Loading...
Note: File does not exist in v4.6.
1/*
2 * SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2018, The Linux Foundation
4 */
5
6#include <linux/clk.h>
7#include <linux/clk-provider.h>
8#include <linux/iopoll.h>
9
10#include "dsi_phy.h"
11#include "dsi.xml.h"
12#include "dsi_phy_7nm.xml.h"
13
14/*
15 * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
16 *
17 * dsi0_pll_out_div_clk dsi0_pll_bit_clk
18 * | |
19 * | |
20 * +---------+ | +----------+ | +----+
21 * dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
22 * +---------+ | +----------+ | +----+
23 * | |
24 * | | dsi0_pll_by_2_bit_clk
25 * | | |
26 * | | +----+ | |\ dsi0_pclk_mux
27 * | |--| /2 |--o--| \ |
28 * | | +----+ | \ | +---------+
29 * | --------------| |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
30 * |------------------------------| / +---------+
31 * | +-----+ | /
32 * -----------| /4? |--o----------|/
33 * +-----+ | |
34 * | |dsiclk_sel
35 * |
36 * dsi0_pll_post_out_div_clk
37 */
38
39#define VCO_REF_CLK_RATE 19200000
40#define FRAC_BITS 18
41
42/* Hardware is V4.1 */
43#define DSI_PHY_7NM_QUIRK_V4_1 BIT(0)
44
45struct dsi_pll_config {
46 bool enable_ssc;
47 bool ssc_center;
48 u32 ssc_freq;
49 u32 ssc_offset;
50 u32 ssc_adj_per;
51
52 /* out */
53 u32 decimal_div_start;
54 u32 frac_div_start;
55 u32 pll_clock_inverters;
56 u32 ssc_stepsize;
57 u32 ssc_div_per;
58};
59
60struct pll_7nm_cached_state {
61 unsigned long vco_rate;
62 u8 bit_clk_div;
63 u8 pix_clk_div;
64 u8 pll_out_div;
65 u8 pll_mux;
66};
67
68struct dsi_pll_7nm {
69 struct clk_hw clk_hw;
70
71 struct msm_dsi_phy *phy;
72
73 u64 vco_current_rate;
74
75 /* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
76 spinlock_t postdiv_lock;
77
78 struct pll_7nm_cached_state cached_state;
79
80 struct dsi_pll_7nm *slave;
81};
82
83#define to_pll_7nm(x) container_of(x, struct dsi_pll_7nm, clk_hw)
84
85/*
86 * Global list of private DSI PLL struct pointers. We need this for Dual DSI
87 * mode, where the master PLL's clk_ops needs access the slave's private data
88 */
89static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
90
91static void dsi_pll_setup_config(struct dsi_pll_config *config)
92{
93 config->ssc_freq = 31500;
94 config->ssc_offset = 4800;
95 config->ssc_adj_per = 2;
96
97 /* TODO: ssc enable */
98 config->enable_ssc = false;
99 config->ssc_center = 0;
100}
101
102static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
103{
104 u64 fref = VCO_REF_CLK_RATE;
105 u64 pll_freq;
106 u64 divider;
107 u64 dec, dec_multiple;
108 u32 frac;
109 u64 multiplier;
110
111 pll_freq = pll->vco_current_rate;
112
113 divider = fref * 2;
114
115 multiplier = 1 << FRAC_BITS;
116 dec_multiple = div_u64(pll_freq * multiplier, divider);
117 div_u64_rem(dec_multiple, multiplier, &frac);
118
119 dec = div_u64(dec_multiple, multiplier);
120
121 if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1))
122 config->pll_clock_inverters = 0x28;
123 else if (pll_freq <= 1000000000ULL)
124 config->pll_clock_inverters = 0xa0;
125 else if (pll_freq <= 2500000000ULL)
126 config->pll_clock_inverters = 0x20;
127 else if (pll_freq <= 3020000000ULL)
128 config->pll_clock_inverters = 0x00;
129 else
130 config->pll_clock_inverters = 0x40;
131
132 config->decimal_div_start = dec;
133 config->frac_div_start = frac;
134}
135
136#define SSC_CENTER BIT(0)
137#define SSC_EN BIT(1)
138
139static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
140{
141 u32 ssc_per;
142 u32 ssc_mod;
143 u64 ssc_step_size;
144 u64 frac;
145
146 if (!config->enable_ssc) {
147 DBG("SSC not enabled\n");
148 return;
149 }
150
151 ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
152 ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
153 ssc_per -= ssc_mod;
154
155 frac = config->frac_div_start;
156 ssc_step_size = config->decimal_div_start;
157 ssc_step_size *= (1 << FRAC_BITS);
158 ssc_step_size += frac;
159 ssc_step_size *= config->ssc_offset;
160 ssc_step_size *= (config->ssc_adj_per + 1);
161 ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
162 ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
163
164 config->ssc_div_per = ssc_per;
165 config->ssc_stepsize = ssc_step_size;
166
167 pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
168 config->decimal_div_start, frac, FRAC_BITS);
169 pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
170 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
171}
172
173static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
174{
175 void __iomem *base = pll->phy->pll_base;
176
177 if (config->enable_ssc) {
178 pr_debug("SSC is enabled\n");
179
180 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
181 config->ssc_stepsize & 0xff);
182 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
183 config->ssc_stepsize >> 8);
184 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
185 config->ssc_div_per & 0xff);
186 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
187 config->ssc_div_per >> 8);
188 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
189 config->ssc_adj_per & 0xff);
190 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
191 config->ssc_adj_per >> 8);
192 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
193 SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
194 }
195}
196
197static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
198{
199 void __iomem *base = pll->phy->pll_base;
200 u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
201
202 if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
203 if (pll->vco_current_rate >= 3100000000ULL)
204 analog_controls_five_1 = 0x03;
205
206 if (pll->vco_current_rate < 1520000000ULL)
207 vco_config_1 = 0x08;
208 else if (pll->vco_current_rate < 2990000000ULL)
209 vco_config_1 = 0x01;
210 }
211
212 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
213 analog_controls_five_1);
214 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
215 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
216 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
217 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
218 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
219 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
220 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
221 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
222 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
223 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
224 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
225 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
226 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
227 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
228 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
229 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
230 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
231 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
232 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
233 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
234 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
235 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
236 pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1 ? 0x3f : 0x22);
237
238 if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
239 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
240 if (pll->slave)
241 dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
242 }
243}
244
245static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
246{
247 void __iomem *base = pll->phy->pll_base;
248
249 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
250 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1, config->decimal_div_start);
251 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
252 config->frac_div_start & 0xff);
253 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
254 (config->frac_div_start & 0xff00) >> 8);
255 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
256 (config->frac_div_start & 0x30000) >> 16);
257 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
258 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
259 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1, 0x10); /* TODO: 0x00 for CPHY */
260 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS, config->pll_clock_inverters);
261}
262
263static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
264 unsigned long parent_rate)
265{
266 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
267 struct dsi_pll_config config;
268
269 DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
270 parent_rate);
271
272 pll_7nm->vco_current_rate = rate;
273
274 dsi_pll_setup_config(&config);
275
276 dsi_pll_calc_dec_frac(pll_7nm, &config);
277
278 dsi_pll_calc_ssc(pll_7nm, &config);
279
280 dsi_pll_commit(pll_7nm, &config);
281
282 dsi_pll_config_hzindep_reg(pll_7nm);
283
284 dsi_pll_ssc_commit(pll_7nm, &config);
285
286 /* flush, ensure all register writes are done*/
287 wmb();
288
289 return 0;
290}
291
292static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
293{
294 int rc;
295 u32 status = 0;
296 u32 const delay_us = 100;
297 u32 const timeout_us = 5000;
298
299 rc = readl_poll_timeout_atomic(pll->phy->pll_base +
300 REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
301 status,
302 ((status & BIT(0)) > 0),
303 delay_us,
304 timeout_us);
305 if (rc)
306 pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
307 pll->phy->id, status);
308
309 return rc;
310}
311
312static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
313{
314 u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
315
316 dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
317 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
318 ndelay(250);
319}
320
321static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
322{
323 u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
324
325 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
326 dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
327 ndelay(250);
328}
329
330static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
331{
332 u32 data;
333
334 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
335 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
336}
337
338static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
339{
340 u32 data;
341
342 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
343
344 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
345 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
346 data | BIT(5) | BIT(4));
347}
348
349static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
350{
351 /*
352 * Reset the PHY digital domain. This would be needed when
353 * coming out of a CX or analog rail power collapse while
354 * ensuring that the pads maintain LP00 or LP11 state
355 */
356 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
357 wmb(); /* Ensure that the reset is deasserted */
358 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
359 wmb(); /* Ensure that the reset is deasserted */
360}
361
362static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
363{
364 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
365 int rc;
366
367 dsi_pll_enable_pll_bias(pll_7nm);
368 if (pll_7nm->slave)
369 dsi_pll_enable_pll_bias(pll_7nm->slave);
370
371 /* Start PLL */
372 dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
373
374 /*
375 * ensure all PLL configurations are written prior to checking
376 * for PLL lock.
377 */
378 wmb();
379
380 /* Check for PLL lock */
381 rc = dsi_pll_7nm_lock_status(pll_7nm);
382 if (rc) {
383 pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
384 goto error;
385 }
386
387 pll_7nm->phy->pll_on = true;
388
389 /*
390 * assert power on reset for PHY digital in case the PLL is
391 * enabled after CX of analog domain power collapse. This needs
392 * to be done before enabling the global clk.
393 */
394 dsi_pll_phy_dig_reset(pll_7nm);
395 if (pll_7nm->slave)
396 dsi_pll_phy_dig_reset(pll_7nm->slave);
397
398 dsi_pll_enable_global_clk(pll_7nm);
399 if (pll_7nm->slave)
400 dsi_pll_enable_global_clk(pll_7nm->slave);
401
402error:
403 return rc;
404}
405
406static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
407{
408 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
409 dsi_pll_disable_pll_bias(pll);
410}
411
412static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
413{
414 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
415
416 /*
417 * To avoid any stray glitches while abruptly powering down the PLL
418 * make sure to gate the clock using the clock enable bit before
419 * powering down the PLL
420 */
421 dsi_pll_disable_global_clk(pll_7nm);
422 dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
423 dsi_pll_disable_sub(pll_7nm);
424 if (pll_7nm->slave) {
425 dsi_pll_disable_global_clk(pll_7nm->slave);
426 dsi_pll_disable_sub(pll_7nm->slave);
427 }
428 /* flush, ensure all register writes are done */
429 wmb();
430 pll_7nm->phy->pll_on = false;
431}
432
433static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
434 unsigned long parent_rate)
435{
436 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
437 void __iomem *base = pll_7nm->phy->pll_base;
438 u64 ref_clk = VCO_REF_CLK_RATE;
439 u64 vco_rate = 0x0;
440 u64 multiplier;
441 u32 frac;
442 u32 dec;
443 u64 pll_freq, tmp64;
444
445 dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
446 dec &= 0xff;
447
448 frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
449 frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
450 0xff) << 8);
451 frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
452 0x3) << 16);
453
454 /*
455 * TODO:
456 * 1. Assumes prescaler is disabled
457 */
458 multiplier = 1 << FRAC_BITS;
459 pll_freq = dec * (ref_clk * 2);
460 tmp64 = (ref_clk * 2 * frac);
461 pll_freq += div_u64(tmp64, multiplier);
462
463 vco_rate = pll_freq;
464 pll_7nm->vco_current_rate = vco_rate;
465
466 DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
467 pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
468
469 return (unsigned long)vco_rate;
470}
471
472static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
473 unsigned long rate, unsigned long *parent_rate)
474{
475 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
476
477 if (rate < pll_7nm->phy->cfg->min_pll_rate)
478 return pll_7nm->phy->cfg->min_pll_rate;
479 else if (rate > pll_7nm->phy->cfg->max_pll_rate)
480 return pll_7nm->phy->cfg->max_pll_rate;
481 else
482 return rate;
483}
484
485static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
486 .round_rate = dsi_pll_7nm_clk_round_rate,
487 .set_rate = dsi_pll_7nm_vco_set_rate,
488 .recalc_rate = dsi_pll_7nm_vco_recalc_rate,
489 .prepare = dsi_pll_7nm_vco_prepare,
490 .unprepare = dsi_pll_7nm_vco_unprepare,
491};
492
493/*
494 * PLL Callbacks
495 */
496
497static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
498{
499 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
500 struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
501 void __iomem *phy_base = pll_7nm->phy->base;
502 u32 cmn_clk_cfg0, cmn_clk_cfg1;
503
504 cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
505 REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
506 cached->pll_out_div &= 0x3;
507
508 cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
509 cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
510 cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
511
512 cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
513 cached->pll_mux = cmn_clk_cfg1 & 0x3;
514
515 DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
516 pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
517 cached->pix_clk_div, cached->pll_mux);
518}
519
520static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
521{
522 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
523 struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
524 void __iomem *phy_base = pll_7nm->phy->base;
525 u32 val;
526 int ret;
527
528 val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
529 val &= ~0x3;
530 val |= cached->pll_out_div;
531 dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
532
533 dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
534 cached->bit_clk_div | (cached->pix_clk_div << 4));
535
536 val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
537 val &= ~0x3;
538 val |= cached->pll_mux;
539 dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
540
541 ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
542 pll_7nm->vco_current_rate,
543 VCO_REF_CLK_RATE);
544 if (ret) {
545 DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
546 "restore vco rate failed. ret=%d\n", ret);
547 return ret;
548 }
549
550 DBG("DSI PLL%d", pll_7nm->phy->id);
551
552 return 0;
553}
554
555static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
556{
557 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
558 void __iomem *base = phy->base;
559 u32 data = 0x0; /* internal PLL */
560
561 DBG("DSI PLL%d", pll_7nm->phy->id);
562
563 switch (phy->usecase) {
564 case MSM_DSI_PHY_STANDALONE:
565 break;
566 case MSM_DSI_PHY_MASTER:
567 pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
568 break;
569 case MSM_DSI_PHY_SLAVE:
570 data = 0x1; /* external PLL */
571 break;
572 default:
573 return -EINVAL;
574 }
575
576 /* set PLL src */
577 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
578
579 return 0;
580}
581
582/*
583 * The post dividers and mux clocks are created using the standard divider and
584 * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
585 * state to follow the master PLL's divider/mux state. Therefore, we don't
586 * require special clock ops that also configure the slave PLL registers
587 */
588static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
589{
590 char clk_name[32], parent[32], vco_name[32];
591 char parent2[32], parent3[32], parent4[32];
592 struct clk_init_data vco_init = {
593 .parent_names = (const char *[]){ "bi_tcxo" },
594 .num_parents = 1,
595 .name = vco_name,
596 .flags = CLK_IGNORE_UNUSED,
597 .ops = &clk_ops_dsi_pll_7nm_vco,
598 };
599 struct device *dev = &pll_7nm->phy->pdev->dev;
600 struct clk_hw *hw;
601 int ret;
602
603 DBG("DSI%d", pll_7nm->phy->id);
604
605 snprintf(vco_name, 32, "dsi%dvco_clk", pll_7nm->phy->id);
606 pll_7nm->clk_hw.init = &vco_init;
607
608 ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
609 if (ret)
610 return ret;
611
612 snprintf(clk_name, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
613 snprintf(parent, 32, "dsi%dvco_clk", pll_7nm->phy->id);
614
615 hw = devm_clk_hw_register_divider(dev, clk_name,
616 parent, CLK_SET_RATE_PARENT,
617 pll_7nm->phy->pll_base +
618 REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
619 0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
620 if (IS_ERR(hw)) {
621 ret = PTR_ERR(hw);
622 goto fail;
623 }
624
625 snprintf(clk_name, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
626 snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
627
628 /* BIT CLK: DIV_CTRL_3_0 */
629 hw = devm_clk_hw_register_divider(dev, clk_name, parent,
630 CLK_SET_RATE_PARENT,
631 pll_7nm->phy->base +
632 REG_DSI_7nm_PHY_CMN_CLK_CFG0,
633 0, 4, CLK_DIVIDER_ONE_BASED,
634 &pll_7nm->postdiv_lock);
635 if (IS_ERR(hw)) {
636 ret = PTR_ERR(hw);
637 goto fail;
638 }
639
640 snprintf(clk_name, 32, "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
641 snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
642
643 /* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
644 hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
645 CLK_SET_RATE_PARENT, 1, 8);
646 if (IS_ERR(hw)) {
647 ret = PTR_ERR(hw);
648 goto fail;
649 }
650
651 provided_clocks[DSI_BYTE_PLL_CLK] = hw;
652
653 snprintf(clk_name, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
654 snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
655
656 hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
657 0, 1, 2);
658 if (IS_ERR(hw)) {
659 ret = PTR_ERR(hw);
660 goto fail;
661 }
662
663 snprintf(clk_name, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
664 snprintf(parent, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
665
666 hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
667 0, 1, 4);
668 if (IS_ERR(hw)) {
669 ret = PTR_ERR(hw);
670 goto fail;
671 }
672
673 snprintf(clk_name, 32, "dsi%d_pclk_mux", pll_7nm->phy->id);
674 snprintf(parent, 32, "dsi%d_pll_bit_clk", pll_7nm->phy->id);
675 snprintf(parent2, 32, "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
676 snprintf(parent3, 32, "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
677 snprintf(parent4, 32, "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
678
679 hw = devm_clk_hw_register_mux(dev, clk_name,
680 ((const char *[]){
681 parent, parent2, parent3, parent4
682 }), 4, 0, pll_7nm->phy->base +
683 REG_DSI_7nm_PHY_CMN_CLK_CFG1,
684 0, 2, 0, NULL);
685 if (IS_ERR(hw)) {
686 ret = PTR_ERR(hw);
687 goto fail;
688 }
689
690 snprintf(clk_name, 32, "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
691 snprintf(parent, 32, "dsi%d_pclk_mux", pll_7nm->phy->id);
692
693 /* PIX CLK DIV : DIV_CTRL_7_4*/
694 hw = devm_clk_hw_register_divider(dev, clk_name, parent,
695 0, pll_7nm->phy->base +
696 REG_DSI_7nm_PHY_CMN_CLK_CFG0,
697 4, 4, CLK_DIVIDER_ONE_BASED,
698 &pll_7nm->postdiv_lock);
699 if (IS_ERR(hw)) {
700 ret = PTR_ERR(hw);
701 goto fail;
702 }
703
704 provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
705
706 return 0;
707
708fail:
709
710 return ret;
711}
712
713static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
714{
715 struct platform_device *pdev = phy->pdev;
716 struct dsi_pll_7nm *pll_7nm;
717 int ret;
718
719 pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
720 if (!pll_7nm)
721 return -ENOMEM;
722
723 DBG("DSI PLL%d", phy->id);
724
725 pll_7nm_list[phy->id] = pll_7nm;
726
727 spin_lock_init(&pll_7nm->postdiv_lock);
728
729 pll_7nm->phy = phy;
730
731 ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
732 if (ret) {
733 DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
734 return ret;
735 }
736
737 phy->vco_hw = &pll_7nm->clk_hw;
738
739 /* TODO: Remove this when we have proper display handover support */
740 msm_dsi_phy_pll_save_state(phy);
741
742 return 0;
743}
744
745static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
746{
747 void __iomem *base = phy->base;
748 u32 data = 0;
749
750 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
751 mb(); /* make sure read happened */
752
753 return (data & BIT(0));
754}
755
756static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
757{
758 void __iomem *lane_base = phy->lane_base;
759 int phy_lane_0 = 0; /* TODO: Support all lane swap configs */
760
761 /*
762 * LPRX and CDRX need to enabled only for physical data lane
763 * corresponding to the logical data lane 0
764 */
765 if (enable)
766 dsi_phy_write(lane_base +
767 REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
768 else
769 dsi_phy_write(lane_base +
770 REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
771}
772
773static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
774{
775 int i;
776 const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
777 const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
778 const u8 *tx_dctrl = tx_dctrl_0;
779 void __iomem *lane_base = phy->lane_base;
780
781 if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1)
782 tx_dctrl = tx_dctrl_1;
783
784 /* Strength ctrl settings */
785 for (i = 0; i < 5; i++) {
786 /*
787 * Disable LPRX and CDRX for all lanes. And later on, it will
788 * be only enabled for the physical data lane corresponding
789 * to the logical data lane 0
790 */
791 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
792 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
793 }
794
795 dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
796
797 /* other settings */
798 for (i = 0; i < 5; i++) {
799 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
800 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
801 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
802 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
803 }
804}
805
806static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
807 struct msm_dsi_phy_clk_request *clk_req)
808{
809 int ret;
810 u32 status;
811 u32 const delay_us = 5;
812 u32 const timeout_us = 1000;
813 struct msm_dsi_dphy_timing *timing = &phy->timing;
814 void __iomem *base = phy->base;
815 bool less_than_1500_mhz;
816 u32 vreg_ctrl_0, glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
817 u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
818 u32 data;
819
820 DBG("");
821
822 if (msm_dsi_dphy_timing_calc_v4(timing, clk_req)) {
823 DRM_DEV_ERROR(&phy->pdev->dev,
824 "%s: D-PHY timing calculation failed\n", __func__);
825 return -EINVAL;
826 }
827
828 if (dsi_phy_hw_v4_0_is_pll_on(phy))
829 pr_warn("PLL turned on before configuring PHY\n");
830
831 /* wait for REFGEN READY */
832 ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
833 status, (status & BIT(0)),
834 delay_us, timeout_us);
835 if (ret) {
836 pr_err("Ref gen not ready. Aborting\n");
837 return -EINVAL;
838 }
839
840 /* TODO: CPHY enable path (this is for DPHY only) */
841
842 /* Alter PHY configurations if data rate less than 1.5GHZ*/
843 less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
844
845 if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
846 vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
847 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x00;
848 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 : 0x3c;
849 glbl_str_swi_cal_sel_ctrl = 0x00;
850 glbl_hstx_str_ctrl_0 = 0x88;
851 } else {
852 vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
853 glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
854 glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
855 glbl_rescode_top_ctrl = 0x03;
856 glbl_rescode_bot_ctrl = 0x3c;
857 }
858
859 /* de-assert digital and pll power down */
860 data = BIT(6) | BIT(5);
861 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
862
863 /* Assert PLL core reset */
864 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
865
866 /* turn off resync FIFO */
867 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
868
869 /* program CMN_CTRL_4 for minor_ver 2 chipsets*/
870 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0);
871 data = data & (0xf0);
872 if (data == 0x20)
873 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
874
875 /* Configure PHY lane swap (TODO: we need to calculate this) */
876 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
877 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
878
879 /* Enable LDO */
880 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
881 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, 0x5c);
882 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
883 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
884 glbl_str_swi_cal_sel_ctrl);
885 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
886 glbl_hstx_str_ctrl_0);
887 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0, 0x00);
888 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
889 glbl_rescode_top_ctrl);
890 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
891 glbl_rescode_bot_ctrl);
892 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
893
894 /* Remove power down from all blocks */
895 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
896
897 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0x1f);
898
899 /* Select full-rate mode */
900 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
901
902 ret = dsi_7nm_set_usecase(phy);
903 if (ret) {
904 DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
905 __func__, ret);
906 return ret;
907 }
908
909 /* DSI PHY timings */
910 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
911 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
912 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
913 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
914 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
915 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
916 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
917 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
918 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
919 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
920 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
921 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
922 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
923 timing->shared_timings.clk_pre);
924 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
925 timing->shared_timings.clk_post);
926
927 /* DSI lane settings */
928 dsi_phy_hw_v4_0_lane_settings(phy);
929
930 DBG("DSI%d PHY enabled", phy->id);
931
932 return 0;
933}
934
935static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
936{
937 void __iomem *base = phy->base;
938 u32 data;
939
940 DBG("");
941
942 if (dsi_phy_hw_v4_0_is_pll_on(phy))
943 pr_warn("Turning OFF PHY while PLL is on\n");
944
945 dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
946 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
947
948 /* disable all lanes */
949 data &= ~0x1F;
950 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
951 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
952
953 /* Turn off all PHY blocks */
954 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
955 /* make sure phy is turned off */
956 wmb();
957
958 DBG("DSI%d PHY disabled", phy->id);
959}
960
961const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
962 .has_phy_lane = true,
963 .reg_cfg = {
964 .num = 1,
965 .regs = {
966 {"vdds", 36000, 32},
967 },
968 },
969 .ops = {
970 .enable = dsi_7nm_phy_enable,
971 .disable = dsi_7nm_phy_disable,
972 .pll_init = dsi_pll_7nm_init,
973 .save_pll_state = dsi_7nm_pll_save_state,
974 .restore_pll_state = dsi_7nm_pll_restore_state,
975 },
976 .min_pll_rate = 600000000UL,
977#ifdef CONFIG_64BIT
978 .max_pll_rate = 5000000000UL,
979#else
980 .max_pll_rate = ULONG_MAX,
981#endif
982 .io_start = { 0xae94400, 0xae96400 },
983 .num_dsi_phy = 2,
984 .quirks = DSI_PHY_7NM_QUIRK_V4_1,
985};
986
987const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
988 .has_phy_lane = true,
989 .reg_cfg = {
990 .num = 1,
991 .regs = {
992 {"vdds", 36000, 32},
993 },
994 },
995 .ops = {
996 .enable = dsi_7nm_phy_enable,
997 .disable = dsi_7nm_phy_disable,
998 .pll_init = dsi_pll_7nm_init,
999 .save_pll_state = dsi_7nm_pll_save_state,
1000 .restore_pll_state = dsi_7nm_pll_restore_state,
1001 },
1002 .min_pll_rate = 1000000000UL,
1003 .max_pll_rate = 3500000000UL,
1004 .io_start = { 0xae94400, 0xae96400 },
1005 .num_dsi_phy = 2,
1006};