Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
   4 */
   5
   6#include <linux/clk.h>
   7#include <linux/clk-provider.h>
   8#include <linux/delay.h>
   9
  10#include "dsi_phy.h"
  11#include "dsi.xml.h"
  12#include "dsi_phy_14nm.xml.h"
  13
  14#define PHY_14NM_CKLN_IDX	4
  15
  16/*
  17 * DSI PLL 14nm - clock diagram (eg: DSI0):
  18 *
  19 *         dsi0n1_postdiv_clk
  20 *                         |
  21 *                         |
  22 *                 +----+  |  +----+
  23 *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
  24 *                 +----+  |  +----+
  25 *                         |           dsi0n1_postdivby2_clk
  26 *                         |   +----+  |
  27 *                         o---| /2 |--o--|\
  28 *                         |   +----+     | \   +----+
  29 *                         |              |  |--| n2 |-- dsi0pll
  30 *                         o--------------| /   +----+
  31 *                                        |/
  32 */
  33
  34#define POLL_MAX_READS			15
  35#define POLL_TIMEOUT_US			1000
  36
  37#define VCO_REF_CLK_RATE		19200000
  38#define VCO_MIN_RATE			1300000000UL
  39#define VCO_MAX_RATE			2600000000UL
  40
  41struct dsi_pll_config {
  42	u64 vco_current_rate;
  43
  44	u32 ssc_en;	/* SSC enable/disable */
  45
  46	/* fixed params */
  47	u32 plllock_cnt;
  48	u32 ssc_center;
  49	u32 ssc_adj_period;
  50	u32 ssc_spread;
  51	u32 ssc_freq;
  52
  53	/* calculated */
  54	u32 dec_start;
  55	u32 div_frac_start;
  56	u32 ssc_period;
  57	u32 ssc_step_size;
  58	u32 plllock_cmp;
  59	u32 pll_vco_div_ref;
  60	u32 pll_vco_count;
  61	u32 pll_kvco_div_ref;
  62	u32 pll_kvco_count;
  63};
  64
  65struct pll_14nm_cached_state {
  66	unsigned long vco_rate;
  67	u8 n2postdiv;
  68	u8 n1postdiv;
  69};
  70
  71struct dsi_pll_14nm {
  72	struct clk_hw clk_hw;
  73
  74	struct msm_dsi_phy *phy;
  75
  76	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
  77	spinlock_t postdiv_lock;
  78
  79	struct pll_14nm_cached_state cached_state;
  80
  81	struct dsi_pll_14nm *slave;
  82};
  83
  84#define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, clk_hw)
  85
  86/*
  87 * Private struct for N1/N2 post-divider clocks. These clocks are similar to
  88 * the generic clk_divider class of clocks. The only difference is that it
  89 * also sets the slave DSI PLL's post-dividers if in Dual DSI mode
  90 */
  91struct dsi_pll_14nm_postdiv {
  92	struct clk_hw hw;
  93
  94	/* divider params */
  95	u8 shift;
  96	u8 width;
  97	u8 flags; /* same flags as used by clk_divider struct */
  98
  99	struct dsi_pll_14nm *pll;
 100};
 101
 102#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
 103
 104/*
 105 * Global list of private DSI PLL struct pointers. We need this for Dual DSI
 106 * mode, where the master PLL's clk_ops needs access the slave's private data
 107 */
 108static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
 109
 110static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
 111				    u32 nb_tries, u32 timeout_us)
 112{
 113	bool pll_locked = false, pll_ready = false;
 114	void __iomem *base = pll_14nm->phy->pll_base;
 115	u32 tries, val;
 116
 117	tries = nb_tries;
 118	while (tries--) {
 119		val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
 120		pll_locked = !!(val & BIT(5));
 121
 122		if (pll_locked)
 123			break;
 124
 125		udelay(timeout_us);
 126	}
 127
 128	if (!pll_locked)
 129		goto out;
 130
 131	tries = nb_tries;
 132	while (tries--) {
 133		val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
 134		pll_ready = !!(val & BIT(0));
 135
 136		if (pll_ready)
 137			break;
 138
 139		udelay(timeout_us);
 140	}
 141
 142out:
 143	DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
 144
 145	return pll_locked && pll_ready;
 146}
 147
 148static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
 149{
 150	/* fixed input */
 151	pconf->plllock_cnt = 1;
 152
 153	/*
 154	 * SSC is enabled by default. We might need DT props for configuring
 155	 * some SSC params like PPM and center/down spread etc.
 156	 */
 157	pconf->ssc_en = 1;
 158	pconf->ssc_center = 0;		/* down spread by default */
 159	pconf->ssc_spread = 5;		/* PPM / 1000 */
 160	pconf->ssc_freq = 31500;	/* default recommended */
 161	pconf->ssc_adj_period = 37;
 162}
 163
 164#define CEIL(x, y)		(((x) + ((y) - 1)) / (y))
 165
 166static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
 167{
 168	u32 period, ssc_period;
 169	u32 ref, rem;
 170	u64 step_size;
 171
 172	DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
 173
 174	ssc_period = pconf->ssc_freq / 500;
 175	period = (u32)VCO_REF_CLK_RATE / 1000;
 176	ssc_period  = CEIL(period, ssc_period);
 177	ssc_period -= 1;
 178	pconf->ssc_period = ssc_period;
 179
 180	DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
 181	    pconf->ssc_spread, pconf->ssc_period);
 182
 183	step_size = (u32)pconf->vco_current_rate;
 184	ref = VCO_REF_CLK_RATE;
 185	ref /= 1000;
 186	step_size = div_u64(step_size, ref);
 187	step_size <<= 20;
 188	step_size = div_u64(step_size, 1000);
 189	step_size *= pconf->ssc_spread;
 190	step_size = div_u64(step_size, 1000);
 191	step_size *= (pconf->ssc_adj_period + 1);
 192
 193	rem = 0;
 194	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
 195	if (rem)
 196		step_size++;
 197
 198	DBG("step_size=%lld", step_size);
 199
 200	step_size &= 0x0ffff;	/* take lower 16 bits */
 201
 202	pconf->ssc_step_size = step_size;
 203}
 204
 205static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
 206{
 207	u64 multiplier = BIT(20);
 208	u64 dec_start_multiple, dec_start, pll_comp_val;
 209	u32 duration, div_frac_start;
 210	u64 vco_clk_rate = pconf->vco_current_rate;
 211	u64 fref = VCO_REF_CLK_RATE;
 212
 213	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
 214
 215	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
 216	div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
 217
 218	dec_start = div_u64(dec_start_multiple, multiplier);
 219
 220	pconf->dec_start = (u32)dec_start;
 221	pconf->div_frac_start = div_frac_start;
 222
 223	if (pconf->plllock_cnt == 0)
 224		duration = 1024;
 225	else if (pconf->plllock_cnt == 1)
 226		duration = 256;
 227	else if (pconf->plllock_cnt == 2)
 228		duration = 128;
 229	else
 230		duration = 32;
 231
 232	pll_comp_val = duration * dec_start_multiple;
 233	pll_comp_val = div_u64(pll_comp_val, multiplier);
 234	do_div(pll_comp_val, 10);
 235
 236	pconf->plllock_cmp = (u32)pll_comp_val;
 237}
 238
 239static u32 pll_14nm_kvco_slop(u32 vrate)
 240{
 241	u32 slop = 0;
 242
 243	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
 244		slop =  600;
 245	else if (vrate > 1800000000UL && vrate < 2300000000UL)
 246		slop = 400;
 247	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
 248		slop = 280;
 249
 250	return slop;
 251}
 252
 253static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
 254{
 255	u64 vco_clk_rate = pconf->vco_current_rate;
 256	u64 fref = VCO_REF_CLK_RATE;
 257	u32 vco_measure_time = 5;
 258	u32 kvco_measure_time = 5;
 259	u64 data;
 260	u32 cnt;
 261
 262	data = fref * vco_measure_time;
 263	do_div(data, 1000000);
 264	data &= 0x03ff;	/* 10 bits */
 265	data -= 2;
 266	pconf->pll_vco_div_ref = data;
 267
 268	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
 269	data *= vco_measure_time;
 270	do_div(data, 10);
 271	pconf->pll_vco_count = data;
 272
 273	data = fref * kvco_measure_time;
 274	do_div(data, 1000000);
 275	data &= 0x03ff;	/* 10 bits */
 276	data -= 1;
 277	pconf->pll_kvco_div_ref = data;
 278
 279	cnt = pll_14nm_kvco_slop(vco_clk_rate);
 280	cnt *= 2;
 281	cnt /= 100;
 282	cnt *= kvco_measure_time;
 283	pconf->pll_kvco_count = cnt;
 284}
 285
 286static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
 287{
 288	void __iomem *base = pll->phy->pll_base;
 289	u8 data;
 290
 291	data = pconf->ssc_adj_period;
 292	data &= 0x0ff;
 293	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
 294	data = (pconf->ssc_adj_period >> 8);
 295	data &= 0x03;
 296	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
 297
 298	data = pconf->ssc_period;
 299	data &= 0x0ff;
 300	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
 301	data = (pconf->ssc_period >> 8);
 302	data &= 0x0ff;
 303	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
 304
 305	data = pconf->ssc_step_size;
 306	data &= 0x0ff;
 307	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
 308	data = (pconf->ssc_step_size >> 8);
 309	data &= 0x0ff;
 310	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
 311
 312	data = (pconf->ssc_center & 0x01);
 313	data <<= 1;
 314	data |= 0x01; /* enable */
 315	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
 316
 317	wmb();	/* make sure register committed */
 318}
 319
 320static void pll_db_commit_common(struct dsi_pll_14nm *pll,
 321				 struct dsi_pll_config *pconf)
 322{
 323	void __iomem *base = pll->phy->pll_base;
 324	u8 data;
 325
 326	/* confgiure the non frequency dependent pll registers */
 327	data = 0;
 328	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
 329
 330	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1);
 331
 332	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48);
 333	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */
 334	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */
 335
 336	data = pconf->pll_vco_div_ref & 0xff;
 337	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
 338	data = (pconf->pll_vco_div_ref >> 8) & 0x3;
 339	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
 340
 341	data = pconf->pll_kvco_div_ref & 0xff;
 342	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
 343	data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
 344	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
 345
 346	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16);
 347
 348	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4);
 349
 350	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4);
 351
 352	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1);
 353
 354	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0);
 355
 356	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0);
 357
 358	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4);
 359
 360	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11);
 361
 362	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7);
 363
 364	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2);
 365}
 366
 367static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
 368{
 369	void __iomem *cmn_base = pll_14nm->phy->base;
 370
 371	/* de assert pll start and apply pll sw reset */
 372
 373	/* stop pll */
 374	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
 375
 376	/* pll sw reset */
 377	dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
 378	wmb();	/* make sure register committed */
 379
 380	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
 381	wmb();	/* make sure register committed */
 382}
 383
 384static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
 385			       struct dsi_pll_config *pconf)
 386{
 387	void __iomem *base = pll->phy->pll_base;
 388	void __iomem *cmn_base = pll->phy->base;
 389	u8 data;
 390
 391	DBG("DSI%d PLL", pll->phy->id);
 392
 393	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c);
 394
 395	pll_db_commit_common(pll, pconf);
 396
 397	pll_14nm_software_reset(pll);
 398
 399	/* Use the /2 path in Mux */
 400	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1);
 401
 402	data = 0xff; /* data, clk, pll normal operation */
 403	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
 404
 405	/* configure the frequency dependent pll registers */
 406	data = pconf->dec_start;
 407	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
 408
 409	data = pconf->div_frac_start & 0xff;
 410	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
 411	data = (pconf->div_frac_start >> 8) & 0xff;
 412	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
 413	data = (pconf->div_frac_start >> 16) & 0xf;
 414	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
 415
 416	data = pconf->plllock_cmp & 0xff;
 417	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
 418
 419	data = (pconf->plllock_cmp >> 8) & 0xff;
 420	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
 421
 422	data = (pconf->plllock_cmp >> 16) & 0x3;
 423	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
 424
 425	data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
 426	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
 427
 428	data = pconf->pll_vco_count & 0xff;
 429	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
 430	data = (pconf->pll_vco_count >> 8) & 0xff;
 431	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
 432
 433	data = pconf->pll_kvco_count & 0xff;
 434	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
 435	data = (pconf->pll_kvco_count >> 8) & 0x3;
 436	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
 437
 438	/*
 439	 * High nibble configures the post divider internal to the VCO. It's
 440	 * fixed to divide by 1 for now.
 441	 *
 442	 * 0: divided by 1
 443	 * 1: divided by 2
 444	 * 2: divided by 4
 445	 * 3: divided by 8
 446	 */
 447	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3);
 448
 449	if (pconf->ssc_en)
 450		pll_db_commit_ssc(pll, pconf);
 451
 452	wmb();	/* make sure register committed */
 453}
 454
 455/*
 456 * VCO clock Callbacks
 457 */
 458static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
 459				     unsigned long parent_rate)
 460{
 461	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 462	struct dsi_pll_config conf;
 463
 464	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
 465	    parent_rate);
 466
 467	dsi_pll_14nm_config_init(&conf);
 468	conf.vco_current_rate = rate;
 469
 470	pll_14nm_dec_frac_calc(pll_14nm, &conf);
 471
 472	if (conf.ssc_en)
 473		pll_14nm_ssc_calc(pll_14nm, &conf);
 474
 475	pll_14nm_calc_vco_count(pll_14nm, &conf);
 476
 477	/* commit the slave DSI PLL registers if we're master. Note that we
 478	 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
 479	 * of the master and slave are identical
 480	 */
 481	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
 482		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
 483
 484		pll_db_commit_14nm(pll_14nm_slave, &conf);
 485	}
 486
 487	pll_db_commit_14nm(pll_14nm, &conf);
 488
 489	return 0;
 490}
 491
 492static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
 493						  unsigned long parent_rate)
 494{
 495	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 496	void __iomem *base = pll_14nm->phy->pll_base;
 497	u64 vco_rate, multiplier = BIT(20);
 498	u32 div_frac_start;
 499	u32 dec_start;
 500	u64 ref_clk = parent_rate;
 501
 502	dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
 503	dec_start &= 0x0ff;
 504
 505	DBG("dec_start = %x", dec_start);
 506
 507	div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
 508				& 0xf) << 16;
 509	div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
 510				& 0xff) << 8;
 511	div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
 512				& 0xff;
 513
 514	DBG("div_frac_start = %x", div_frac_start);
 515
 516	vco_rate = ref_clk * dec_start;
 517
 518	vco_rate += ((ref_clk * div_frac_start) / multiplier);
 519
 520	/*
 521	 * Recalculating the rate from dec_start and frac_start doesn't end up
 522	 * the rate we originally set. Convert the freq to KHz, round it up and
 523	 * convert it back to MHz.
 524	 */
 525	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
 526
 527	DBG("returning vco rate = %lu", (unsigned long)vco_rate);
 528
 529	return (unsigned long)vco_rate;
 530}
 531
 532static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
 533{
 534	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 535	void __iomem *base = pll_14nm->phy->pll_base;
 536	void __iomem *cmn_base = pll_14nm->phy->base;
 537	bool locked;
 538
 539	DBG("");
 540
 541	if (unlikely(pll_14nm->phy->pll_on))
 542		return 0;
 543
 544	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
 545	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
 546
 547	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
 548					 POLL_TIMEOUT_US);
 549
 550	if (unlikely(!locked)) {
 551		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
 552		return -EINVAL;
 553	}
 554
 555	DBG("DSI PLL lock success");
 556	pll_14nm->phy->pll_on = true;
 557
 558	return 0;
 559}
 560
 561static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
 562{
 563	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 564	void __iomem *cmn_base = pll_14nm->phy->base;
 565
 566	DBG("");
 567
 568	if (unlikely(!pll_14nm->phy->pll_on))
 569		return;
 570
 571	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
 572
 573	pll_14nm->phy->pll_on = false;
 574}
 575
 576static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
 577		unsigned long rate, unsigned long *parent_rate)
 578{
 579	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
 580
 581	if      (rate < pll_14nm->phy->cfg->min_pll_rate)
 582		return  pll_14nm->phy->cfg->min_pll_rate;
 583	else if (rate > pll_14nm->phy->cfg->max_pll_rate)
 584		return  pll_14nm->phy->cfg->max_pll_rate;
 585	else
 586		return rate;
 587}
 588
 589static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
 590	.round_rate = dsi_pll_14nm_clk_round_rate,
 591	.set_rate = dsi_pll_14nm_vco_set_rate,
 592	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
 593	.prepare = dsi_pll_14nm_vco_prepare,
 594	.unprepare = dsi_pll_14nm_vco_unprepare,
 595};
 596
 597/*
 598 * N1 and N2 post-divider clock callbacks
 599 */
 600#define div_mask(width)	((1 << (width)) - 1)
 601static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
 602						      unsigned long parent_rate)
 603{
 604	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
 605	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
 606	void __iomem *base = pll_14nm->phy->base;
 607	u8 shift = postdiv->shift;
 608	u8 width = postdiv->width;
 609	u32 val;
 610
 611	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
 612
 613	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
 614	val &= div_mask(width);
 615
 616	return divider_recalc_rate(hw, parent_rate, val, NULL,
 617				   postdiv->flags, width);
 618}
 619
 620static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
 621					    unsigned long rate,
 622					    unsigned long *prate)
 623{
 624	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
 625	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
 626
 627	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
 628
 629	return divider_round_rate(hw, rate, prate, NULL,
 630				  postdiv->width,
 631				  postdiv->flags);
 632}
 633
 634static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
 635					 unsigned long parent_rate)
 636{
 637	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
 638	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
 639	void __iomem *base = pll_14nm->phy->base;
 640	spinlock_t *lock = &pll_14nm->postdiv_lock;
 641	u8 shift = postdiv->shift;
 642	u8 width = postdiv->width;
 643	unsigned int value;
 644	unsigned long flags = 0;
 645	u32 val;
 646
 647	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
 648	    parent_rate);
 649
 650	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
 651				postdiv->flags);
 652
 653	spin_lock_irqsave(lock, flags);
 654
 655	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
 656	val &= ~(div_mask(width) << shift);
 657
 658	val |= value << shift;
 659	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
 660
 661	/* If we're master in dual DSI mode, then the slave PLL's post-dividers
 662	 * follow the master's post dividers
 663	 */
 664	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
 665		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
 666		void __iomem *slave_base = pll_14nm_slave->phy->base;
 667
 668		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
 669	}
 670
 671	spin_unlock_irqrestore(lock, flags);
 672
 673	return 0;
 674}
 675
 676static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
 677	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
 678	.round_rate = dsi_pll_14nm_postdiv_round_rate,
 679	.set_rate = dsi_pll_14nm_postdiv_set_rate,
 680};
 681
 682/*
 683 * PLL Callbacks
 684 */
 685
 686static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
 687{
 688	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
 689	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
 690	void __iomem *cmn_base = pll_14nm->phy->base;
 691	u32 data;
 692
 693	data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
 694
 695	cached_state->n1postdiv = data & 0xf;
 696	cached_state->n2postdiv = (data >> 4) & 0xf;
 697
 698	DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
 699	    cached_state->n1postdiv, cached_state->n2postdiv);
 700
 701	cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
 702}
 703
 704static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
 705{
 706	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
 707	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
 708	void __iomem *cmn_base = pll_14nm->phy->base;
 709	u32 data;
 710	int ret;
 711
 712	ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
 713					cached_state->vco_rate, 0);
 714	if (ret) {
 715		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
 716			"restore vco rate failed. ret=%d\n", ret);
 717		return ret;
 718	}
 719
 720	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
 721
 722	DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
 723	    cached_state->n1postdiv, cached_state->n2postdiv);
 724
 725	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
 726
 727	/* also restore post-dividers for slave DSI PLL */
 728	if (phy->usecase == MSM_DSI_PHY_MASTER) {
 729		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
 730		void __iomem *slave_base = pll_14nm_slave->phy->base;
 731
 732		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
 733	}
 734
 735	return 0;
 736}
 737
 738static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
 739{
 740	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
 741	void __iomem *base = phy->pll_base;
 742	u32 clkbuflr_en, bandgap = 0;
 743
 744	switch (phy->usecase) {
 745	case MSM_DSI_PHY_STANDALONE:
 746		clkbuflr_en = 0x1;
 747		break;
 748	case MSM_DSI_PHY_MASTER:
 749		clkbuflr_en = 0x3;
 750		pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
 751		break;
 752	case MSM_DSI_PHY_SLAVE:
 753		clkbuflr_en = 0x0;
 754		bandgap = 0x3;
 755		break;
 756	default:
 757		return -EINVAL;
 758	}
 759
 760	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
 761	if (bandgap)
 762		dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
 763
 764	return 0;
 765}
 766
 767static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
 768						const char *name,
 769						const char *parent_name,
 770						unsigned long flags,
 771						u8 shift)
 772{
 773	struct dsi_pll_14nm_postdiv *pll_postdiv;
 774	struct device *dev = &pll_14nm->phy->pdev->dev;
 775	struct clk_init_data postdiv_init = {
 776		.parent_names = (const char *[]) { parent_name },
 777		.num_parents = 1,
 778		.name = name,
 779		.flags = flags,
 780		.ops = &clk_ops_dsi_pll_14nm_postdiv,
 781	};
 782	int ret;
 783
 784	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
 785	if (!pll_postdiv)
 786		return ERR_PTR(-ENOMEM);
 787
 788	pll_postdiv->pll = pll_14nm;
 789	pll_postdiv->shift = shift;
 790	/* both N1 and N2 postdividers are 4 bits wide */
 791	pll_postdiv->width = 4;
 792	/* range of each divider is from 1 to 15 */
 793	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
 794	pll_postdiv->hw.init = &postdiv_init;
 795
 796	ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
 797	if (ret)
 798		return ERR_PTR(ret);
 799
 800	return &pll_postdiv->hw;
 801}
 802
 803static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
 804{
 805	char clk_name[32], parent[32], vco_name[32];
 806	struct clk_init_data vco_init = {
 807		.parent_names = (const char *[]){ "xo" },
 808		.num_parents = 1,
 809		.name = vco_name,
 810		.flags = CLK_IGNORE_UNUSED,
 811		.ops = &clk_ops_dsi_pll_14nm_vco,
 812	};
 813	struct device *dev = &pll_14nm->phy->pdev->dev;
 814	struct clk_hw *hw;
 815	int ret;
 816
 817	DBG("DSI%d", pll_14nm->phy->id);
 818
 819	snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->phy->id);
 820	pll_14nm->clk_hw.init = &vco_init;
 821
 822	ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
 823	if (ret)
 824		return ret;
 825
 826	snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
 827	snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->phy->id);
 828
 829	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
 830	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent,
 831				       CLK_SET_RATE_PARENT, 0);
 832	if (IS_ERR(hw))
 833		return PTR_ERR(hw);
 834
 835	snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->phy->id);
 836	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
 837
 838	/* DSI Byte clock = VCO_CLK / N1 / 8 */
 839	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
 840					  CLK_SET_RATE_PARENT, 1, 8);
 841	if (IS_ERR(hw))
 842		return PTR_ERR(hw);
 843
 844	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
 845
 846	snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
 847	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
 848
 849	/*
 850	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
 851	 * on the way. Don't let it set parent.
 852	 */
 853	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2);
 854	if (IS_ERR(hw))
 855		return PTR_ERR(hw);
 856
 857	snprintf(clk_name, 32, "dsi%dpll", pll_14nm->phy->id);
 858	snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
 859
 860	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
 861	 * This is the output of N2 post-divider, bits 4-7 in
 862	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
 863	 */
 864	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4);
 865	if (IS_ERR(hw))
 866		return PTR_ERR(hw);
 867
 868	provided_clocks[DSI_PIXEL_PLL_CLK]	= hw;
 869
 870	return 0;
 871}
 872
 873static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
 874{
 875	struct platform_device *pdev = phy->pdev;
 876	struct dsi_pll_14nm *pll_14nm;
 877	int ret;
 878
 879	if (!pdev)
 880		return -ENODEV;
 881
 882	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
 883	if (!pll_14nm)
 884		return -ENOMEM;
 885
 886	DBG("PLL%d", phy->id);
 887
 888	pll_14nm_list[phy->id] = pll_14nm;
 889
 890	spin_lock_init(&pll_14nm->postdiv_lock);
 891
 892	pll_14nm->phy = phy;
 893
 894	ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
 895	if (ret) {
 896		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
 897		return ret;
 898	}
 899
 900	phy->vco_hw = &pll_14nm->clk_hw;
 901
 902	return 0;
 903}
 904
 905static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
 906				     struct msm_dsi_dphy_timing *timing,
 907				     int lane_idx)
 908{
 909	void __iomem *base = phy->lane_base;
 910	bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
 911	u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
 912	u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
 913	u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
 914	u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
 915	u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
 916	u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
 917				   timing->hs_halfbyte_en;
 918
 919	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx),
 920		      DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
 921	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx),
 922		      DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero));
 923	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx),
 924		      DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare));
 925	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx),
 926		      DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail));
 927	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx),
 928		      DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst));
 929	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx),
 930		      DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly));
 931	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx),
 932		      halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0);
 933	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx),
 934		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
 935		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
 936	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx),
 937		      DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get));
 938	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx),
 939		      DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0));
 940}
 941
 942static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
 943			       struct msm_dsi_phy_clk_request *clk_req)
 944{
 945	struct msm_dsi_dphy_timing *timing = &phy->timing;
 946	u32 data;
 947	int i;
 948	int ret;
 949	void __iomem *base = phy->base;
 950	void __iomem *lane_base = phy->lane_base;
 951	u32 glbl_test_ctrl;
 952
 953	if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
 954		DRM_DEV_ERROR(&phy->pdev->dev,
 955			"%s: D-PHY timing calculation failed\n", __func__);
 956		return -EINVAL;
 957	}
 958
 959	data = 0x1c;
 960	if (phy->usecase != MSM_DSI_PHY_STANDALONE)
 961		data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
 962	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
 963
 964	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1);
 965
 966	/* 4 data lanes + 1 clk lane configuration */
 967	for (i = 0; i < 5; i++) {
 968		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i),
 969			      0x1d);
 970
 971		dsi_phy_write(lane_base +
 972			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff);
 973		dsi_phy_write(lane_base +
 974			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i),
 975			      (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06);
 976
 977		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i),
 978			      (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f);
 979		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10);
 980		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i),
 981			      0);
 982		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i),
 983			      0x88);
 984
 985		dsi_14nm_dphy_set_timing(phy, timing, i);
 986	}
 987
 988	/* Make sure PLL is not start */
 989	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00);
 990
 991	wmb(); /* make sure everything is written before reset and enable */
 992
 993	/* reset digital block */
 994	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80);
 995	wmb(); /* ensure reset is asserted */
 996	udelay(100);
 997	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00);
 998
 999	glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
1000	if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
1001		glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1002	else
1003		glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
1004	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl);
1005	ret = dsi_14nm_set_usecase(phy);
1006	if (ret) {
1007		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1008			__func__, ret);
1009		return ret;
1010	}
1011
1012	/* Remove power down from PLL and all lanes */
1013	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff);
1014
1015	return 0;
1016}
1017
1018static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
1019{
1020	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0);
1021	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0);
1022
1023	/* ensure that the phy is completely disabled */
1024	wmb();
1025}
1026
1027const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
1028	.has_phy_lane = true,
1029	.reg_cfg = {
1030		.num = 1,
1031		.regs = {
1032			{"vcca", 17000, 32},
1033		},
1034	},
1035	.ops = {
1036		.enable = dsi_14nm_phy_enable,
1037		.disable = dsi_14nm_phy_disable,
1038		.pll_init = dsi_pll_14nm_init,
1039		.save_pll_state = dsi_14nm_pll_save_state,
1040		.restore_pll_state = dsi_14nm_pll_restore_state,
1041	},
1042	.min_pll_rate = VCO_MIN_RATE,
1043	.max_pll_rate = VCO_MAX_RATE,
1044	.io_start = { 0x994400, 0x996400 },
1045	.num_dsi_phy = 2,
1046};
1047
1048const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
1049	.has_phy_lane = true,
1050	.reg_cfg = {
1051		.num = 1,
1052		.regs = {
1053			{"vcca", 73400, 32},
1054		},
1055	},
1056	.ops = {
1057		.enable = dsi_14nm_phy_enable,
1058		.disable = dsi_14nm_phy_disable,
1059		.pll_init = dsi_pll_14nm_init,
1060		.save_pll_state = dsi_14nm_pll_save_state,
1061		.restore_pll_state = dsi_14nm_pll_restore_state,
1062	},
1063	.min_pll_rate = VCO_MIN_RATE,
1064	.max_pll_rate = VCO_MAX_RATE,
1065	.io_start = { 0xc994400, 0xc996000 },
1066	.num_dsi_phy = 2,
1067};