1479
1480	ew32(CTRL, ctrl);
1481}
1482
1483/**
1484 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1485 *  @hw: pointer to the HW structure
1486 *  @active: boolean used to enable/disable lplu
1487 *
1488 *  Success returns 0, Failure returns 1
1489 *
1490 *  The low power link up (lplu) state is set to the power management level D3
1491 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1492 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1493 *  is used during Dx states where the power conservation is most important.
1494 *  During driver activity, SmartSpeed should be enabled so performance is
1495 *  maintained.
1496 **/
1497s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1498{
1499	struct e1000_phy_info *phy = &hw->phy;
1500	s32 ret_val;
1501	u16 data;
1502
1503	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1504	if (ret_val)
1505		return ret_val;
1506
1507	if (!active) {
1508		data &= ~IGP02E1000_PM_D3_LPLU;
1509		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1510		if (ret_val)
1511			return ret_val;
1512		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1513		 * during Dx states where the power conservation is most
1514		 * important.  During driver activity we should enable
1515		 * SmartSpeed, so performance is maintained.
1516		 */
1517		if (phy->smart_speed == e1000_smart_speed_on) {
1518			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1519					   &data);
1520			if (ret_val)
1521				return ret_val;
1522
1523			data |= IGP01E1000_PSCFR_SMART_SPEED;
1524			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1525					   data);
1526			if (ret_val)
1527				return ret_val;
1528		} else if (phy->smart_speed == e1000_smart_speed_off) {
1529			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1530					   &data);
1531			if (ret_val)
1532				return ret_val;
1533
1534			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1535			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1536					   data);
1537			if (ret_val)
1538				return ret_val;
1539		}
1540	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1541		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1542		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1543		data |= IGP02E1000_PM_D3_LPLU;
1544		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1545		if (ret_val)
1546			return ret_val;
1547
1548		/* When LPLU is enabled, we should disable SmartSpeed */
1549		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1550		if (ret_val)
1551			return ret_val;
1552
1553		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1554		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1555	}
1556
1557	return ret_val;
1558}
1559
1560/**
1561 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1562 *  @hw: pointer to the HW structure
1563 *
1564 *  Success returns 0, Failure returns 1
1565 *
1566 *  A downshift is detected by querying the PHY link health.
1567 **/
1568s32 e1000e_check_downshift(struct e1000_hw *hw)
1569{
1570	struct e1000_phy_info *phy = &hw->phy;
1571	s32 ret_val;
1572	u16 phy_data, offset, mask;
1573
1574	switch (phy->type) {
1575	case e1000_phy_m88:
1576	case e1000_phy_gg82563:
1577	case e1000_phy_bm:
1578	case e1000_phy_82578:
1579		offset = M88E1000_PHY_SPEC_STATUS;
1580		mask = M88E1000_PSSR_DOWNSHIFT;
1581		break;
1582	case e1000_phy_igp_2:
1583	case e1000_phy_igp_3:
1584		offset = IGP01E1000_PHY_LINK_HEALTH;
1585		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1586		break;
1587	default:
1588		/* speed downshift not supported */
1589		phy->speed_downgraded = false;
1590		return 0;
1591	}
1592
1593	ret_val = e1e_rphy(hw, offset, &phy_data);
1594
1595	if (!ret_val)
1596		phy->speed_downgraded = !!(phy_data & mask);
1597
1598	return ret_val;
1599}
1600
1601/**
1602 *  e1000_check_polarity_m88 - Checks the polarity.
1603 *  @hw: pointer to the HW structure
1604 *
1605 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1606 *
1607 *  Polarity is determined based on the PHY specific status register.
1608 **/
1609s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1610{
1611	struct e1000_phy_info *phy = &hw->phy;
1612	s32 ret_val;
1613	u16 data;
1614
1615	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1616
1617	if (!ret_val)
1618		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1619				       ? e1000_rev_polarity_reversed
1620				       : e1000_rev_polarity_normal);
1621
1622	return ret_val;
1623}
1624
1625/**
1626 *  e1000_check_polarity_igp - Checks the polarity.
1627 *  @hw: pointer to the HW structure
1628 *
1629 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1630 *
1631 *  Polarity is determined based on the PHY port status register, and the
1632 *  current speed (since there is no polarity at 100Mbps).
1633 **/
1634s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1635{
1636	struct e1000_phy_info *phy = &hw->phy;
1637	s32 ret_val;
1638	u16 data, offset, mask;
1639
1640	/* Polarity is determined based on the speed of
1641	 * our connection.
1642	 */
1643	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1644	if (ret_val)
1645		return ret_val;
1646
1647	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1648	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1649		offset = IGP01E1000_PHY_PCS_INIT_REG;
1650		mask = IGP01E1000_PHY_POLARITY_MASK;
1651	} else {
1652		/* This really only applies to 10Mbps since
1653		 * there is no polarity for 100Mbps (always 0).
1654		 */
1655		offset = IGP01E1000_PHY_PORT_STATUS;
1656		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1657	}
1658
1659	ret_val = e1e_rphy(hw, offset, &data);
1660
1661	if (!ret_val)
1662		phy->cable_polarity = ((data & mask)
1663				       ? e1000_rev_polarity_reversed
1664				       : e1000_rev_polarity_normal);
1665
1666	return ret_val;
1667}
1668
1669/**
1670 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1671 *  @hw: pointer to the HW structure
1672 *
1673 *  Polarity is determined on the polarity reversal feature being enabled.
1674 **/
1675s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1676{
1677	struct e1000_phy_info *phy = &hw->phy;
1678	s32 ret_val;
1679	u16 phy_data, offset, mask;
1680
1681	/* Polarity is determined based on the reversal feature being enabled.
1682	 */
1683	if (phy->polarity_correction) {
1684		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1685		mask = IFE_PESC_POLARITY_REVERSED;
1686	} else {
1687		offset = IFE_PHY_SPECIAL_CONTROL;
1688		mask = IFE_PSC_FORCE_POLARITY;
1689	}
1690
1691	ret_val = e1e_rphy(hw, offset, &phy_data);
1692
1693	if (!ret_val)
1694		phy->cable_polarity = ((phy_data & mask)
1695				       ? e1000_rev_polarity_reversed
1696				       : e1000_rev_polarity_normal);
1697
1698	return ret_val;
1699}
1700
1701/**
1702 *  e1000_wait_autoneg - Wait for auto-neg completion
1703 *  @hw: pointer to the HW structure
1704 *
1705 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1706 *  limit to expire, which ever happens first.
1707 **/
1708static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1709{
1710	s32 ret_val = 0;
1711	u16 i, phy_status;
1712
1713	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1714	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1715		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1716		if (ret_val)
1717			break;
1718		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1719		if (ret_val)
1720			break;
1721		if (phy_status & BMSR_ANEGCOMPLETE)
1722			break;
1723		msleep(100);
1724	}
1725
1726	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1727	 * has completed.
1728	 */
1729	return ret_val;
1730}
1731
1732/**
1733 *  e1000e_phy_has_link_generic - Polls PHY for link
1734 *  @hw: pointer to the HW structure
1735 *  @iterations: number of times to poll for link
1736 *  @usec_interval: delay between polling attempts
1737 *  @success: pointer to whether polling was successful or not
1738 *
1739 *  Polls the PHY status register for link, 'iterations' number of times.
1740 **/
1741s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1742				u32 usec_interval, bool *success)
1743{
1744	s32 ret_val = 0;
1745	u16 i, phy_status;
1746
 
1747	for (i = 0; i < iterations; i++) {
1748		/* Some PHYs require the MII_BMSR register to be read
1749		 * twice due to the link bit being sticky.  No harm doing
1750		 * it across the board.
1751		 */
1752		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1753		if (ret_val) {
1754			/* If the first read fails, another entity may have
1755			 * ownership of the resources, wait and try again to
1756			 * see if they have relinquished the resources yet.
1757			 */
1758			if (usec_interval >= 1000)
1759				msleep(usec_interval / 1000);
1760			else
1761				udelay(usec_interval);
1762		}
1763		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1764		if (ret_val)
1765			break;
1766		if (phy_status & BMSR_LSTATUS)
 
1767			break;
 
1768		if (usec_interval >= 1000)
1769			msleep(usec_interval / 1000);
1770		else
1771			udelay(usec_interval);
1772	}
1773
1774	*success = (i < iterations);
1775
1776	return ret_val;
1777}
1778
1779/**
1780 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1781 *  @hw: pointer to the HW structure
1782 *
1783 *  Reads the PHY specific status register to retrieve the cable length
1784 *  information.  The cable length is determined by averaging the minimum and
1785 *  maximum values to get the "average" cable length.  The m88 PHY has four
1786 *  possible cable length values, which are:
1787 *	Register Value		Cable Length
1788 *	0			< 50 meters
1789 *	1			50 - 80 meters
1790 *	2			80 - 110 meters
1791 *	3			110 - 140 meters
1792 *	4			> 140 meters
1793 **/
1794s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1795{
1796	struct e1000_phy_info *phy = &hw->phy;
1797	s32 ret_val;
1798	u16 phy_data, index;
1799
1800	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1801	if (ret_val)
1802		return ret_val;
1803
1804	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1805		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1806
1807	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1808		return -E1000_ERR_PHY;
1809
1810	phy->min_cable_length = e1000_m88_cable_length_table[index];
1811	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1812
1813	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1814
1815	return 0;
1816}
1817
1818/**
1819 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1820 *  @hw: pointer to the HW structure
1821 *
1822 *  The automatic gain control (agc) normalizes the amplitude of the
1823 *  received signal, adjusting for the attenuation produced by the
1824 *  cable.  By reading the AGC registers, which represent the
1825 *  combination of coarse and fine gain value, the value can be put
1826 *  into a lookup table to obtain the approximate cable length
1827 *  for each channel.
1828 **/
1829s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1830{
1831	struct e1000_phy_info *phy = &hw->phy;
1832	s32 ret_val;
1833	u16 phy_data, i, agc_value = 0;
1834	u16 cur_agc_index, max_agc_index = 0;
1835	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1836	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1837		IGP02E1000_PHY_AGC_A,
1838		IGP02E1000_PHY_AGC_B,
1839		IGP02E1000_PHY_AGC_C,
1840		IGP02E1000_PHY_AGC_D
1841	};
1842
1843	/* Read the AGC registers for all channels */
1844	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1845		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1846		if (ret_val)
1847			return ret_val;
1848
1849		/* Getting bits 15:9, which represent the combination of
1850		 * coarse and fine gain values.  The result is a number
1851		 * that can be put into the lookup table to obtain the
1852		 * approximate cable length.
1853		 */
1854		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1855				 IGP02E1000_AGC_LENGTH_MASK);
1856
1857		/* Array index bound check. */
1858		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1859		    (cur_agc_index == 0))
1860			return -E1000_ERR_PHY;
1861
1862		/* Remove min & max AGC values from calculation. */
1863		if (e1000_igp_2_cable_length_table[min_agc_index] >
1864		    e1000_igp_2_cable_length_table[cur_agc_index])
1865			min_agc_index = cur_agc_index;
1866		if (e1000_igp_2_cable_length_table[max_agc_index] <
1867		    e1000_igp_2_cable_length_table[cur_agc_index])
1868			max_agc_index = cur_agc_index;
1869
1870		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1871	}
1872
1873	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1874		      e1000_igp_2_cable_length_table[max_agc_index]);
1875	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1876
1877	/* Calculate cable length with the error range of +/- 10 meters. */
1878	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1879				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1880	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1881
1882	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1883
1884	return 0;
1885}
1886
1887/**
1888 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1889 *  @hw: pointer to the HW structure
1890 *
1891 *  Valid for only copper links.  Read the PHY status register (sticky read)
1892 *  to verify that link is up.  Read the PHY special control register to
1893 *  determine the polarity and 10base-T extended distance.  Read the PHY
1894 *  special status register to determine MDI/MDIx and current speed.  If
1895 *  speed is 1000, then determine cable length, local and remote receiver.
1896 **/
1897s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1898{
1899	struct e1000_phy_info *phy = &hw->phy;
1900	s32 ret_val;
1901	u16 phy_data;
1902	bool link;
1903
1904	if (phy->media_type != e1000_media_type_copper) {
1905		e_dbg("Phy info is only valid for copper media\n");
1906		return -E1000_ERR_CONFIG;
1907	}
1908
1909	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1910	if (ret_val)
1911		return ret_val;
1912
1913	if (!link) {
1914		e_dbg("Phy info is only valid if link is up\n");
1915		return -E1000_ERR_CONFIG;
1916	}
1917
1918	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1919	if (ret_val)
1920		return ret_val;
1921
1922	phy->polarity_correction = !!(phy_data &
1923				      M88E1000_PSCR_POLARITY_REVERSAL);
1924
1925	ret_val = e1000_check_polarity_m88(hw);
1926	if (ret_val)
1927		return ret_val;
1928
1929	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1930	if (ret_val)
1931		return ret_val;
1932
1933	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1934
1935	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1936		ret_val = hw->phy.ops.get_cable_length(hw);
1937		if (ret_val)
1938			return ret_val;
1939
1940		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1941		if (ret_val)
1942			return ret_val;
1943
1944		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1945		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1946
1947		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1948		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1949	} else {
1950		/* Set values to "undefined" */
1951		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1952		phy->local_rx = e1000_1000t_rx_status_undefined;
1953		phy->remote_rx = e1000_1000t_rx_status_undefined;
1954	}
1955
1956	return ret_val;
1957}
1958
1959/**
1960 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1961 *  @hw: pointer to the HW structure
1962 *
1963 *  Read PHY status to determine if link is up.  If link is up, then
1964 *  set/determine 10base-T extended distance and polarity correction.  Read
1965 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1966 *  determine on the cable length, local and remote receiver.
1967 **/
1968s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1969{
1970	struct e1000_phy_info *phy = &hw->phy;
1971	s32 ret_val;
1972	u16 data;
1973	bool link;
1974
1975	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1976	if (ret_val)
1977		return ret_val;
1978
1979	if (!link) {
1980		e_dbg("Phy info is only valid if link is up\n");
1981		return -E1000_ERR_CONFIG;
1982	}
1983
1984	phy->polarity_correction = true;
1985
1986	ret_val = e1000_check_polarity_igp(hw);
1987	if (ret_val)
1988		return ret_val;
1989
1990	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1991	if (ret_val)
1992		return ret_val;
1993
1994	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1995
1996	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1997	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1998		ret_val = phy->ops.get_cable_length(hw);
1999		if (ret_val)
2000			return ret_val;
2001
2002		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2003		if (ret_val)
2004			return ret_val;
2005
2006		phy->local_rx = (data & LPA_1000LOCALRXOK)
2007		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2008
2009		phy->remote_rx = (data & LPA_1000REMRXOK)
2010		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2011	} else {
2012		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2013		phy->local_rx = e1000_1000t_rx_status_undefined;
2014		phy->remote_rx = e1000_1000t_rx_status_undefined;
2015	}
2016
2017	return ret_val;
2018}
2019
2020/**
2021 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2022 *  @hw: pointer to the HW structure
2023 *
2024 *  Populates "phy" structure with various feature states.
2025 **/
2026s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2027{
2028	struct e1000_phy_info *phy = &hw->phy;
2029	s32 ret_val;
2030	u16 data;
2031	bool link;
2032
2033	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2034	if (ret_val)
2035		return ret_val;
2036
2037	if (!link) {
2038		e_dbg("Phy info is only valid if link is up\n");
2039		return -E1000_ERR_CONFIG;
2040	}
2041
2042	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2043	if (ret_val)
2044		return ret_val;
2045	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2046
2047	if (phy->polarity_correction) {
2048		ret_val = e1000_check_polarity_ife(hw);
2049		if (ret_val)
2050			return ret_val;
2051	} else {
2052		/* Polarity is forced */
2053		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2054				       ? e1000_rev_polarity_reversed
2055				       : e1000_rev_polarity_normal);
2056	}
2057
2058	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2059	if (ret_val)
2060		return ret_val;
2061
2062	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2063
2064	/* The following parameters are undefined for 10/100 operation. */
2065	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2066	phy->local_rx = e1000_1000t_rx_status_undefined;
2067	phy->remote_rx = e1000_1000t_rx_status_undefined;
2068
2069	return 0;
2070}
2071
2072/**
2073 *  e1000e_phy_sw_reset - PHY software reset
2074 *  @hw: pointer to the HW structure
2075 *
2076 *  Does a software reset of the PHY by reading the PHY control register and
2077 *  setting/write the control register reset bit to the PHY.
2078 **/
2079s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2080{
2081	s32 ret_val;
2082	u16 phy_ctrl;
2083
2084	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2085	if (ret_val)
2086		return ret_val;
2087
2088	phy_ctrl |= BMCR_RESET;
2089	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2090	if (ret_val)
2091		return ret_val;
2092
2093	udelay(1);
2094
2095	return ret_val;
2096}
2097
2098/**
2099 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2100 *  @hw: pointer to the HW structure
2101 *
2102 *  Verify the reset block is not blocking us from resetting.  Acquire
2103 *  semaphore (if necessary) and read/set/write the device control reset
2104 *  bit in the PHY.  Wait the appropriate delay time for the device to
2105 *  reset and release the semaphore (if necessary).
2106 **/
2107s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2108{
2109	struct e1000_phy_info *phy = &hw->phy;
2110	s32 ret_val;
2111	u32 ctrl;
2112
2113	if (phy->ops.check_reset_block) {
2114		ret_val = phy->ops.check_reset_block(hw);
2115		if (ret_val)
2116			return 0;
2117	}
2118
2119	ret_val = phy->ops.acquire(hw);
2120	if (ret_val)
2121		return ret_val;
2122
2123	ctrl = er32(CTRL);
2124	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2125	e1e_flush();
2126
2127	udelay(phy->reset_delay_us);
2128
2129	ew32(CTRL, ctrl);
2130	e1e_flush();
2131
2132	usleep_range(150, 300);
2133
2134	phy->ops.release(hw);
2135
2136	return phy->ops.get_cfg_done(hw);
2137}
2138
2139/**
2140 *  e1000e_get_cfg_done_generic - Generic configuration done
2141 *  @hw: pointer to the HW structure
2142 *
2143 *  Generic function to wait 10 milli-seconds for configuration to complete
2144 *  and return success.
2145 **/
2146s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2147{
2148	mdelay(10);
2149
2150	return 0;
2151}
2152
2153/**
2154 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2155 *  @hw: pointer to the HW structure
2156 *
2157 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2158 **/
2159s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2160{
2161	e_dbg("Running IGP 3 PHY init script\n");
2162
2163	/* PHY init IGP 3 */
2164	/* Enable rise/fall, 10-mode work in class-A */
2165	e1e_wphy(hw, 0x2F5B, 0x9018);
2166	/* Remove all caps from Replica path filter */
2167	e1e_wphy(hw, 0x2F52, 0x0000);
2168	/* Bias trimming for ADC, AFE and Driver (Default) */
2169	e1e_wphy(hw, 0x2FB1, 0x8B24);
2170	/* Increase Hybrid poly bias */
2171	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2172	/* Add 4% to Tx amplitude in Gig mode */
2173	e1e_wphy(hw, 0x2010, 0x10B0);
2174	/* Disable trimming (TTT) */
2175	e1e_wphy(hw, 0x2011, 0x0000);
2176	/* Poly DC correction to 94.6% + 2% for all channels */
2177	e1e_wphy(hw, 0x20DD, 0x249A);
2178	/* ABS DC correction to 95.9% */
2179	e1e_wphy(hw, 0x20DE, 0x00D3);
2180	/* BG temp curve trim */
2181	e1e_wphy(hw, 0x28B4, 0x04CE);
2182	/* Increasing ADC OPAMP stage 1 currents to max */
2183	e1e_wphy(hw, 0x2F70, 0x29E4);
2184	/* Force 1000 ( required for enabling PHY regs configuration) */
2185	e1e_wphy(hw, 0x0000, 0x0140);
2186	/* Set upd_freq to 6 */
2187	e1e_wphy(hw, 0x1F30, 0x1606);
2188	/* Disable NPDFE */
2189	e1e_wphy(hw, 0x1F31, 0xB814);
2190	/* Disable adaptive fixed FFE (Default) */
2191	e1e_wphy(hw, 0x1F35, 0x002A);
2192	/* Enable FFE hysteresis */
2193	e1e_wphy(hw, 0x1F3E, 0x0067);
2194	/* Fixed FFE for short cable lengths */
2195	e1e_wphy(hw, 0x1F54, 0x0065);
2196	/* Fixed FFE for medium cable lengths */
2197	e1e_wphy(hw, 0x1F55, 0x002A);
2198	/* Fixed FFE for long cable lengths */
2199	e1e_wphy(hw, 0x1F56, 0x002A);
2200	/* Enable Adaptive Clip Threshold */
2201	e1e_wphy(hw, 0x1F72, 0x3FB0);
2202	/* AHT reset limit to 1 */
2203	e1e_wphy(hw, 0x1F76, 0xC0FF);
2204	/* Set AHT master delay to 127 msec */
2205	e1e_wphy(hw, 0x1F77, 0x1DEC);
2206	/* Set scan bits for AHT */
2207	e1e_wphy(hw, 0x1F78, 0xF9EF);
2208	/* Set AHT Preset bits */
2209	e1e_wphy(hw, 0x1F79, 0x0210);
2210	/* Change integ_factor of channel A to 3 */
2211	e1e_wphy(hw, 0x1895, 0x0003);
2212	/* Change prop_factor of channels BCD to 8 */
2213	e1e_wphy(hw, 0x1796, 0x0008);
2214	/* Change cg_icount + enable integbp for channels BCD */
2215	e1e_wphy(hw, 0x1798, 0xD008);
2216	/* Change cg_icount + enable integbp + change prop_factor_master
2217	 * to 8 for channel A
2218	 */
2219	e1e_wphy(hw, 0x1898, 0xD918);
2220	/* Disable AHT in Slave mode on channel A */
2221	e1e_wphy(hw, 0x187A, 0x0800);
2222	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2223	 * Enable SPD+B2B
2224	 */
2225	e1e_wphy(hw, 0x0019, 0x008D);
2226	/* Enable restart AN on an1000_dis change */
2227	e1e_wphy(hw, 0x001B, 0x2080);
2228	/* Enable wh_fifo read clock in 10/100 modes */
2229	e1e_wphy(hw, 0x0014, 0x0045);
2230	/* Restart AN, Speed selection is 1000 */
2231	e1e_wphy(hw, 0x0000, 0x1340);
2232
2233	return 0;
2234}
2235
2236/**
2237 *  e1000e_get_phy_type_from_id - Get PHY type from id
2238 *  @phy_id: phy_id read from the phy
2239 *
2240 *  Returns the phy type from the id.
2241 **/
2242enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2243{
2244	enum e1000_phy_type phy_type = e1000_phy_unknown;
2245
2246	switch (phy_id) {
2247	case M88E1000_I_PHY_ID:
2248	case M88E1000_E_PHY_ID:
2249	case M88E1111_I_PHY_ID:
2250	case M88E1011_I_PHY_ID:
2251		phy_type = e1000_phy_m88;
2252		break;
2253	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2254		phy_type = e1000_phy_igp_2;
2255		break;
2256	case GG82563_E_PHY_ID:
2257		phy_type = e1000_phy_gg82563;
2258		break;
2259	case IGP03E1000_E_PHY_ID:
2260		phy_type = e1000_phy_igp_3;
2261		break;
2262	case IFE_E_PHY_ID:
2263	case IFE_PLUS_E_PHY_ID:
2264	case IFE_C_E_PHY_ID:
2265		phy_type = e1000_phy_ife;
2266		break;
2267	case BME1000_E_PHY_ID:
2268	case BME1000_E_PHY_ID_R2:
2269		phy_type = e1000_phy_bm;
2270		break;
2271	case I82578_E_PHY_ID:
2272		phy_type = e1000_phy_82578;
2273		break;
2274	case I82577_E_PHY_ID:
2275		phy_type = e1000_phy_82577;
2276		break;
2277	case I82579_E_PHY_ID:
2278		phy_type = e1000_phy_82579;
2279		break;
2280	case I217_E_PHY_ID:
2281		phy_type = e1000_phy_i217;
2282		break;
2283	default:
2284		phy_type = e1000_phy_unknown;
2285		break;
2286	}
2287	return phy_type;
2288}
2289
2290/**
2291 *  e1000e_determine_phy_address - Determines PHY address.
2292 *  @hw: pointer to the HW structure
2293 *
2294 *  This uses a trial and error method to loop through possible PHY
2295 *  addresses. It tests each by reading the PHY ID registers and
2296 *  checking for a match.
2297 **/
2298s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2299{
2300	u32 phy_addr = 0;
2301	u32 i;
2302	enum e1000_phy_type phy_type = e1000_phy_unknown;
2303
2304	hw->phy.id = phy_type;
2305
2306	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2307		hw->phy.addr = phy_addr;
2308		i = 0;
2309
2310		do {
2311			e1000e_get_phy_id(hw);
2312			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2313
2314			/* If phy_type is valid, break - we found our
2315			 * PHY address
2316			 */
2317			if (phy_type != e1000_phy_unknown)
2318				return 0;
2319
2320			usleep_range(1000, 2000);
2321			i++;
2322		} while (i < 10);
2323	}
2324
2325	return -E1000_ERR_PHY_TYPE;
2326}
2327
2328/**
2329 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2330 *  @page: page to access
 
2331 *
2332 *  Returns the phy address for the page requested.
2333 **/
2334static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2335{
2336	u32 phy_addr = 2;
2337
2338	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2339		phy_addr = 1;
2340
2341	return phy_addr;
2342}
2343
2344/**
2345 *  e1000e_write_phy_reg_bm - Write BM PHY register
2346 *  @hw: pointer to the HW structure
2347 *  @offset: register offset to write to
2348 *  @data: data to write at register offset
2349 *
2350 *  Acquires semaphore, if necessary, then writes the data to PHY register
2351 *  at the offset.  Release any acquired semaphores before exiting.
2352 **/
2353s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2354{
2355	s32 ret_val;
2356	u32 page = offset >> IGP_PAGE_SHIFT;
2357
2358	ret_val = hw->phy.ops.acquire(hw);
2359	if (ret_val)
2360		return ret_val;
2361
2362	/* Page 800 works differently than the rest so it has its own func */
2363	if (page == BM_WUC_PAGE) {
2364		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2365							 false, false);
2366		goto release;
2367	}
2368
2369	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2370
2371	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2372		u32 page_shift, page_select;
2373
2374		/* Page select is register 31 for phy address 1 and 22 for
2375		 * phy address 2 and 3. Page select is shifted only for
2376		 * phy address 1.
2377		 */
2378		if (hw->phy.addr == 1) {
2379			page_shift = IGP_PAGE_SHIFT;
2380			page_select = IGP01E1000_PHY_PAGE_SELECT;
2381		} else {
2382			page_shift = 0;
2383			page_select = BM_PHY_PAGE_SELECT;
2384		}
2385
2386		/* Page is shifted left, PHY expects (page x 32) */
2387		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2388						    (page << page_shift));
2389		if (ret_val)
2390			goto release;
2391	}
2392
2393	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2394					    data);
2395
2396release:
2397	hw->phy.ops.release(hw);
2398	return ret_val;
2399}
2400
2401/**
2402 *  e1000e_read_phy_reg_bm - Read BM PHY register
2403 *  @hw: pointer to the HW structure
2404 *  @offset: register offset to be read
2405 *  @data: pointer to the read data
2406 *
2407 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2408 *  and storing the retrieved information in data.  Release any acquired
2409 *  semaphores before exiting.
2410 **/
2411s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2412{
2413	s32 ret_val;
2414	u32 page = offset >> IGP_PAGE_SHIFT;
2415
2416	ret_val = hw->phy.ops.acquire(hw);
2417	if (ret_val)
2418		return ret_val;
2419
2420	/* Page 800 works differently than the rest so it has its own func */
2421	if (page == BM_WUC_PAGE) {
2422		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2423							 true, false);
2424		goto release;
2425	}
2426
2427	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2428
2429	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2430		u32 page_shift, page_select;
2431
2432		/* Page select is register 31 for phy address 1 and 22 for
2433		 * phy address 2 and 3. Page select is shifted only for
2434		 * phy address 1.
2435		 */
2436		if (hw->phy.addr == 1) {
2437			page_shift = IGP_PAGE_SHIFT;
2438			page_select = IGP01E1000_PHY_PAGE_SELECT;
2439		} else {
2440			page_shift = 0;
2441			page_select = BM_PHY_PAGE_SELECT;
2442		}
2443
2444		/* Page is shifted left, PHY expects (page x 32) */
2445		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2446						    (page << page_shift));
2447		if (ret_val)
2448			goto release;
2449	}
2450
2451	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2452					   data);
2453release:
2454	hw->phy.ops.release(hw);
2455	return ret_val;
2456}
2457
2458/**
2459 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2460 *  @hw: pointer to the HW structure
2461 *  @offset: register offset to be read
2462 *  @data: pointer to the read data
2463 *
2464 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2465 *  and storing the retrieved information in data.  Release any acquired
2466 *  semaphores before exiting.
2467 **/
2468s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2469{
2470	s32 ret_val;
2471	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2472
2473	ret_val = hw->phy.ops.acquire(hw);
2474	if (ret_val)
2475		return ret_val;
2476
2477	/* Page 800 works differently than the rest so it has its own func */
2478	if (page == BM_WUC_PAGE) {
2479		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2480							 true, false);
2481		goto release;
2482	}
2483
2484	hw->phy.addr = 1;
2485
2486	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2487		/* Page is shifted left, PHY expects (page x 32) */
2488		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2489						    page);
2490
2491		if (ret_val)
2492			goto release;
2493	}
2494
2495	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2496					   data);
2497release:
2498	hw->phy.ops.release(hw);
2499	return ret_val;
2500}
2501
2502/**
2503 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2504 *  @hw: pointer to the HW structure
2505 *  @offset: register offset to write to
2506 *  @data: data to write at register offset
2507 *
2508 *  Acquires semaphore, if necessary, then writes the data to PHY register
2509 *  at the offset.  Release any acquired semaphores before exiting.
2510 **/
2511s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2512{
2513	s32 ret_val;
2514	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2515
2516	ret_val = hw->phy.ops.acquire(hw);
2517	if (ret_val)
2518		return ret_val;
2519
2520	/* Page 800 works differently than the rest so it has its own func */
2521	if (page == BM_WUC_PAGE) {
2522		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2523							 false, false);
2524		goto release;
2525	}
2526
2527	hw->phy.addr = 1;
2528
2529	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2530		/* Page is shifted left, PHY expects (page x 32) */
2531		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2532						    page);
2533
2534		if (ret_val)
2535			goto release;
2536	}
2537
2538	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2539					    data);
2540
2541release:
2542	hw->phy.ops.release(hw);
2543	return ret_val;
2544}
2545
2546/**
2547 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2548 *  @hw: pointer to the HW structure
2549 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2550 *
2551 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2552 *  address to store contents of the BM_WUC_ENABLE_REG register.
2553 **/
2554s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2555{
2556	s32 ret_val;
2557	u16 temp;
2558
2559	/* All page select, port ctrl and wakeup registers use phy address 1 */
2560	hw->phy.addr = 1;
2561
2562	/* Select Port Control Registers page */
2563	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2564	if (ret_val) {
2565		e_dbg("Could not set Port Control page\n");
2566		return ret_val;
2567	}
2568
2569	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2570	if (ret_val) {
2571		e_dbg("Could not read PHY register %d.%d\n",
2572		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2573		return ret_val;
2574	}
2575
2576	/* Enable both PHY wakeup mode and Wakeup register page writes.
2577	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2578	 */
2579	temp = *phy_reg;
2580	temp |= BM_WUC_ENABLE_BIT;
2581	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2582
2583	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2584	if (ret_val) {
2585		e_dbg("Could not write PHY register %d.%d\n",
2586		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2587		return ret_val;
2588	}
2589
2590	/* Select Host Wakeup Registers page - caller now able to write
2591	 * registers on the Wakeup registers page
2592	 */
2593	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2594}
2595
2596/**
2597 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2598 *  @hw: pointer to the HW structure
2599 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2600 *
2601 *  Restore BM_WUC_ENABLE_REG to its original value.
2602 *
2603 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2604 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2605 *  caller.
2606 **/
2607s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2608{
2609	s32 ret_val;
2610
2611	/* Select Port Control Registers page */
2612	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2613	if (ret_val) {
2614		e_dbg("Could not set Port Control page\n");
2615		return ret_val;
2616	}
2617
2618	/* Restore 769.17 to its original value */
2619	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2620	if (ret_val)
2621		e_dbg("Could not restore PHY register %d.%d\n",
2622		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2623
2624	return ret_val;
2625}
2626
2627/**
2628 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2629 *  @hw: pointer to the HW structure
2630 *  @offset: register offset to be read or written
2631 *  @data: pointer to the data to read or write
2632 *  @read: determines if operation is read or write
2633 *  @page_set: BM_WUC_PAGE already set and access enabled
2634 *
2635 *  Read the PHY register at offset and store the retrieved information in
2636 *  data, or write data to PHY register at offset.  Note the procedure to
2637 *  access the PHY wakeup registers is different than reading the other PHY
2638 *  registers. It works as such:
2639 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2640 *  2) Set page to 800 for host (801 if we were manageability)
2641 *  3) Write the address using the address opcode (0x11)
2642 *  4) Read or write the data using the data opcode (0x12)
2643 *  5) Restore 769.17.2 to its original value
2644 *
2645 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2646 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2647 *
2648 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2649 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2650 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2651 **/
2652static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2653					  u16 *data, bool read, bool page_set)
2654{
2655	s32 ret_val;
2656	u16 reg = BM_PHY_REG_NUM(offset);
2657	u16 page = BM_PHY_REG_PAGE(offset);
2658	u16 phy_reg = 0;
2659
2660	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2661	if ((hw->mac.type == e1000_pchlan) &&
2662	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2663		e_dbg("Attempting to access page %d while gig enabled.\n",
2664		      page);
2665
2666	if (!page_set) {
2667		/* Enable access to PHY wakeup registers */
2668		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2669		if (ret_val) {
2670			e_dbg("Could not enable PHY wakeup reg access\n");
2671			return ret_val;
2672		}
2673	}
2674
2675	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2676
2677	/* Write the Wakeup register page offset value using opcode 0x11 */
2678	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2679	if (ret_val) {
2680		e_dbg("Could not write address opcode to page %d\n", page);
2681		return ret_val;
2682	}
2683
2684	if (read) {
2685		/* Read the Wakeup register page value using opcode 0x12 */
2686		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2687						   data);
2688	} else {
2689		/* Write the Wakeup register page value using opcode 0x12 */
2690		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2691						    *data);
2692	}
2693
2694	if (ret_val) {
2695		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2696		return ret_val;
2697	}
2698
2699	if (!page_set)
2700		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701
2702	return ret_val;
2703}
2704
2705/**
2706 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2707 * @hw: pointer to the HW structure
2708 *
2709 * In the case of a PHY power down to save power, or to turn off link during a
2710 * driver unload, or wake on lan is not enabled, restore the link to previous
2711 * settings.
2712 **/
2713void e1000_power_up_phy_copper(struct e1000_hw *hw)
2714{
2715	u16 mii_reg = 0;
2716
2717	/* The PHY will retain its settings across a power down/up cycle */
2718	e1e_rphy(hw, MII_BMCR, &mii_reg);
2719	mii_reg &= ~BMCR_PDOWN;
2720	e1e_wphy(hw, MII_BMCR, mii_reg);
2721}
2722
2723/**
2724 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2725 * @hw: pointer to the HW structure
2726 *
2727 * In the case of a PHY power down to save power, or to turn off link during a
2728 * driver unload, or wake on lan is not enabled, restore the link to previous
2729 * settings.
2730 **/
2731void e1000_power_down_phy_copper(struct e1000_hw *hw)
2732{
2733	u16 mii_reg = 0;
2734
2735	/* The PHY will retain its settings across a power down/up cycle */
2736	e1e_rphy(hw, MII_BMCR, &mii_reg);
2737	mii_reg |= BMCR_PDOWN;
2738	e1e_wphy(hw, MII_BMCR, mii_reg);
2739	usleep_range(1000, 2000);
2740}
2741
2742/**
2743 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2744 *  @hw: pointer to the HW structure
2745 *  @offset: register offset to be read
2746 *  @data: pointer to the read data
2747 *  @locked: semaphore has already been acquired or not
 
2748 *
2749 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2750 *  and stores the retrieved information in data.  Release any acquired
2751 *  semaphore before exiting.
2752 **/
2753static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2754				   bool locked, bool page_set)
2755{
2756	s32 ret_val;
2757	u16 page = BM_PHY_REG_PAGE(offset);
2758	u16 reg = BM_PHY_REG_NUM(offset);
2759	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2760
2761	if (!locked) {
2762		ret_val = hw->phy.ops.acquire(hw);
2763		if (ret_val)
2764			return ret_val;
2765	}
2766
2767	/* Page 800 works differently than the rest so it has its own func */
2768	if (page == BM_WUC_PAGE) {
2769		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2770							 true, page_set);
2771		goto out;
2772	}
2773
2774	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2775		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2776							 data, true);
2777		goto out;
2778	}
2779
2780	if (!page_set) {
2781		if (page == HV_INTC_FC_PAGE_START)
2782			page = 0;
2783
2784		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2785			/* Page is shifted left, PHY expects (page x 32) */
2786			ret_val = e1000_set_page_igp(hw,
2787						     (page << IGP_PAGE_SHIFT));
2788
2789			hw->phy.addr = phy_addr;
2790
2791			if (ret_val)
2792				goto out;
2793		}
2794	}
2795
2796	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2797	      page << IGP_PAGE_SHIFT, reg);
2798
2799	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2800out:
2801	if (!locked)
2802		hw->phy.ops.release(hw);
2803
2804	return ret_val;
2805}
2806
2807/**
2808 *  e1000_read_phy_reg_hv -  Read HV PHY register
2809 *  @hw: pointer to the HW structure
2810 *  @offset: register offset to be read
2811 *  @data: pointer to the read data
2812 *
2813 *  Acquires semaphore then reads the PHY register at offset and stores
2814 *  the retrieved information in data.  Release the acquired semaphore
2815 *  before exiting.
2816 **/
2817s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2818{
2819	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2820}
2821
2822/**
2823 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2824 *  @hw: pointer to the HW structure
2825 *  @offset: register offset to be read
2826 *  @data: pointer to the read data
2827 *
2828 *  Reads the PHY register at offset and stores the retrieved information
2829 *  in data.  Assumes semaphore already acquired.
2830 **/
2831s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2832{
2833	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2834}
2835
2836/**
2837 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2838 *  @hw: pointer to the HW structure
2839 *  @offset: register offset to write to
2840 *  @data: data to write at register offset
2841 *
2842 *  Reads the PHY register at offset and stores the retrieved information
2843 *  in data.  Assumes semaphore already acquired and page already set.
2844 **/
2845s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2846{
2847	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2848}
2849
2850/**
2851 *  __e1000_write_phy_reg_hv - Write HV PHY register
2852 *  @hw: pointer to the HW structure
2853 *  @offset: register offset to write to
2854 *  @data: data to write at register offset
2855 *  @locked: semaphore has already been acquired or not
 
2856 *
2857 *  Acquires semaphore, if necessary, then writes the data to PHY register
2858 *  at the offset.  Release any acquired semaphores before exiting.
2859 **/
2860static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2861				    bool locked, bool page_set)
2862{
2863	s32 ret_val;
2864	u16 page = BM_PHY_REG_PAGE(offset);
2865	u16 reg = BM_PHY_REG_NUM(offset);
2866	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2867
2868	if (!locked) {
2869		ret_val = hw->phy.ops.acquire(hw);
2870		if (ret_val)
2871			return ret_val;
2872	}
2873
2874	/* Page 800 works differently than the rest so it has its own func */
2875	if (page == BM_WUC_PAGE) {
2876		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2877							 false, page_set);
2878		goto out;
2879	}
2880
2881	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2882		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2883							 &data, false);
2884		goto out;
2885	}
2886
2887	if (!page_set) {
2888		if (page == HV_INTC_FC_PAGE_START)
2889			page = 0;
2890
2891		/* Workaround MDIO accesses being disabled after entering IEEE
2892		 * Power Down (when bit 11 of the PHY Control register is set)
2893		 */
2894		if ((hw->phy.type == e1000_phy_82578) &&
2895		    (hw->phy.revision >= 1) &&
2896		    (hw->phy.addr == 2) &&
2897		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2898			u16 data2 = 0x7EFF;
2899
2900			ret_val = e1000_access_phy_debug_regs_hv(hw,
2901								 (1 << 6) | 0x3,
2902								 &data2, false);
2903			if (ret_val)
2904				goto out;
2905		}
2906
2907		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2908			/* Page is shifted left, PHY expects (page x 32) */
2909			ret_val = e1000_set_page_igp(hw,
2910						     (page << IGP_PAGE_SHIFT));
2911
2912			hw->phy.addr = phy_addr;
2913
2914			if (ret_val)
2915				goto out;
2916		}
2917	}
2918
2919	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2920	      page << IGP_PAGE_SHIFT, reg);
2921
2922	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2923					    data);
2924
2925out:
2926	if (!locked)
2927		hw->phy.ops.release(hw);
2928
2929	return ret_val;
2930}
2931
2932/**
2933 *  e1000_write_phy_reg_hv - Write HV PHY register
2934 *  @hw: pointer to the HW structure
2935 *  @offset: register offset to write to
2936 *  @data: data to write at register offset
2937 *
2938 *  Acquires semaphore then writes the data to PHY register at the offset.
2939 *  Release the acquired semaphores before exiting.
2940 **/
2941s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2942{
2943	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2944}
2945
2946/**
2947 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2948 *  @hw: pointer to the HW structure
2949 *  @offset: register offset to write to
2950 *  @data: data to write at register offset
2951 *
2952 *  Writes the data to PHY register at the offset.  Assumes semaphore
2953 *  already acquired.
2954 **/
2955s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2956{
2957	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2958}
2959
2960/**
2961 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2962 *  @hw: pointer to the HW structure
2963 *  @offset: register offset to write to
2964 *  @data: data to write at register offset
2965 *
2966 *  Writes the data to PHY register at the offset.  Assumes semaphore
2967 *  already acquired and page already set.
2968 **/
2969s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2970{
2971	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2972}
2973
2974/**
2975 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2976 *  @page: page to be accessed
2977 **/
2978static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2979{
2980	u32 phy_addr = 2;
2981
2982	if (page >= HV_INTC_FC_PAGE_START)
2983		phy_addr = 1;
2984
2985	return phy_addr;
2986}
2987
2988/**
2989 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2990 *  @hw: pointer to the HW structure
2991 *  @offset: register offset to be read or written
2992 *  @data: pointer to the data to be read or written
2993 *  @read: determines if operation is read or write
2994 *
2995 *  Reads the PHY register at offset and stores the retreived information
2996 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2997 *  to access these regs uses the address port and data port to read/write.
2998 *  These accesses done with PHY address 2 and without using pages.
2999 **/
3000static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3001					  u16 *data, bool read)
3002{
3003	s32 ret_val;
3004	u32 addr_reg;
3005	u32 data_reg;
3006
3007	/* This takes care of the difference with desktop vs mobile phy */
3008	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3009		    I82578_ADDR_REG : I82577_ADDR_REG);
3010	data_reg = addr_reg + 1;
3011
3012	/* All operations in this function are phy address 2 */
3013	hw->phy.addr = 2;
3014
3015	/* masking with 0x3F to remove the page from offset */
3016	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3017	if (ret_val) {
3018		e_dbg("Could not write the Address Offset port register\n");
3019		return ret_val;
3020	}
3021
3022	/* Read or write the data value next */
3023	if (read)
3024		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3025	else
3026		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3027
3028	if (ret_val)
3029		e_dbg("Could not access the Data port register\n");
3030
3031	return ret_val;
3032}
3033
3034/**
3035 *  e1000_link_stall_workaround_hv - Si workaround
3036 *  @hw: pointer to the HW structure
3037 *
3038 *  This function works around a Si bug where the link partner can get
3039 *  a link up indication before the PHY does.  If small packets are sent
3040 *  by the link partner they can be placed in the packet buffer without
3041 *  being properly accounted for by the PHY and will stall preventing
3042 *  further packets from being received.  The workaround is to clear the
3043 *  packet buffer after the PHY detects link up.
3044 **/
3045s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3046{
3047	s32 ret_val = 0;
3048	u16 data;
3049
3050	if (hw->phy.type != e1000_phy_82578)
3051		return 0;
3052
3053	/* Do not apply workaround if in PHY loopback bit 14 set */
3054	e1e_rphy(hw, MII_BMCR, &data);
3055	if (data & BMCR_LOOPBACK)
3056		return 0;
3057
3058	/* check if link is up and at 1Gbps */
3059	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3060	if (ret_val)
3061		return ret_val;
3062
3063	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3064		 BM_CS_STATUS_SPEED_MASK);
3065
3066	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3067		     BM_CS_STATUS_SPEED_1000))
3068		return 0;
3069
3070	msleep(200);
3071
3072	/* flush the packets in the fifo buffer */
3073	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3074			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3075			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3076	if (ret_val)
3077		return ret_val;
3078
3079	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3080}
3081
3082/**
3083 *  e1000_check_polarity_82577 - Checks the polarity.
3084 *  @hw: pointer to the HW structure
3085 *
3086 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3087 *
3088 *  Polarity is determined based on the PHY specific status register.
3089 **/
3090s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3091{
3092	struct e1000_phy_info *phy = &hw->phy;
3093	s32 ret_val;
3094	u16 data;
3095
3096	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3097
3098	if (!ret_val)
3099		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3100				       ? e1000_rev_polarity_reversed
3101				       : e1000_rev_polarity_normal);
3102
3103	return ret_val;
3104}
3105
3106/**
3107 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3108 *  @hw: pointer to the HW structure
3109 *
3110 *  Calls the PHY setup function to force speed and duplex.
3111 **/
3112s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3113{
3114	struct e1000_phy_info *phy = &hw->phy;
3115	s32 ret_val;
3116	u16 phy_data;
3117	bool link;
3118
3119	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3120	if (ret_val)
3121		return ret_val;
3122
3123	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3124
3125	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3126	if (ret_val)
3127		return ret_val;
3128
3129	udelay(1);
3130
3131	if (phy->autoneg_wait_to_complete) {
3132		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3133
3134		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3135						      100000, &link);
3136		if (ret_val)
3137			return ret_val;
3138
3139		if (!link)
3140			e_dbg("Link taking longer than expected.\n");
3141
3142		/* Try once more */
3143		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3144						      100000, &link);
3145	}
3146
3147	return ret_val;
3148}
3149
3150/**
3151 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3152 *  @hw: pointer to the HW structure
3153 *
3154 *  Read PHY status to determine if link is up.  If link is up, then
3155 *  set/determine 10base-T extended distance and polarity correction.  Read
3156 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3157 *  determine on the cable length, local and remote receiver.
3158 **/
3159s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3160{
3161	struct e1000_phy_info *phy = &hw->phy;
3162	s32 ret_val;
3163	u16 data;
3164	bool link;
3165
3166	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3167	if (ret_val)
3168		return ret_val;
3169
3170	if (!link) {
3171		e_dbg("Phy info is only valid if link is up\n");
3172		return -E1000_ERR_CONFIG;
3173	}
3174
3175	phy->polarity_correction = true;
3176
3177	ret_val = e1000_check_polarity_82577(hw);
3178	if (ret_val)
3179		return ret_val;
3180
3181	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3182	if (ret_val)
3183		return ret_val;
3184
3185	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3186
3187	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3188	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3189		ret_val = hw->phy.ops.get_cable_length(hw);
3190		if (ret_val)
3191			return ret_val;
3192
3193		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3194		if (ret_val)
3195			return ret_val;
3196
3197		phy->local_rx = (data & LPA_1000LOCALRXOK)
3198		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3199
3200		phy->remote_rx = (data & LPA_1000REMRXOK)
3201		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3202	} else {
3203		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3204		phy->local_rx = e1000_1000t_rx_status_undefined;
3205		phy->remote_rx = e1000_1000t_rx_status_undefined;
3206	}
3207
3208	return 0;
3209}
3210
3211/**
3212 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3213 *  @hw: pointer to the HW structure
3214 *
3215 * Reads the diagnostic status register and verifies result is valid before
3216 * placing it in the phy_cable_length field.
3217 **/
3218s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3219{
3220	struct e1000_phy_info *phy = &hw->phy;
3221	s32 ret_val;
3222	u16 phy_data, length;
3223
3224	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3225	if (ret_val)
3226		return ret_val;
3227
3228	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3229		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3230
3231	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3232		return -E1000_ERR_PHY;
3233
3234	phy->cable_length = length;
3235
3236	return 0;
3237}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5
   6static s32 e1000_wait_autoneg(struct e1000_hw *hw);
   7static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   8					  u16 *data, bool read, bool page_set);
   9static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  10static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  11					  u16 *data, bool read);
  12
  13/* Cable length tables */
  14static const u16 e1000_m88_cable_length_table[] = {
  15	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  16};
  17
  18#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  19		ARRAY_SIZE(e1000_m88_cable_length_table)
  20
  21static const u16 e1000_igp_2_cable_length_table[] = {
  22	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  23	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  24	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  25	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  26	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  27	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  28	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  29	124
  30};
  31
  32#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  33		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  34
  35/**
  36 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  37 *  @hw: pointer to the HW structure
  38 *
  39 *  Read the PHY management control register and check whether a PHY reset
  40 *  is blocked.  If a reset is not blocked return 0, otherwise
  41 *  return E1000_BLK_PHY_RESET (12).
  42 **/
  43s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  44{
  45	u32 manc;
  46
  47	manc = er32(MANC);
  48
  49	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  50}
  51
  52/**
  53 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  54 *  @hw: pointer to the HW structure
  55 *
  56 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  57 *  revision in the hardware structure.
  58 **/
  59s32 e1000e_get_phy_id(struct e1000_hw *hw)
  60{
  61	struct e1000_phy_info *phy = &hw->phy;
  62	s32 ret_val = 0;
  63	u16 phy_id;
  64	u16 retry_count = 0;
  65
  66	if (!phy->ops.read_reg)
  67		return 0;
  68
  69	while (retry_count < 2) {
  70		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  71		if (ret_val)
  72			return ret_val;
  73
  74		phy->id = (u32)(phy_id << 16);
  75		usleep_range(20, 40);
  76		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  77		if (ret_val)
  78			return ret_val;
  79
  80		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  81		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  82
  83		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  84			return 0;
  85
  86		retry_count++;
  87	}
  88
  89	return 0;
  90}
  91
  92/**
  93 *  e1000e_phy_reset_dsp - Reset PHY DSP
  94 *  @hw: pointer to the HW structure
  95 *
  96 *  Reset the digital signal processor.
  97 **/
  98s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
  99{
 100	s32 ret_val;
 101
 102	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 103	if (ret_val)
 104		return ret_val;
 105
 106	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 107}
 108
 109/**
 110 *  e1000e_read_phy_reg_mdic - Read MDI control register
 111 *  @hw: pointer to the HW structure
 112 *  @offset: register offset to be read
 113 *  @data: pointer to the read data
 114 *
 115 *  Reads the MDI control register in the PHY at offset and stores the
 116 *  information read to data.
 117 **/
 118s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 119{
 120	struct e1000_phy_info *phy = &hw->phy;
 121	u32 i, mdic = 0;
 122
 123	if (offset > MAX_PHY_REG_ADDRESS) {
 124		e_dbg("PHY Address %d is out of range\n", offset);
 125		return -E1000_ERR_PARAM;
 126	}
 127
 128	/* Set up Op-code, Phy Address, and register offset in the MDI
 129	 * Control register.  The MAC will take care of interfacing with the
 130	 * PHY to retrieve the desired data.
 131	 */
 132	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 133		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 134		(E1000_MDIC_OP_READ));
 135
 136	ew32(MDIC, mdic);
 137
 138	/* Poll the ready bit to see if the MDI read completed
 139	 * Increasing the time out as testing showed failures with
 140	 * the lower time out
 141	 */
 142	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 143		udelay(50);
 144		mdic = er32(MDIC);
 145		if (mdic & E1000_MDIC_READY)
 146			break;
 147	}
 148	if (!(mdic & E1000_MDIC_READY)) {
 149		e_dbg("MDI Read did not complete\n");
 150		return -E1000_ERR_PHY;
 151	}
 152	if (mdic & E1000_MDIC_ERROR) {
 153		e_dbg("MDI Error\n");
 154		return -E1000_ERR_PHY;
 155	}
 156	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 157		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 158		      offset,
 159		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 160		return -E1000_ERR_PHY;
 161	}
 162	*data = (u16)mdic;
 163
 164	/* Allow some time after each MDIC transaction to avoid
 165	 * reading duplicate data in the next MDIC transaction.
 166	 */
 167	if (hw->mac.type == e1000_pch2lan)
 168		udelay(100);
 169
 170	return 0;
 171}
 172
 173/**
 174 *  e1000e_write_phy_reg_mdic - Write MDI control register
 175 *  @hw: pointer to the HW structure
 176 *  @offset: register offset to write to
 177 *  @data: data to write to register at offset
 178 *
 179 *  Writes data to MDI control register in the PHY at offset.
 180 **/
 181s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 182{
 183	struct e1000_phy_info *phy = &hw->phy;
 184	u32 i, mdic = 0;
 185
 186	if (offset > MAX_PHY_REG_ADDRESS) {
 187		e_dbg("PHY Address %d is out of range\n", offset);
 188		return -E1000_ERR_PARAM;
 189	}
 190
 191	/* Set up Op-code, Phy Address, and register offset in the MDI
 192	 * Control register.  The MAC will take care of interfacing with the
 193	 * PHY to retrieve the desired data.
 194	 */
 195	mdic = (((u32)data) |
 196		(offset << E1000_MDIC_REG_SHIFT) |
 197		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 198		(E1000_MDIC_OP_WRITE));
 199
 200	ew32(MDIC, mdic);
 201
 202	/* Poll the ready bit to see if the MDI read completed
 203	 * Increasing the time out as testing showed failures with
 204	 * the lower time out
 205	 */
 206	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 207		udelay(50);
 208		mdic = er32(MDIC);
 209		if (mdic & E1000_MDIC_READY)
 210			break;
 211	}
 212	if (!(mdic & E1000_MDIC_READY)) {
 213		e_dbg("MDI Write did not complete\n");
 214		return -E1000_ERR_PHY;
 215	}
 216	if (mdic & E1000_MDIC_ERROR) {
 217		e_dbg("MDI Error\n");
 218		return -E1000_ERR_PHY;
 219	}
 220	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 221		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 222		      offset,
 223		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 224		return -E1000_ERR_PHY;
 225	}
 226
 227	/* Allow some time after each MDIC transaction to avoid
 228	 * reading duplicate data in the next MDIC transaction.
 229	 */
 230	if (hw->mac.type == e1000_pch2lan)
 231		udelay(100);
 232
 233	return 0;
 234}
 235
 236/**
 237 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 238 *  @hw: pointer to the HW structure
 239 *  @offset: register offset to be read
 240 *  @data: pointer to the read data
 241 *
 242 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 243 *  and storing the retrieved information in data.  Release any acquired
 244 *  semaphores before exiting.
 245 **/
 246s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 247{
 248	s32 ret_val;
 249
 250	ret_val = hw->phy.ops.acquire(hw);
 251	if (ret_val)
 252		return ret_val;
 253
 254	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 255					   data);
 256
 257	hw->phy.ops.release(hw);
 258
 259	return ret_val;
 260}
 261
 262/**
 263 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 264 *  @hw: pointer to the HW structure
 265 *  @offset: register offset to write to
 266 *  @data: data to write at register offset
 267 *
 268 *  Acquires semaphore, if necessary, then writes the data to PHY register
 269 *  at the offset.  Release any acquired semaphores before exiting.
 270 **/
 271s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 272{
 273	s32 ret_val;
 274
 275	ret_val = hw->phy.ops.acquire(hw);
 276	if (ret_val)
 277		return ret_val;
 278
 279	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 280					    data);
 281
 282	hw->phy.ops.release(hw);
 283
 284	return ret_val;
 285}
 286
 287/**
 288 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 289 *  @hw: pointer to the HW structure
 290 *  @page: page to set (shifted left when necessary)
 291 *
 292 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 293 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 294 *  must set it appropriately (if necessary) after this function returns.
 295 **/
 296s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 297{
 298	e_dbg("Setting page 0x%x\n", page);
 299
 300	hw->phy.addr = 1;
 301
 302	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 303}
 304
 305/**
 306 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 307 *  @hw: pointer to the HW structure
 308 *  @offset: register offset to be read
 309 *  @data: pointer to the read data
 310 *  @locked: semaphore has already been acquired or not
 311 *
 312 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 313 *  and stores the retrieved information in data.  Release any acquired
 314 *  semaphores before exiting.
 315 **/
 316static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 317				     bool locked)
 318{
 319	s32 ret_val = 0;
 320
 321	if (!locked) {
 322		if (!hw->phy.ops.acquire)
 323			return 0;
 324
 325		ret_val = hw->phy.ops.acquire(hw);
 326		if (ret_val)
 327			return ret_val;
 328	}
 329
 330	if (offset > MAX_PHY_MULTI_PAGE_REG)
 331		ret_val = e1000e_write_phy_reg_mdic(hw,
 332						    IGP01E1000_PHY_PAGE_SELECT,
 333						    (u16)offset);
 334	if (!ret_val)
 335		ret_val = e1000e_read_phy_reg_mdic(hw,
 336						   MAX_PHY_REG_ADDRESS & offset,
 337						   data);
 338	if (!locked)
 339		hw->phy.ops.release(hw);
 340
 341	return ret_val;
 342}
 343
 344/**
 345 *  e1000e_read_phy_reg_igp - Read igp PHY register
 346 *  @hw: pointer to the HW structure
 347 *  @offset: register offset to be read
 348 *  @data: pointer to the read data
 349 *
 350 *  Acquires semaphore then reads the PHY register at offset and stores the
 351 *  retrieved information in data.
 352 *  Release the acquired semaphore before exiting.
 353 **/
 354s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 355{
 356	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 357}
 358
 359/**
 360 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 361 *  @hw: pointer to the HW structure
 362 *  @offset: register offset to be read
 363 *  @data: pointer to the read data
 364 *
 365 *  Reads the PHY register at offset and stores the retrieved information
 366 *  in data.  Assumes semaphore already acquired.
 367 **/
 368s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 369{
 370	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 371}
 372
 373/**
 374 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 375 *  @hw: pointer to the HW structure
 376 *  @offset: register offset to write to
 377 *  @data: data to write at register offset
 378 *  @locked: semaphore has already been acquired or not
 379 *
 380 *  Acquires semaphore, if necessary, then writes the data to PHY register
 381 *  at the offset.  Release any acquired semaphores before exiting.
 382 **/
 383static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 384				      bool locked)
 385{
 386	s32 ret_val = 0;
 387
 388	if (!locked) {
 389		if (!hw->phy.ops.acquire)
 390			return 0;
 391
 392		ret_val = hw->phy.ops.acquire(hw);
 393		if (ret_val)
 394			return ret_val;
 395	}
 396
 397	if (offset > MAX_PHY_MULTI_PAGE_REG)
 398		ret_val = e1000e_write_phy_reg_mdic(hw,
 399						    IGP01E1000_PHY_PAGE_SELECT,
 400						    (u16)offset);
 401	if (!ret_val)
 402		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 403						    offset, data);
 404	if (!locked)
 405		hw->phy.ops.release(hw);
 406
 407	return ret_val;
 408}
 409
 410/**
 411 *  e1000e_write_phy_reg_igp - Write igp PHY register
 412 *  @hw: pointer to the HW structure
 413 *  @offset: register offset to write to
 414 *  @data: data to write at register offset
 415 *
 416 *  Acquires semaphore then writes the data to PHY register
 417 *  at the offset.  Release any acquired semaphores before exiting.
 418 **/
 419s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 420{
 421	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 422}
 423
 424/**
 425 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 426 *  @hw: pointer to the HW structure
 427 *  @offset: register offset to write to
 428 *  @data: data to write at register offset
 429 *
 430 *  Writes the data to PHY register at the offset.
 431 *  Assumes semaphore already acquired.
 432 **/
 433s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 434{
 435	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 436}
 437
 438/**
 439 *  __e1000_read_kmrn_reg - Read kumeran register
 440 *  @hw: pointer to the HW structure
 441 *  @offset: register offset to be read
 442 *  @data: pointer to the read data
 443 *  @locked: semaphore has already been acquired or not
 444 *
 445 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 446 *  using the kumeran interface.  The information retrieved is stored in data.
 447 *  Release any acquired semaphores before exiting.
 448 **/
 449static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 450				 bool locked)
 451{
 452	u32 kmrnctrlsta;
 453
 454	if (!locked) {
 455		s32 ret_val = 0;
 456
 457		if (!hw->phy.ops.acquire)
 458			return 0;
 459
 460		ret_val = hw->phy.ops.acquire(hw);
 461		if (ret_val)
 462			return ret_val;
 463	}
 464
 465	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 466		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 467	ew32(KMRNCTRLSTA, kmrnctrlsta);
 468	e1e_flush();
 469
 470	udelay(2);
 471
 472	kmrnctrlsta = er32(KMRNCTRLSTA);
 473	*data = (u16)kmrnctrlsta;
 474
 475	if (!locked)
 476		hw->phy.ops.release(hw);
 477
 478	return 0;
 479}
 480
 481/**
 482 *  e1000e_read_kmrn_reg -  Read kumeran register
 483 *  @hw: pointer to the HW structure
 484 *  @offset: register offset to be read
 485 *  @data: pointer to the read data
 486 *
 487 *  Acquires semaphore then reads the PHY register at offset using the
 488 *  kumeran interface.  The information retrieved is stored in data.
 489 *  Release the acquired semaphore before exiting.
 490 **/
 491s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 492{
 493	return __e1000_read_kmrn_reg(hw, offset, data, false);
 494}
 495
 496/**
 497 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 498 *  @hw: pointer to the HW structure
 499 *  @offset: register offset to be read
 500 *  @data: pointer to the read data
 501 *
 502 *  Reads the PHY register at offset using the kumeran interface.  The
 503 *  information retrieved is stored in data.
 504 *  Assumes semaphore already acquired.
 505 **/
 506s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 507{
 508	return __e1000_read_kmrn_reg(hw, offset, data, true);
 509}
 510
 511/**
 512 *  __e1000_write_kmrn_reg - Write kumeran register
 513 *  @hw: pointer to the HW structure
 514 *  @offset: register offset to write to
 515 *  @data: data to write at register offset
 516 *  @locked: semaphore has already been acquired or not
 517 *
 518 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 519 *  at the offset using the kumeran interface.  Release any acquired semaphores
 520 *  before exiting.
 521 **/
 522static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 523				  bool locked)
 524{
 525	u32 kmrnctrlsta;
 526
 527	if (!locked) {
 528		s32 ret_val = 0;
 529
 530		if (!hw->phy.ops.acquire)
 531			return 0;
 532
 533		ret_val = hw->phy.ops.acquire(hw);
 534		if (ret_val)
 535			return ret_val;
 536	}
 537
 538	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 539		       E1000_KMRNCTRLSTA_OFFSET) | data;
 540	ew32(KMRNCTRLSTA, kmrnctrlsta);
 541	e1e_flush();
 542
 543	udelay(2);
 544
 545	if (!locked)
 546		hw->phy.ops.release(hw);
 547
 548	return 0;
 549}
 550
 551/**
 552 *  e1000e_write_kmrn_reg -  Write kumeran register
 553 *  @hw: pointer to the HW structure
 554 *  @offset: register offset to write to
 555 *  @data: data to write at register offset
 556 *
 557 *  Acquires semaphore then writes the data to the PHY register at the offset
 558 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 559 **/
 560s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 561{
 562	return __e1000_write_kmrn_reg(hw, offset, data, false);
 563}
 564
 565/**
 566 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 567 *  @hw: pointer to the HW structure
 568 *  @offset: register offset to write to
 569 *  @data: data to write at register offset
 570 *
 571 *  Write the data to PHY register at the offset using the kumeran interface.
 572 *  Assumes semaphore already acquired.
 573 **/
 574s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 575{
 576	return __e1000_write_kmrn_reg(hw, offset, data, true);
 577}
 578
 579/**
 580 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 581 *  @hw: pointer to the HW structure
 582 *
 583 *  Sets up Master/slave mode
 584 **/
 585static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 586{
 587	s32 ret_val;
 588	u16 phy_data;
 589
 590	/* Resolve Master/Slave mode */
 591	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 592	if (ret_val)
 593		return ret_val;
 594
 595	/* load defaults for future use */
 596	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 597	    ((phy_data & CTL1000_AS_MASTER) ?
 598	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 599
 600	switch (hw->phy.ms_type) {
 601	case e1000_ms_force_master:
 602		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 603		break;
 604	case e1000_ms_force_slave:
 605		phy_data |= CTL1000_ENABLE_MASTER;
 606		phy_data &= ~(CTL1000_AS_MASTER);
 607		break;
 608	case e1000_ms_auto:
 609		phy_data &= ~CTL1000_ENABLE_MASTER;
 610		fallthrough;
 611	default:
 612		break;
 613	}
 614
 615	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 616}
 617
 618/**
 619 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 620 *  @hw: pointer to the HW structure
 621 *
 622 *  Sets up Carrier-sense on Transmit and downshift values.
 623 **/
 624s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 625{
 626	s32 ret_val;
 627	u16 phy_data;
 628
 629	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 630	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 631	if (ret_val)
 632		return ret_val;
 633
 634	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 635
 636	/* Enable downshift */
 637	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 638
 639	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 640	if (ret_val)
 641		return ret_val;
 642
 643	/* Set MDI/MDIX mode */
 644	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 645	if (ret_val)
 646		return ret_val;
 647	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 648	/* Options:
 649	 *   0 - Auto (default)
 650	 *   1 - MDI mode
 651	 *   2 - MDI-X mode
 652	 */
 653	switch (hw->phy.mdix) {
 654	case 1:
 655		break;
 656	case 2:
 657		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 658		break;
 659	case 0:
 660	default:
 661		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 662		break;
 663	}
 664	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 665	if (ret_val)
 666		return ret_val;
 667
 668	return e1000_set_master_slave_mode(hw);
 669}
 670
 671/**
 672 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 673 *  @hw: pointer to the HW structure
 674 *
 675 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 676 *  and downshift values are set also.
 677 **/
 678s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 679{
 680	struct e1000_phy_info *phy = &hw->phy;
 681	s32 ret_val;
 682	u16 phy_data;
 683
 684	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 685	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 686	if (ret_val)
 687		return ret_val;
 688
 689	/* For BM PHY this bit is downshift enable */
 690	if (phy->type != e1000_phy_bm)
 691		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 692
 693	/* Options:
 694	 *   MDI/MDI-X = 0 (default)
 695	 *   0 - Auto for all speeds
 696	 *   1 - MDI mode
 697	 *   2 - MDI-X mode
 698	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 699	 */
 700	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 701
 702	switch (phy->mdix) {
 703	case 1:
 704		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 705		break;
 706	case 2:
 707		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 708		break;
 709	case 3:
 710		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 711		break;
 712	case 0:
 713	default:
 714		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 715		break;
 716	}
 717
 718	/* Options:
 719	 *   disable_polarity_correction = 0 (default)
 720	 *       Automatic Correction for Reversed Cable Polarity
 721	 *   0 - Disabled
 722	 *   1 - Enabled
 723	 */
 724	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 725	if (phy->disable_polarity_correction)
 726		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 727
 728	/* Enable downshift on BM (disabled by default) */
 729	if (phy->type == e1000_phy_bm) {
 730		/* For 82574/82583, first disable then enable downshift */
 731		if (phy->id == BME1000_E_PHY_ID_R2) {
 732			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 733			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 734					   phy_data);
 735			if (ret_val)
 736				return ret_val;
 737			/* Commit the changes. */
 738			ret_val = phy->ops.commit(hw);
 739			if (ret_val) {
 740				e_dbg("Error committing the PHY changes\n");
 741				return ret_val;
 742			}
 743		}
 744
 745		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 746	}
 747
 748	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 749	if (ret_val)
 750		return ret_val;
 751
 752	if ((phy->type == e1000_phy_m88) &&
 753	    (phy->revision < E1000_REVISION_4) &&
 754	    (phy->id != BME1000_E_PHY_ID_R2)) {
 755		/* Force TX_CLK in the Extended PHY Specific Control Register
 756		 * to 25MHz clock.
 757		 */
 758		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 759		if (ret_val)
 760			return ret_val;
 761
 762		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 763
 764		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 765			/* 82573L PHY - set the downshift counter to 5x. */
 766			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 767			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 768		} else {
 769			/* Configure Master and Slave downshift values */
 770			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 771				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 772			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 773				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 774		}
 775		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 776		if (ret_val)
 777			return ret_val;
 778	}
 779
 780	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 781		/* Set PHY page 0, register 29 to 0x0003 */
 782		ret_val = e1e_wphy(hw, 29, 0x0003);
 783		if (ret_val)
 784			return ret_val;
 785
 786		/* Set PHY page 0, register 30 to 0x0000 */
 787		ret_val = e1e_wphy(hw, 30, 0x0000);
 788		if (ret_val)
 789			return ret_val;
 790	}
 791
 792	/* Commit the changes. */
 793	if (phy->ops.commit) {
 794		ret_val = phy->ops.commit(hw);
 795		if (ret_val) {
 796			e_dbg("Error committing the PHY changes\n");
 797			return ret_val;
 798		}
 799	}
 800
 801	if (phy->type == e1000_phy_82578) {
 802		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 803		if (ret_val)
 804			return ret_val;
 805
 806		/* 82578 PHY - set the downshift count to 1x. */
 807		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 808		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 809		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 810		if (ret_val)
 811			return ret_val;
 812	}
 813
 814	return 0;
 815}
 816
 817/**
 818 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 819 *  @hw: pointer to the HW structure
 820 *
 821 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 822 *  igp PHY's.
 823 **/
 824s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 825{
 826	struct e1000_phy_info *phy = &hw->phy;
 827	s32 ret_val;
 828	u16 data;
 829
 830	ret_val = e1000_phy_hw_reset(hw);
 831	if (ret_val) {
 832		e_dbg("Error resetting the PHY.\n");
 833		return ret_val;
 834	}
 835
 836	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 837	 * timeout issues when LFS is enabled.
 838	 */
 839	msleep(100);
 840
 841	/* disable lplu d0 during driver init */
 842	if (hw->phy.ops.set_d0_lplu_state) {
 843		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 844		if (ret_val) {
 845			e_dbg("Error Disabling LPLU D0\n");
 846			return ret_val;
 847		}
 848	}
 849	/* Configure mdi-mdix settings */
 850	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 851	if (ret_val)
 852		return ret_val;
 853
 854	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 855
 856	switch (phy->mdix) {
 857	case 1:
 858		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 859		break;
 860	case 2:
 861		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 862		break;
 863	case 0:
 864	default:
 865		data |= IGP01E1000_PSCR_AUTO_MDIX;
 866		break;
 867	}
 868	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 869	if (ret_val)
 870		return ret_val;
 871
 872	/* set auto-master slave resolution settings */
 873	if (hw->mac.autoneg) {
 874		/* when autonegotiation advertisement is only 1000Mbps then we
 875		 * should disable SmartSpeed and enable Auto MasterSlave
 876		 * resolution as hardware default.
 877		 */
 878		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 879			/* Disable SmartSpeed */
 880			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 881					   &data);
 882			if (ret_val)
 883				return ret_val;
 884
 885			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 886			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 887					   data);
 888			if (ret_val)
 889				return ret_val;
 890
 891			/* Set auto Master/Slave resolution process */
 892			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 893			if (ret_val)
 894				return ret_val;
 895
 896			data &= ~CTL1000_ENABLE_MASTER;
 897			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 898			if (ret_val)
 899				return ret_val;
 900		}
 901
 902		ret_val = e1000_set_master_slave_mode(hw);
 903	}
 904
 905	return ret_val;
 906}
 907
 908/**
 909 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 910 *  @hw: pointer to the HW structure
 911 *
 912 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 913 *  register and if the PHY is already setup for auto-negotiation, then
 914 *  return successful.  Otherwise, setup advertisement and flow control to
 915 *  the appropriate values for the wanted auto-negotiation.
 916 **/
 917static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 918{
 919	struct e1000_phy_info *phy = &hw->phy;
 920	s32 ret_val;
 921	u16 mii_autoneg_adv_reg;
 922	u16 mii_1000t_ctrl_reg = 0;
 923
 924	phy->autoneg_advertised &= phy->autoneg_mask;
 925
 926	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 927	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 928	if (ret_val)
 929		return ret_val;
 930
 931	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 932		/* Read the MII 1000Base-T Control Register (Address 9). */
 933		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 934		if (ret_val)
 935			return ret_val;
 936	}
 937
 938	/* Need to parse both autoneg_advertised and fc and set up
 939	 * the appropriate PHY registers.  First we will parse for
 940	 * autoneg_advertised software override.  Since we can advertise
 941	 * a plethora of combinations, we need to check each bit
 942	 * individually.
 943	 */
 944
 945	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 946	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 947	 * the  1000Base-T Control Register (Address 9).
 948	 */
 949	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 950				 ADVERTISE_100HALF |
 951				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 952	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 953
 954	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 955
 956	/* Do we want to advertise 10 Mb Half Duplex? */
 957	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 958		e_dbg("Advertise 10mb Half duplex\n");
 959		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 960	}
 961
 962	/* Do we want to advertise 10 Mb Full Duplex? */
 963	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 964		e_dbg("Advertise 10mb Full duplex\n");
 965		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 966	}
 967
 968	/* Do we want to advertise 100 Mb Half Duplex? */
 969	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 970		e_dbg("Advertise 100mb Half duplex\n");
 971		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 972	}
 973
 974	/* Do we want to advertise 100 Mb Full Duplex? */
 975	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 976		e_dbg("Advertise 100mb Full duplex\n");
 977		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 978	}
 979
 980	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 981	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 982		e_dbg("Advertise 1000mb Half duplex request denied!\n");
 983
 984	/* Do we want to advertise 1000 Mb Full Duplex? */
 985	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 986		e_dbg("Advertise 1000mb Full duplex\n");
 987		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 988	}
 989
 990	/* Check for a software override of the flow control settings, and
 991	 * setup the PHY advertisement registers accordingly.  If
 992	 * auto-negotiation is enabled, then software will have to set the
 993	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 994	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
 995	 * negotiation.
 996	 *
 997	 * The possible values of the "fc" parameter are:
 998	 *      0:  Flow control is completely disabled
 999	 *      1:  Rx flow control is enabled (we can receive pause frames
1000	 *          but not send pause frames).
1001	 *      2:  Tx flow control is enabled (we can send pause frames
1002	 *          but we do not support receiving pause frames).
1003	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1004	 *  other:  No software override.  The flow control configuration
1005	 *          in the EEPROM is used.
1006	 */
1007	switch (hw->fc.current_mode) {
1008	case e1000_fc_none:
1009		/* Flow control (Rx & Tx) is completely disabled by a
1010		 * software over-ride.
1011		 */
1012		mii_autoneg_adv_reg &=
1013		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1014		break;
1015	case e1000_fc_rx_pause:
1016		/* Rx Flow control is enabled, and Tx Flow control is
1017		 * disabled, by a software over-ride.
1018		 *
1019		 * Since there really isn't a way to advertise that we are
1020		 * capable of Rx Pause ONLY, we will advertise that we
1021		 * support both symmetric and asymmetric Rx PAUSE.  Later
1022		 * (in e1000e_config_fc_after_link_up) we will disable the
1023		 * hw's ability to send PAUSE frames.
1024		 */
1025		mii_autoneg_adv_reg |=
1026		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1027		break;
1028	case e1000_fc_tx_pause:
1029		/* Tx Flow control is enabled, and Rx Flow control is
1030		 * disabled, by a software over-ride.
1031		 */
1032		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1033		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1034		break;
1035	case e1000_fc_full:
1036		/* Flow control (both Rx and Tx) is enabled by a software
1037		 * over-ride.
1038		 */
1039		mii_autoneg_adv_reg |=
1040		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1041		break;
1042	default:
1043		e_dbg("Flow control param set incorrectly\n");
1044		return -E1000_ERR_CONFIG;
1045	}
1046
1047	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1048	if (ret_val)
1049		return ret_val;
1050
1051	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1052
1053	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1054		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1055
1056	return ret_val;
1057}
1058
1059/**
1060 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1061 *  @hw: pointer to the HW structure
1062 *
1063 *  Performs initial bounds checking on autoneg advertisement parameter, then
1064 *  configure to advertise the full capability.  Setup the PHY to autoneg
1065 *  and restart the negotiation process between the link partner.  If
1066 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1067 **/
1068static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1069{
1070	struct e1000_phy_info *phy = &hw->phy;
1071	s32 ret_val;
1072	u16 phy_ctrl;
1073
1074	/* Perform some bounds checking on the autoneg advertisement
1075	 * parameter.
1076	 */
1077	phy->autoneg_advertised &= phy->autoneg_mask;
1078
1079	/* If autoneg_advertised is zero, we assume it was not defaulted
1080	 * by the calling code so we set to advertise full capability.
1081	 */
1082	if (!phy->autoneg_advertised)
1083		phy->autoneg_advertised = phy->autoneg_mask;
1084
1085	e_dbg("Reconfiguring auto-neg advertisement params\n");
1086	ret_val = e1000_phy_setup_autoneg(hw);
1087	if (ret_val) {
1088		e_dbg("Error Setting up Auto-Negotiation\n");
1089		return ret_val;
1090	}
1091	e_dbg("Restarting Auto-Neg\n");
1092
1093	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1094	 * the Auto Neg Restart bit in the PHY control register.
1095	 */
1096	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1097	if (ret_val)
1098		return ret_val;
1099
1100	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1101	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1102	if (ret_val)
1103		return ret_val;
1104
1105	/* Does the user want to wait for Auto-Neg to complete here, or
1106	 * check at a later time (for example, callback routine).
1107	 */
1108	if (phy->autoneg_wait_to_complete) {
1109		ret_val = e1000_wait_autoneg(hw);
1110		if (ret_val) {
1111			e_dbg("Error while waiting for autoneg to complete\n");
1112			return ret_val;
1113		}
1114	}
1115
1116	hw->mac.get_link_status = true;
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000e_setup_copper_link - Configure copper link settings
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Calls the appropriate function to configure the link for auto-neg or forced
1126 *  speed and duplex.  Then we check for link, once link is established calls
1127 *  to configure collision distance and flow control are called.  If link is
1128 *  not established, we return -E1000_ERR_PHY (-2).
1129 **/
1130s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1131{
1132	s32 ret_val;
1133	bool link;
1134
1135	if (hw->mac.autoneg) {
1136		/* Setup autoneg and flow control advertisement and perform
1137		 * autonegotiation.
1138		 */
1139		ret_val = e1000_copper_link_autoneg(hw);
1140		if (ret_val)
1141			return ret_val;
1142	} else {
1143		/* PHY will be set to 10H, 10F, 100H or 100F
1144		 * depending on user settings.
1145		 */
1146		e_dbg("Forcing Speed and Duplex\n");
1147		ret_val = hw->phy.ops.force_speed_duplex(hw);
1148		if (ret_val) {
1149			e_dbg("Error Forcing Speed and Duplex\n");
1150			return ret_val;
1151		}
1152	}
1153
1154	/* Check link status. Wait up to 100 microseconds for link to become
1155	 * valid.
1156	 */
1157	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1158					      &link);
1159	if (ret_val)
1160		return ret_val;
1161
1162	if (link) {
1163		e_dbg("Valid link established!!!\n");
1164		hw->mac.ops.config_collision_dist(hw);
1165		ret_val = e1000e_config_fc_after_link_up(hw);
1166	} else {
1167		e_dbg("Unable to establish link!!!\n");
1168	}
1169
1170	return ret_val;
1171}
1172
1173/**
1174 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1175 *  @hw: pointer to the HW structure
1176 *
1177 *  Calls the PHY setup function to force speed and duplex.  Clears the
1178 *  auto-crossover to force MDI manually.  Waits for link and returns
1179 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1180 **/
1181s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1182{
1183	struct e1000_phy_info *phy = &hw->phy;
1184	s32 ret_val;
1185	u16 phy_data;
1186	bool link;
1187
1188	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1189	if (ret_val)
1190		return ret_val;
1191
1192	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1193
1194	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1195	if (ret_val)
1196		return ret_val;
1197
1198	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1199	 * forced whenever speed and duplex are forced.
1200	 */
1201	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1202	if (ret_val)
1203		return ret_val;
1204
1205	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1206	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1207
1208	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1209	if (ret_val)
1210		return ret_val;
1211
1212	e_dbg("IGP PSCR: %X\n", phy_data);
1213
1214	udelay(1);
1215
1216	if (phy->autoneg_wait_to_complete) {
1217		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1218
1219		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1220						      100000, &link);
1221		if (ret_val)
1222			return ret_val;
1223
1224		if (!link)
1225			e_dbg("Link taking longer than expected.\n");
1226
1227		/* Try once more */
1228		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1229						      100000, &link);
1230	}
1231
1232	return ret_val;
1233}
1234
1235/**
1236 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1237 *  @hw: pointer to the HW structure
1238 *
1239 *  Calls the PHY setup function to force speed and duplex.  Clears the
1240 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1241 *  changes.  If time expires while waiting for link up, we reset the DSP.
1242 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1243 *  successful completion, else return corresponding error code.
1244 **/
1245s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1246{
1247	struct e1000_phy_info *phy = &hw->phy;
1248	s32 ret_val;
1249	u16 phy_data;
1250	bool link;
1251
1252	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1253	 * forced whenever speed and duplex are forced.
1254	 */
1255	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1256	if (ret_val)
1257		return ret_val;
1258
1259	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1260	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1265
1266	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1267	if (ret_val)
1268		return ret_val;
1269
1270	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1271
1272	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1273	if (ret_val)
1274		return ret_val;
1275
1276	/* Reset the phy to commit changes. */
1277	if (hw->phy.ops.commit) {
1278		ret_val = hw->phy.ops.commit(hw);
1279		if (ret_val)
1280			return ret_val;
1281	}
1282
1283	if (phy->autoneg_wait_to_complete) {
1284		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1285
1286		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1287						      100000, &link);
1288		if (ret_val)
1289			return ret_val;
1290
1291		if (!link) {
1292			if (hw->phy.type != e1000_phy_m88) {
1293				e_dbg("Link taking longer than expected.\n");
1294			} else {
1295				/* We didn't get link.
1296				 * Reset the DSP and cross our fingers.
1297				 */
1298				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1299						   0x001d);
1300				if (ret_val)
1301					return ret_val;
1302				ret_val = e1000e_phy_reset_dsp(hw);
1303				if (ret_val)
1304					return ret_val;
1305			}
1306		}
1307
1308		/* Try once more */
1309		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1310						      100000, &link);
1311		if (ret_val)
1312			return ret_val;
1313	}
1314
1315	if (hw->phy.type != e1000_phy_m88)
1316		return 0;
1317
1318	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1319	if (ret_val)
1320		return ret_val;
1321
1322	/* Resetting the phy means we need to re-force TX_CLK in the
1323	 * Extended PHY Specific Control Register to 25MHz clock from
1324	 * the reset value of 2.5MHz.
1325	 */
1326	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1327	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1328	if (ret_val)
1329		return ret_val;
1330
1331	/* In addition, we must re-enable CRS on Tx for both half and full
1332	 * duplex.
1333	 */
1334	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1335	if (ret_val)
1336		return ret_val;
1337
1338	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1339	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1340
1341	return ret_val;
1342}
1343
1344/**
1345 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1346 *  @hw: pointer to the HW structure
1347 *
1348 *  Forces the speed and duplex settings of the PHY.
1349 *  This is a function pointer entry point only called by
1350 *  PHY setup routines.
1351 **/
1352s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1353{
1354	struct e1000_phy_info *phy = &hw->phy;
1355	s32 ret_val;
1356	u16 data;
1357	bool link;
1358
1359	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1360	if (ret_val)
1361		return ret_val;
1362
1363	e1000e_phy_force_speed_duplex_setup(hw, &data);
1364
1365	ret_val = e1e_wphy(hw, MII_BMCR, data);
1366	if (ret_val)
1367		return ret_val;
1368
1369	/* Disable MDI-X support for 10/100 */
1370	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	data &= ~IFE_PMC_AUTO_MDIX;
1375	data &= ~IFE_PMC_FORCE_MDIX;
1376
1377	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1378	if (ret_val)
1379		return ret_val;
1380
1381	e_dbg("IFE PMC: %X\n", data);
1382
1383	udelay(1);
1384
1385	if (phy->autoneg_wait_to_complete) {
1386		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1387
1388		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1389						      100000, &link);
1390		if (ret_val)
1391			return ret_val;
1392
1393		if (!link)
1394			e_dbg("Link taking longer than expected.\n");
1395
1396		/* Try once more */
1397		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1398						      100000, &link);
1399		if (ret_val)
1400			return ret_val;
1401	}
1402
1403	return 0;
1404}
1405
1406/**
1407 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1408 *  @hw: pointer to the HW structure
1409 *  @phy_ctrl: pointer to current value of MII_BMCR
1410 *
1411 *  Forces speed and duplex on the PHY by doing the following: disable flow
1412 *  control, force speed/duplex on the MAC, disable auto speed detection,
1413 *  disable auto-negotiation, configure duplex, configure speed, configure
1414 *  the collision distance, write configuration to CTRL register.  The
1415 *  caller must write to the MII_BMCR register for these settings to
1416 *  take affect.
1417 **/
1418void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1419{
1420	struct e1000_mac_info *mac = &hw->mac;
1421	u32 ctrl;
1422
1423	/* Turn off flow control when forcing speed/duplex */
1424	hw->fc.current_mode = e1000_fc_none;
1425
1426	/* Force speed/duplex on the mac */
1427	ctrl = er32(CTRL);
1428	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429	ctrl &= ~E1000_CTRL_SPD_SEL;
1430
1431	/* Disable Auto Speed Detection */
1432	ctrl &= ~E1000_CTRL_ASDE;
1433
1434	/* Disable autoneg on the phy */
1435	*phy_ctrl &= ~BMCR_ANENABLE;
1436
1437	/* Forcing Full or Half Duplex? */
1438	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1439		ctrl &= ~E1000_CTRL_FD;
1440		*phy_ctrl &= ~BMCR_FULLDPLX;
1441		e_dbg("Half Duplex\n");
1442	} else {
1443		ctrl |= E1000_CTRL_FD;
1444		*phy_ctrl |= BMCR_FULLDPLX;
1445		e_dbg("Full Duplex\n");
1446	}
1447
1448	/* Forcing 10mb or 100mb? */
1449	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1450		ctrl |= E1000_CTRL_SPD_100;
1451		*phy_ctrl |= BMCR_SPEED100;
1452		*phy_ctrl &= ~BMCR_SPEED1000;
1453		e_dbg("Forcing 100mb\n");
1454	} else {
1455		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1456		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1457		e_dbg("Forcing 10mb\n");
1458	}
1459
1460	hw->mac.ops.config_collision_dist(hw);
1461
1462	ew32(CTRL, ctrl);
1463}
1464
1465/**
1466 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1467 *  @hw: pointer to the HW structure
1468 *  @active: boolean used to enable/disable lplu
1469 *
1470 *  Success returns 0, Failure returns 1
1471 *
1472 *  The low power link up (lplu) state is set to the power management level D3
1473 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1474 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1475 *  is used during Dx states where the power conservation is most important.
1476 *  During driver activity, SmartSpeed should be enabled so performance is
1477 *  maintained.
1478 **/
1479s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1480{
1481	struct e1000_phy_info *phy = &hw->phy;
1482	s32 ret_val;
1483	u16 data;
1484
1485	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1486	if (ret_val)
1487		return ret_val;
1488
1489	if (!active) {
1490		data &= ~IGP02E1000_PM_D3_LPLU;
1491		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1492		if (ret_val)
1493			return ret_val;
1494		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1495		 * during Dx states where the power conservation is most
1496		 * important.  During driver activity we should enable
1497		 * SmartSpeed, so performance is maintained.
1498		 */
1499		if (phy->smart_speed == e1000_smart_speed_on) {
1500			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1501					   &data);
1502			if (ret_val)
1503				return ret_val;
1504
1505			data |= IGP01E1000_PSCFR_SMART_SPEED;
1506			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1507					   data);
1508			if (ret_val)
1509				return ret_val;
1510		} else if (phy->smart_speed == e1000_smart_speed_off) {
1511			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512					   &data);
1513			if (ret_val)
1514				return ret_val;
1515
1516			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1517			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1518					   data);
1519			if (ret_val)
1520				return ret_val;
1521		}
1522	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1523		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1524		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1525		data |= IGP02E1000_PM_D3_LPLU;
1526		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1527		if (ret_val)
1528			return ret_val;
1529
1530		/* When LPLU is enabled, we should disable SmartSpeed */
1531		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1532		if (ret_val)
1533			return ret_val;
1534
1535		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1537	}
1538
1539	return ret_val;
1540}
1541
1542/**
1543 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  Success returns 0, Failure returns 1
1547 *
1548 *  A downshift is detected by querying the PHY link health.
1549 **/
1550s32 e1000e_check_downshift(struct e1000_hw *hw)
1551{
1552	struct e1000_phy_info *phy = &hw->phy;
1553	s32 ret_val;
1554	u16 phy_data, offset, mask;
1555
1556	switch (phy->type) {
1557	case e1000_phy_m88:
1558	case e1000_phy_gg82563:
1559	case e1000_phy_bm:
1560	case e1000_phy_82578:
1561		offset = M88E1000_PHY_SPEC_STATUS;
1562		mask = M88E1000_PSSR_DOWNSHIFT;
1563		break;
1564	case e1000_phy_igp_2:
1565	case e1000_phy_igp_3:
1566		offset = IGP01E1000_PHY_LINK_HEALTH;
1567		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1568		break;
1569	default:
1570		/* speed downshift not supported */
1571		phy->speed_downgraded = false;
1572		return 0;
1573	}
1574
1575	ret_val = e1e_rphy(hw, offset, &phy_data);
1576
1577	if (!ret_val)
1578		phy->speed_downgraded = !!(phy_data & mask);
1579
1580	return ret_val;
1581}
1582
1583/**
1584 *  e1000_check_polarity_m88 - Checks the polarity.
1585 *  @hw: pointer to the HW structure
1586 *
1587 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1588 *
1589 *  Polarity is determined based on the PHY specific status register.
1590 **/
1591s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1592{
1593	struct e1000_phy_info *phy = &hw->phy;
1594	s32 ret_val;
1595	u16 data;
1596
1597	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1598
1599	if (!ret_val)
1600		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1601				       ? e1000_rev_polarity_reversed
1602				       : e1000_rev_polarity_normal);
1603
1604	return ret_val;
1605}
1606
1607/**
1608 *  e1000_check_polarity_igp - Checks the polarity.
1609 *  @hw: pointer to the HW structure
1610 *
1611 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1612 *
1613 *  Polarity is determined based on the PHY port status register, and the
1614 *  current speed (since there is no polarity at 100Mbps).
1615 **/
1616s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1617{
1618	struct e1000_phy_info *phy = &hw->phy;
1619	s32 ret_val;
1620	u16 data, offset, mask;
1621
1622	/* Polarity is determined based on the speed of
1623	 * our connection.
1624	 */
1625	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1626	if (ret_val)
1627		return ret_val;
1628
1629	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1630	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1631		offset = IGP01E1000_PHY_PCS_INIT_REG;
1632		mask = IGP01E1000_PHY_POLARITY_MASK;
1633	} else {
1634		/* This really only applies to 10Mbps since
1635		 * there is no polarity for 100Mbps (always 0).
1636		 */
1637		offset = IGP01E1000_PHY_PORT_STATUS;
1638		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1639	}
1640
1641	ret_val = e1e_rphy(hw, offset, &data);
1642
1643	if (!ret_val)
1644		phy->cable_polarity = ((data & mask)
1645				       ? e1000_rev_polarity_reversed
1646				       : e1000_rev_polarity_normal);
1647
1648	return ret_val;
1649}
1650
1651/**
1652 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1653 *  @hw: pointer to the HW structure
1654 *
1655 *  Polarity is determined on the polarity reversal feature being enabled.
1656 **/
1657s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1658{
1659	struct e1000_phy_info *phy = &hw->phy;
1660	s32 ret_val;
1661	u16 phy_data, offset, mask;
1662
1663	/* Polarity is determined based on the reversal feature being enabled.
1664	 */
1665	if (phy->polarity_correction) {
1666		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1667		mask = IFE_PESC_POLARITY_REVERSED;
1668	} else {
1669		offset = IFE_PHY_SPECIAL_CONTROL;
1670		mask = IFE_PSC_FORCE_POLARITY;
1671	}
1672
1673	ret_val = e1e_rphy(hw, offset, &phy_data);
1674
1675	if (!ret_val)
1676		phy->cable_polarity = ((phy_data & mask)
1677				       ? e1000_rev_polarity_reversed
1678				       : e1000_rev_polarity_normal);
1679
1680	return ret_val;
1681}
1682
1683/**
1684 *  e1000_wait_autoneg - Wait for auto-neg completion
1685 *  @hw: pointer to the HW structure
1686 *
1687 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1688 *  limit to expire, which ever happens first.
1689 **/
1690static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1691{
1692	s32 ret_val = 0;
1693	u16 i, phy_status;
1694
1695	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1696	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1697		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1698		if (ret_val)
1699			break;
1700		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1701		if (ret_val)
1702			break;
1703		if (phy_status & BMSR_ANEGCOMPLETE)
1704			break;
1705		msleep(100);
1706	}
1707
1708	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1709	 * has completed.
1710	 */
1711	return ret_val;
1712}
1713
1714/**
1715 *  e1000e_phy_has_link_generic - Polls PHY for link
1716 *  @hw: pointer to the HW structure
1717 *  @iterations: number of times to poll for link
1718 *  @usec_interval: delay between polling attempts
1719 *  @success: pointer to whether polling was successful or not
1720 *
1721 *  Polls the PHY status register for link, 'iterations' number of times.
1722 **/
1723s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1724				u32 usec_interval, bool *success)
1725{
1726	s32 ret_val = 0;
1727	u16 i, phy_status;
1728
1729	*success = false;
1730	for (i = 0; i < iterations; i++) {
1731		/* Some PHYs require the MII_BMSR register to be read
1732		 * twice due to the link bit being sticky.  No harm doing
1733		 * it across the board.
1734		 */
1735		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1736		if (ret_val) {
1737			/* If the first read fails, another entity may have
1738			 * ownership of the resources, wait and try again to
1739			 * see if they have relinquished the resources yet.
1740			 */
1741			if (usec_interval >= 1000)
1742				msleep(usec_interval / 1000);
1743			else
1744				udelay(usec_interval);
1745		}
1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747		if (ret_val)
1748			break;
1749		if (phy_status & BMSR_LSTATUS) {
1750			*success = true;
1751			break;
1752		}
1753		if (usec_interval >= 1000)
1754			msleep(usec_interval / 1000);
1755		else
1756			udelay(usec_interval);
1757	}
1758
 
 
1759	return ret_val;
1760}
1761
1762/**
1763 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Reads the PHY specific status register to retrieve the cable length
1767 *  information.  The cable length is determined by averaging the minimum and
1768 *  maximum values to get the "average" cable length.  The m88 PHY has four
1769 *  possible cable length values, which are:
1770 *	Register Value		Cable Length
1771 *	0			< 50 meters
1772 *	1			50 - 80 meters
1773 *	2			80 - 110 meters
1774 *	3			110 - 140 meters
1775 *	4			> 140 meters
1776 **/
1777s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1778{
1779	struct e1000_phy_info *phy = &hw->phy;
1780	s32 ret_val;
1781	u16 phy_data, index;
1782
1783	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1784	if (ret_val)
1785		return ret_val;
1786
1787	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1788		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1789
1790	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1791		return -E1000_ERR_PHY;
1792
1793	phy->min_cable_length = e1000_m88_cable_length_table[index];
1794	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1795
1796	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1797
1798	return 0;
1799}
1800
1801/**
1802 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  The automatic gain control (agc) normalizes the amplitude of the
1806 *  received signal, adjusting for the attenuation produced by the
1807 *  cable.  By reading the AGC registers, which represent the
1808 *  combination of coarse and fine gain value, the value can be put
1809 *  into a lookup table to obtain the approximate cable length
1810 *  for each channel.
1811 **/
1812s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1813{
1814	struct e1000_phy_info *phy = &hw->phy;
1815	s32 ret_val;
1816	u16 phy_data, i, agc_value = 0;
1817	u16 cur_agc_index, max_agc_index = 0;
1818	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1819	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1820		IGP02E1000_PHY_AGC_A,
1821		IGP02E1000_PHY_AGC_B,
1822		IGP02E1000_PHY_AGC_C,
1823		IGP02E1000_PHY_AGC_D
1824	};
1825
1826	/* Read the AGC registers for all channels */
1827	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1828		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1829		if (ret_val)
1830			return ret_val;
1831
1832		/* Getting bits 15:9, which represent the combination of
1833		 * coarse and fine gain values.  The result is a number
1834		 * that can be put into the lookup table to obtain the
1835		 * approximate cable length.
1836		 */
1837		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1838				 IGP02E1000_AGC_LENGTH_MASK);
1839
1840		/* Array index bound check. */
1841		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1842		    (cur_agc_index == 0))
1843			return -E1000_ERR_PHY;
1844
1845		/* Remove min & max AGC values from calculation. */
1846		if (e1000_igp_2_cable_length_table[min_agc_index] >
1847		    e1000_igp_2_cable_length_table[cur_agc_index])
1848			min_agc_index = cur_agc_index;
1849		if (e1000_igp_2_cable_length_table[max_agc_index] <
1850		    e1000_igp_2_cable_length_table[cur_agc_index])
1851			max_agc_index = cur_agc_index;
1852
1853		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1854	}
1855
1856	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1857		      e1000_igp_2_cable_length_table[max_agc_index]);
1858	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1859
1860	/* Calculate cable length with the error range of +/- 10 meters. */
1861	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1862				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1863	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1864
1865	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1866
1867	return 0;
1868}
1869
1870/**
1871 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1872 *  @hw: pointer to the HW structure
1873 *
1874 *  Valid for only copper links.  Read the PHY status register (sticky read)
1875 *  to verify that link is up.  Read the PHY special control register to
1876 *  determine the polarity and 10base-T extended distance.  Read the PHY
1877 *  special status register to determine MDI/MDIx and current speed.  If
1878 *  speed is 1000, then determine cable length, local and remote receiver.
1879 **/
1880s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1881{
1882	struct e1000_phy_info *phy = &hw->phy;
1883	s32 ret_val;
1884	u16 phy_data;
1885	bool link;
1886
1887	if (phy->media_type != e1000_media_type_copper) {
1888		e_dbg("Phy info is only valid for copper media\n");
1889		return -E1000_ERR_CONFIG;
1890	}
1891
1892	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1893	if (ret_val)
1894		return ret_val;
1895
1896	if (!link) {
1897		e_dbg("Phy info is only valid if link is up\n");
1898		return -E1000_ERR_CONFIG;
1899	}
1900
1901	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1902	if (ret_val)
1903		return ret_val;
1904
1905	phy->polarity_correction = !!(phy_data &
1906				      M88E1000_PSCR_POLARITY_REVERSAL);
1907
1908	ret_val = e1000_check_polarity_m88(hw);
1909	if (ret_val)
1910		return ret_val;
1911
1912	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1913	if (ret_val)
1914		return ret_val;
1915
1916	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1917
1918	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1919		ret_val = hw->phy.ops.get_cable_length(hw);
1920		if (ret_val)
1921			return ret_val;
1922
1923		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1924		if (ret_val)
1925			return ret_val;
1926
1927		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1928		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1929
1930		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1931		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1932	} else {
1933		/* Set values to "undefined" */
1934		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1935		phy->local_rx = e1000_1000t_rx_status_undefined;
1936		phy->remote_rx = e1000_1000t_rx_status_undefined;
1937	}
1938
1939	return ret_val;
1940}
1941
1942/**
1943 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1944 *  @hw: pointer to the HW structure
1945 *
1946 *  Read PHY status to determine if link is up.  If link is up, then
1947 *  set/determine 10base-T extended distance and polarity correction.  Read
1948 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1949 *  determine on the cable length, local and remote receiver.
1950 **/
1951s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1952{
1953	struct e1000_phy_info *phy = &hw->phy;
1954	s32 ret_val;
1955	u16 data;
1956	bool link;
1957
1958	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1959	if (ret_val)
1960		return ret_val;
1961
1962	if (!link) {
1963		e_dbg("Phy info is only valid if link is up\n");
1964		return -E1000_ERR_CONFIG;
1965	}
1966
1967	phy->polarity_correction = true;
1968
1969	ret_val = e1000_check_polarity_igp(hw);
1970	if (ret_val)
1971		return ret_val;
1972
1973	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1974	if (ret_val)
1975		return ret_val;
1976
1977	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1978
1979	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1980	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1981		ret_val = phy->ops.get_cable_length(hw);
1982		if (ret_val)
1983			return ret_val;
1984
1985		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1986		if (ret_val)
1987			return ret_val;
1988
1989		phy->local_rx = (data & LPA_1000LOCALRXOK)
1990		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1991
1992		phy->remote_rx = (data & LPA_1000REMRXOK)
1993		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1994	} else {
1995		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1996		phy->local_rx = e1000_1000t_rx_status_undefined;
1997		phy->remote_rx = e1000_1000t_rx_status_undefined;
1998	}
1999
2000	return ret_val;
2001}
2002
2003/**
2004 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2005 *  @hw: pointer to the HW structure
2006 *
2007 *  Populates "phy" structure with various feature states.
2008 **/
2009s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2010{
2011	struct e1000_phy_info *phy = &hw->phy;
2012	s32 ret_val;
2013	u16 data;
2014	bool link;
2015
2016	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2017	if (ret_val)
2018		return ret_val;
2019
2020	if (!link) {
2021		e_dbg("Phy info is only valid if link is up\n");
2022		return -E1000_ERR_CONFIG;
2023	}
2024
2025	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2026	if (ret_val)
2027		return ret_val;
2028	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2029
2030	if (phy->polarity_correction) {
2031		ret_val = e1000_check_polarity_ife(hw);
2032		if (ret_val)
2033			return ret_val;
2034	} else {
2035		/* Polarity is forced */
2036		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2037				       ? e1000_rev_polarity_reversed
2038				       : e1000_rev_polarity_normal);
2039	}
2040
2041	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2042	if (ret_val)
2043		return ret_val;
2044
2045	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2046
2047	/* The following parameters are undefined for 10/100 operation. */
2048	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2049	phy->local_rx = e1000_1000t_rx_status_undefined;
2050	phy->remote_rx = e1000_1000t_rx_status_undefined;
2051
2052	return 0;
2053}
2054
2055/**
2056 *  e1000e_phy_sw_reset - PHY software reset
2057 *  @hw: pointer to the HW structure
2058 *
2059 *  Does a software reset of the PHY by reading the PHY control register and
2060 *  setting/write the control register reset bit to the PHY.
2061 **/
2062s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2063{
2064	s32 ret_val;
2065	u16 phy_ctrl;
2066
2067	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2068	if (ret_val)
2069		return ret_val;
2070
2071	phy_ctrl |= BMCR_RESET;
2072	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2073	if (ret_val)
2074		return ret_val;
2075
2076	udelay(1);
2077
2078	return ret_val;
2079}
2080
2081/**
2082 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2083 *  @hw: pointer to the HW structure
2084 *
2085 *  Verify the reset block is not blocking us from resetting.  Acquire
2086 *  semaphore (if necessary) and read/set/write the device control reset
2087 *  bit in the PHY.  Wait the appropriate delay time for the device to
2088 *  reset and release the semaphore (if necessary).
2089 **/
2090s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2091{
2092	struct e1000_phy_info *phy = &hw->phy;
2093	s32 ret_val;
2094	u32 ctrl;
2095
2096	if (phy->ops.check_reset_block) {
2097		ret_val = phy->ops.check_reset_block(hw);
2098		if (ret_val)
2099			return 0;
2100	}
2101
2102	ret_val = phy->ops.acquire(hw);
2103	if (ret_val)
2104		return ret_val;
2105
2106	ctrl = er32(CTRL);
2107	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2108	e1e_flush();
2109
2110	udelay(phy->reset_delay_us);
2111
2112	ew32(CTRL, ctrl);
2113	e1e_flush();
2114
2115	usleep_range(150, 300);
2116
2117	phy->ops.release(hw);
2118
2119	return phy->ops.get_cfg_done(hw);
2120}
2121
2122/**
2123 *  e1000e_get_cfg_done_generic - Generic configuration done
2124 *  @hw: pointer to the HW structure
2125 *
2126 *  Generic function to wait 10 milli-seconds for configuration to complete
2127 *  and return success.
2128 **/
2129s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2130{
2131	mdelay(10);
2132
2133	return 0;
2134}
2135
2136/**
2137 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2138 *  @hw: pointer to the HW structure
2139 *
2140 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2141 **/
2142s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2143{
2144	e_dbg("Running IGP 3 PHY init script\n");
2145
2146	/* PHY init IGP 3 */
2147	/* Enable rise/fall, 10-mode work in class-A */
2148	e1e_wphy(hw, 0x2F5B, 0x9018);
2149	/* Remove all caps from Replica path filter */
2150	e1e_wphy(hw, 0x2F52, 0x0000);
2151	/* Bias trimming for ADC, AFE and Driver (Default) */
2152	e1e_wphy(hw, 0x2FB1, 0x8B24);
2153	/* Increase Hybrid poly bias */
2154	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2155	/* Add 4% to Tx amplitude in Gig mode */
2156	e1e_wphy(hw, 0x2010, 0x10B0);
2157	/* Disable trimming (TTT) */
2158	e1e_wphy(hw, 0x2011, 0x0000);
2159	/* Poly DC correction to 94.6% + 2% for all channels */
2160	e1e_wphy(hw, 0x20DD, 0x249A);
2161	/* ABS DC correction to 95.9% */
2162	e1e_wphy(hw, 0x20DE, 0x00D3);
2163	/* BG temp curve trim */
2164	e1e_wphy(hw, 0x28B4, 0x04CE);
2165	/* Increasing ADC OPAMP stage 1 currents to max */
2166	e1e_wphy(hw, 0x2F70, 0x29E4);
2167	/* Force 1000 ( required for enabling PHY regs configuration) */
2168	e1e_wphy(hw, 0x0000, 0x0140);
2169	/* Set upd_freq to 6 */
2170	e1e_wphy(hw, 0x1F30, 0x1606);
2171	/* Disable NPDFE */
2172	e1e_wphy(hw, 0x1F31, 0xB814);
2173	/* Disable adaptive fixed FFE (Default) */
2174	e1e_wphy(hw, 0x1F35, 0x002A);
2175	/* Enable FFE hysteresis */
2176	e1e_wphy(hw, 0x1F3E, 0x0067);
2177	/* Fixed FFE for short cable lengths */
2178	e1e_wphy(hw, 0x1F54, 0x0065);
2179	/* Fixed FFE for medium cable lengths */
2180	e1e_wphy(hw, 0x1F55, 0x002A);
2181	/* Fixed FFE for long cable lengths */
2182	e1e_wphy(hw, 0x1F56, 0x002A);
2183	/* Enable Adaptive Clip Threshold */
2184	e1e_wphy(hw, 0x1F72, 0x3FB0);
2185	/* AHT reset limit to 1 */
2186	e1e_wphy(hw, 0x1F76, 0xC0FF);
2187	/* Set AHT master delay to 127 msec */
2188	e1e_wphy(hw, 0x1F77, 0x1DEC);
2189	/* Set scan bits for AHT */
2190	e1e_wphy(hw, 0x1F78, 0xF9EF);
2191	/* Set AHT Preset bits */
2192	e1e_wphy(hw, 0x1F79, 0x0210);
2193	/* Change integ_factor of channel A to 3 */
2194	e1e_wphy(hw, 0x1895, 0x0003);
2195	/* Change prop_factor of channels BCD to 8 */
2196	e1e_wphy(hw, 0x1796, 0x0008);
2197	/* Change cg_icount + enable integbp for channels BCD */
2198	e1e_wphy(hw, 0x1798, 0xD008);
2199	/* Change cg_icount + enable integbp + change prop_factor_master
2200	 * to 8 for channel A
2201	 */
2202	e1e_wphy(hw, 0x1898, 0xD918);
2203	/* Disable AHT in Slave mode on channel A */
2204	e1e_wphy(hw, 0x187A, 0x0800);
2205	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2206	 * Enable SPD+B2B
2207	 */
2208	e1e_wphy(hw, 0x0019, 0x008D);
2209	/* Enable restart AN on an1000_dis change */
2210	e1e_wphy(hw, 0x001B, 0x2080);
2211	/* Enable wh_fifo read clock in 10/100 modes */
2212	e1e_wphy(hw, 0x0014, 0x0045);
2213	/* Restart AN, Speed selection is 1000 */
2214	e1e_wphy(hw, 0x0000, 0x1340);
2215
2216	return 0;
2217}
2218
2219/**
2220 *  e1000e_get_phy_type_from_id - Get PHY type from id
2221 *  @phy_id: phy_id read from the phy
2222 *
2223 *  Returns the phy type from the id.
2224 **/
2225enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2226{
2227	enum e1000_phy_type phy_type = e1000_phy_unknown;
2228
2229	switch (phy_id) {
2230	case M88E1000_I_PHY_ID:
2231	case M88E1000_E_PHY_ID:
2232	case M88E1111_I_PHY_ID:
2233	case M88E1011_I_PHY_ID:
2234		phy_type = e1000_phy_m88;
2235		break;
2236	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2237		phy_type = e1000_phy_igp_2;
2238		break;
2239	case GG82563_E_PHY_ID:
2240		phy_type = e1000_phy_gg82563;
2241		break;
2242	case IGP03E1000_E_PHY_ID:
2243		phy_type = e1000_phy_igp_3;
2244		break;
2245	case IFE_E_PHY_ID:
2246	case IFE_PLUS_E_PHY_ID:
2247	case IFE_C_E_PHY_ID:
2248		phy_type = e1000_phy_ife;
2249		break;
2250	case BME1000_E_PHY_ID:
2251	case BME1000_E_PHY_ID_R2:
2252		phy_type = e1000_phy_bm;
2253		break;
2254	case I82578_E_PHY_ID:
2255		phy_type = e1000_phy_82578;
2256		break;
2257	case I82577_E_PHY_ID:
2258		phy_type = e1000_phy_82577;
2259		break;
2260	case I82579_E_PHY_ID:
2261		phy_type = e1000_phy_82579;
2262		break;
2263	case I217_E_PHY_ID:
2264		phy_type = e1000_phy_i217;
2265		break;
2266	default:
2267		phy_type = e1000_phy_unknown;
2268		break;
2269	}
2270	return phy_type;
2271}
2272
2273/**
2274 *  e1000e_determine_phy_address - Determines PHY address.
2275 *  @hw: pointer to the HW structure
2276 *
2277 *  This uses a trial and error method to loop through possible PHY
2278 *  addresses. It tests each by reading the PHY ID registers and
2279 *  checking for a match.
2280 **/
2281s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2282{
2283	u32 phy_addr = 0;
2284	u32 i;
2285	enum e1000_phy_type phy_type = e1000_phy_unknown;
2286
2287	hw->phy.id = phy_type;
2288
2289	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2290		hw->phy.addr = phy_addr;
2291		i = 0;
2292
2293		do {
2294			e1000e_get_phy_id(hw);
2295			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2296
2297			/* If phy_type is valid, break - we found our
2298			 * PHY address
2299			 */
2300			if (phy_type != e1000_phy_unknown)
2301				return 0;
2302
2303			usleep_range(1000, 2000);
2304			i++;
2305		} while (i < 10);
2306	}
2307
2308	return -E1000_ERR_PHY_TYPE;
2309}
2310
2311/**
2312 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2313 *  @page: page to access
2314 *  @reg: register to check
2315 *
2316 *  Returns the phy address for the page requested.
2317 **/
2318static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2319{
2320	u32 phy_addr = 2;
2321
2322	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2323		phy_addr = 1;
2324
2325	return phy_addr;
2326}
2327
2328/**
2329 *  e1000e_write_phy_reg_bm - Write BM PHY register
2330 *  @hw: pointer to the HW structure
2331 *  @offset: register offset to write to
2332 *  @data: data to write at register offset
2333 *
2334 *  Acquires semaphore, if necessary, then writes the data to PHY register
2335 *  at the offset.  Release any acquired semaphores before exiting.
2336 **/
2337s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2338{
2339	s32 ret_val;
2340	u32 page = offset >> IGP_PAGE_SHIFT;
2341
2342	ret_val = hw->phy.ops.acquire(hw);
2343	if (ret_val)
2344		return ret_val;
2345
2346	/* Page 800 works differently than the rest so it has its own func */
2347	if (page == BM_WUC_PAGE) {
2348		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2349							 false, false);
2350		goto release;
2351	}
2352
2353	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2354
2355	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2356		u32 page_shift, page_select;
2357
2358		/* Page select is register 31 for phy address 1 and 22 for
2359		 * phy address 2 and 3. Page select is shifted only for
2360		 * phy address 1.
2361		 */
2362		if (hw->phy.addr == 1) {
2363			page_shift = IGP_PAGE_SHIFT;
2364			page_select = IGP01E1000_PHY_PAGE_SELECT;
2365		} else {
2366			page_shift = 0;
2367			page_select = BM_PHY_PAGE_SELECT;
2368		}
2369
2370		/* Page is shifted left, PHY expects (page x 32) */
2371		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2372						    (page << page_shift));
2373		if (ret_val)
2374			goto release;
2375	}
2376
2377	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2378					    data);
2379
2380release:
2381	hw->phy.ops.release(hw);
2382	return ret_val;
2383}
2384
2385/**
2386 *  e1000e_read_phy_reg_bm - Read BM PHY register
2387 *  @hw: pointer to the HW structure
2388 *  @offset: register offset to be read
2389 *  @data: pointer to the read data
2390 *
2391 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2392 *  and storing the retrieved information in data.  Release any acquired
2393 *  semaphores before exiting.
2394 **/
2395s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2396{
2397	s32 ret_val;
2398	u32 page = offset >> IGP_PAGE_SHIFT;
2399
2400	ret_val = hw->phy.ops.acquire(hw);
2401	if (ret_val)
2402		return ret_val;
2403
2404	/* Page 800 works differently than the rest so it has its own func */
2405	if (page == BM_WUC_PAGE) {
2406		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2407							 true, false);
2408		goto release;
2409	}
2410
2411	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2412
2413	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2414		u32 page_shift, page_select;
2415
2416		/* Page select is register 31 for phy address 1 and 22 for
2417		 * phy address 2 and 3. Page select is shifted only for
2418		 * phy address 1.
2419		 */
2420		if (hw->phy.addr == 1) {
2421			page_shift = IGP_PAGE_SHIFT;
2422			page_select = IGP01E1000_PHY_PAGE_SELECT;
2423		} else {
2424			page_shift = 0;
2425			page_select = BM_PHY_PAGE_SELECT;
2426		}
2427
2428		/* Page is shifted left, PHY expects (page x 32) */
2429		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2430						    (page << page_shift));
2431		if (ret_val)
2432			goto release;
2433	}
2434
2435	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2436					   data);
2437release:
2438	hw->phy.ops.release(hw);
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2444 *  @hw: pointer to the HW structure
2445 *  @offset: register offset to be read
2446 *  @data: pointer to the read data
2447 *
2448 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2449 *  and storing the retrieved information in data.  Release any acquired
2450 *  semaphores before exiting.
2451 **/
2452s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2453{
2454	s32 ret_val;
2455	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2456
2457	ret_val = hw->phy.ops.acquire(hw);
2458	if (ret_val)
2459		return ret_val;
2460
2461	/* Page 800 works differently than the rest so it has its own func */
2462	if (page == BM_WUC_PAGE) {
2463		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2464							 true, false);
2465		goto release;
2466	}
2467
2468	hw->phy.addr = 1;
2469
2470	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2471		/* Page is shifted left, PHY expects (page x 32) */
2472		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2473						    page);
2474
2475		if (ret_val)
2476			goto release;
2477	}
2478
2479	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2480					   data);
2481release:
2482	hw->phy.ops.release(hw);
2483	return ret_val;
2484}
2485
2486/**
2487 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2488 *  @hw: pointer to the HW structure
2489 *  @offset: register offset to write to
2490 *  @data: data to write at register offset
2491 *
2492 *  Acquires semaphore, if necessary, then writes the data to PHY register
2493 *  at the offset.  Release any acquired semaphores before exiting.
2494 **/
2495s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2496{
2497	s32 ret_val;
2498	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2499
2500	ret_val = hw->phy.ops.acquire(hw);
2501	if (ret_val)
2502		return ret_val;
2503
2504	/* Page 800 works differently than the rest so it has its own func */
2505	if (page == BM_WUC_PAGE) {
2506		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2507							 false, false);
2508		goto release;
2509	}
2510
2511	hw->phy.addr = 1;
2512
2513	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2514		/* Page is shifted left, PHY expects (page x 32) */
2515		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2516						    page);
2517
2518		if (ret_val)
2519			goto release;
2520	}
2521
2522	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2523					    data);
2524
2525release:
2526	hw->phy.ops.release(hw);
2527	return ret_val;
2528}
2529
2530/**
2531 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2532 *  @hw: pointer to the HW structure
2533 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2534 *
2535 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2536 *  address to store contents of the BM_WUC_ENABLE_REG register.
2537 **/
2538s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2539{
2540	s32 ret_val;
2541	u16 temp;
2542
2543	/* All page select, port ctrl and wakeup registers use phy address 1 */
2544	hw->phy.addr = 1;
2545
2546	/* Select Port Control Registers page */
2547	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2548	if (ret_val) {
2549		e_dbg("Could not set Port Control page\n");
2550		return ret_val;
2551	}
2552
2553	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2554	if (ret_val) {
2555		e_dbg("Could not read PHY register %d.%d\n",
2556		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2557		return ret_val;
2558	}
2559
2560	/* Enable both PHY wakeup mode and Wakeup register page writes.
2561	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2562	 */
2563	temp = *phy_reg;
2564	temp |= BM_WUC_ENABLE_BIT;
2565	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2566
2567	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2568	if (ret_val) {
2569		e_dbg("Could not write PHY register %d.%d\n",
2570		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2571		return ret_val;
2572	}
2573
2574	/* Select Host Wakeup Registers page - caller now able to write
2575	 * registers on the Wakeup registers page
2576	 */
2577	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2578}
2579
2580/**
2581 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2582 *  @hw: pointer to the HW structure
2583 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2584 *
2585 *  Restore BM_WUC_ENABLE_REG to its original value.
2586 *
2587 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2588 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2589 *  caller.
2590 **/
2591s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2592{
2593	s32 ret_val;
2594
2595	/* Select Port Control Registers page */
2596	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2597	if (ret_val) {
2598		e_dbg("Could not set Port Control page\n");
2599		return ret_val;
2600	}
2601
2602	/* Restore 769.17 to its original value */
2603	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2604	if (ret_val)
2605		e_dbg("Could not restore PHY register %d.%d\n",
2606		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2607
2608	return ret_val;
2609}
2610
2611/**
2612 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2613 *  @hw: pointer to the HW structure
2614 *  @offset: register offset to be read or written
2615 *  @data: pointer to the data to read or write
2616 *  @read: determines if operation is read or write
2617 *  @page_set: BM_WUC_PAGE already set and access enabled
2618 *
2619 *  Read the PHY register at offset and store the retrieved information in
2620 *  data, or write data to PHY register at offset.  Note the procedure to
2621 *  access the PHY wakeup registers is different than reading the other PHY
2622 *  registers. It works as such:
2623 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2624 *  2) Set page to 800 for host (801 if we were manageability)
2625 *  3) Write the address using the address opcode (0x11)
2626 *  4) Read or write the data using the data opcode (0x12)
2627 *  5) Restore 769.17.2 to its original value
2628 *
2629 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2630 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2631 *
2632 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2633 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2634 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2635 **/
2636static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2637					  u16 *data, bool read, bool page_set)
2638{
2639	s32 ret_val;
2640	u16 reg = BM_PHY_REG_NUM(offset);
2641	u16 page = BM_PHY_REG_PAGE(offset);
2642	u16 phy_reg = 0;
2643
2644	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2645	if ((hw->mac.type == e1000_pchlan) &&
2646	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2647		e_dbg("Attempting to access page %d while gig enabled.\n",
2648		      page);
2649
2650	if (!page_set) {
2651		/* Enable access to PHY wakeup registers */
2652		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2653		if (ret_val) {
2654			e_dbg("Could not enable PHY wakeup reg access\n");
2655			return ret_val;
2656		}
2657	}
2658
2659	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2660
2661	/* Write the Wakeup register page offset value using opcode 0x11 */
2662	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2663	if (ret_val) {
2664		e_dbg("Could not write address opcode to page %d\n", page);
2665		return ret_val;
2666	}
2667
2668	if (read) {
2669		/* Read the Wakeup register page value using opcode 0x12 */
2670		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2671						   data);
2672	} else {
2673		/* Write the Wakeup register page value using opcode 0x12 */
2674		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2675						    *data);
2676	}
2677
2678	if (ret_val) {
2679		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2680		return ret_val;
2681	}
2682
2683	if (!page_set)
2684		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2685
2686	return ret_val;
2687}
2688
2689/**
2690 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2691 * @hw: pointer to the HW structure
2692 *
2693 * In the case of a PHY power down to save power, or to turn off link during a
2694 * driver unload, or wake on lan is not enabled, restore the link to previous
2695 * settings.
2696 **/
2697void e1000_power_up_phy_copper(struct e1000_hw *hw)
2698{
2699	u16 mii_reg = 0;
2700
2701	/* The PHY will retain its settings across a power down/up cycle */
2702	e1e_rphy(hw, MII_BMCR, &mii_reg);
2703	mii_reg &= ~BMCR_PDOWN;
2704	e1e_wphy(hw, MII_BMCR, mii_reg);
2705}
2706
2707/**
2708 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2709 * @hw: pointer to the HW structure
2710 *
2711 * In the case of a PHY power down to save power, or to turn off link during a
2712 * driver unload, or wake on lan is not enabled, restore the link to previous
2713 * settings.
2714 **/
2715void e1000_power_down_phy_copper(struct e1000_hw *hw)
2716{
2717	u16 mii_reg = 0;
2718
2719	/* The PHY will retain its settings across a power down/up cycle */
2720	e1e_rphy(hw, MII_BMCR, &mii_reg);
2721	mii_reg |= BMCR_PDOWN;
2722	e1e_wphy(hw, MII_BMCR, mii_reg);
2723	usleep_range(1000, 2000);
2724}
2725
2726/**
2727 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2728 *  @hw: pointer to the HW structure
2729 *  @offset: register offset to be read
2730 *  @data: pointer to the read data
2731 *  @locked: semaphore has already been acquired or not
2732 *  @page_set: BM_WUC_PAGE already set and access enabled
2733 *
2734 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2735 *  and stores the retrieved information in data.  Release any acquired
2736 *  semaphore before exiting.
2737 **/
2738static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2739				   bool locked, bool page_set)
2740{
2741	s32 ret_val;
2742	u16 page = BM_PHY_REG_PAGE(offset);
2743	u16 reg = BM_PHY_REG_NUM(offset);
2744	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2745
2746	if (!locked) {
2747		ret_val = hw->phy.ops.acquire(hw);
2748		if (ret_val)
2749			return ret_val;
2750	}
2751
2752	/* Page 800 works differently than the rest so it has its own func */
2753	if (page == BM_WUC_PAGE) {
2754		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2755							 true, page_set);
2756		goto out;
2757	}
2758
2759	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2760		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2761							 data, true);
2762		goto out;
2763	}
2764
2765	if (!page_set) {
2766		if (page == HV_INTC_FC_PAGE_START)
2767			page = 0;
2768
2769		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2770			/* Page is shifted left, PHY expects (page x 32) */
2771			ret_val = e1000_set_page_igp(hw,
2772						     (page << IGP_PAGE_SHIFT));
2773
2774			hw->phy.addr = phy_addr;
2775
2776			if (ret_val)
2777				goto out;
2778		}
2779	}
2780
2781	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2782	      page << IGP_PAGE_SHIFT, reg);
2783
2784	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2785out:
2786	if (!locked)
2787		hw->phy.ops.release(hw);
2788
2789	return ret_val;
2790}
2791
2792/**
2793 *  e1000_read_phy_reg_hv -  Read HV PHY register
2794 *  @hw: pointer to the HW structure
2795 *  @offset: register offset to be read
2796 *  @data: pointer to the read data
2797 *
2798 *  Acquires semaphore then reads the PHY register at offset and stores
2799 *  the retrieved information in data.  Release the acquired semaphore
2800 *  before exiting.
2801 **/
2802s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2803{
2804	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2805}
2806
2807/**
2808 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2809 *  @hw: pointer to the HW structure
2810 *  @offset: register offset to be read
2811 *  @data: pointer to the read data
2812 *
2813 *  Reads the PHY register at offset and stores the retrieved information
2814 *  in data.  Assumes semaphore already acquired.
2815 **/
2816s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2817{
2818	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2819}
2820
2821/**
2822 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2823 *  @hw: pointer to the HW structure
2824 *  @offset: register offset to write to
2825 *  @data: data to write at register offset
2826 *
2827 *  Reads the PHY register at offset and stores the retrieved information
2828 *  in data.  Assumes semaphore already acquired and page already set.
2829 **/
2830s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2831{
2832	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2833}
2834
2835/**
2836 *  __e1000_write_phy_reg_hv - Write HV PHY register
2837 *  @hw: pointer to the HW structure
2838 *  @offset: register offset to write to
2839 *  @data: data to write at register offset
2840 *  @locked: semaphore has already been acquired or not
2841 *  @page_set: BM_WUC_PAGE already set and access enabled
2842 *
2843 *  Acquires semaphore, if necessary, then writes the data to PHY register
2844 *  at the offset.  Release any acquired semaphores before exiting.
2845 **/
2846static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2847				    bool locked, bool page_set)
2848{
2849	s32 ret_val;
2850	u16 page = BM_PHY_REG_PAGE(offset);
2851	u16 reg = BM_PHY_REG_NUM(offset);
2852	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2853
2854	if (!locked) {
2855		ret_val = hw->phy.ops.acquire(hw);
2856		if (ret_val)
2857			return ret_val;
2858	}
2859
2860	/* Page 800 works differently than the rest so it has its own func */
2861	if (page == BM_WUC_PAGE) {
2862		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2863							 false, page_set);
2864		goto out;
2865	}
2866
2867	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2868		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2869							 &data, false);
2870		goto out;
2871	}
2872
2873	if (!page_set) {
2874		if (page == HV_INTC_FC_PAGE_START)
2875			page = 0;
2876
2877		/* Workaround MDIO accesses being disabled after entering IEEE
2878		 * Power Down (when bit 11 of the PHY Control register is set)
2879		 */
2880		if ((hw->phy.type == e1000_phy_82578) &&
2881		    (hw->phy.revision >= 1) &&
2882		    (hw->phy.addr == 2) &&
2883		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2884			u16 data2 = 0x7EFF;
2885
2886			ret_val = e1000_access_phy_debug_regs_hv(hw,
2887								 BIT(6) | 0x3,
2888								 &data2, false);
2889			if (ret_val)
2890				goto out;
2891		}
2892
2893		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2894			/* Page is shifted left, PHY expects (page x 32) */
2895			ret_val = e1000_set_page_igp(hw,
2896						     (page << IGP_PAGE_SHIFT));
2897
2898			hw->phy.addr = phy_addr;
2899
2900			if (ret_val)
2901				goto out;
2902		}
2903	}
2904
2905	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2906	      page << IGP_PAGE_SHIFT, reg);
2907
2908	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2909					    data);
2910
2911out:
2912	if (!locked)
2913		hw->phy.ops.release(hw);
2914
2915	return ret_val;
2916}
2917
2918/**
2919 *  e1000_write_phy_reg_hv - Write HV PHY register
2920 *  @hw: pointer to the HW structure
2921 *  @offset: register offset to write to
2922 *  @data: data to write at register offset
2923 *
2924 *  Acquires semaphore then writes the data to PHY register at the offset.
2925 *  Release the acquired semaphores before exiting.
2926 **/
2927s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2928{
2929	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2930}
2931
2932/**
2933 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2934 *  @hw: pointer to the HW structure
2935 *  @offset: register offset to write to
2936 *  @data: data to write at register offset
2937 *
2938 *  Writes the data to PHY register at the offset.  Assumes semaphore
2939 *  already acquired.
2940 **/
2941s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2942{
2943	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2944}
2945
2946/**
2947 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2948 *  @hw: pointer to the HW structure
2949 *  @offset: register offset to write to
2950 *  @data: data to write at register offset
2951 *
2952 *  Writes the data to PHY register at the offset.  Assumes semaphore
2953 *  already acquired and page already set.
2954 **/
2955s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2956{
2957	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2958}
2959
2960/**
2961 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2962 *  @page: page to be accessed
2963 **/
2964static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2965{
2966	u32 phy_addr = 2;
2967
2968	if (page >= HV_INTC_FC_PAGE_START)
2969		phy_addr = 1;
2970
2971	return phy_addr;
2972}
2973
2974/**
2975 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2976 *  @hw: pointer to the HW structure
2977 *  @offset: register offset to be read or written
2978 *  @data: pointer to the data to be read or written
2979 *  @read: determines if operation is read or write
2980 *
2981 *  Reads the PHY register at offset and stores the retrieved information
2982 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2983 *  to access these regs uses the address port and data port to read/write.
2984 *  These accesses done with PHY address 2 and without using pages.
2985 **/
2986static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2987					  u16 *data, bool read)
2988{
2989	s32 ret_val;
2990	u32 addr_reg;
2991	u32 data_reg;
2992
2993	/* This takes care of the difference with desktop vs mobile phy */
2994	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
2995		    I82578_ADDR_REG : I82577_ADDR_REG);
2996	data_reg = addr_reg + 1;
2997
2998	/* All operations in this function are phy address 2 */
2999	hw->phy.addr = 2;
3000
3001	/* masking with 0x3F to remove the page from offset */
3002	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3003	if (ret_val) {
3004		e_dbg("Could not write the Address Offset port register\n");
3005		return ret_val;
3006	}
3007
3008	/* Read or write the data value next */
3009	if (read)
3010		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3011	else
3012		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3013
3014	if (ret_val)
3015		e_dbg("Could not access the Data port register\n");
3016
3017	return ret_val;
3018}
3019
3020/**
3021 *  e1000_link_stall_workaround_hv - Si workaround
3022 *  @hw: pointer to the HW structure
3023 *
3024 *  This function works around a Si bug where the link partner can get
3025 *  a link up indication before the PHY does.  If small packets are sent
3026 *  by the link partner they can be placed in the packet buffer without
3027 *  being properly accounted for by the PHY and will stall preventing
3028 *  further packets from being received.  The workaround is to clear the
3029 *  packet buffer after the PHY detects link up.
3030 **/
3031s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3032{
3033	s32 ret_val = 0;
3034	u16 data;
3035
3036	if (hw->phy.type != e1000_phy_82578)
3037		return 0;
3038
3039	/* Do not apply workaround if in PHY loopback bit 14 set */
3040	e1e_rphy(hw, MII_BMCR, &data);
3041	if (data & BMCR_LOOPBACK)
3042		return 0;
3043
3044	/* check if link is up and at 1Gbps */
3045	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3046	if (ret_val)
3047		return ret_val;
3048
3049	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3050		 BM_CS_STATUS_SPEED_MASK);
3051
3052	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3053		     BM_CS_STATUS_SPEED_1000))
3054		return 0;
3055
3056	msleep(200);
3057
3058	/* flush the packets in the fifo buffer */
3059	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3060			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3061			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3062	if (ret_val)
3063		return ret_val;
3064
3065	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3066}
3067
3068/**
3069 *  e1000_check_polarity_82577 - Checks the polarity.
3070 *  @hw: pointer to the HW structure
3071 *
3072 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3073 *
3074 *  Polarity is determined based on the PHY specific status register.
3075 **/
3076s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3077{
3078	struct e1000_phy_info *phy = &hw->phy;
3079	s32 ret_val;
3080	u16 data;
3081
3082	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3083
3084	if (!ret_val)
3085		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3086				       ? e1000_rev_polarity_reversed
3087				       : e1000_rev_polarity_normal);
3088
3089	return ret_val;
3090}
3091
3092/**
3093 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3094 *  @hw: pointer to the HW structure
3095 *
3096 *  Calls the PHY setup function to force speed and duplex.
3097 **/
3098s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3099{
3100	struct e1000_phy_info *phy = &hw->phy;
3101	s32 ret_val;
3102	u16 phy_data;
3103	bool link;
3104
3105	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3106	if (ret_val)
3107		return ret_val;
3108
3109	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3110
3111	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3112	if (ret_val)
3113		return ret_val;
3114
3115	udelay(1);
3116
3117	if (phy->autoneg_wait_to_complete) {
3118		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3119
3120		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3121						      100000, &link);
3122		if (ret_val)
3123			return ret_val;
3124
3125		if (!link)
3126			e_dbg("Link taking longer than expected.\n");
3127
3128		/* Try once more */
3129		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3130						      100000, &link);
3131	}
3132
3133	return ret_val;
3134}
3135
3136/**
3137 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3138 *  @hw: pointer to the HW structure
3139 *
3140 *  Read PHY status to determine if link is up.  If link is up, then
3141 *  set/determine 10base-T extended distance and polarity correction.  Read
3142 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3143 *  determine on the cable length, local and remote receiver.
3144 **/
3145s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3146{
3147	struct e1000_phy_info *phy = &hw->phy;
3148	s32 ret_val;
3149	u16 data;
3150	bool link;
3151
3152	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3153	if (ret_val)
3154		return ret_val;
3155
3156	if (!link) {
3157		e_dbg("Phy info is only valid if link is up\n");
3158		return -E1000_ERR_CONFIG;
3159	}
3160
3161	phy->polarity_correction = true;
3162
3163	ret_val = e1000_check_polarity_82577(hw);
3164	if (ret_val)
3165		return ret_val;
3166
3167	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3168	if (ret_val)
3169		return ret_val;
3170
3171	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3172
3173	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3174	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3175		ret_val = hw->phy.ops.get_cable_length(hw);
3176		if (ret_val)
3177			return ret_val;
3178
3179		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3180		if (ret_val)
3181			return ret_val;
3182
3183		phy->local_rx = (data & LPA_1000LOCALRXOK)
3184		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3185
3186		phy->remote_rx = (data & LPA_1000REMRXOK)
3187		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3188	} else {
3189		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3190		phy->local_rx = e1000_1000t_rx_status_undefined;
3191		phy->remote_rx = e1000_1000t_rx_status_undefined;
3192	}
3193
3194	return 0;
3195}
3196
3197/**
3198 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3199 *  @hw: pointer to the HW structure
3200 *
3201 * Reads the diagnostic status register and verifies result is valid before
3202 * placing it in the phy_cable_length field.
3203 **/
3204s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3205{
3206	struct e1000_phy_info *phy = &hw->phy;
3207	s32 ret_val;
3208	u16 phy_data, length;
3209
3210	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3211	if (ret_val)
3212		return ret_val;
3213
3214	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3215		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3216
3217	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3218		return -E1000_ERR_PHY;
3219
3220	phy->cable_length = length;
3221
3222	return 0;
3223}