Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * DRBG: Deterministic Random Bits Generator
   3 *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
   4 *       properties:
   5 *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
   6 *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
   7 *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
   8 *		* with and without prediction resistance
   9 *
  10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 *
  44 * DRBG Usage
  45 * ==========
  46 * The SP 800-90A DRBG allows the user to specify a personalization string
  47 * for initialization as well as an additional information string for each
  48 * random number request. The following code fragments show how a caller
  49 * uses the kernel crypto API to use the full functionality of the DRBG.
  50 *
  51 * Usage without any additional data
  52 * ---------------------------------
  53 * struct crypto_rng *drng;
  54 * int err;
  55 * char data[DATALEN];
  56 *
  57 * drng = crypto_alloc_rng(drng_name, 0, 0);
  58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
  59 * crypto_free_rng(drng);
  60 *
  61 *
  62 * Usage with personalization string during initialization
  63 * -------------------------------------------------------
  64 * struct crypto_rng *drng;
  65 * int err;
  66 * char data[DATALEN];
  67 * struct drbg_string pers;
  68 * char personalization[11] = "some-string";
  69 *
  70 * drbg_string_fill(&pers, personalization, strlen(personalization));
  71 * drng = crypto_alloc_rng(drng_name, 0, 0);
  72 * // The reset completely re-initializes the DRBG with the provided
  73 * // personalization string
  74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
  75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
  76 * crypto_free_rng(drng);
  77 *
  78 *
  79 * Usage with additional information string during random number request
  80 * ---------------------------------------------------------------------
  81 * struct crypto_rng *drng;
  82 * int err;
  83 * char data[DATALEN];
  84 * char addtl_string[11] = "some-string";
  85 * string drbg_string addtl;
  86 *
  87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
  88 * drng = crypto_alloc_rng(drng_name, 0, 0);
  89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
  90 * // the same error codes.
  91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
  92 * crypto_free_rng(drng);
  93 *
  94 *
  95 * Usage with personalization and additional information strings
  96 * -------------------------------------------------------------
  97 * Just mix both scenarios above.
  98 */
  99
 100#include <crypto/drbg.h>
 
 101#include <linux/kernel.h>
 102
 103/***************************************************************
 104 * Backend cipher definitions available to DRBG
 105 ***************************************************************/
 106
 107/*
 108 * The order of the DRBG definitions here matter: every DRBG is registered
 109 * as stdrng. Each DRBG receives an increasing cra_priority values the later
 110 * they are defined in this array (see drbg_fill_array).
 111 *
 112 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
 113 * the SHA256 / AES 256 over other ciphers. Thus, the favored
 114 * DRBGs are the latest entries in this array.
 115 */
 116static const struct drbg_core drbg_cores[] = {
 117#ifdef CONFIG_CRYPTO_DRBG_CTR
 118	{
 119		.flags = DRBG_CTR | DRBG_STRENGTH128,
 120		.statelen = 32, /* 256 bits as defined in 10.2.1 */
 121		.blocklen_bytes = 16,
 122		.cra_name = "ctr_aes128",
 123		.backend_cra_name = "aes",
 124	}, {
 125		.flags = DRBG_CTR | DRBG_STRENGTH192,
 126		.statelen = 40, /* 320 bits as defined in 10.2.1 */
 127		.blocklen_bytes = 16,
 128		.cra_name = "ctr_aes192",
 129		.backend_cra_name = "aes",
 130	}, {
 131		.flags = DRBG_CTR | DRBG_STRENGTH256,
 132		.statelen = 48, /* 384 bits as defined in 10.2.1 */
 133		.blocklen_bytes = 16,
 134		.cra_name = "ctr_aes256",
 135		.backend_cra_name = "aes",
 136	},
 137#endif /* CONFIG_CRYPTO_DRBG_CTR */
 138#ifdef CONFIG_CRYPTO_DRBG_HASH
 139	{
 140		.flags = DRBG_HASH | DRBG_STRENGTH128,
 141		.statelen = 55, /* 440 bits */
 142		.blocklen_bytes = 20,
 143		.cra_name = "sha1",
 144		.backend_cra_name = "sha1",
 145	}, {
 146		.flags = DRBG_HASH | DRBG_STRENGTH256,
 147		.statelen = 111, /* 888 bits */
 148		.blocklen_bytes = 48,
 149		.cra_name = "sha384",
 150		.backend_cra_name = "sha384",
 151	}, {
 152		.flags = DRBG_HASH | DRBG_STRENGTH256,
 153		.statelen = 111, /* 888 bits */
 154		.blocklen_bytes = 64,
 155		.cra_name = "sha512",
 156		.backend_cra_name = "sha512",
 157	}, {
 158		.flags = DRBG_HASH | DRBG_STRENGTH256,
 159		.statelen = 55, /* 440 bits */
 160		.blocklen_bytes = 32,
 161		.cra_name = "sha256",
 162		.backend_cra_name = "sha256",
 163	},
 164#endif /* CONFIG_CRYPTO_DRBG_HASH */
 165#ifdef CONFIG_CRYPTO_DRBG_HMAC
 166	{
 167		.flags = DRBG_HMAC | DRBG_STRENGTH128,
 168		.statelen = 20, /* block length of cipher */
 169		.blocklen_bytes = 20,
 170		.cra_name = "hmac_sha1",
 171		.backend_cra_name = "hmac(sha1)",
 172	}, {
 173		.flags = DRBG_HMAC | DRBG_STRENGTH256,
 174		.statelen = 48, /* block length of cipher */
 175		.blocklen_bytes = 48,
 176		.cra_name = "hmac_sha384",
 177		.backend_cra_name = "hmac(sha384)",
 178	}, {
 179		.flags = DRBG_HMAC | DRBG_STRENGTH256,
 180		.statelen = 64, /* block length of cipher */
 181		.blocklen_bytes = 64,
 182		.cra_name = "hmac_sha512",
 183		.backend_cra_name = "hmac(sha512)",
 184	}, {
 185		.flags = DRBG_HMAC | DRBG_STRENGTH256,
 186		.statelen = 32, /* block length of cipher */
 187		.blocklen_bytes = 32,
 188		.cra_name = "hmac_sha256",
 189		.backend_cra_name = "hmac(sha256)",
 
 
 
 
 
 
 190	},
 191#endif /* CONFIG_CRYPTO_DRBG_HMAC */
 192};
 193
 194static int drbg_uninstantiate(struct drbg_state *drbg);
 195
 196/******************************************************************
 197 * Generic helper functions
 198 ******************************************************************/
 199
 200/*
 201 * Return strength of DRBG according to SP800-90A section 8.4
 202 *
 203 * @flags DRBG flags reference
 204 *
 205 * Return: normalized strength in *bytes* value or 32 as default
 206 *	   to counter programming errors
 207 */
 208static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
 209{
 210	switch (flags & DRBG_STRENGTH_MASK) {
 211	case DRBG_STRENGTH128:
 212		return 16;
 213	case DRBG_STRENGTH192:
 214		return 24;
 215	case DRBG_STRENGTH256:
 216		return 32;
 217	default:
 218		return 32;
 219	}
 220}
 221
 222/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223 * Convert an integer into a byte representation of this integer.
 224 * The byte representation is big-endian
 225 *
 226 * @val value to be converted
 227 * @buf buffer holding the converted integer -- caller must ensure that
 228 *      buffer size is at least 32 bit
 229 */
 230#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
 231static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
 232{
 233	struct s {
 234		__be32 conv;
 235	};
 236	struct s *conversion = (struct s *) buf;
 237
 238	conversion->conv = cpu_to_be32(val);
 239}
 240#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
 241
 242/******************************************************************
 243 * CTR DRBG callback functions
 244 ******************************************************************/
 245
 246#ifdef CONFIG_CRYPTO_DRBG_CTR
 247#define CRYPTO_DRBG_CTR_STRING "CTR "
 248MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
 249MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
 250MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
 251MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
 252MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
 253MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
 254
 255static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
 256			  unsigned char *outval, const struct drbg_string *in);
 
 
 257static int drbg_init_sym_kernel(struct drbg_state *drbg);
 258static int drbg_fini_sym_kernel(struct drbg_state *drbg);
 
 
 
 
 259
 260/* BCC function for CTR DRBG as defined in 10.4.3 */
 261static int drbg_ctr_bcc(struct drbg_state *drbg,
 262			unsigned char *out, const unsigned char *key,
 263			struct list_head *in)
 264{
 265	int ret = 0;
 266	struct drbg_string *curr = NULL;
 267	struct drbg_string data;
 268	short cnt = 0;
 269
 270	drbg_string_fill(&data, out, drbg_blocklen(drbg));
 271
 272	/* 10.4.3 step 2 / 4 */
 
 273	list_for_each_entry(curr, in, list) {
 274		const unsigned char *pos = curr->buf;
 275		size_t len = curr->len;
 276		/* 10.4.3 step 4.1 */
 277		while (len) {
 278			/* 10.4.3 step 4.2 */
 279			if (drbg_blocklen(drbg) == cnt) {
 280				cnt = 0;
 281				ret = drbg_kcapi_sym(drbg, key, out, &data);
 282				if (ret)
 283					return ret;
 284			}
 285			out[cnt] ^= *pos;
 286			pos++;
 287			cnt++;
 288			len--;
 289		}
 290	}
 291	/* 10.4.3 step 4.2 for last block */
 292	if (cnt)
 293		ret = drbg_kcapi_sym(drbg, key, out, &data);
 294
 295	return ret;
 296}
 297
 298/*
 299 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
 300 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
 301 * the scratchpad is used as follows:
 302 * drbg_ctr_update:
 303 *	temp
 304 *		start: drbg->scratchpad
 305 *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
 306 *			note: the cipher writing into this variable works
 307 *			blocklen-wise. Now, when the statelen is not a multiple
 308 *			of blocklen, the generateion loop below "spills over"
 309 *			by at most blocklen. Thus, we need to give sufficient
 310 *			memory.
 311 *	df_data
 312 *		start: drbg->scratchpad +
 313 *				drbg_statelen(drbg) + drbg_blocklen(drbg)
 314 *		length: drbg_statelen(drbg)
 315 *
 316 * drbg_ctr_df:
 317 *	pad
 318 *		start: df_data + drbg_statelen(drbg)
 319 *		length: drbg_blocklen(drbg)
 320 *	iv
 321 *		start: pad + drbg_blocklen(drbg)
 322 *		length: drbg_blocklen(drbg)
 323 *	temp
 324 *		start: iv + drbg_blocklen(drbg)
 325 *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
 326 *			note: temp is the buffer that the BCC function operates
 327 *			on. BCC operates blockwise. drbg_statelen(drbg)
 328 *			is sufficient when the DRBG state length is a multiple
 329 *			of the block size. For AES192 (and maybe other ciphers)
 330 *			this is not correct and the length for temp is
 331 *			insufficient (yes, that also means for such ciphers,
 332 *			the final output of all BCC rounds are truncated).
 333 *			Therefore, add drbg_blocklen(drbg) to cover all
 334 *			possibilities.
 335 */
 336
 337/* Derivation Function for CTR DRBG as defined in 10.4.2 */
 338static int drbg_ctr_df(struct drbg_state *drbg,
 339		       unsigned char *df_data, size_t bytes_to_return,
 340		       struct list_head *seedlist)
 341{
 342	int ret = -EFAULT;
 343	unsigned char L_N[8];
 344	/* S3 is input */
 345	struct drbg_string S1, S2, S4, cipherin;
 346	LIST_HEAD(bcc_list);
 347	unsigned char *pad = df_data + drbg_statelen(drbg);
 348	unsigned char *iv = pad + drbg_blocklen(drbg);
 349	unsigned char *temp = iv + drbg_blocklen(drbg);
 350	size_t padlen = 0;
 351	unsigned int templen = 0;
 352	/* 10.4.2 step 7 */
 353	unsigned int i = 0;
 354	/* 10.4.2 step 8 */
 355	const unsigned char *K = (unsigned char *)
 356			   "\x00\x01\x02\x03\x04\x05\x06\x07"
 357			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
 358			   "\x10\x11\x12\x13\x14\x15\x16\x17"
 359			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
 360	unsigned char *X;
 361	size_t generated_len = 0;
 362	size_t inputlen = 0;
 363	struct drbg_string *seed = NULL;
 364
 365	memset(pad, 0, drbg_blocklen(drbg));
 366	memset(iv, 0, drbg_blocklen(drbg));
 367
 368	/* 10.4.2 step 1 is implicit as we work byte-wise */
 369
 370	/* 10.4.2 step 2 */
 371	if ((512/8) < bytes_to_return)
 372		return -EINVAL;
 373
 374	/* 10.4.2 step 2 -- calculate the entire length of all input data */
 375	list_for_each_entry(seed, seedlist, list)
 376		inputlen += seed->len;
 377	drbg_cpu_to_be32(inputlen, &L_N[0]);
 378
 379	/* 10.4.2 step 3 */
 380	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
 381
 382	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
 383	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
 384	/* wrap the padlen appropriately */
 385	if (padlen)
 386		padlen = drbg_blocklen(drbg) - padlen;
 387	/*
 388	 * pad / padlen contains the 0x80 byte and the following zero bytes.
 389	 * As the calculated padlen value only covers the number of zero
 390	 * bytes, this value has to be incremented by one for the 0x80 byte.
 391	 */
 392	padlen++;
 393	pad[0] = 0x80;
 394
 395	/* 10.4.2 step 4 -- first fill the linked list and then order it */
 396	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
 397	list_add_tail(&S1.list, &bcc_list);
 398	drbg_string_fill(&S2, L_N, sizeof(L_N));
 399	list_add_tail(&S2.list, &bcc_list);
 400	list_splice_tail(seedlist, &bcc_list);
 401	drbg_string_fill(&S4, pad, padlen);
 402	list_add_tail(&S4.list, &bcc_list);
 403
 404	/* 10.4.2 step 9 */
 405	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
 406		/*
 407		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
 408		 * holds zeros after allocation -- even the increment of i
 409		 * is irrelevant as the increment remains within length of i
 410		 */
 411		drbg_cpu_to_be32(i, iv);
 412		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
 413		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
 414		if (ret)
 415			goto out;
 416		/* 10.4.2 step 9.3 */
 417		i++;
 418		templen += drbg_blocklen(drbg);
 419	}
 420
 421	/* 10.4.2 step 11 */
 422	X = temp + (drbg_keylen(drbg));
 423	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
 424
 425	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
 426
 427	/* 10.4.2 step 13 */
 
 428	while (generated_len < bytes_to_return) {
 429		short blocklen = 0;
 430		/*
 431		 * 10.4.2 step 13.1: the truncation of the key length is
 432		 * implicit as the key is only drbg_blocklen in size based on
 433		 * the implementation of the cipher function callback
 434		 */
 435		ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
 436		if (ret)
 437			goto out;
 438		blocklen = (drbg_blocklen(drbg) <
 439				(bytes_to_return - generated_len)) ?
 440			    drbg_blocklen(drbg) :
 441				(bytes_to_return - generated_len);
 442		/* 10.4.2 step 13.2 and 14 */
 443		memcpy(df_data + generated_len, X, blocklen);
 444		generated_len += blocklen;
 445	}
 446
 447	ret = 0;
 448
 449out:
 450	memset(iv, 0, drbg_blocklen(drbg));
 451	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
 452	memset(pad, 0, drbg_blocklen(drbg));
 453	return ret;
 454}
 455
 456/*
 457 * update function of CTR DRBG as defined in 10.2.1.2
 458 *
 459 * The reseed variable has an enhanced meaning compared to the update
 460 * functions of the other DRBGs as follows:
 461 * 0 => initial seed from initialization
 462 * 1 => reseed via drbg_seed
 463 * 2 => first invocation from drbg_ctr_update when addtl is present. In
 464 *      this case, the df_data scratchpad is not deleted so that it is
 465 *      available for another calls to prevent calling the DF function
 466 *      again.
 467 * 3 => second invocation from drbg_ctr_update. When the update function
 468 *      was called with addtl, the df_data memory already contains the
 469 *      DFed addtl information and we do not need to call DF again.
 470 */
 471static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
 472			   int reseed)
 473{
 474	int ret = -EFAULT;
 475	/* 10.2.1.2 step 1 */
 476	unsigned char *temp = drbg->scratchpad;
 477	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
 478				 drbg_blocklen(drbg);
 479	unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
 480	unsigned int len = 0;
 481	struct drbg_string cipherin;
 482
 483	if (3 > reseed)
 484		memset(df_data, 0, drbg_statelen(drbg));
 485
 486	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
 487	if (seed) {
 488		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
 
 
 
 
 
 
 
 
 
 489		if (ret)
 490			goto out;
 491	}
 492
 493	drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
 494	/*
 495	 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
 496	 * zeroizes all memory during initialization
 497	 */
 498	while (len < (drbg_statelen(drbg))) {
 499		/* 10.2.1.2 step 2.1 */
 500		crypto_inc(drbg->V, drbg_blocklen(drbg));
 501		/*
 502		 * 10.2.1.2 step 2.2 */
 503		ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
 504		if (ret)
 505			goto out;
 506		/* 10.2.1.2 step 2.3 and 3 */
 507		len += drbg_blocklen(drbg);
 508	}
 509
 510	/* 10.2.1.2 step 4 */
 511	temp_p = temp;
 512	df_data_p = df_data;
 513	for (len = 0; len < drbg_statelen(drbg); len++) {
 514		*temp_p ^= *df_data_p;
 515		df_data_p++; temp_p++;
 516	}
 517
 518	/* 10.2.1.2 step 5 */
 519	memcpy(drbg->C, temp, drbg_keylen(drbg));
 
 
 
 520	/* 10.2.1.2 step 6 */
 521	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
 
 
 522	ret = 0;
 523
 524out:
 525	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
 526	if (2 != reseed)
 527		memset(df_data, 0, drbg_statelen(drbg));
 528	return ret;
 529}
 530
 531/*
 532 * scratchpad use: drbg_ctr_update is called independently from
 533 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
 534 */
 535/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
 536static int drbg_ctr_generate(struct drbg_state *drbg,
 537			     unsigned char *buf, unsigned int buflen,
 538			     struct list_head *addtl)
 539{
 540	int len = 0;
 541	int ret = 0;
 542	struct drbg_string data;
 543
 544	/* 10.2.1.5.2 step 2 */
 545	if (addtl && !list_empty(addtl)) {
 546		ret = drbg_ctr_update(drbg, addtl, 2);
 547		if (ret)
 548			return 0;
 549	}
 550
 551	/* 10.2.1.5.2 step 4.1 */
 552	crypto_inc(drbg->V, drbg_blocklen(drbg));
 553	drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
 554	while (len < buflen) {
 555		int outlen = 0;
 556		/* 10.2.1.5.2 step 4.2 */
 557		ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
 558		if (ret) {
 559			len = ret;
 560			goto out;
 561		}
 562		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 563			  drbg_blocklen(drbg) : (buflen - len);
 564		/* 10.2.1.5.2 step 4.3 */
 565		memcpy(buf + len, drbg->scratchpad, outlen);
 566		len += outlen;
 567		/* 10.2.1.5.2 step 6 */
 568		if (len < buflen)
 569			crypto_inc(drbg->V, drbg_blocklen(drbg));
 570	}
 571
 572	/* 10.2.1.5.2 step 6 */
 573	ret = drbg_ctr_update(drbg, NULL, 3);
 574	if (ret)
 575		len = ret;
 576
 577out:
 578	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 579	return len;
 580}
 581
 582static const struct drbg_state_ops drbg_ctr_ops = {
 583	.update		= drbg_ctr_update,
 584	.generate	= drbg_ctr_generate,
 585	.crypto_init	= drbg_init_sym_kernel,
 586	.crypto_fini	= drbg_fini_sym_kernel,
 587};
 588#endif /* CONFIG_CRYPTO_DRBG_CTR */
 589
 590/******************************************************************
 591 * HMAC DRBG callback functions
 592 ******************************************************************/
 593
 594#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
 595static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
 596			   unsigned char *outval, const struct list_head *in);
 
 
 597static int drbg_init_hash_kernel(struct drbg_state *drbg);
 598static int drbg_fini_hash_kernel(struct drbg_state *drbg);
 599#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
 600
 601#ifdef CONFIG_CRYPTO_DRBG_HMAC
 602#define CRYPTO_DRBG_HMAC_STRING "HMAC "
 603MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
 604MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
 605MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
 606MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
 607MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
 608MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
 609MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
 610MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
 611
 612/* update function of HMAC DRBG as defined in 10.1.2.2 */
 613static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
 614			    int reseed)
 615{
 616	int ret = -EFAULT;
 617	int i = 0;
 618	struct drbg_string seed1, seed2, vdata;
 619	LIST_HEAD(seedlist);
 620	LIST_HEAD(vdatalist);
 621
 622	if (!reseed)
 623		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
 624		memset(drbg->V, 1, drbg_statelen(drbg));
 
 
 625
 626	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
 627	list_add_tail(&seed1.list, &seedlist);
 628	/* buffer of seed2 will be filled in for loop below with one byte */
 629	drbg_string_fill(&seed2, NULL, 1);
 630	list_add_tail(&seed2.list, &seedlist);
 631	/* input data of seed is allowed to be NULL at this point */
 632	if (seed)
 633		list_splice_tail(seed, &seedlist);
 634
 635	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
 636	list_add_tail(&vdata.list, &vdatalist);
 637	for (i = 2; 0 < i; i--) {
 638		/* first round uses 0x0, second 0x1 */
 639		unsigned char prefix = DRBG_PREFIX0;
 640		if (1 == i)
 641			prefix = DRBG_PREFIX1;
 642		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
 643		seed2.buf = &prefix;
 644		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
 645		if (ret)
 646			return ret;
 
 647
 648		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
 649		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
 650		if (ret)
 651			return ret;
 652
 653		/* 10.1.2.2 step 3 */
 654		if (!seed)
 655			return ret;
 656	}
 657
 658	return 0;
 659}
 660
 661/* generate function of HMAC DRBG as defined in 10.1.2.5 */
 662static int drbg_hmac_generate(struct drbg_state *drbg,
 663			      unsigned char *buf,
 664			      unsigned int buflen,
 665			      struct list_head *addtl)
 666{
 667	int len = 0;
 668	int ret = 0;
 669	struct drbg_string data;
 670	LIST_HEAD(datalist);
 671
 672	/* 10.1.2.5 step 2 */
 673	if (addtl && !list_empty(addtl)) {
 674		ret = drbg_hmac_update(drbg, addtl, 1);
 675		if (ret)
 676			return ret;
 677	}
 678
 679	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
 680	list_add_tail(&data.list, &datalist);
 681	while (len < buflen) {
 682		unsigned int outlen = 0;
 683		/* 10.1.2.5 step 4.1 */
 684		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
 685		if (ret)
 686			return ret;
 687		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 688			  drbg_blocklen(drbg) : (buflen - len);
 689
 690		/* 10.1.2.5 step 4.2 */
 691		memcpy(buf + len, drbg->V, outlen);
 692		len += outlen;
 693	}
 694
 695	/* 10.1.2.5 step 6 */
 696	if (addtl && !list_empty(addtl))
 697		ret = drbg_hmac_update(drbg, addtl, 1);
 698	else
 699		ret = drbg_hmac_update(drbg, NULL, 1);
 700	if (ret)
 701		return ret;
 702
 703	return len;
 704}
 705
 706static const struct drbg_state_ops drbg_hmac_ops = {
 707	.update		= drbg_hmac_update,
 708	.generate	= drbg_hmac_generate,
 709	.crypto_init	= drbg_init_hash_kernel,
 710	.crypto_fini	= drbg_fini_hash_kernel,
 711};
 712#endif /* CONFIG_CRYPTO_DRBG_HMAC */
 713
 714/******************************************************************
 715 * Hash DRBG callback functions
 716 ******************************************************************/
 717
 718#ifdef CONFIG_CRYPTO_DRBG_HASH
 719#define CRYPTO_DRBG_HASH_STRING "HASH "
 720MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
 721MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
 722MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
 723MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
 724MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
 725MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
 726MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
 727MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
 728
 729/*
 730 * Increment buffer
 731 *
 732 * @dst buffer to increment
 733 * @add value to add
 734 */
 735static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
 736				const unsigned char *add, size_t addlen)
 737{
 738	/* implied: dstlen > addlen */
 739	unsigned char *dstptr;
 740	const unsigned char *addptr;
 741	unsigned int remainder = 0;
 742	size_t len = addlen;
 743
 744	dstptr = dst + (dstlen-1);
 745	addptr = add + (addlen-1);
 746	while (len) {
 747		remainder += *dstptr + *addptr;
 748		*dstptr = remainder & 0xff;
 749		remainder >>= 8;
 750		len--; dstptr--; addptr--;
 751	}
 752	len = dstlen - addlen;
 753	while (len && remainder > 0) {
 754		remainder = *dstptr + 1;
 755		*dstptr = remainder & 0xff;
 756		remainder >>= 8;
 757		len--; dstptr--;
 758	}
 759}
 760
 761/*
 762 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
 763 * interlinked, the scratchpad is used as follows:
 764 * drbg_hash_update
 765 *	start: drbg->scratchpad
 766 *	length: drbg_statelen(drbg)
 767 * drbg_hash_df:
 768 *	start: drbg->scratchpad + drbg_statelen(drbg)
 769 *	length: drbg_blocklen(drbg)
 770 *
 771 * drbg_hash_process_addtl uses the scratchpad, but fully completes
 772 * before either of the functions mentioned before are invoked. Therefore,
 773 * drbg_hash_process_addtl does not need to be specifically considered.
 774 */
 775
 776/* Derivation Function for Hash DRBG as defined in 10.4.1 */
 777static int drbg_hash_df(struct drbg_state *drbg,
 778			unsigned char *outval, size_t outlen,
 779			struct list_head *entropylist)
 780{
 781	int ret = 0;
 782	size_t len = 0;
 783	unsigned char input[5];
 784	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
 785	struct drbg_string data;
 786
 787	/* 10.4.1 step 3 */
 788	input[0] = 1;
 789	drbg_cpu_to_be32((outlen * 8), &input[1]);
 790
 791	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
 792	drbg_string_fill(&data, input, 5);
 793	list_add(&data.list, entropylist);
 794
 795	/* 10.4.1 step 4 */
 796	while (len < outlen) {
 797		short blocklen = 0;
 798		/* 10.4.1 step 4.1 */
 799		ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
 800		if (ret)
 801			goto out;
 802		/* 10.4.1 step 4.2 */
 803		input[0]++;
 804		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
 805			    drbg_blocklen(drbg) : (outlen - len);
 806		memcpy(outval + len, tmp, blocklen);
 807		len += blocklen;
 808	}
 809
 810out:
 811	memset(tmp, 0, drbg_blocklen(drbg));
 812	return ret;
 813}
 814
 815/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
 816static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
 817			    int reseed)
 818{
 819	int ret = 0;
 820	struct drbg_string data1, data2;
 821	LIST_HEAD(datalist);
 822	LIST_HEAD(datalist2);
 823	unsigned char *V = drbg->scratchpad;
 824	unsigned char prefix = DRBG_PREFIX1;
 825
 826	if (!seed)
 827		return -EINVAL;
 828
 829	if (reseed) {
 830		/* 10.1.1.3 step 1 */
 831		memcpy(V, drbg->V, drbg_statelen(drbg));
 832		drbg_string_fill(&data1, &prefix, 1);
 833		list_add_tail(&data1.list, &datalist);
 834		drbg_string_fill(&data2, V, drbg_statelen(drbg));
 835		list_add_tail(&data2.list, &datalist);
 836	}
 837	list_splice_tail(seed, &datalist);
 838
 839	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
 840	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
 841	if (ret)
 842		goto out;
 843
 844	/* 10.1.1.2 / 10.1.1.3 step 4  */
 845	prefix = DRBG_PREFIX0;
 846	drbg_string_fill(&data1, &prefix, 1);
 847	list_add_tail(&data1.list, &datalist2);
 848	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 849	list_add_tail(&data2.list, &datalist2);
 850	/* 10.1.1.2 / 10.1.1.3 step 4 */
 851	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
 852
 853out:
 854	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
 855	return ret;
 856}
 857
 858/* processing of additional information string for Hash DRBG */
 859static int drbg_hash_process_addtl(struct drbg_state *drbg,
 860				   struct list_head *addtl)
 861{
 862	int ret = 0;
 863	struct drbg_string data1, data2;
 864	LIST_HEAD(datalist);
 865	unsigned char prefix = DRBG_PREFIX2;
 866
 867	/* 10.1.1.4 step 2 */
 868	if (!addtl || list_empty(addtl))
 869		return 0;
 870
 871	/* 10.1.1.4 step 2a */
 872	drbg_string_fill(&data1, &prefix, 1);
 873	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 874	list_add_tail(&data1.list, &datalist);
 875	list_add_tail(&data2.list, &datalist);
 876	list_splice_tail(addtl, &datalist);
 877	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
 878	if (ret)
 879		goto out;
 880
 881	/* 10.1.1.4 step 2b */
 882	drbg_add_buf(drbg->V, drbg_statelen(drbg),
 883		     drbg->scratchpad, drbg_blocklen(drbg));
 884
 885out:
 886	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 887	return ret;
 888}
 889
 890/* Hashgen defined in 10.1.1.4 */
 891static int drbg_hash_hashgen(struct drbg_state *drbg,
 892			     unsigned char *buf,
 893			     unsigned int buflen)
 894{
 895	int len = 0;
 896	int ret = 0;
 897	unsigned char *src = drbg->scratchpad;
 898	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
 899	struct drbg_string data;
 900	LIST_HEAD(datalist);
 901
 902	/* 10.1.1.4 step hashgen 2 */
 903	memcpy(src, drbg->V, drbg_statelen(drbg));
 904
 905	drbg_string_fill(&data, src, drbg_statelen(drbg));
 906	list_add_tail(&data.list, &datalist);
 907	while (len < buflen) {
 908		unsigned int outlen = 0;
 909		/* 10.1.1.4 step hashgen 4.1 */
 910		ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
 911		if (ret) {
 912			len = ret;
 913			goto out;
 914		}
 915		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 916			  drbg_blocklen(drbg) : (buflen - len);
 917		/* 10.1.1.4 step hashgen 4.2 */
 918		memcpy(buf + len, dst, outlen);
 919		len += outlen;
 920		/* 10.1.1.4 hashgen step 4.3 */
 921		if (len < buflen)
 922			crypto_inc(src, drbg_statelen(drbg));
 923	}
 924
 925out:
 926	memset(drbg->scratchpad, 0,
 927	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
 928	return len;
 929}
 930
 931/* generate function for Hash DRBG as defined in  10.1.1.4 */
 932static int drbg_hash_generate(struct drbg_state *drbg,
 933			      unsigned char *buf, unsigned int buflen,
 934			      struct list_head *addtl)
 935{
 936	int len = 0;
 937	int ret = 0;
 938	union {
 939		unsigned char req[8];
 940		__be64 req_int;
 941	} u;
 942	unsigned char prefix = DRBG_PREFIX3;
 943	struct drbg_string data1, data2;
 944	LIST_HEAD(datalist);
 945
 946	/* 10.1.1.4 step 2 */
 947	ret = drbg_hash_process_addtl(drbg, addtl);
 948	if (ret)
 949		return ret;
 950	/* 10.1.1.4 step 3 */
 951	len = drbg_hash_hashgen(drbg, buf, buflen);
 952
 953	/* this is the value H as documented in 10.1.1.4 */
 954	/* 10.1.1.4 step 4 */
 955	drbg_string_fill(&data1, &prefix, 1);
 956	list_add_tail(&data1.list, &datalist);
 957	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 958	list_add_tail(&data2.list, &datalist);
 959	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
 960	if (ret) {
 961		len = ret;
 962		goto out;
 963	}
 964
 965	/* 10.1.1.4 step 5 */
 966	drbg_add_buf(drbg->V, drbg_statelen(drbg),
 967		     drbg->scratchpad, drbg_blocklen(drbg));
 968	drbg_add_buf(drbg->V, drbg_statelen(drbg),
 969		     drbg->C, drbg_statelen(drbg));
 970	u.req_int = cpu_to_be64(drbg->reseed_ctr);
 971	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
 972
 973out:
 974	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 975	return len;
 976}
 977
 978/*
 979 * scratchpad usage: as update and generate are used isolated, both
 980 * can use the scratchpad
 981 */
 982static const struct drbg_state_ops drbg_hash_ops = {
 983	.update		= drbg_hash_update,
 984	.generate	= drbg_hash_generate,
 985	.crypto_init	= drbg_init_hash_kernel,
 986	.crypto_fini	= drbg_fini_hash_kernel,
 987};
 988#endif /* CONFIG_CRYPTO_DRBG_HASH */
 989
 990/******************************************************************
 991 * Functions common for DRBG implementations
 992 ******************************************************************/
 993
 994static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
 995			      int reseed)
 996{
 997	int ret = drbg->d_ops->update(drbg, seed, reseed);
 998
 999	if (ret)
1000		return ret;
1001
1002	drbg->seeded = true;
1003	/* 10.1.1.2 / 10.1.1.3 step 5 */
1004	drbg->reseed_ctr = 1;
1005
1006	return ret;
1007}
1008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009static void drbg_async_seed(struct work_struct *work)
1010{
1011	struct drbg_string data;
1012	LIST_HEAD(seedlist);
1013	struct drbg_state *drbg = container_of(work, struct drbg_state,
1014					       seed_work);
1015	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1016	unsigned char entropy[32];
 
1017
1018	BUG_ON(!entropylen);
1019	BUG_ON(entropylen > sizeof(entropy));
1020	get_random_bytes(entropy, entropylen);
1021
1022	drbg_string_fill(&data, entropy, entropylen);
1023	list_add_tail(&data.list, &seedlist);
1024
1025	mutex_lock(&drbg->drbg_mutex);
1026
1027	/* If nonblocking pool is initialized, deactivate Jitter RNG */
1028	crypto_free_rng(drbg->jent);
1029	drbg->jent = NULL;
1030
1031	/* Set seeded to false so that if __drbg_seed fails the
1032	 * next generate call will trigger a reseed.
1033	 */
1034	drbg->seeded = false;
1035
1036	__drbg_seed(drbg, &seedlist, true);
1037
1038	if (drbg->seeded)
1039		drbg->reseed_threshold = drbg_max_requests(drbg);
1040
 
1041	mutex_unlock(&drbg->drbg_mutex);
1042
1043	memzero_explicit(entropy, entropylen);
1044}
1045
1046/*
1047 * Seeding or reseeding of the DRBG
1048 *
1049 * @drbg: DRBG state struct
1050 * @pers: personalization / additional information buffer
1051 * @reseed: 0 for initial seed process, 1 for reseeding
1052 *
1053 * return:
1054 *	0 on success
1055 *	error value otherwise
1056 */
1057static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1058		     bool reseed)
1059{
1060	int ret;
1061	unsigned char entropy[((32 + 16) * 2)];
1062	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1063	struct drbg_string data1;
1064	LIST_HEAD(seedlist);
1065
1066	/* 9.1 / 9.2 / 9.3.1 step 3 */
1067	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1068		pr_devel("DRBG: personalization string too long %zu\n",
1069			 pers->len);
1070		return -EINVAL;
1071	}
1072
1073	if (list_empty(&drbg->test_data.list)) {
1074		drbg_string_fill(&data1, drbg->test_data.buf,
1075				 drbg->test_data.len);
1076		pr_devel("DRBG: using test entropy\n");
1077	} else {
1078		/*
1079		 * Gather entropy equal to the security strength of the DRBG.
1080		 * With a derivation function, a nonce is required in addition
1081		 * to the entropy. A nonce must be at least 1/2 of the security
1082		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1083		 * of the strength. The consideration of a nonce is only
1084		 * applicable during initial seeding.
1085		 */
1086		BUG_ON(!entropylen);
1087		if (!reseed)
1088			entropylen = ((entropylen + 1) / 2) * 3;
1089		BUG_ON((entropylen * 2) > sizeof(entropy));
1090
1091		/* Get seed from in-kernel /dev/urandom */
1092		get_random_bytes(entropy, entropylen);
 
 
1093
1094		if (!drbg->jent) {
1095			drbg_string_fill(&data1, entropy, entropylen);
1096			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1097				 entropylen);
1098		} else {
1099			/* Get seed from Jitter RNG */
1100			ret = crypto_rng_get_bytes(drbg->jent,
1101						   entropy + entropylen,
1102						   entropylen);
1103			if (ret) {
1104				pr_devel("DRBG: jent failed with %d\n", ret);
1105				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106			}
1107
1108			drbg_string_fill(&data1, entropy, entropylen * 2);
1109			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1110				 entropylen * 2);
1111		}
1112	}
1113	list_add_tail(&data1.list, &seedlist);
1114
1115	/*
1116	 * concatenation of entropy with personalization str / addtl input)
1117	 * the variable pers is directly handed in by the caller, so check its
1118	 * contents whether it is appropriate
1119	 */
1120	if (pers && pers->buf && 0 < pers->len) {
1121		list_add_tail(&pers->list, &seedlist);
1122		pr_devel("DRBG: using personalization string\n");
1123	}
1124
1125	if (!reseed) {
1126		memset(drbg->V, 0, drbg_statelen(drbg));
1127		memset(drbg->C, 0, drbg_statelen(drbg));
1128	}
1129
1130	ret = __drbg_seed(drbg, &seedlist, reseed);
1131
 
1132	memzero_explicit(entropy, entropylen * 2);
1133
1134	return ret;
1135}
1136
1137/* Free all substructures in a DRBG state without the DRBG state structure */
1138static inline void drbg_dealloc_state(struct drbg_state *drbg)
1139{
1140	if (!drbg)
1141		return;
1142	kzfree(drbg->V);
 
1143	drbg->V = NULL;
1144	kzfree(drbg->C);
 
1145	drbg->C = NULL;
1146	kzfree(drbg->scratchpad);
1147	drbg->scratchpad = NULL;
1148	drbg->reseed_ctr = 0;
1149	drbg->d_ops = NULL;
1150	drbg->core = NULL;
 
 
 
 
 
1151}
1152
1153/*
1154 * Allocate all sub-structures for a DRBG state.
1155 * The DRBG state structure must already be allocated.
1156 */
1157static inline int drbg_alloc_state(struct drbg_state *drbg)
1158{
1159	int ret = -ENOMEM;
1160	unsigned int sb_size = 0;
1161
1162	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1163#ifdef CONFIG_CRYPTO_DRBG_HMAC
1164	case DRBG_HMAC:
1165		drbg->d_ops = &drbg_hmac_ops;
1166		break;
1167#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1168#ifdef CONFIG_CRYPTO_DRBG_HASH
1169	case DRBG_HASH:
1170		drbg->d_ops = &drbg_hash_ops;
1171		break;
1172#endif /* CONFIG_CRYPTO_DRBG_HASH */
1173#ifdef CONFIG_CRYPTO_DRBG_CTR
1174	case DRBG_CTR:
1175		drbg->d_ops = &drbg_ctr_ops;
1176		break;
1177#endif /* CONFIG_CRYPTO_DRBG_CTR */
1178	default:
1179		ret = -EOPNOTSUPP;
1180		goto err;
1181	}
1182
1183	drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1184	if (!drbg->V)
1185		goto err;
1186	drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1187	if (!drbg->C)
1188		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
1189	/* scratchpad is only generated for CTR and Hash */
1190	if (drbg->core->flags & DRBG_HMAC)
1191		sb_size = 0;
1192	else if (drbg->core->flags & DRBG_CTR)
1193		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1194			  drbg_statelen(drbg) +	/* df_data */
1195			  drbg_blocklen(drbg) +	/* pad */
1196			  drbg_blocklen(drbg) +	/* iv */
1197			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1198	else
1199		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1200
1201	if (0 < sb_size) {
1202		drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1203		if (!drbg->scratchpad)
1204			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
1205	}
1206
1207	return 0;
1208
 
 
1209err:
1210	drbg_dealloc_state(drbg);
1211	return ret;
1212}
1213
1214/*************************************************************************
1215 * DRBG interface functions
1216 *************************************************************************/
1217
1218/*
1219 * DRBG generate function as required by SP800-90A - this function
1220 * generates random numbers
1221 *
1222 * @drbg DRBG state handle
1223 * @buf Buffer where to store the random numbers -- the buffer must already
1224 *      be pre-allocated by caller
1225 * @buflen Length of output buffer - this value defines the number of random
1226 *	   bytes pulled from DRBG
1227 * @addtl Additional input that is mixed into state, may be NULL -- note
1228 *	  the entropy is pulled by the DRBG internally unconditionally
1229 *	  as defined in SP800-90A. The additional input is mixed into
1230 *	  the state in addition to the pulled entropy.
1231 *
1232 * return: 0 when all bytes are generated; < 0 in case of an error
1233 */
1234static int drbg_generate(struct drbg_state *drbg,
1235			 unsigned char *buf, unsigned int buflen,
1236			 struct drbg_string *addtl)
1237{
1238	int len = 0;
1239	LIST_HEAD(addtllist);
1240
1241	if (!drbg->core) {
1242		pr_devel("DRBG: not yet seeded\n");
1243		return -EINVAL;
1244	}
1245	if (0 == buflen || !buf) {
1246		pr_devel("DRBG: no output buffer provided\n");
1247		return -EINVAL;
1248	}
1249	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1250		pr_devel("DRBG: wrong format of additional information\n");
1251		return -EINVAL;
1252	}
1253
1254	/* 9.3.1 step 2 */
1255	len = -EINVAL;
1256	if (buflen > (drbg_max_request_bytes(drbg))) {
1257		pr_devel("DRBG: requested random numbers too large %u\n",
1258			 buflen);
1259		goto err;
1260	}
1261
1262	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1263
1264	/* 9.3.1 step 4 */
1265	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1266		pr_devel("DRBG: additional information string too long %zu\n",
1267			 addtl->len);
1268		goto err;
1269	}
1270	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1271
1272	/*
1273	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1274	 * here. The spec is a bit convoluted here, we make it simpler.
1275	 */
1276	if (drbg->reseed_threshold < drbg->reseed_ctr)
1277		drbg->seeded = false;
1278
1279	if (drbg->pr || !drbg->seeded) {
1280		pr_devel("DRBG: reseeding before generation (prediction "
1281			 "resistance: %s, state %s)\n",
1282			 drbg->pr ? "true" : "false",
1283			 drbg->seeded ? "seeded" : "unseeded");
1284		/* 9.3.1 steps 7.1 through 7.3 */
1285		len = drbg_seed(drbg, addtl, true);
1286		if (len)
1287			goto err;
1288		/* 9.3.1 step 7.4 */
1289		addtl = NULL;
1290	}
1291
1292	if (addtl && 0 < addtl->len)
1293		list_add_tail(&addtl->list, &addtllist);
1294	/* 9.3.1 step 8 and 10 */
1295	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1296
1297	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1298	drbg->reseed_ctr++;
1299	if (0 >= len)
1300		goto err;
1301
1302	/*
1303	 * Section 11.3.3 requires to re-perform self tests after some
1304	 * generated random numbers. The chosen value after which self
1305	 * test is performed is arbitrary, but it should be reasonable.
1306	 * However, we do not perform the self tests because of the following
1307	 * reasons: it is mathematically impossible that the initial self tests
1308	 * were successfully and the following are not. If the initial would
1309	 * pass and the following would not, the kernel integrity is violated.
1310	 * In this case, the entire kernel operation is questionable and it
1311	 * is unlikely that the integrity violation only affects the
1312	 * correct operation of the DRBG.
1313	 *
1314	 * Albeit the following code is commented out, it is provided in
1315	 * case somebody has a need to implement the test of 11.3.3.
1316	 */
1317#if 0
1318	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1319		int err = 0;
1320		pr_devel("DRBG: start to perform self test\n");
1321		if (drbg->core->flags & DRBG_HMAC)
1322			err = alg_test("drbg_pr_hmac_sha256",
1323				       "drbg_pr_hmac_sha256", 0, 0);
1324		else if (drbg->core->flags & DRBG_CTR)
1325			err = alg_test("drbg_pr_ctr_aes128",
1326				       "drbg_pr_ctr_aes128", 0, 0);
1327		else
1328			err = alg_test("drbg_pr_sha256",
1329				       "drbg_pr_sha256", 0, 0);
1330		if (err) {
1331			pr_err("DRBG: periodical self test failed\n");
1332			/*
1333			 * uninstantiate implies that from now on, only errors
1334			 * are returned when reusing this DRBG cipher handle
1335			 */
1336			drbg_uninstantiate(drbg);
1337			return 0;
1338		} else {
1339			pr_devel("DRBG: self test successful\n");
1340		}
1341	}
1342#endif
1343
1344	/*
1345	 * All operations were successful, return 0 as mandated by
1346	 * the kernel crypto API interface.
1347	 */
1348	len = 0;
1349err:
1350	return len;
1351}
1352
1353/*
1354 * Wrapper around drbg_generate which can pull arbitrary long strings
1355 * from the DRBG without hitting the maximum request limitation.
1356 *
1357 * Parameters: see drbg_generate
1358 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1359 *		 the entire drbg_generate_long request fails
1360 */
1361static int drbg_generate_long(struct drbg_state *drbg,
1362			      unsigned char *buf, unsigned int buflen,
1363			      struct drbg_string *addtl)
1364{
1365	unsigned int len = 0;
1366	unsigned int slice = 0;
1367	do {
1368		int err = 0;
1369		unsigned int chunk = 0;
1370		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1371		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1372		mutex_lock(&drbg->drbg_mutex);
1373		err = drbg_generate(drbg, buf + len, chunk, addtl);
1374		mutex_unlock(&drbg->drbg_mutex);
1375		if (0 > err)
1376			return err;
1377		len += chunk;
1378	} while (slice > 0 && (len < buflen));
1379	return 0;
1380}
1381
1382static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1383{
1384	struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1385					       random_ready);
1386
1387	schedule_work(&drbg->seed_work);
1388}
1389
1390static int drbg_prepare_hrng(struct drbg_state *drbg)
1391{
1392	int err;
1393
1394	/* We do not need an HRNG in test mode. */
1395	if (list_empty(&drbg->test_data.list))
1396		return 0;
1397
 
 
1398	INIT_WORK(&drbg->seed_work, drbg_async_seed);
1399
1400	drbg->random_ready.owner = THIS_MODULE;
1401	drbg->random_ready.func = drbg_schedule_async_seed;
1402
1403	err = add_random_ready_callback(&drbg->random_ready);
1404
1405	switch (err) {
1406	case 0:
1407		break;
1408
1409	case -EALREADY:
1410		err = 0;
1411		/* fall through */
1412
1413	default:
1414		drbg->random_ready.func = NULL;
1415		return err;
1416	}
1417
1418	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1419
1420	/*
1421	 * Require frequent reseeds until the seed source is fully
1422	 * initialized.
1423	 */
1424	drbg->reseed_threshold = 50;
1425
1426	return err;
1427}
1428
1429/*
1430 * DRBG instantiation function as required by SP800-90A - this function
1431 * sets up the DRBG handle, performs the initial seeding and all sanity
1432 * checks required by SP800-90A
1433 *
1434 * @drbg memory of state -- if NULL, new memory is allocated
1435 * @pers Personalization string that is mixed into state, may be NULL -- note
1436 *	 the entropy is pulled by the DRBG internally unconditionally
1437 *	 as defined in SP800-90A. The additional input is mixed into
1438 *	 the state in addition to the pulled entropy.
1439 * @coreref reference to core
1440 * @pr prediction resistance enabled
1441 *
1442 * return
1443 *	0 on success
1444 *	error value otherwise
1445 */
1446static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1447			    int coreref, bool pr)
1448{
1449	int ret;
1450	bool reseed = true;
1451
1452	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1453		 "%s\n", coreref, pr ? "enabled" : "disabled");
1454	mutex_lock(&drbg->drbg_mutex);
1455
1456	/* 9.1 step 1 is implicit with the selected DRBG type */
1457
1458	/*
1459	 * 9.1 step 2 is implicit as caller can select prediction resistance
1460	 * and the flag is copied into drbg->flags --
1461	 * all DRBG types support prediction resistance
1462	 */
1463
1464	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1465
1466	if (!drbg->core) {
1467		drbg->core = &drbg_cores[coreref];
1468		drbg->pr = pr;
1469		drbg->seeded = false;
1470		drbg->reseed_threshold = drbg_max_requests(drbg);
1471
1472		ret = drbg_alloc_state(drbg);
1473		if (ret)
1474			goto unlock;
1475
1476		ret = -EFAULT;
1477		if (drbg->d_ops->crypto_init(drbg))
1478			goto err;
1479
1480		ret = drbg_prepare_hrng(drbg);
1481		if (ret)
1482			goto free_everything;
1483
1484		if (IS_ERR(drbg->jent)) {
1485			ret = PTR_ERR(drbg->jent);
1486			drbg->jent = NULL;
1487			if (fips_enabled || ret != -ENOENT)
1488				goto free_everything;
1489			pr_info("DRBG: Continuing without Jitter RNG\n");
1490		}
1491
1492		reseed = false;
1493	}
1494
1495	ret = drbg_seed(drbg, pers, reseed);
1496
1497	if (ret && !reseed)
1498		goto free_everything;
1499
1500	mutex_unlock(&drbg->drbg_mutex);
1501	return ret;
1502
1503err:
1504	drbg_dealloc_state(drbg);
1505unlock:
1506	mutex_unlock(&drbg->drbg_mutex);
1507	return ret;
1508
1509free_everything:
1510	mutex_unlock(&drbg->drbg_mutex);
1511	drbg_uninstantiate(drbg);
1512	return ret;
1513}
1514
1515/*
1516 * DRBG uninstantiate function as required by SP800-90A - this function
1517 * frees all buffers and the DRBG handle
1518 *
1519 * @drbg DRBG state handle
1520 *
1521 * return
1522 *	0 on success
1523 */
1524static int drbg_uninstantiate(struct drbg_state *drbg)
1525{
1526	if (drbg->random_ready.func) {
1527		del_random_ready_callback(&drbg->random_ready);
1528		cancel_work_sync(&drbg->seed_work);
1529		crypto_free_rng(drbg->jent);
1530		drbg->jent = NULL;
1531	}
1532
 
 
 
 
1533	if (drbg->d_ops)
1534		drbg->d_ops->crypto_fini(drbg);
1535	drbg_dealloc_state(drbg);
1536	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1537	return 0;
1538}
1539
1540/*
1541 * Helper function for setting the test data in the DRBG
1542 *
1543 * @drbg DRBG state handle
1544 * @data test data
1545 * @len test data length
1546 */
1547static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1548				   const u8 *data, unsigned int len)
1549{
1550	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1551
1552	mutex_lock(&drbg->drbg_mutex);
1553	drbg_string_fill(&drbg->test_data, data, len);
1554	mutex_unlock(&drbg->drbg_mutex);
1555}
1556
1557/***************************************************************
1558 * Kernel crypto API cipher invocations requested by DRBG
1559 ***************************************************************/
1560
1561#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1562struct sdesc {
1563	struct shash_desc shash;
1564	char ctx[];
1565};
1566
1567static int drbg_init_hash_kernel(struct drbg_state *drbg)
1568{
1569	struct sdesc *sdesc;
1570	struct crypto_shash *tfm;
1571
1572	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1573	if (IS_ERR(tfm)) {
1574		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1575				drbg->core->backend_cra_name);
1576		return PTR_ERR(tfm);
1577	}
1578	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1579	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1580			GFP_KERNEL);
1581	if (!sdesc) {
1582		crypto_free_shash(tfm);
1583		return -ENOMEM;
1584	}
1585
1586	sdesc->shash.tfm = tfm;
1587	sdesc->shash.flags = 0;
1588	drbg->priv_data = sdesc;
1589	return 0;
 
1590}
1591
1592static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1593{
1594	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1595	if (sdesc) {
1596		crypto_free_shash(sdesc->shash.tfm);
1597		kzfree(sdesc);
1598	}
1599	drbg->priv_data = NULL;
1600	return 0;
1601}
1602
1603static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1604			   unsigned char *outval, const struct list_head *in)
 
 
 
 
 
 
 
 
1605{
1606	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1607	struct drbg_string *input = NULL;
1608
1609	if (key)
1610		crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1611	crypto_shash_init(&sdesc->shash);
1612	list_for_each_entry(input, in, list)
1613		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1614	return crypto_shash_final(&sdesc->shash, outval);
1615}
1616#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1617
1618#ifdef CONFIG_CRYPTO_DRBG_CTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619static int drbg_init_sym_kernel(struct drbg_state *drbg)
1620{
1621	int ret = 0;
1622	struct crypto_cipher *tfm;
 
 
 
 
1623
1624	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1625	if (IS_ERR(tfm)) {
1626		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1627				drbg->core->backend_cra_name);
1628		return PTR_ERR(tfm);
1629	}
1630	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1631	drbg->priv_data = tfm;
1632	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1633}
1634
1635static int drbg_fini_sym_kernel(struct drbg_state *drbg)
 
1636{
1637	struct crypto_cipher *tfm =
1638		(struct crypto_cipher *)drbg->priv_data;
1639	if (tfm)
1640		crypto_free_cipher(tfm);
1641	drbg->priv_data = NULL;
1642	return 0;
1643}
1644
1645static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1646			  unsigned char *outval, const struct drbg_string *in)
1647{
1648	struct crypto_cipher *tfm =
1649		(struct crypto_cipher *)drbg->priv_data;
1650
1651	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1652	/* there is only component in *in */
1653	BUG_ON(in->len < drbg_blocklen(drbg));
1654	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1655	return 0;
1656}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657#endif /* CONFIG_CRYPTO_DRBG_CTR */
1658
1659/***************************************************************
1660 * Kernel crypto API interface to register DRBG
1661 ***************************************************************/
1662
1663/*
1664 * Look up the DRBG flags by given kernel crypto API cra_name
1665 * The code uses the drbg_cores definition to do this
1666 *
1667 * @cra_name kernel crypto API cra_name
1668 * @coreref reference to integer which is filled with the pointer to
1669 *  the applicable core
1670 * @pr reference for setting prediction resistance
1671 *
1672 * return: flags
1673 */
1674static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1675					 int *coreref, bool *pr)
1676{
1677	int i = 0;
1678	size_t start = 0;
1679	int len = 0;
1680
1681	*pr = true;
1682	/* disassemble the names */
1683	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1684		start = 10;
1685		*pr = false;
1686	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1687		start = 8;
1688	} else {
1689		return;
1690	}
1691
1692	/* remove the first part */
1693	len = strlen(cra_driver_name) - start;
1694	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1695		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1696			    len)) {
1697			*coreref = i;
1698			return;
1699		}
1700	}
1701}
1702
1703static int drbg_kcapi_init(struct crypto_tfm *tfm)
1704{
1705	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1706
1707	mutex_init(&drbg->drbg_mutex);
1708
1709	return 0;
1710}
1711
1712static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1713{
1714	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1715}
1716
1717/*
1718 * Generate random numbers invoked by the kernel crypto API:
1719 * The API of the kernel crypto API is extended as follows:
1720 *
1721 * src is additional input supplied to the RNG.
1722 * slen is the length of src.
1723 * dst is the output buffer where random data is to be stored.
1724 * dlen is the length of dst.
1725 */
1726static int drbg_kcapi_random(struct crypto_rng *tfm,
1727			     const u8 *src, unsigned int slen,
1728			     u8 *dst, unsigned int dlen)
1729{
1730	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1731	struct drbg_string *addtl = NULL;
1732	struct drbg_string string;
1733
1734	if (slen) {
1735		/* linked list variable is now local to allow modification */
1736		drbg_string_fill(&string, src, slen);
1737		addtl = &string;
1738	}
1739
1740	return drbg_generate_long(drbg, dst, dlen, addtl);
1741}
1742
1743/*
1744 * Seed the DRBG invoked by the kernel crypto API
1745 */
1746static int drbg_kcapi_seed(struct crypto_rng *tfm,
1747			   const u8 *seed, unsigned int slen)
1748{
1749	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1750	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1751	bool pr = false;
1752	struct drbg_string string;
1753	struct drbg_string *seed_string = NULL;
1754	int coreref = 0;
1755
1756	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1757			      &pr);
1758	if (0 < slen) {
1759		drbg_string_fill(&string, seed, slen);
1760		seed_string = &string;
1761	}
1762
1763	return drbg_instantiate(drbg, seed_string, coreref, pr);
1764}
1765
1766/***************************************************************
1767 * Kernel module: code to load the module
1768 ***************************************************************/
1769
1770/*
1771 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1772 * of the error handling.
1773 *
1774 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1775 * as seed source of get_random_bytes does not fail.
1776 *
1777 * Note 2: There is no sensible way of testing the reseed counter
1778 * enforcement, so skip it.
1779 */
1780static inline int __init drbg_healthcheck_sanity(void)
1781{
1782	int len = 0;
1783#define OUTBUFLEN 16
1784	unsigned char buf[OUTBUFLEN];
1785	struct drbg_state *drbg = NULL;
1786	int ret = -EFAULT;
1787	int rc = -EFAULT;
1788	bool pr = false;
1789	int coreref = 0;
1790	struct drbg_string addtl;
1791	size_t max_addtllen, max_request_bytes;
1792
1793	/* only perform test in FIPS mode */
1794	if (!fips_enabled)
1795		return 0;
1796
1797#ifdef CONFIG_CRYPTO_DRBG_CTR
1798	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1799#elif defined CONFIG_CRYPTO_DRBG_HASH
1800	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1801#else
1802	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1803#endif
1804
1805	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1806	if (!drbg)
1807		return -ENOMEM;
1808
1809	mutex_init(&drbg->drbg_mutex);
 
 
1810
1811	/*
1812	 * if the following tests fail, it is likely that there is a buffer
1813	 * overflow as buf is much smaller than the requested or provided
1814	 * string lengths -- in case the error handling does not succeed
1815	 * we may get an OOPS. And we want to get an OOPS as this is a
1816	 * grave bug.
1817	 */
1818
1819	/* get a valid instance of DRBG for following tests */
1820	ret = drbg_instantiate(drbg, NULL, coreref, pr);
1821	if (ret) {
1822		rc = ret;
1823		goto outbuf;
1824	}
1825	max_addtllen = drbg_max_addtl(drbg);
1826	max_request_bytes = drbg_max_request_bytes(drbg);
1827	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1828	/* overflow addtllen with additonal info string */
1829	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1830	BUG_ON(0 < len);
1831	/* overflow max_bits */
1832	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1833	BUG_ON(0 < len);
1834	drbg_uninstantiate(drbg);
1835
1836	/* overflow max addtllen with personalization string */
1837	ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1838	BUG_ON(0 == ret);
1839	/* all tests passed */
1840	rc = 0;
1841
1842	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1843		 "completed\n");
1844
1845	drbg_uninstantiate(drbg);
1846outbuf:
1847	kzfree(drbg);
1848	return rc;
1849}
1850
1851static struct rng_alg drbg_algs[22];
1852
1853/*
1854 * Fill the array drbg_algs used to register the different DRBGs
1855 * with the kernel crypto API. To fill the array, the information
1856 * from drbg_cores[] is used.
1857 */
1858static inline void __init drbg_fill_array(struct rng_alg *alg,
1859					  const struct drbg_core *core, int pr)
1860{
1861	int pos = 0;
1862	static int priority = 200;
1863
1864	memcpy(alg->base.cra_name, "stdrng", 6);
1865	if (pr) {
1866		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1867		pos = 8;
1868	} else {
1869		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1870		pos = 10;
1871	}
1872	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1873	       strlen(core->cra_name));
1874
1875	alg->base.cra_priority = priority;
1876	priority++;
1877	/*
1878	 * If FIPS mode enabled, the selected DRBG shall have the
1879	 * highest cra_priority over other stdrng instances to ensure
1880	 * it is selected.
1881	 */
1882	if (fips_enabled)
1883		alg->base.cra_priority += 200;
1884
1885	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
1886	alg->base.cra_module	= THIS_MODULE;
1887	alg->base.cra_init	= drbg_kcapi_init;
1888	alg->base.cra_exit	= drbg_kcapi_cleanup;
1889	alg->generate		= drbg_kcapi_random;
1890	alg->seed		= drbg_kcapi_seed;
1891	alg->set_ent		= drbg_kcapi_set_entropy;
1892	alg->seedsize		= 0;
1893}
1894
1895static int __init drbg_init(void)
1896{
1897	unsigned int i = 0; /* pointer to drbg_algs */
1898	unsigned int j = 0; /* pointer to drbg_cores */
1899	int ret = -EFAULT;
1900
1901	ret = drbg_healthcheck_sanity();
1902	if (ret)
1903		return ret;
1904
1905	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1906		pr_info("DRBG: Cannot register all DRBG types"
1907			"(slots needed: %zu, slots available: %zu)\n",
1908			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1909		return ret;
1910	}
1911
1912	/*
1913	 * each DRBG definition can be used with PR and without PR, thus
1914	 * we instantiate each DRBG in drbg_cores[] twice.
1915	 *
1916	 * As the order of placing them into the drbg_algs array matters
1917	 * (the later DRBGs receive a higher cra_priority) we register the
1918	 * prediction resistance DRBGs first as the should not be too
1919	 * interesting.
1920	 */
1921	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1922		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1923	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1924		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1925	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1926}
1927
1928static void __exit drbg_exit(void)
1929{
1930	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1931}
1932
1933module_init(drbg_init);
1934module_exit(drbg_exit);
1935#ifndef CRYPTO_DRBG_HASH_STRING
1936#define CRYPTO_DRBG_HASH_STRING ""
1937#endif
1938#ifndef CRYPTO_DRBG_HMAC_STRING
1939#define CRYPTO_DRBG_HMAC_STRING ""
1940#endif
1941#ifndef CRYPTO_DRBG_CTR_STRING
1942#define CRYPTO_DRBG_CTR_STRING ""
1943#endif
1944MODULE_LICENSE("GPL");
1945MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
1946MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
1947		   "using following cores: "
1948		   CRYPTO_DRBG_HASH_STRING
1949		   CRYPTO_DRBG_HMAC_STRING
1950		   CRYPTO_DRBG_CTR_STRING);
1951MODULE_ALIAS_CRYPTO("stdrng");
v5.14.15
   1/*
   2 * DRBG: Deterministic Random Bits Generator
   3 *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
   4 *       properties:
   5 *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
   6 *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
   7 *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
   8 *		* with and without prediction resistance
   9 *
  10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 *
  44 * DRBG Usage
  45 * ==========
  46 * The SP 800-90A DRBG allows the user to specify a personalization string
  47 * for initialization as well as an additional information string for each
  48 * random number request. The following code fragments show how a caller
  49 * uses the kernel crypto API to use the full functionality of the DRBG.
  50 *
  51 * Usage without any additional data
  52 * ---------------------------------
  53 * struct crypto_rng *drng;
  54 * int err;
  55 * char data[DATALEN];
  56 *
  57 * drng = crypto_alloc_rng(drng_name, 0, 0);
  58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
  59 * crypto_free_rng(drng);
  60 *
  61 *
  62 * Usage with personalization string during initialization
  63 * -------------------------------------------------------
  64 * struct crypto_rng *drng;
  65 * int err;
  66 * char data[DATALEN];
  67 * struct drbg_string pers;
  68 * char personalization[11] = "some-string";
  69 *
  70 * drbg_string_fill(&pers, personalization, strlen(personalization));
  71 * drng = crypto_alloc_rng(drng_name, 0, 0);
  72 * // The reset completely re-initializes the DRBG with the provided
  73 * // personalization string
  74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
  75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
  76 * crypto_free_rng(drng);
  77 *
  78 *
  79 * Usage with additional information string during random number request
  80 * ---------------------------------------------------------------------
  81 * struct crypto_rng *drng;
  82 * int err;
  83 * char data[DATALEN];
  84 * char addtl_string[11] = "some-string";
  85 * string drbg_string addtl;
  86 *
  87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
  88 * drng = crypto_alloc_rng(drng_name, 0, 0);
  89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
  90 * // the same error codes.
  91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
  92 * crypto_free_rng(drng);
  93 *
  94 *
  95 * Usage with personalization and additional information strings
  96 * -------------------------------------------------------------
  97 * Just mix both scenarios above.
  98 */
  99
 100#include <crypto/drbg.h>
 101#include <crypto/internal/cipher.h>
 102#include <linux/kernel.h>
 103
 104/***************************************************************
 105 * Backend cipher definitions available to DRBG
 106 ***************************************************************/
 107
 108/*
 109 * The order of the DRBG definitions here matter: every DRBG is registered
 110 * as stdrng. Each DRBG receives an increasing cra_priority values the later
 111 * they are defined in this array (see drbg_fill_array).
 112 *
 113 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
 114 * the SHA256 / AES 256 over other ciphers. Thus, the favored
 115 * DRBGs are the latest entries in this array.
 116 */
 117static const struct drbg_core drbg_cores[] = {
 118#ifdef CONFIG_CRYPTO_DRBG_CTR
 119	{
 120		.flags = DRBG_CTR | DRBG_STRENGTH128,
 121		.statelen = 32, /* 256 bits as defined in 10.2.1 */
 122		.blocklen_bytes = 16,
 123		.cra_name = "ctr_aes128",
 124		.backend_cra_name = "aes",
 125	}, {
 126		.flags = DRBG_CTR | DRBG_STRENGTH192,
 127		.statelen = 40, /* 320 bits as defined in 10.2.1 */
 128		.blocklen_bytes = 16,
 129		.cra_name = "ctr_aes192",
 130		.backend_cra_name = "aes",
 131	}, {
 132		.flags = DRBG_CTR | DRBG_STRENGTH256,
 133		.statelen = 48, /* 384 bits as defined in 10.2.1 */
 134		.blocklen_bytes = 16,
 135		.cra_name = "ctr_aes256",
 136		.backend_cra_name = "aes",
 137	},
 138#endif /* CONFIG_CRYPTO_DRBG_CTR */
 139#ifdef CONFIG_CRYPTO_DRBG_HASH
 140	{
 141		.flags = DRBG_HASH | DRBG_STRENGTH128,
 142		.statelen = 55, /* 440 bits */
 143		.blocklen_bytes = 20,
 144		.cra_name = "sha1",
 145		.backend_cra_name = "sha1",
 146	}, {
 147		.flags = DRBG_HASH | DRBG_STRENGTH256,
 148		.statelen = 111, /* 888 bits */
 149		.blocklen_bytes = 48,
 150		.cra_name = "sha384",
 151		.backend_cra_name = "sha384",
 152	}, {
 153		.flags = DRBG_HASH | DRBG_STRENGTH256,
 154		.statelen = 111, /* 888 bits */
 155		.blocklen_bytes = 64,
 156		.cra_name = "sha512",
 157		.backend_cra_name = "sha512",
 158	}, {
 159		.flags = DRBG_HASH | DRBG_STRENGTH256,
 160		.statelen = 55, /* 440 bits */
 161		.blocklen_bytes = 32,
 162		.cra_name = "sha256",
 163		.backend_cra_name = "sha256",
 164	},
 165#endif /* CONFIG_CRYPTO_DRBG_HASH */
 166#ifdef CONFIG_CRYPTO_DRBG_HMAC
 167	{
 168		.flags = DRBG_HMAC | DRBG_STRENGTH128,
 169		.statelen = 20, /* block length of cipher */
 170		.blocklen_bytes = 20,
 171		.cra_name = "hmac_sha1",
 172		.backend_cra_name = "hmac(sha1)",
 173	}, {
 174		.flags = DRBG_HMAC | DRBG_STRENGTH256,
 175		.statelen = 48, /* block length of cipher */
 176		.blocklen_bytes = 48,
 177		.cra_name = "hmac_sha384",
 178		.backend_cra_name = "hmac(sha384)",
 179	}, {
 180		.flags = DRBG_HMAC | DRBG_STRENGTH256,
 
 
 
 
 
 
 181		.statelen = 32, /* block length of cipher */
 182		.blocklen_bytes = 32,
 183		.cra_name = "hmac_sha256",
 184		.backend_cra_name = "hmac(sha256)",
 185	}, {
 186		.flags = DRBG_HMAC | DRBG_STRENGTH256,
 187		.statelen = 64, /* block length of cipher */
 188		.blocklen_bytes = 64,
 189		.cra_name = "hmac_sha512",
 190		.backend_cra_name = "hmac(sha512)",
 191	},
 192#endif /* CONFIG_CRYPTO_DRBG_HMAC */
 193};
 194
 195static int drbg_uninstantiate(struct drbg_state *drbg);
 196
 197/******************************************************************
 198 * Generic helper functions
 199 ******************************************************************/
 200
 201/*
 202 * Return strength of DRBG according to SP800-90A section 8.4
 203 *
 204 * @flags DRBG flags reference
 205 *
 206 * Return: normalized strength in *bytes* value or 32 as default
 207 *	   to counter programming errors
 208 */
 209static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
 210{
 211	switch (flags & DRBG_STRENGTH_MASK) {
 212	case DRBG_STRENGTH128:
 213		return 16;
 214	case DRBG_STRENGTH192:
 215		return 24;
 216	case DRBG_STRENGTH256:
 217		return 32;
 218	default:
 219		return 32;
 220	}
 221}
 222
 223/*
 224 * FIPS 140-2 continuous self test for the noise source
 225 * The test is performed on the noise source input data. Thus, the function
 226 * implicitly knows the size of the buffer to be equal to the security
 227 * strength.
 228 *
 229 * Note, this function disregards the nonce trailing the entropy data during
 230 * initial seeding.
 231 *
 232 * drbg->drbg_mutex must have been taken.
 233 *
 234 * @drbg DRBG handle
 235 * @entropy buffer of seed data to be checked
 236 *
 237 * return:
 238 *	0 on success
 239 *	-EAGAIN on when the CTRNG is not yet primed
 240 *	< 0 on error
 241 */
 242static int drbg_fips_continuous_test(struct drbg_state *drbg,
 243				     const unsigned char *entropy)
 244{
 245	unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
 246	int ret = 0;
 247
 248	if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
 249		return 0;
 250
 251	/* skip test if we test the overall system */
 252	if (list_empty(&drbg->test_data.list))
 253		return 0;
 254	/* only perform test in FIPS mode */
 255	if (!fips_enabled)
 256		return 0;
 257
 258	if (!drbg->fips_primed) {
 259		/* Priming of FIPS test */
 260		memcpy(drbg->prev, entropy, entropylen);
 261		drbg->fips_primed = true;
 262		/* priming: another round is needed */
 263		return -EAGAIN;
 264	}
 265	ret = memcmp(drbg->prev, entropy, entropylen);
 266	if (!ret)
 267		panic("DRBG continuous self test failed\n");
 268	memcpy(drbg->prev, entropy, entropylen);
 269
 270	/* the test shall pass when the two values are not equal */
 271	return 0;
 272}
 273
 274/*
 275 * Convert an integer into a byte representation of this integer.
 276 * The byte representation is big-endian
 277 *
 278 * @val value to be converted
 279 * @buf buffer holding the converted integer -- caller must ensure that
 280 *      buffer size is at least 32 bit
 281 */
 282#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
 283static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
 284{
 285	struct s {
 286		__be32 conv;
 287	};
 288	struct s *conversion = (struct s *) buf;
 289
 290	conversion->conv = cpu_to_be32(val);
 291}
 292#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
 293
 294/******************************************************************
 295 * CTR DRBG callback functions
 296 ******************************************************************/
 297
 298#ifdef CONFIG_CRYPTO_DRBG_CTR
 299#define CRYPTO_DRBG_CTR_STRING "CTR "
 300MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
 301MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
 302MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
 303MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
 304MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
 305MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
 306
 307static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
 308				 const unsigned char *key);
 309static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
 310			  const struct drbg_string *in);
 311static int drbg_init_sym_kernel(struct drbg_state *drbg);
 312static int drbg_fini_sym_kernel(struct drbg_state *drbg);
 313static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
 314			      u8 *inbuf, u32 inbuflen,
 315			      u8 *outbuf, u32 outlen);
 316#define DRBG_OUTSCRATCHLEN 256
 317
 318/* BCC function for CTR DRBG as defined in 10.4.3 */
 319static int drbg_ctr_bcc(struct drbg_state *drbg,
 320			unsigned char *out, const unsigned char *key,
 321			struct list_head *in)
 322{
 323	int ret = 0;
 324	struct drbg_string *curr = NULL;
 325	struct drbg_string data;
 326	short cnt = 0;
 327
 328	drbg_string_fill(&data, out, drbg_blocklen(drbg));
 329
 330	/* 10.4.3 step 2 / 4 */
 331	drbg_kcapi_symsetkey(drbg, key);
 332	list_for_each_entry(curr, in, list) {
 333		const unsigned char *pos = curr->buf;
 334		size_t len = curr->len;
 335		/* 10.4.3 step 4.1 */
 336		while (len) {
 337			/* 10.4.3 step 4.2 */
 338			if (drbg_blocklen(drbg) == cnt) {
 339				cnt = 0;
 340				ret = drbg_kcapi_sym(drbg, out, &data);
 341				if (ret)
 342					return ret;
 343			}
 344			out[cnt] ^= *pos;
 345			pos++;
 346			cnt++;
 347			len--;
 348		}
 349	}
 350	/* 10.4.3 step 4.2 for last block */
 351	if (cnt)
 352		ret = drbg_kcapi_sym(drbg, out, &data);
 353
 354	return ret;
 355}
 356
 357/*
 358 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
 359 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
 360 * the scratchpad is used as follows:
 361 * drbg_ctr_update:
 362 *	temp
 363 *		start: drbg->scratchpad
 364 *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
 365 *			note: the cipher writing into this variable works
 366 *			blocklen-wise. Now, when the statelen is not a multiple
 367 *			of blocklen, the generateion loop below "spills over"
 368 *			by at most blocklen. Thus, we need to give sufficient
 369 *			memory.
 370 *	df_data
 371 *		start: drbg->scratchpad +
 372 *				drbg_statelen(drbg) + drbg_blocklen(drbg)
 373 *		length: drbg_statelen(drbg)
 374 *
 375 * drbg_ctr_df:
 376 *	pad
 377 *		start: df_data + drbg_statelen(drbg)
 378 *		length: drbg_blocklen(drbg)
 379 *	iv
 380 *		start: pad + drbg_blocklen(drbg)
 381 *		length: drbg_blocklen(drbg)
 382 *	temp
 383 *		start: iv + drbg_blocklen(drbg)
 384 *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
 385 *			note: temp is the buffer that the BCC function operates
 386 *			on. BCC operates blockwise. drbg_statelen(drbg)
 387 *			is sufficient when the DRBG state length is a multiple
 388 *			of the block size. For AES192 (and maybe other ciphers)
 389 *			this is not correct and the length for temp is
 390 *			insufficient (yes, that also means for such ciphers,
 391 *			the final output of all BCC rounds are truncated).
 392 *			Therefore, add drbg_blocklen(drbg) to cover all
 393 *			possibilities.
 394 */
 395
 396/* Derivation Function for CTR DRBG as defined in 10.4.2 */
 397static int drbg_ctr_df(struct drbg_state *drbg,
 398		       unsigned char *df_data, size_t bytes_to_return,
 399		       struct list_head *seedlist)
 400{
 401	int ret = -EFAULT;
 402	unsigned char L_N[8];
 403	/* S3 is input */
 404	struct drbg_string S1, S2, S4, cipherin;
 405	LIST_HEAD(bcc_list);
 406	unsigned char *pad = df_data + drbg_statelen(drbg);
 407	unsigned char *iv = pad + drbg_blocklen(drbg);
 408	unsigned char *temp = iv + drbg_blocklen(drbg);
 409	size_t padlen = 0;
 410	unsigned int templen = 0;
 411	/* 10.4.2 step 7 */
 412	unsigned int i = 0;
 413	/* 10.4.2 step 8 */
 414	const unsigned char *K = (unsigned char *)
 415			   "\x00\x01\x02\x03\x04\x05\x06\x07"
 416			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
 417			   "\x10\x11\x12\x13\x14\x15\x16\x17"
 418			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
 419	unsigned char *X;
 420	size_t generated_len = 0;
 421	size_t inputlen = 0;
 422	struct drbg_string *seed = NULL;
 423
 424	memset(pad, 0, drbg_blocklen(drbg));
 425	memset(iv, 0, drbg_blocklen(drbg));
 426
 427	/* 10.4.2 step 1 is implicit as we work byte-wise */
 428
 429	/* 10.4.2 step 2 */
 430	if ((512/8) < bytes_to_return)
 431		return -EINVAL;
 432
 433	/* 10.4.2 step 2 -- calculate the entire length of all input data */
 434	list_for_each_entry(seed, seedlist, list)
 435		inputlen += seed->len;
 436	drbg_cpu_to_be32(inputlen, &L_N[0]);
 437
 438	/* 10.4.2 step 3 */
 439	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
 440
 441	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
 442	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
 443	/* wrap the padlen appropriately */
 444	if (padlen)
 445		padlen = drbg_blocklen(drbg) - padlen;
 446	/*
 447	 * pad / padlen contains the 0x80 byte and the following zero bytes.
 448	 * As the calculated padlen value only covers the number of zero
 449	 * bytes, this value has to be incremented by one for the 0x80 byte.
 450	 */
 451	padlen++;
 452	pad[0] = 0x80;
 453
 454	/* 10.4.2 step 4 -- first fill the linked list and then order it */
 455	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
 456	list_add_tail(&S1.list, &bcc_list);
 457	drbg_string_fill(&S2, L_N, sizeof(L_N));
 458	list_add_tail(&S2.list, &bcc_list);
 459	list_splice_tail(seedlist, &bcc_list);
 460	drbg_string_fill(&S4, pad, padlen);
 461	list_add_tail(&S4.list, &bcc_list);
 462
 463	/* 10.4.2 step 9 */
 464	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
 465		/*
 466		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
 467		 * holds zeros after allocation -- even the increment of i
 468		 * is irrelevant as the increment remains within length of i
 469		 */
 470		drbg_cpu_to_be32(i, iv);
 471		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
 472		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
 473		if (ret)
 474			goto out;
 475		/* 10.4.2 step 9.3 */
 476		i++;
 477		templen += drbg_blocklen(drbg);
 478	}
 479
 480	/* 10.4.2 step 11 */
 481	X = temp + (drbg_keylen(drbg));
 482	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
 483
 484	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
 485
 486	/* 10.4.2 step 13 */
 487	drbg_kcapi_symsetkey(drbg, temp);
 488	while (generated_len < bytes_to_return) {
 489		short blocklen = 0;
 490		/*
 491		 * 10.4.2 step 13.1: the truncation of the key length is
 492		 * implicit as the key is only drbg_blocklen in size based on
 493		 * the implementation of the cipher function callback
 494		 */
 495		ret = drbg_kcapi_sym(drbg, X, &cipherin);
 496		if (ret)
 497			goto out;
 498		blocklen = (drbg_blocklen(drbg) <
 499				(bytes_to_return - generated_len)) ?
 500			    drbg_blocklen(drbg) :
 501				(bytes_to_return - generated_len);
 502		/* 10.4.2 step 13.2 and 14 */
 503		memcpy(df_data + generated_len, X, blocklen);
 504		generated_len += blocklen;
 505	}
 506
 507	ret = 0;
 508
 509out:
 510	memset(iv, 0, drbg_blocklen(drbg));
 511	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
 512	memset(pad, 0, drbg_blocklen(drbg));
 513	return ret;
 514}
 515
 516/*
 517 * update function of CTR DRBG as defined in 10.2.1.2
 518 *
 519 * The reseed variable has an enhanced meaning compared to the update
 520 * functions of the other DRBGs as follows:
 521 * 0 => initial seed from initialization
 522 * 1 => reseed via drbg_seed
 523 * 2 => first invocation from drbg_ctr_update when addtl is present. In
 524 *      this case, the df_data scratchpad is not deleted so that it is
 525 *      available for another calls to prevent calling the DF function
 526 *      again.
 527 * 3 => second invocation from drbg_ctr_update. When the update function
 528 *      was called with addtl, the df_data memory already contains the
 529 *      DFed addtl information and we do not need to call DF again.
 530 */
 531static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
 532			   int reseed)
 533{
 534	int ret = -EFAULT;
 535	/* 10.2.1.2 step 1 */
 536	unsigned char *temp = drbg->scratchpad;
 537	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
 538				 drbg_blocklen(drbg);
 
 
 
 539
 540	if (3 > reseed)
 541		memset(df_data, 0, drbg_statelen(drbg));
 542
 543	if (!reseed) {
 544		/*
 545		 * The DRBG uses the CTR mode of the underlying AES cipher. The
 546		 * CTR mode increments the counter value after the AES operation
 547		 * but SP800-90A requires that the counter is incremented before
 548		 * the AES operation. Hence, we increment it at the time we set
 549		 * it by one.
 550		 */
 551		crypto_inc(drbg->V, drbg_blocklen(drbg));
 552
 553		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
 554					     drbg_keylen(drbg));
 555		if (ret)
 556			goto out;
 557	}
 558
 559	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
 560	if (seed) {
 561		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
 
 
 
 
 
 
 
 
 562		if (ret)
 563			goto out;
 
 
 564	}
 565
 566	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
 567				 temp, drbg_statelen(drbg));
 568	if (ret)
 569		return ret;
 
 
 
 570
 571	/* 10.2.1.2 step 5 */
 572	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
 573				     drbg_keylen(drbg));
 574	if (ret)
 575		goto out;
 576	/* 10.2.1.2 step 6 */
 577	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
 578	/* See above: increment counter by one to compensate timing of CTR op */
 579	crypto_inc(drbg->V, drbg_blocklen(drbg));
 580	ret = 0;
 581
 582out:
 583	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
 584	if (2 != reseed)
 585		memset(df_data, 0, drbg_statelen(drbg));
 586	return ret;
 587}
 588
 589/*
 590 * scratchpad use: drbg_ctr_update is called independently from
 591 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
 592 */
 593/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
 594static int drbg_ctr_generate(struct drbg_state *drbg,
 595			     unsigned char *buf, unsigned int buflen,
 596			     struct list_head *addtl)
 597{
 598	int ret;
 599	int len = min_t(int, buflen, INT_MAX);
 
 600
 601	/* 10.2.1.5.2 step 2 */
 602	if (addtl && !list_empty(addtl)) {
 603		ret = drbg_ctr_update(drbg, addtl, 2);
 604		if (ret)
 605			return 0;
 606	}
 607
 608	/* 10.2.1.5.2 step 4.1 */
 609	ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
 610	if (ret)
 611		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612
 613	/* 10.2.1.5.2 step 6 */
 614	ret = drbg_ctr_update(drbg, NULL, 3);
 615	if (ret)
 616		len = ret;
 617
 
 
 618	return len;
 619}
 620
 621static const struct drbg_state_ops drbg_ctr_ops = {
 622	.update		= drbg_ctr_update,
 623	.generate	= drbg_ctr_generate,
 624	.crypto_init	= drbg_init_sym_kernel,
 625	.crypto_fini	= drbg_fini_sym_kernel,
 626};
 627#endif /* CONFIG_CRYPTO_DRBG_CTR */
 628
 629/******************************************************************
 630 * HMAC DRBG callback functions
 631 ******************************************************************/
 632
 633#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
 634static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
 635			   const struct list_head *in);
 636static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
 637				  const unsigned char *key);
 638static int drbg_init_hash_kernel(struct drbg_state *drbg);
 639static int drbg_fini_hash_kernel(struct drbg_state *drbg);
 640#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
 641
 642#ifdef CONFIG_CRYPTO_DRBG_HMAC
 643#define CRYPTO_DRBG_HMAC_STRING "HMAC "
 644MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
 645MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
 646MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
 647MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
 648MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
 649MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
 650MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
 651MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
 652
 653/* update function of HMAC DRBG as defined in 10.1.2.2 */
 654static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
 655			    int reseed)
 656{
 657	int ret = -EFAULT;
 658	int i = 0;
 659	struct drbg_string seed1, seed2, vdata;
 660	LIST_HEAD(seedlist);
 661	LIST_HEAD(vdatalist);
 662
 663	if (!reseed) {
 664		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
 665		memset(drbg->V, 1, drbg_statelen(drbg));
 666		drbg_kcapi_hmacsetkey(drbg, drbg->C);
 667	}
 668
 669	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
 670	list_add_tail(&seed1.list, &seedlist);
 671	/* buffer of seed2 will be filled in for loop below with one byte */
 672	drbg_string_fill(&seed2, NULL, 1);
 673	list_add_tail(&seed2.list, &seedlist);
 674	/* input data of seed is allowed to be NULL at this point */
 675	if (seed)
 676		list_splice_tail(seed, &seedlist);
 677
 678	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
 679	list_add_tail(&vdata.list, &vdatalist);
 680	for (i = 2; 0 < i; i--) {
 681		/* first round uses 0x0, second 0x1 */
 682		unsigned char prefix = DRBG_PREFIX0;
 683		if (1 == i)
 684			prefix = DRBG_PREFIX1;
 685		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
 686		seed2.buf = &prefix;
 687		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
 688		if (ret)
 689			return ret;
 690		drbg_kcapi_hmacsetkey(drbg, drbg->C);
 691
 692		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
 693		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
 694		if (ret)
 695			return ret;
 696
 697		/* 10.1.2.2 step 3 */
 698		if (!seed)
 699			return ret;
 700	}
 701
 702	return 0;
 703}
 704
 705/* generate function of HMAC DRBG as defined in 10.1.2.5 */
 706static int drbg_hmac_generate(struct drbg_state *drbg,
 707			      unsigned char *buf,
 708			      unsigned int buflen,
 709			      struct list_head *addtl)
 710{
 711	int len = 0;
 712	int ret = 0;
 713	struct drbg_string data;
 714	LIST_HEAD(datalist);
 715
 716	/* 10.1.2.5 step 2 */
 717	if (addtl && !list_empty(addtl)) {
 718		ret = drbg_hmac_update(drbg, addtl, 1);
 719		if (ret)
 720			return ret;
 721	}
 722
 723	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
 724	list_add_tail(&data.list, &datalist);
 725	while (len < buflen) {
 726		unsigned int outlen = 0;
 727		/* 10.1.2.5 step 4.1 */
 728		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
 729		if (ret)
 730			return ret;
 731		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 732			  drbg_blocklen(drbg) : (buflen - len);
 733
 734		/* 10.1.2.5 step 4.2 */
 735		memcpy(buf + len, drbg->V, outlen);
 736		len += outlen;
 737	}
 738
 739	/* 10.1.2.5 step 6 */
 740	if (addtl && !list_empty(addtl))
 741		ret = drbg_hmac_update(drbg, addtl, 1);
 742	else
 743		ret = drbg_hmac_update(drbg, NULL, 1);
 744	if (ret)
 745		return ret;
 746
 747	return len;
 748}
 749
 750static const struct drbg_state_ops drbg_hmac_ops = {
 751	.update		= drbg_hmac_update,
 752	.generate	= drbg_hmac_generate,
 753	.crypto_init	= drbg_init_hash_kernel,
 754	.crypto_fini	= drbg_fini_hash_kernel,
 755};
 756#endif /* CONFIG_CRYPTO_DRBG_HMAC */
 757
 758/******************************************************************
 759 * Hash DRBG callback functions
 760 ******************************************************************/
 761
 762#ifdef CONFIG_CRYPTO_DRBG_HASH
 763#define CRYPTO_DRBG_HASH_STRING "HASH "
 764MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
 765MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
 766MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
 767MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
 768MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
 769MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
 770MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
 771MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
 772
 773/*
 774 * Increment buffer
 775 *
 776 * @dst buffer to increment
 777 * @add value to add
 778 */
 779static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
 780				const unsigned char *add, size_t addlen)
 781{
 782	/* implied: dstlen > addlen */
 783	unsigned char *dstptr;
 784	const unsigned char *addptr;
 785	unsigned int remainder = 0;
 786	size_t len = addlen;
 787
 788	dstptr = dst + (dstlen-1);
 789	addptr = add + (addlen-1);
 790	while (len) {
 791		remainder += *dstptr + *addptr;
 792		*dstptr = remainder & 0xff;
 793		remainder >>= 8;
 794		len--; dstptr--; addptr--;
 795	}
 796	len = dstlen - addlen;
 797	while (len && remainder > 0) {
 798		remainder = *dstptr + 1;
 799		*dstptr = remainder & 0xff;
 800		remainder >>= 8;
 801		len--; dstptr--;
 802	}
 803}
 804
 805/*
 806 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
 807 * interlinked, the scratchpad is used as follows:
 808 * drbg_hash_update
 809 *	start: drbg->scratchpad
 810 *	length: drbg_statelen(drbg)
 811 * drbg_hash_df:
 812 *	start: drbg->scratchpad + drbg_statelen(drbg)
 813 *	length: drbg_blocklen(drbg)
 814 *
 815 * drbg_hash_process_addtl uses the scratchpad, but fully completes
 816 * before either of the functions mentioned before are invoked. Therefore,
 817 * drbg_hash_process_addtl does not need to be specifically considered.
 818 */
 819
 820/* Derivation Function for Hash DRBG as defined in 10.4.1 */
 821static int drbg_hash_df(struct drbg_state *drbg,
 822			unsigned char *outval, size_t outlen,
 823			struct list_head *entropylist)
 824{
 825	int ret = 0;
 826	size_t len = 0;
 827	unsigned char input[5];
 828	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
 829	struct drbg_string data;
 830
 831	/* 10.4.1 step 3 */
 832	input[0] = 1;
 833	drbg_cpu_to_be32((outlen * 8), &input[1]);
 834
 835	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
 836	drbg_string_fill(&data, input, 5);
 837	list_add(&data.list, entropylist);
 838
 839	/* 10.4.1 step 4 */
 840	while (len < outlen) {
 841		short blocklen = 0;
 842		/* 10.4.1 step 4.1 */
 843		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
 844		if (ret)
 845			goto out;
 846		/* 10.4.1 step 4.2 */
 847		input[0]++;
 848		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
 849			    drbg_blocklen(drbg) : (outlen - len);
 850		memcpy(outval + len, tmp, blocklen);
 851		len += blocklen;
 852	}
 853
 854out:
 855	memset(tmp, 0, drbg_blocklen(drbg));
 856	return ret;
 857}
 858
 859/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
 860static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
 861			    int reseed)
 862{
 863	int ret = 0;
 864	struct drbg_string data1, data2;
 865	LIST_HEAD(datalist);
 866	LIST_HEAD(datalist2);
 867	unsigned char *V = drbg->scratchpad;
 868	unsigned char prefix = DRBG_PREFIX1;
 869
 870	if (!seed)
 871		return -EINVAL;
 872
 873	if (reseed) {
 874		/* 10.1.1.3 step 1 */
 875		memcpy(V, drbg->V, drbg_statelen(drbg));
 876		drbg_string_fill(&data1, &prefix, 1);
 877		list_add_tail(&data1.list, &datalist);
 878		drbg_string_fill(&data2, V, drbg_statelen(drbg));
 879		list_add_tail(&data2.list, &datalist);
 880	}
 881	list_splice_tail(seed, &datalist);
 882
 883	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
 884	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
 885	if (ret)
 886		goto out;
 887
 888	/* 10.1.1.2 / 10.1.1.3 step 4  */
 889	prefix = DRBG_PREFIX0;
 890	drbg_string_fill(&data1, &prefix, 1);
 891	list_add_tail(&data1.list, &datalist2);
 892	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 893	list_add_tail(&data2.list, &datalist2);
 894	/* 10.1.1.2 / 10.1.1.3 step 4 */
 895	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
 896
 897out:
 898	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
 899	return ret;
 900}
 901
 902/* processing of additional information string for Hash DRBG */
 903static int drbg_hash_process_addtl(struct drbg_state *drbg,
 904				   struct list_head *addtl)
 905{
 906	int ret = 0;
 907	struct drbg_string data1, data2;
 908	LIST_HEAD(datalist);
 909	unsigned char prefix = DRBG_PREFIX2;
 910
 911	/* 10.1.1.4 step 2 */
 912	if (!addtl || list_empty(addtl))
 913		return 0;
 914
 915	/* 10.1.1.4 step 2a */
 916	drbg_string_fill(&data1, &prefix, 1);
 917	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 918	list_add_tail(&data1.list, &datalist);
 919	list_add_tail(&data2.list, &datalist);
 920	list_splice_tail(addtl, &datalist);
 921	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
 922	if (ret)
 923		goto out;
 924
 925	/* 10.1.1.4 step 2b */
 926	drbg_add_buf(drbg->V, drbg_statelen(drbg),
 927		     drbg->scratchpad, drbg_blocklen(drbg));
 928
 929out:
 930	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 931	return ret;
 932}
 933
 934/* Hashgen defined in 10.1.1.4 */
 935static int drbg_hash_hashgen(struct drbg_state *drbg,
 936			     unsigned char *buf,
 937			     unsigned int buflen)
 938{
 939	int len = 0;
 940	int ret = 0;
 941	unsigned char *src = drbg->scratchpad;
 942	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
 943	struct drbg_string data;
 944	LIST_HEAD(datalist);
 945
 946	/* 10.1.1.4 step hashgen 2 */
 947	memcpy(src, drbg->V, drbg_statelen(drbg));
 948
 949	drbg_string_fill(&data, src, drbg_statelen(drbg));
 950	list_add_tail(&data.list, &datalist);
 951	while (len < buflen) {
 952		unsigned int outlen = 0;
 953		/* 10.1.1.4 step hashgen 4.1 */
 954		ret = drbg_kcapi_hash(drbg, dst, &datalist);
 955		if (ret) {
 956			len = ret;
 957			goto out;
 958		}
 959		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 960			  drbg_blocklen(drbg) : (buflen - len);
 961		/* 10.1.1.4 step hashgen 4.2 */
 962		memcpy(buf + len, dst, outlen);
 963		len += outlen;
 964		/* 10.1.1.4 hashgen step 4.3 */
 965		if (len < buflen)
 966			crypto_inc(src, drbg_statelen(drbg));
 967	}
 968
 969out:
 970	memset(drbg->scratchpad, 0,
 971	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
 972	return len;
 973}
 974
 975/* generate function for Hash DRBG as defined in  10.1.1.4 */
 976static int drbg_hash_generate(struct drbg_state *drbg,
 977			      unsigned char *buf, unsigned int buflen,
 978			      struct list_head *addtl)
 979{
 980	int len = 0;
 981	int ret = 0;
 982	union {
 983		unsigned char req[8];
 984		__be64 req_int;
 985	} u;
 986	unsigned char prefix = DRBG_PREFIX3;
 987	struct drbg_string data1, data2;
 988	LIST_HEAD(datalist);
 989
 990	/* 10.1.1.4 step 2 */
 991	ret = drbg_hash_process_addtl(drbg, addtl);
 992	if (ret)
 993		return ret;
 994	/* 10.1.1.4 step 3 */
 995	len = drbg_hash_hashgen(drbg, buf, buflen);
 996
 997	/* this is the value H as documented in 10.1.1.4 */
 998	/* 10.1.1.4 step 4 */
 999	drbg_string_fill(&data1, &prefix, 1);
1000	list_add_tail(&data1.list, &datalist);
1001	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1002	list_add_tail(&data2.list, &datalist);
1003	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1004	if (ret) {
1005		len = ret;
1006		goto out;
1007	}
1008
1009	/* 10.1.1.4 step 5 */
1010	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1011		     drbg->scratchpad, drbg_blocklen(drbg));
1012	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1013		     drbg->C, drbg_statelen(drbg));
1014	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1015	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1016
1017out:
1018	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1019	return len;
1020}
1021
1022/*
1023 * scratchpad usage: as update and generate are used isolated, both
1024 * can use the scratchpad
1025 */
1026static const struct drbg_state_ops drbg_hash_ops = {
1027	.update		= drbg_hash_update,
1028	.generate	= drbg_hash_generate,
1029	.crypto_init	= drbg_init_hash_kernel,
1030	.crypto_fini	= drbg_fini_hash_kernel,
1031};
1032#endif /* CONFIG_CRYPTO_DRBG_HASH */
1033
1034/******************************************************************
1035 * Functions common for DRBG implementations
1036 ******************************************************************/
1037
1038static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1039			      int reseed)
1040{
1041	int ret = drbg->d_ops->update(drbg, seed, reseed);
1042
1043	if (ret)
1044		return ret;
1045
1046	drbg->seeded = true;
1047	/* 10.1.1.2 / 10.1.1.3 step 5 */
1048	drbg->reseed_ctr = 1;
1049
1050	return ret;
1051}
1052
1053static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1054					unsigned char *entropy,
1055					unsigned int entropylen)
1056{
1057	int ret;
1058
1059	do {
1060		get_random_bytes(entropy, entropylen);
1061		ret = drbg_fips_continuous_test(drbg, entropy);
1062		if (ret && ret != -EAGAIN)
1063			return ret;
1064	} while (ret);
1065
1066	return 0;
1067}
1068
1069static void drbg_async_seed(struct work_struct *work)
1070{
1071	struct drbg_string data;
1072	LIST_HEAD(seedlist);
1073	struct drbg_state *drbg = container_of(work, struct drbg_state,
1074					       seed_work);
1075	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1076	unsigned char entropy[32];
1077	int ret;
1078
1079	BUG_ON(!entropylen);
1080	BUG_ON(entropylen > sizeof(entropy));
 
1081
1082	drbg_string_fill(&data, entropy, entropylen);
1083	list_add_tail(&data.list, &seedlist);
1084
1085	mutex_lock(&drbg->drbg_mutex);
1086
1087	ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1088	if (ret)
1089		goto unlock;
1090
1091	/* Set seeded to false so that if __drbg_seed fails the
1092	 * next generate call will trigger a reseed.
1093	 */
1094	drbg->seeded = false;
1095
1096	__drbg_seed(drbg, &seedlist, true);
1097
1098	if (drbg->seeded)
1099		drbg->reseed_threshold = drbg_max_requests(drbg);
1100
1101unlock:
1102	mutex_unlock(&drbg->drbg_mutex);
1103
1104	memzero_explicit(entropy, entropylen);
1105}
1106
1107/*
1108 * Seeding or reseeding of the DRBG
1109 *
1110 * @drbg: DRBG state struct
1111 * @pers: personalization / additional information buffer
1112 * @reseed: 0 for initial seed process, 1 for reseeding
1113 *
1114 * return:
1115 *	0 on success
1116 *	error value otherwise
1117 */
1118static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1119		     bool reseed)
1120{
1121	int ret;
1122	unsigned char entropy[((32 + 16) * 2)];
1123	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1124	struct drbg_string data1;
1125	LIST_HEAD(seedlist);
1126
1127	/* 9.1 / 9.2 / 9.3.1 step 3 */
1128	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1129		pr_devel("DRBG: personalization string too long %zu\n",
1130			 pers->len);
1131		return -EINVAL;
1132	}
1133
1134	if (list_empty(&drbg->test_data.list)) {
1135		drbg_string_fill(&data1, drbg->test_data.buf,
1136				 drbg->test_data.len);
1137		pr_devel("DRBG: using test entropy\n");
1138	} else {
1139		/*
1140		 * Gather entropy equal to the security strength of the DRBG.
1141		 * With a derivation function, a nonce is required in addition
1142		 * to the entropy. A nonce must be at least 1/2 of the security
1143		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1144		 * of the strength. The consideration of a nonce is only
1145		 * applicable during initial seeding.
1146		 */
1147		BUG_ON(!entropylen);
1148		if (!reseed)
1149			entropylen = ((entropylen + 1) / 2) * 3;
1150		BUG_ON((entropylen * 2) > sizeof(entropy));
1151
1152		/* Get seed from in-kernel /dev/urandom */
1153		ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1154		if (ret)
1155			goto out;
1156
1157		if (!drbg->jent) {
1158			drbg_string_fill(&data1, entropy, entropylen);
1159			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1160				 entropylen);
1161		} else {
1162			/* Get seed from Jitter RNG */
1163			ret = crypto_rng_get_bytes(drbg->jent,
1164						   entropy + entropylen,
1165						   entropylen);
1166			if (ret) {
1167				pr_devel("DRBG: jent failed with %d\n", ret);
1168
1169				/*
1170				 * Do not treat the transient failure of the
1171				 * Jitter RNG as an error that needs to be
1172				 * reported. The combined number of the
1173				 * maximum reseed threshold times the maximum
1174				 * number of Jitter RNG transient errors is
1175				 * less than the reseed threshold required by
1176				 * SP800-90A allowing us to treat the
1177				 * transient errors as such.
1178				 *
1179				 * However, we mandate that at least the first
1180				 * seeding operation must succeed with the
1181				 * Jitter RNG.
1182				 */
1183				if (!reseed || ret != -EAGAIN)
1184					goto out;
1185			}
1186
1187			drbg_string_fill(&data1, entropy, entropylen * 2);
1188			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1189				 entropylen * 2);
1190		}
1191	}
1192	list_add_tail(&data1.list, &seedlist);
1193
1194	/*
1195	 * concatenation of entropy with personalization str / addtl input)
1196	 * the variable pers is directly handed in by the caller, so check its
1197	 * contents whether it is appropriate
1198	 */
1199	if (pers && pers->buf && 0 < pers->len) {
1200		list_add_tail(&pers->list, &seedlist);
1201		pr_devel("DRBG: using personalization string\n");
1202	}
1203
1204	if (!reseed) {
1205		memset(drbg->V, 0, drbg_statelen(drbg));
1206		memset(drbg->C, 0, drbg_statelen(drbg));
1207	}
1208
1209	ret = __drbg_seed(drbg, &seedlist, reseed);
1210
1211out:
1212	memzero_explicit(entropy, entropylen * 2);
1213
1214	return ret;
1215}
1216
1217/* Free all substructures in a DRBG state without the DRBG state structure */
1218static inline void drbg_dealloc_state(struct drbg_state *drbg)
1219{
1220	if (!drbg)
1221		return;
1222	kfree_sensitive(drbg->Vbuf);
1223	drbg->Vbuf = NULL;
1224	drbg->V = NULL;
1225	kfree_sensitive(drbg->Cbuf);
1226	drbg->Cbuf = NULL;
1227	drbg->C = NULL;
1228	kfree_sensitive(drbg->scratchpadbuf);
1229	drbg->scratchpadbuf = NULL;
1230	drbg->reseed_ctr = 0;
1231	drbg->d_ops = NULL;
1232	drbg->core = NULL;
1233	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1234		kfree_sensitive(drbg->prev);
1235		drbg->prev = NULL;
1236		drbg->fips_primed = false;
1237	}
1238}
1239
1240/*
1241 * Allocate all sub-structures for a DRBG state.
1242 * The DRBG state structure must already be allocated.
1243 */
1244static inline int drbg_alloc_state(struct drbg_state *drbg)
1245{
1246	int ret = -ENOMEM;
1247	unsigned int sb_size = 0;
1248
1249	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1250#ifdef CONFIG_CRYPTO_DRBG_HMAC
1251	case DRBG_HMAC:
1252		drbg->d_ops = &drbg_hmac_ops;
1253		break;
1254#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1255#ifdef CONFIG_CRYPTO_DRBG_HASH
1256	case DRBG_HASH:
1257		drbg->d_ops = &drbg_hash_ops;
1258		break;
1259#endif /* CONFIG_CRYPTO_DRBG_HASH */
1260#ifdef CONFIG_CRYPTO_DRBG_CTR
1261	case DRBG_CTR:
1262		drbg->d_ops = &drbg_ctr_ops;
1263		break;
1264#endif /* CONFIG_CRYPTO_DRBG_CTR */
1265	default:
1266		ret = -EOPNOTSUPP;
1267		goto err;
1268	}
1269
1270	ret = drbg->d_ops->crypto_init(drbg);
1271	if (ret < 0)
 
 
 
1272		goto err;
1273
1274	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1275	if (!drbg->Vbuf) {
1276		ret = -ENOMEM;
1277		goto fini;
1278	}
1279	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1280	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1281	if (!drbg->Cbuf) {
1282		ret = -ENOMEM;
1283		goto fini;
1284	}
1285	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1286	/* scratchpad is only generated for CTR and Hash */
1287	if (drbg->core->flags & DRBG_HMAC)
1288		sb_size = 0;
1289	else if (drbg->core->flags & DRBG_CTR)
1290		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1291			  drbg_statelen(drbg) +	/* df_data */
1292			  drbg_blocklen(drbg) +	/* pad */
1293			  drbg_blocklen(drbg) +	/* iv */
1294			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1295	else
1296		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1297
1298	if (0 < sb_size) {
1299		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1300		if (!drbg->scratchpadbuf) {
1301			ret = -ENOMEM;
1302			goto fini;
1303		}
1304		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1305	}
1306
1307	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1308		drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1309				     GFP_KERNEL);
1310		if (!drbg->prev) {
1311			ret = -ENOMEM;
1312			goto fini;
1313		}
1314		drbg->fips_primed = false;
1315	}
1316
1317	return 0;
1318
1319fini:
1320	drbg->d_ops->crypto_fini(drbg);
1321err:
1322	drbg_dealloc_state(drbg);
1323	return ret;
1324}
1325
1326/*************************************************************************
1327 * DRBG interface functions
1328 *************************************************************************/
1329
1330/*
1331 * DRBG generate function as required by SP800-90A - this function
1332 * generates random numbers
1333 *
1334 * @drbg DRBG state handle
1335 * @buf Buffer where to store the random numbers -- the buffer must already
1336 *      be pre-allocated by caller
1337 * @buflen Length of output buffer - this value defines the number of random
1338 *	   bytes pulled from DRBG
1339 * @addtl Additional input that is mixed into state, may be NULL -- note
1340 *	  the entropy is pulled by the DRBG internally unconditionally
1341 *	  as defined in SP800-90A. The additional input is mixed into
1342 *	  the state in addition to the pulled entropy.
1343 *
1344 * return: 0 when all bytes are generated; < 0 in case of an error
1345 */
1346static int drbg_generate(struct drbg_state *drbg,
1347			 unsigned char *buf, unsigned int buflen,
1348			 struct drbg_string *addtl)
1349{
1350	int len = 0;
1351	LIST_HEAD(addtllist);
1352
1353	if (!drbg->core) {
1354		pr_devel("DRBG: not yet seeded\n");
1355		return -EINVAL;
1356	}
1357	if (0 == buflen || !buf) {
1358		pr_devel("DRBG: no output buffer provided\n");
1359		return -EINVAL;
1360	}
1361	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1362		pr_devel("DRBG: wrong format of additional information\n");
1363		return -EINVAL;
1364	}
1365
1366	/* 9.3.1 step 2 */
1367	len = -EINVAL;
1368	if (buflen > (drbg_max_request_bytes(drbg))) {
1369		pr_devel("DRBG: requested random numbers too large %u\n",
1370			 buflen);
1371		goto err;
1372	}
1373
1374	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1375
1376	/* 9.3.1 step 4 */
1377	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1378		pr_devel("DRBG: additional information string too long %zu\n",
1379			 addtl->len);
1380		goto err;
1381	}
1382	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1383
1384	/*
1385	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1386	 * here. The spec is a bit convoluted here, we make it simpler.
1387	 */
1388	if (drbg->reseed_threshold < drbg->reseed_ctr)
1389		drbg->seeded = false;
1390
1391	if (drbg->pr || !drbg->seeded) {
1392		pr_devel("DRBG: reseeding before generation (prediction "
1393			 "resistance: %s, state %s)\n",
1394			 drbg->pr ? "true" : "false",
1395			 drbg->seeded ? "seeded" : "unseeded");
1396		/* 9.3.1 steps 7.1 through 7.3 */
1397		len = drbg_seed(drbg, addtl, true);
1398		if (len)
1399			goto err;
1400		/* 9.3.1 step 7.4 */
1401		addtl = NULL;
1402	}
1403
1404	if (addtl && 0 < addtl->len)
1405		list_add_tail(&addtl->list, &addtllist);
1406	/* 9.3.1 step 8 and 10 */
1407	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1408
1409	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1410	drbg->reseed_ctr++;
1411	if (0 >= len)
1412		goto err;
1413
1414	/*
1415	 * Section 11.3.3 requires to re-perform self tests after some
1416	 * generated random numbers. The chosen value after which self
1417	 * test is performed is arbitrary, but it should be reasonable.
1418	 * However, we do not perform the self tests because of the following
1419	 * reasons: it is mathematically impossible that the initial self tests
1420	 * were successfully and the following are not. If the initial would
1421	 * pass and the following would not, the kernel integrity is violated.
1422	 * In this case, the entire kernel operation is questionable and it
1423	 * is unlikely that the integrity violation only affects the
1424	 * correct operation of the DRBG.
1425	 *
1426	 * Albeit the following code is commented out, it is provided in
1427	 * case somebody has a need to implement the test of 11.3.3.
1428	 */
1429#if 0
1430	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1431		int err = 0;
1432		pr_devel("DRBG: start to perform self test\n");
1433		if (drbg->core->flags & DRBG_HMAC)
1434			err = alg_test("drbg_pr_hmac_sha256",
1435				       "drbg_pr_hmac_sha256", 0, 0);
1436		else if (drbg->core->flags & DRBG_CTR)
1437			err = alg_test("drbg_pr_ctr_aes128",
1438				       "drbg_pr_ctr_aes128", 0, 0);
1439		else
1440			err = alg_test("drbg_pr_sha256",
1441				       "drbg_pr_sha256", 0, 0);
1442		if (err) {
1443			pr_err("DRBG: periodical self test failed\n");
1444			/*
1445			 * uninstantiate implies that from now on, only errors
1446			 * are returned when reusing this DRBG cipher handle
1447			 */
1448			drbg_uninstantiate(drbg);
1449			return 0;
1450		} else {
1451			pr_devel("DRBG: self test successful\n");
1452		}
1453	}
1454#endif
1455
1456	/*
1457	 * All operations were successful, return 0 as mandated by
1458	 * the kernel crypto API interface.
1459	 */
1460	len = 0;
1461err:
1462	return len;
1463}
1464
1465/*
1466 * Wrapper around drbg_generate which can pull arbitrary long strings
1467 * from the DRBG without hitting the maximum request limitation.
1468 *
1469 * Parameters: see drbg_generate
1470 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1471 *		 the entire drbg_generate_long request fails
1472 */
1473static int drbg_generate_long(struct drbg_state *drbg,
1474			      unsigned char *buf, unsigned int buflen,
1475			      struct drbg_string *addtl)
1476{
1477	unsigned int len = 0;
1478	unsigned int slice = 0;
1479	do {
1480		int err = 0;
1481		unsigned int chunk = 0;
1482		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1483		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1484		mutex_lock(&drbg->drbg_mutex);
1485		err = drbg_generate(drbg, buf + len, chunk, addtl);
1486		mutex_unlock(&drbg->drbg_mutex);
1487		if (0 > err)
1488			return err;
1489		len += chunk;
1490	} while (slice > 0 && (len < buflen));
1491	return 0;
1492}
1493
1494static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1495{
1496	struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1497					       random_ready);
1498
1499	schedule_work(&drbg->seed_work);
1500}
1501
1502static int drbg_prepare_hrng(struct drbg_state *drbg)
1503{
1504	int err;
1505
1506	/* We do not need an HRNG in test mode. */
1507	if (list_empty(&drbg->test_data.list))
1508		return 0;
1509
1510	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1511
1512	INIT_WORK(&drbg->seed_work, drbg_async_seed);
1513
1514	drbg->random_ready.owner = THIS_MODULE;
1515	drbg->random_ready.func = drbg_schedule_async_seed;
1516
1517	err = add_random_ready_callback(&drbg->random_ready);
1518
1519	switch (err) {
1520	case 0:
1521		break;
1522
1523	case -EALREADY:
1524		err = 0;
1525		fallthrough;
1526
1527	default:
1528		drbg->random_ready.func = NULL;
1529		return err;
1530	}
1531
 
 
1532	/*
1533	 * Require frequent reseeds until the seed source is fully
1534	 * initialized.
1535	 */
1536	drbg->reseed_threshold = 50;
1537
1538	return err;
1539}
1540
1541/*
1542 * DRBG instantiation function as required by SP800-90A - this function
1543 * sets up the DRBG handle, performs the initial seeding and all sanity
1544 * checks required by SP800-90A
1545 *
1546 * @drbg memory of state -- if NULL, new memory is allocated
1547 * @pers Personalization string that is mixed into state, may be NULL -- note
1548 *	 the entropy is pulled by the DRBG internally unconditionally
1549 *	 as defined in SP800-90A. The additional input is mixed into
1550 *	 the state in addition to the pulled entropy.
1551 * @coreref reference to core
1552 * @pr prediction resistance enabled
1553 *
1554 * return
1555 *	0 on success
1556 *	error value otherwise
1557 */
1558static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1559			    int coreref, bool pr)
1560{
1561	int ret;
1562	bool reseed = true;
1563
1564	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1565		 "%s\n", coreref, pr ? "enabled" : "disabled");
1566	mutex_lock(&drbg->drbg_mutex);
1567
1568	/* 9.1 step 1 is implicit with the selected DRBG type */
1569
1570	/*
1571	 * 9.1 step 2 is implicit as caller can select prediction resistance
1572	 * and the flag is copied into drbg->flags --
1573	 * all DRBG types support prediction resistance
1574	 */
1575
1576	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1577
1578	if (!drbg->core) {
1579		drbg->core = &drbg_cores[coreref];
1580		drbg->pr = pr;
1581		drbg->seeded = false;
1582		drbg->reseed_threshold = drbg_max_requests(drbg);
1583
1584		ret = drbg_alloc_state(drbg);
1585		if (ret)
1586			goto unlock;
1587
 
 
 
 
1588		ret = drbg_prepare_hrng(drbg);
1589		if (ret)
1590			goto free_everything;
1591
1592		if (IS_ERR(drbg->jent)) {
1593			ret = PTR_ERR(drbg->jent);
1594			drbg->jent = NULL;
1595			if (fips_enabled || ret != -ENOENT)
1596				goto free_everything;
1597			pr_info("DRBG: Continuing without Jitter RNG\n");
1598		}
1599
1600		reseed = false;
1601	}
1602
1603	ret = drbg_seed(drbg, pers, reseed);
1604
1605	if (ret && !reseed)
1606		goto free_everything;
1607
1608	mutex_unlock(&drbg->drbg_mutex);
1609	return ret;
1610
 
 
1611unlock:
1612	mutex_unlock(&drbg->drbg_mutex);
1613	return ret;
1614
1615free_everything:
1616	mutex_unlock(&drbg->drbg_mutex);
1617	drbg_uninstantiate(drbg);
1618	return ret;
1619}
1620
1621/*
1622 * DRBG uninstantiate function as required by SP800-90A - this function
1623 * frees all buffers and the DRBG handle
1624 *
1625 * @drbg DRBG state handle
1626 *
1627 * return
1628 *	0 on success
1629 */
1630static int drbg_uninstantiate(struct drbg_state *drbg)
1631{
1632	if (drbg->random_ready.func) {
1633		del_random_ready_callback(&drbg->random_ready);
1634		cancel_work_sync(&drbg->seed_work);
 
 
1635	}
1636
1637	if (!IS_ERR_OR_NULL(drbg->jent))
1638		crypto_free_rng(drbg->jent);
1639	drbg->jent = NULL;
1640
1641	if (drbg->d_ops)
1642		drbg->d_ops->crypto_fini(drbg);
1643	drbg_dealloc_state(drbg);
1644	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1645	return 0;
1646}
1647
1648/*
1649 * Helper function for setting the test data in the DRBG
1650 *
1651 * @drbg DRBG state handle
1652 * @data test data
1653 * @len test data length
1654 */
1655static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1656				   const u8 *data, unsigned int len)
1657{
1658	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1659
1660	mutex_lock(&drbg->drbg_mutex);
1661	drbg_string_fill(&drbg->test_data, data, len);
1662	mutex_unlock(&drbg->drbg_mutex);
1663}
1664
1665/***************************************************************
1666 * Kernel crypto API cipher invocations requested by DRBG
1667 ***************************************************************/
1668
1669#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1670struct sdesc {
1671	struct shash_desc shash;
1672	char ctx[];
1673};
1674
1675static int drbg_init_hash_kernel(struct drbg_state *drbg)
1676{
1677	struct sdesc *sdesc;
1678	struct crypto_shash *tfm;
1679
1680	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1681	if (IS_ERR(tfm)) {
1682		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1683				drbg->core->backend_cra_name);
1684		return PTR_ERR(tfm);
1685	}
1686	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1687	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1688			GFP_KERNEL);
1689	if (!sdesc) {
1690		crypto_free_shash(tfm);
1691		return -ENOMEM;
1692	}
1693
1694	sdesc->shash.tfm = tfm;
 
1695	drbg->priv_data = sdesc;
1696
1697	return crypto_shash_alignmask(tfm);
1698}
1699
1700static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1701{
1702	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1703	if (sdesc) {
1704		crypto_free_shash(sdesc->shash.tfm);
1705		kfree_sensitive(sdesc);
1706	}
1707	drbg->priv_data = NULL;
1708	return 0;
1709}
1710
1711static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1712				  const unsigned char *key)
1713{
1714	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1715
1716	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1717}
1718
1719static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1720			   const struct list_head *in)
1721{
1722	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1723	struct drbg_string *input = NULL;
1724
 
 
1725	crypto_shash_init(&sdesc->shash);
1726	list_for_each_entry(input, in, list)
1727		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1728	return crypto_shash_final(&sdesc->shash, outval);
1729}
1730#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1731
1732#ifdef CONFIG_CRYPTO_DRBG_CTR
1733static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1734{
1735	struct crypto_cipher *tfm =
1736		(struct crypto_cipher *)drbg->priv_data;
1737	if (tfm)
1738		crypto_free_cipher(tfm);
1739	drbg->priv_data = NULL;
1740
1741	if (drbg->ctr_handle)
1742		crypto_free_skcipher(drbg->ctr_handle);
1743	drbg->ctr_handle = NULL;
1744
1745	if (drbg->ctr_req)
1746		skcipher_request_free(drbg->ctr_req);
1747	drbg->ctr_req = NULL;
1748
1749	kfree(drbg->outscratchpadbuf);
1750	drbg->outscratchpadbuf = NULL;
1751
1752	return 0;
1753}
1754
1755static int drbg_init_sym_kernel(struct drbg_state *drbg)
1756{
 
1757	struct crypto_cipher *tfm;
1758	struct crypto_skcipher *sk_tfm;
1759	struct skcipher_request *req;
1760	unsigned int alignmask;
1761	char ctr_name[CRYPTO_MAX_ALG_NAME];
1762
1763	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1764	if (IS_ERR(tfm)) {
1765		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1766				drbg->core->backend_cra_name);
1767		return PTR_ERR(tfm);
1768	}
1769	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1770	drbg->priv_data = tfm;
1771
1772	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1773	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1774		drbg_fini_sym_kernel(drbg);
1775		return -EINVAL;
1776	}
1777	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1778	if (IS_ERR(sk_tfm)) {
1779		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1780				ctr_name);
1781		drbg_fini_sym_kernel(drbg);
1782		return PTR_ERR(sk_tfm);
1783	}
1784	drbg->ctr_handle = sk_tfm;
1785	crypto_init_wait(&drbg->ctr_wait);
1786
1787	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1788	if (!req) {
1789		pr_info("DRBG: could not allocate request queue\n");
1790		drbg_fini_sym_kernel(drbg);
1791		return -ENOMEM;
1792	}
1793	drbg->ctr_req = req;
1794	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1795						CRYPTO_TFM_REQ_MAY_SLEEP,
1796					crypto_req_done, &drbg->ctr_wait);
1797
1798	alignmask = crypto_skcipher_alignmask(sk_tfm);
1799	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1800					 GFP_KERNEL);
1801	if (!drbg->outscratchpadbuf) {
1802		drbg_fini_sym_kernel(drbg);
1803		return -ENOMEM;
1804	}
1805	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1806					      alignmask + 1);
1807
1808	sg_init_table(&drbg->sg_in, 1);
1809	sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1810
1811	return alignmask;
1812}
1813
1814static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1815				 const unsigned char *key)
1816{
1817	struct crypto_cipher *tfm =
1818		(struct crypto_cipher *)drbg->priv_data;
1819
1820	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
 
 
1821}
1822
1823static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1824			  const struct drbg_string *in)
1825{
1826	struct crypto_cipher *tfm =
1827		(struct crypto_cipher *)drbg->priv_data;
1828
 
1829	/* there is only component in *in */
1830	BUG_ON(in->len < drbg_blocklen(drbg));
1831	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1832	return 0;
1833}
1834
1835static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1836			      u8 *inbuf, u32 inlen,
1837			      u8 *outbuf, u32 outlen)
1838{
1839	struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1840	u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1841	int ret;
1842
1843	if (inbuf) {
1844		/* Use caller-provided input buffer */
1845		sg_set_buf(sg_in, inbuf, inlen);
1846	} else {
1847		/* Use scratchpad for in-place operation */
1848		inlen = scratchpad_use;
1849		memset(drbg->outscratchpad, 0, scratchpad_use);
1850		sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1851	}
1852
1853	while (outlen) {
1854		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1855
1856		/* Output buffer may not be valid for SGL, use scratchpad */
1857		skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1858					   cryptlen, drbg->V);
1859		ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1860					&drbg->ctr_wait);
1861		if (ret)
1862			goto out;
1863
1864		crypto_init_wait(&drbg->ctr_wait);
1865
1866		memcpy(outbuf, drbg->outscratchpad, cryptlen);
1867		memzero_explicit(drbg->outscratchpad, cryptlen);
1868
1869		outlen -= cryptlen;
1870		outbuf += cryptlen;
1871	}
1872	ret = 0;
1873
1874out:
1875	return ret;
1876}
1877#endif /* CONFIG_CRYPTO_DRBG_CTR */
1878
1879/***************************************************************
1880 * Kernel crypto API interface to register DRBG
1881 ***************************************************************/
1882
1883/*
1884 * Look up the DRBG flags by given kernel crypto API cra_name
1885 * The code uses the drbg_cores definition to do this
1886 *
1887 * @cra_name kernel crypto API cra_name
1888 * @coreref reference to integer which is filled with the pointer to
1889 *  the applicable core
1890 * @pr reference for setting prediction resistance
1891 *
1892 * return: flags
1893 */
1894static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1895					 int *coreref, bool *pr)
1896{
1897	int i = 0;
1898	size_t start = 0;
1899	int len = 0;
1900
1901	*pr = true;
1902	/* disassemble the names */
1903	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1904		start = 10;
1905		*pr = false;
1906	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1907		start = 8;
1908	} else {
1909		return;
1910	}
1911
1912	/* remove the first part */
1913	len = strlen(cra_driver_name) - start;
1914	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1915		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1916			    len)) {
1917			*coreref = i;
1918			return;
1919		}
1920	}
1921}
1922
1923static int drbg_kcapi_init(struct crypto_tfm *tfm)
1924{
1925	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1926
1927	mutex_init(&drbg->drbg_mutex);
1928
1929	return 0;
1930}
1931
1932static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1933{
1934	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1935}
1936
1937/*
1938 * Generate random numbers invoked by the kernel crypto API:
1939 * The API of the kernel crypto API is extended as follows:
1940 *
1941 * src is additional input supplied to the RNG.
1942 * slen is the length of src.
1943 * dst is the output buffer where random data is to be stored.
1944 * dlen is the length of dst.
1945 */
1946static int drbg_kcapi_random(struct crypto_rng *tfm,
1947			     const u8 *src, unsigned int slen,
1948			     u8 *dst, unsigned int dlen)
1949{
1950	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1951	struct drbg_string *addtl = NULL;
1952	struct drbg_string string;
1953
1954	if (slen) {
1955		/* linked list variable is now local to allow modification */
1956		drbg_string_fill(&string, src, slen);
1957		addtl = &string;
1958	}
1959
1960	return drbg_generate_long(drbg, dst, dlen, addtl);
1961}
1962
1963/*
1964 * Seed the DRBG invoked by the kernel crypto API
1965 */
1966static int drbg_kcapi_seed(struct crypto_rng *tfm,
1967			   const u8 *seed, unsigned int slen)
1968{
1969	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1970	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1971	bool pr = false;
1972	struct drbg_string string;
1973	struct drbg_string *seed_string = NULL;
1974	int coreref = 0;
1975
1976	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1977			      &pr);
1978	if (0 < slen) {
1979		drbg_string_fill(&string, seed, slen);
1980		seed_string = &string;
1981	}
1982
1983	return drbg_instantiate(drbg, seed_string, coreref, pr);
1984}
1985
1986/***************************************************************
1987 * Kernel module: code to load the module
1988 ***************************************************************/
1989
1990/*
1991 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1992 * of the error handling.
1993 *
1994 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1995 * as seed source of get_random_bytes does not fail.
1996 *
1997 * Note 2: There is no sensible way of testing the reseed counter
1998 * enforcement, so skip it.
1999 */
2000static inline int __init drbg_healthcheck_sanity(void)
2001{
2002	int len = 0;
2003#define OUTBUFLEN 16
2004	unsigned char buf[OUTBUFLEN];
2005	struct drbg_state *drbg = NULL;
2006	int ret = -EFAULT;
2007	int rc = -EFAULT;
2008	bool pr = false;
2009	int coreref = 0;
2010	struct drbg_string addtl;
2011	size_t max_addtllen, max_request_bytes;
2012
2013	/* only perform test in FIPS mode */
2014	if (!fips_enabled)
2015		return 0;
2016
2017#ifdef CONFIG_CRYPTO_DRBG_CTR
2018	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
2019#elif defined CONFIG_CRYPTO_DRBG_HASH
2020	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
2021#else
2022	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
2023#endif
2024
2025	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2026	if (!drbg)
2027		return -ENOMEM;
2028
2029	mutex_init(&drbg->drbg_mutex);
2030	drbg->core = &drbg_cores[coreref];
2031	drbg->reseed_threshold = drbg_max_requests(drbg);
2032
2033	/*
2034	 * if the following tests fail, it is likely that there is a buffer
2035	 * overflow as buf is much smaller than the requested or provided
2036	 * string lengths -- in case the error handling does not succeed
2037	 * we may get an OOPS. And we want to get an OOPS as this is a
2038	 * grave bug.
2039	 */
2040
 
 
 
 
 
 
2041	max_addtllen = drbg_max_addtl(drbg);
2042	max_request_bytes = drbg_max_request_bytes(drbg);
2043	drbg_string_fill(&addtl, buf, max_addtllen + 1);
2044	/* overflow addtllen with additonal info string */
2045	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2046	BUG_ON(0 < len);
2047	/* overflow max_bits */
2048	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2049	BUG_ON(0 < len);
 
2050
2051	/* overflow max addtllen with personalization string */
2052	ret = drbg_seed(drbg, &addtl, false);
2053	BUG_ON(0 == ret);
2054	/* all tests passed */
2055	rc = 0;
2056
2057	pr_devel("DRBG: Sanity tests for failure code paths successfully "
2058		 "completed\n");
2059
2060	kfree(drbg);
 
 
2061	return rc;
2062}
2063
2064static struct rng_alg drbg_algs[22];
2065
2066/*
2067 * Fill the array drbg_algs used to register the different DRBGs
2068 * with the kernel crypto API. To fill the array, the information
2069 * from drbg_cores[] is used.
2070 */
2071static inline void __init drbg_fill_array(struct rng_alg *alg,
2072					  const struct drbg_core *core, int pr)
2073{
2074	int pos = 0;
2075	static int priority = 200;
2076
2077	memcpy(alg->base.cra_name, "stdrng", 6);
2078	if (pr) {
2079		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2080		pos = 8;
2081	} else {
2082		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2083		pos = 10;
2084	}
2085	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2086	       strlen(core->cra_name));
2087
2088	alg->base.cra_priority = priority;
2089	priority++;
2090	/*
2091	 * If FIPS mode enabled, the selected DRBG shall have the
2092	 * highest cra_priority over other stdrng instances to ensure
2093	 * it is selected.
2094	 */
2095	if (fips_enabled)
2096		alg->base.cra_priority += 200;
2097
2098	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
2099	alg->base.cra_module	= THIS_MODULE;
2100	alg->base.cra_init	= drbg_kcapi_init;
2101	alg->base.cra_exit	= drbg_kcapi_cleanup;
2102	alg->generate		= drbg_kcapi_random;
2103	alg->seed		= drbg_kcapi_seed;
2104	alg->set_ent		= drbg_kcapi_set_entropy;
2105	alg->seedsize		= 0;
2106}
2107
2108static int __init drbg_init(void)
2109{
2110	unsigned int i = 0; /* pointer to drbg_algs */
2111	unsigned int j = 0; /* pointer to drbg_cores */
2112	int ret;
2113
2114	ret = drbg_healthcheck_sanity();
2115	if (ret)
2116		return ret;
2117
2118	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2119		pr_info("DRBG: Cannot register all DRBG types"
2120			"(slots needed: %zu, slots available: %zu)\n",
2121			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2122		return -EFAULT;
2123	}
2124
2125	/*
2126	 * each DRBG definition can be used with PR and without PR, thus
2127	 * we instantiate each DRBG in drbg_cores[] twice.
2128	 *
2129	 * As the order of placing them into the drbg_algs array matters
2130	 * (the later DRBGs receive a higher cra_priority) we register the
2131	 * prediction resistance DRBGs first as the should not be too
2132	 * interesting.
2133	 */
2134	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2135		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2136	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2137		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2138	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2139}
2140
2141static void __exit drbg_exit(void)
2142{
2143	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2144}
2145
2146subsys_initcall(drbg_init);
2147module_exit(drbg_exit);
2148#ifndef CRYPTO_DRBG_HASH_STRING
2149#define CRYPTO_DRBG_HASH_STRING ""
2150#endif
2151#ifndef CRYPTO_DRBG_HMAC_STRING
2152#define CRYPTO_DRBG_HMAC_STRING ""
2153#endif
2154#ifndef CRYPTO_DRBG_CTR_STRING
2155#define CRYPTO_DRBG_CTR_STRING ""
2156#endif
2157MODULE_LICENSE("GPL");
2158MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2159MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2160		   "using following cores: "
2161		   CRYPTO_DRBG_HASH_STRING
2162		   CRYPTO_DRBG_HMAC_STRING
2163		   CRYPTO_DRBG_CTR_STRING);
2164MODULE_ALIAS_CRYPTO("stdrng");
2165MODULE_IMPORT_NS(CRYPTO_INTERNAL);