Linux Audio

Check our new training course

Loading...
v4.6
 
  1#ifndef INT_BLK_MQ_H
  2#define INT_BLK_MQ_H
  3
 
 
 
  4struct blk_mq_tag_set;
  5
 
 
 
 
 
 
 
 
  6struct blk_mq_ctx {
  7	struct {
  8		spinlock_t		lock;
  9		struct list_head	rq_list;
 10	}  ____cacheline_aligned_in_smp;
 11
 12	unsigned int		cpu;
 13	unsigned int		index_hw;
 14
 15	unsigned int		last_tag ____cacheline_aligned_in_smp;
 16
 17	/* incremented at dispatch time */
 18	unsigned long		rq_dispatched[2];
 19	unsigned long		rq_merged;
 20
 21	/* incremented at completion time */
 22	unsigned long		____cacheline_aligned_in_smp rq_completed[2];
 23
 24	struct request_queue	*queue;
 
 25	struct kobject		kobj;
 26} ____cacheline_aligned_in_smp;
 27
 28void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
 29void blk_mq_freeze_queue(struct request_queue *q);
 30void blk_mq_free_queue(struct request_queue *q);
 31int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
 32void blk_mq_wake_waiters(struct request_queue *q);
 
 
 
 
 
 
 
 
 33
 34/*
 35 * CPU hotplug helpers
 36 */
 37struct blk_mq_cpu_notifier;
 38void blk_mq_init_cpu_notifier(struct blk_mq_cpu_notifier *notifier,
 39			      int (*fn)(void *, unsigned long, unsigned int),
 40			      void *data);
 41void blk_mq_register_cpu_notifier(struct blk_mq_cpu_notifier *notifier);
 42void blk_mq_unregister_cpu_notifier(struct blk_mq_cpu_notifier *notifier);
 43void blk_mq_cpu_init(void);
 44void blk_mq_enable_hotplug(void);
 45void blk_mq_disable_hotplug(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46
 47/*
 48 * CPU -> queue mappings
 49 */
 50extern unsigned int *blk_mq_make_queue_map(struct blk_mq_tag_set *set);
 51extern int blk_mq_update_queue_map(unsigned int *map, unsigned int nr_queues,
 52				   const struct cpumask *online_mask);
 53extern int blk_mq_hw_queue_to_node(unsigned int *map, unsigned int);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54
 55/*
 56 * sysfs helpers
 57 */
 
 
 
 58extern int blk_mq_sysfs_register(struct request_queue *q);
 59extern void blk_mq_sysfs_unregister(struct request_queue *q);
 60extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
 61
 62extern void blk_mq_rq_timed_out(struct request *req, bool reserved);
 63
 64void blk_mq_release(struct request_queue *q);
 65
 66/*
 67 * Basic implementation of sparser bitmap, allowing the user to spread
 68 * the bits over more cachelines.
 69 */
 70struct blk_align_bitmap {
 71	unsigned long word;
 72	unsigned long depth;
 73} ____cacheline_aligned_in_smp;
 74
 75static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
 76					   unsigned int cpu)
 77{
 78	return per_cpu_ptr(q->queue_ctx, cpu);
 79}
 80
 81/*
 82 * This assumes per-cpu software queueing queues. They could be per-node
 83 * as well, for instance. For now this is hardcoded as-is. Note that we don't
 84 * care about preemption, since we know the ctx's are persistent. This does
 85 * mean that we can't rely on ctx always matching the currently running CPU.
 86 */
 87static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
 88{
 89	return __blk_mq_get_ctx(q, get_cpu());
 90}
 91
 92static inline void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
 93{
 94	put_cpu();
 95}
 96
 97struct blk_mq_alloc_data {
 98	/* input parameter */
 99	struct request_queue *q;
100	unsigned int flags;
 
 
101
102	/* input & output parameter */
103	struct blk_mq_ctx *ctx;
104	struct blk_mq_hw_ctx *hctx;
105};
106
107static inline void blk_mq_set_alloc_data(struct blk_mq_alloc_data *data,
108		struct request_queue *q, unsigned int flags,
109		struct blk_mq_ctx *ctx, struct blk_mq_hw_ctx *hctx)
110{
111	data->q = q;
112	data->flags = flags;
113	data->ctx = ctx;
114	data->hctx = hctx;
 
 
 
 
 
 
 
 
115}
116
117static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
118{
119	return hctx->nr_ctx && hctx->tags;
120}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
122#endif
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef INT_BLK_MQ_H
  3#define INT_BLK_MQ_H
  4
  5#include "blk-stat.h"
  6#include "blk-mq-tag.h"
  7
  8struct blk_mq_tag_set;
  9
 10struct blk_mq_ctxs {
 11	struct kobject kobj;
 12	struct blk_mq_ctx __percpu	*queue_ctx;
 13};
 14
 15/**
 16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
 17 */
 18struct blk_mq_ctx {
 19	struct {
 20		spinlock_t		lock;
 21		struct list_head	rq_lists[HCTX_MAX_TYPES];
 22	} ____cacheline_aligned_in_smp;
 23
 24	unsigned int		cpu;
 25	unsigned short		index_hw[HCTX_MAX_TYPES];
 26	struct blk_mq_hw_ctx 	*hctxs[HCTX_MAX_TYPES];
 
 27
 28	/* incremented at dispatch time */
 29	unsigned long		rq_dispatched[2];
 30	unsigned long		rq_merged;
 31
 32	/* incremented at completion time */
 33	unsigned long		____cacheline_aligned_in_smp rq_completed[2];
 34
 35	struct request_queue	*queue;
 36	struct blk_mq_ctxs      *ctxs;
 37	struct kobject		kobj;
 38} ____cacheline_aligned_in_smp;
 39
 40void blk_mq_exit_queue(struct request_queue *q);
 
 
 41int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
 42void blk_mq_wake_waiters(struct request_queue *q);
 43bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
 44			     unsigned int);
 45void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 46				bool kick_requeue_list);
 47void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
 48struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
 49					struct blk_mq_ctx *start);
 50void blk_mq_put_rq_ref(struct request *rq);
 51
 52/*
 53 * Internal helpers for allocating/freeing the request map
 54 */
 55void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
 56		     unsigned int hctx_idx);
 57void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags);
 58struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
 59					unsigned int hctx_idx,
 60					unsigned int nr_tags,
 61					unsigned int reserved_tags,
 62					unsigned int flags);
 63int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
 64		     unsigned int hctx_idx, unsigned int depth);
 65
 66/*
 67 * Internal helpers for request insertion into sw queues
 68 */
 69void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
 70				bool at_head);
 71void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
 72				  bool run_queue);
 73void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
 74				struct list_head *list);
 75
 76/* Used by blk_insert_cloned_request() to issue request directly */
 77blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
 78void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
 79				    struct list_head *list);
 80
 81/*
 82 * CPU -> queue mappings
 83 */
 84extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
 85
 86/*
 87 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
 88 * @q: request queue
 89 * @type: the hctx type index
 90 * @cpu: CPU
 91 */
 92static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
 93							  enum hctx_type type,
 94							  unsigned int cpu)
 95{
 96	return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
 97}
 98
 99/*
100 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
101 * @q: request queue
102 * @flags: request command flags
103 * @ctx: software queue cpu ctx
104 */
105static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
106						     unsigned int flags,
107						     struct blk_mq_ctx *ctx)
108{
109	enum hctx_type type = HCTX_TYPE_DEFAULT;
110
111	/*
112	 * The caller ensure that if REQ_HIPRI, poll must be enabled.
113	 */
114	if (flags & REQ_HIPRI)
115		type = HCTX_TYPE_POLL;
116	else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
117		type = HCTX_TYPE_READ;
118	
119	return ctx->hctxs[type];
120}
121
122/*
123 * sysfs helpers
124 */
125extern void blk_mq_sysfs_init(struct request_queue *q);
126extern void blk_mq_sysfs_deinit(struct request_queue *q);
127extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
128extern int blk_mq_sysfs_register(struct request_queue *q);
129extern void blk_mq_sysfs_unregister(struct request_queue *q);
130extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
131
 
 
132void blk_mq_release(struct request_queue *q);
133
 
 
 
 
 
 
 
 
 
134static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
135					   unsigned int cpu)
136{
137	return per_cpu_ptr(q->queue_ctx, cpu);
138}
139
140/*
141 * This assumes per-cpu software queueing queues. They could be per-node
142 * as well, for instance. For now this is hardcoded as-is. Note that we don't
143 * care about preemption, since we know the ctx's are persistent. This does
144 * mean that we can't rely on ctx always matching the currently running CPU.
145 */
146static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
147{
148	return __blk_mq_get_ctx(q, raw_smp_processor_id());
 
 
 
 
 
149}
150
151struct blk_mq_alloc_data {
152	/* input parameter */
153	struct request_queue *q;
154	blk_mq_req_flags_t flags;
155	unsigned int shallow_depth;
156	unsigned int cmd_flags;
157
158	/* input & output parameter */
159	struct blk_mq_ctx *ctx;
160	struct blk_mq_hw_ctx *hctx;
161};
162
163static inline bool blk_mq_is_sbitmap_shared(unsigned int flags)
164{
165	return flags & BLK_MQ_F_TAG_HCTX_SHARED;
166}
167
168static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
169{
170	if (data->q->elevator)
171		return data->hctx->sched_tags;
172
173	return data->hctx->tags;
174}
175
176static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
177{
178	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
179}
180
181static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
182{
183	return hctx->nr_ctx && hctx->tags;
184}
185
186unsigned int blk_mq_in_flight(struct request_queue *q,
187		struct block_device *part);
188void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
189		unsigned int inflight[2]);
190
191static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
192					      int budget_token)
193{
194	if (q->mq_ops->put_budget)
195		q->mq_ops->put_budget(q, budget_token);
196}
197
198static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
199{
200	if (q->mq_ops->get_budget)
201		return q->mq_ops->get_budget(q);
202	return 0;
203}
204
205static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
206{
207	if (token < 0)
208		return;
209
210	if (rq->q->mq_ops->set_rq_budget_token)
211		rq->q->mq_ops->set_rq_budget_token(rq, token);
212}
213
214static inline int blk_mq_get_rq_budget_token(struct request *rq)
215{
216	if (rq->q->mq_ops->get_rq_budget_token)
217		return rq->q->mq_ops->get_rq_budget_token(rq);
218	return -1;
219}
220
221static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
222{
223	if (blk_mq_is_sbitmap_shared(hctx->flags))
224		atomic_inc(&hctx->queue->nr_active_requests_shared_sbitmap);
225	else
226		atomic_inc(&hctx->nr_active);
227}
228
229static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
230{
231	if (blk_mq_is_sbitmap_shared(hctx->flags))
232		atomic_dec(&hctx->queue->nr_active_requests_shared_sbitmap);
233	else
234		atomic_dec(&hctx->nr_active);
235}
236
237static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
238{
239	if (blk_mq_is_sbitmap_shared(hctx->flags))
240		return atomic_read(&hctx->queue->nr_active_requests_shared_sbitmap);
241	return atomic_read(&hctx->nr_active);
242}
243static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
244					   struct request *rq)
245{
246	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
247	rq->tag = BLK_MQ_NO_TAG;
248
249	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
250		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
251		__blk_mq_dec_active_requests(hctx);
252	}
253}
254
255static inline void blk_mq_put_driver_tag(struct request *rq)
256{
257	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
258		return;
259
260	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
261}
262
263bool blk_mq_get_driver_tag(struct request *rq);
264
265static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
266{
267	int cpu;
268
269	for_each_possible_cpu(cpu)
270		qmap->mq_map[cpu] = 0;
271}
272
273/*
274 * blk_mq_plug() - Get caller context plug
275 * @q: request queue
276 * @bio : the bio being submitted by the caller context
277 *
278 * Plugging, by design, may delay the insertion of BIOs into the elevator in
279 * order to increase BIO merging opportunities. This however can cause BIO
280 * insertion order to change from the order in which submit_bio() is being
281 * executed in the case of multiple contexts concurrently issuing BIOs to a
282 * device, even if these context are synchronized to tightly control BIO issuing
283 * order. While this is not a problem with regular block devices, this ordering
284 * change can cause write BIO failures with zoned block devices as these
285 * require sequential write patterns to zones. Prevent this from happening by
286 * ignoring the plug state of a BIO issuing context if the target request queue
287 * is for a zoned block device and the BIO to plug is a write operation.
288 *
289 * Return current->plug if the bio can be plugged and NULL otherwise
290 */
291static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
292					   struct bio *bio)
293{
294	/*
295	 * For regular block devices or read operations, use the context plug
296	 * which may be NULL if blk_start_plug() was not executed.
297	 */
298	if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
299		return current->plug;
300
301	/* Zoned block device write operation case: do not plug the BIO */
302	return NULL;
303}
304
305/* Free all requests on the list */
306static inline void blk_mq_free_requests(struct list_head *list)
307{
308	while (!list_empty(list)) {
309		struct request *rq = list_entry_rq(list->next);
310
311		list_del_init(&rq->queuelist);
312		blk_mq_free_request(rq);
313	}
314}
315
316/*
317 * For shared tag users, we track the number of currently active users
318 * and attempt to provide a fair share of the tag depth for each of them.
319 */
320static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
321				  struct sbitmap_queue *bt)
322{
323	unsigned int depth, users;
324
325	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
326		return true;
327
328	/*
329	 * Don't try dividing an ant
330	 */
331	if (bt->sb.depth == 1)
332		return true;
333
334	if (blk_mq_is_sbitmap_shared(hctx->flags)) {
335		struct request_queue *q = hctx->queue;
336		struct blk_mq_tag_set *set = q->tag_set;
337
338		if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
339			return true;
340		users = atomic_read(&set->active_queues_shared_sbitmap);
341	} else {
342		if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
343			return true;
344		users = atomic_read(&hctx->tags->active_queues);
345	}
346
347	if (!users)
348		return true;
349
350	/*
351	 * Allow at least some tags
352	 */
353	depth = max((bt->sb.depth + users - 1) / users, 4U);
354	return __blk_mq_active_requests(hctx) < depth;
355}
356
357
358#endif