Loading...
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include "calling.h"
26#include <asm/asm-offsets.h>
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
31#include <asm/page_types.h>
32#include <asm/irqflags.h>
33#include <asm/paravirt.h>
34#include <asm/percpu.h>
35#include <asm/asm.h>
36#include <asm/smap.h>
37#include <asm/pgtable_types.h>
38#include <linux/err.h>
39
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
45
46.code64
47.section .entry.text, "ax"
48
49#ifdef CONFIG_PARAVIRT
50ENTRY(native_usergs_sysret64)
51 swapgs
52 sysretq
53ENDPROC(native_usergs_sysret64)
54#endif /* CONFIG_PARAVIRT */
55
56.macro TRACE_IRQS_IRETQ
57#ifdef CONFIG_TRACE_IRQFLAGS
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
79 call debug_stack_set_zero
80 TRACE_IRQS_OFF
81 call debug_stack_reset
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
85 call debug_stack_set_zero
86 TRACE_IRQS_ON
87 call debug_stack_reset
88.endm
89
90.macro TRACE_IRQS_IRETQ_DEBUG
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
101#endif
102
103/*
104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
105 *
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
123 * rax system call number
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
126 * rdi arg0
127 * rsi arg1
128 * rdx arg2
129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
130 * r8 arg4
131 * r9 arg5
132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
133 *
134 * Only called from user space.
135 *
136 * When user can change pt_regs->foo always force IRET. That is because
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
139 */
140
141ENTRY(entry_SYSCALL_64)
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
153GLOBAL(entry_SYSCALL_64_after_swapgs)
154
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
157
158 TRACE_IRQS_OFF
159
160 /* Construct struct pt_regs on stack */
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
185entry_SYSCALL_64_fastpath:
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
193#if __SYSCALL_MASK == ~0
194 cmpq $__NR_syscall_max, %rax
195#else
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
198#endif
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
206 */
207 call *sys_call_table(, %rax, 8)
208.Lentry_SYSCALL_64_after_fastpath_call:
209
210 movq %rax, RAX(%rsp)
2111:
212
213 /*
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
217 */
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
221 jnz 1f
222
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
228 movq RSP(%rsp), %rsp
229 USERGS_SYSRET64
230
2311:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
239 SAVE_EXTRA_REGS
240 movq %rsp, %rdi
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
243
244entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
246 SAVE_EXTRA_REGS
247 movq %rsp, %rdi
248 call do_syscall_64 /* returns with IRQs disabled */
249
250return_from_SYSCALL_64:
251 RESTORE_EXTRA_REGS
252 TRACE_IRQS_IRETQ /* we're about to change IF */
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
266 * the kernel, since userspace controls RSP.
267 *
268 * If width of "canonical tail" ever becomes variable, this will need
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
274
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
282
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
285
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
289
290 /*
291 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
292 * restoring TF results in a trap from userspace immediately after
293 * SYSRET. This would cause an infinite loop whenever #DB happens
294 * with register state that satisfies the opportunistic SYSRET
295 * conditions. For example, single-stepping this user code:
296 *
297 * movq $stuck_here, %rcx
298 * pushfq
299 * popq %r11
300 * stuck_here:
301 *
302 * would never get past 'stuck_here'.
303 */
304 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
305 jnz opportunistic_sysret_failed
306
307 /* nothing to check for RSP */
308
309 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
310 jne opportunistic_sysret_failed
311
312 /*
313 * We win! This label is here just for ease of understanding
314 * perf profiles. Nothing jumps here.
315 */
316syscall_return_via_sysret:
317 /* rcx and r11 are already restored (see code above) */
318 RESTORE_C_REGS_EXCEPT_RCX_R11
319 movq RSP(%rsp), %rsp
320 USERGS_SYSRET64
321
322opportunistic_sysret_failed:
323 SWAPGS
324 jmp restore_c_regs_and_iret
325END(entry_SYSCALL_64)
326
327ENTRY(stub_ptregs_64)
328 /*
329 * Syscalls marked as needing ptregs land here.
330 * If we are on the fast path, we need to save the extra regs,
331 * which we achieve by trying again on the slow path. If we are on
332 * the slow path, the extra regs are already saved.
333 *
334 * RAX stores a pointer to the C function implementing the syscall.
335 * IRQs are on.
336 */
337 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
338 jne 1f
339
340 /*
341 * Called from fast path -- disable IRQs again, pop return address
342 * and jump to slow path
343 */
344 DISABLE_INTERRUPTS(CLBR_NONE)
345 TRACE_IRQS_OFF
346 popq %rax
347 jmp entry_SYSCALL64_slow_path
348
3491:
350 /* Called from C */
351 jmp *%rax /* called from C */
352END(stub_ptregs_64)
353
354.macro ptregs_stub func
355ENTRY(ptregs_\func)
356 leaq \func(%rip), %rax
357 jmp stub_ptregs_64
358END(ptregs_\func)
359.endm
360
361/* Instantiate ptregs_stub for each ptregs-using syscall */
362#define __SYSCALL_64_QUAL_(sym)
363#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
364#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
365#include <asm/syscalls_64.h>
366
367/*
368 * A newly forked process directly context switches into this address.
369 *
370 * rdi: prev task we switched from
371 */
372ENTRY(ret_from_fork)
373 LOCK ; btr $TIF_FORK, TI_flags(%r8)
374
375 pushq $0x0002
376 popfq /* reset kernel eflags */
377
378 call schedule_tail /* rdi: 'prev' task parameter */
379
380 testb $3, CS(%rsp) /* from kernel_thread? */
381 jnz 1f
382
383 /*
384 * We came from kernel_thread. This code path is quite twisted, and
385 * someone should clean it up.
386 *
387 * copy_thread_tls stashes the function pointer in RBX and the
388 * parameter to be passed in RBP. The called function is permitted
389 * to call do_execve and thereby jump to user mode.
390 */
391 movq RBP(%rsp), %rdi
392 call *RBX(%rsp)
393 movl $0, RAX(%rsp)
394
395 /*
396 * Fall through as though we're exiting a syscall. This makes a
397 * twisted sort of sense if we just called do_execve.
398 */
399
4001:
401 movq %rsp, %rdi
402 call syscall_return_slowpath /* returns with IRQs disabled */
403 TRACE_IRQS_ON /* user mode is traced as IRQS on */
404 SWAPGS
405 jmp restore_regs_and_iret
406END(ret_from_fork)
407
408/*
409 * Build the entry stubs with some assembler magic.
410 * We pack 1 stub into every 8-byte block.
411 */
412 .align 8
413ENTRY(irq_entries_start)
414 vector=FIRST_EXTERNAL_VECTOR
415 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
416 pushq $(~vector+0x80) /* Note: always in signed byte range */
417 vector=vector+1
418 jmp common_interrupt
419 .align 8
420 .endr
421END(irq_entries_start)
422
423/*
424 * Interrupt entry/exit.
425 *
426 * Interrupt entry points save only callee clobbered registers in fast path.
427 *
428 * Entry runs with interrupts off.
429 */
430
431/* 0(%rsp): ~(interrupt number) */
432 .macro interrupt func
433 cld
434 ALLOC_PT_GPREGS_ON_STACK
435 SAVE_C_REGS
436 SAVE_EXTRA_REGS
437
438 testb $3, CS(%rsp)
439 jz 1f
440
441 /*
442 * IRQ from user mode. Switch to kernel gsbase and inform context
443 * tracking that we're in kernel mode.
444 */
445 SWAPGS
446
447 /*
448 * We need to tell lockdep that IRQs are off. We can't do this until
449 * we fix gsbase, and we should do it before enter_from_user_mode
450 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
451 * the simplest way to handle it is to just call it twice if
452 * we enter from user mode. There's no reason to optimize this since
453 * TRACE_IRQS_OFF is a no-op if lockdep is off.
454 */
455 TRACE_IRQS_OFF
456
457 CALL_enter_from_user_mode
458
4591:
460 /*
461 * Save previous stack pointer, optionally switch to interrupt stack.
462 * irq_count is used to check if a CPU is already on an interrupt stack
463 * or not. While this is essentially redundant with preempt_count it is
464 * a little cheaper to use a separate counter in the PDA (short of
465 * moving irq_enter into assembly, which would be too much work)
466 */
467 movq %rsp, %rdi
468 incl PER_CPU_VAR(irq_count)
469 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
470 pushq %rdi
471 /* We entered an interrupt context - irqs are off: */
472 TRACE_IRQS_OFF
473
474 call \func /* rdi points to pt_regs */
475 .endm
476
477 /*
478 * The interrupt stubs push (~vector+0x80) onto the stack and
479 * then jump to common_interrupt.
480 */
481 .p2align CONFIG_X86_L1_CACHE_SHIFT
482common_interrupt:
483 ASM_CLAC
484 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
485 interrupt do_IRQ
486 /* 0(%rsp): old RSP */
487ret_from_intr:
488 DISABLE_INTERRUPTS(CLBR_NONE)
489 TRACE_IRQS_OFF
490 decl PER_CPU_VAR(irq_count)
491
492 /* Restore saved previous stack */
493 popq %rsp
494
495 testb $3, CS(%rsp)
496 jz retint_kernel
497
498 /* Interrupt came from user space */
499GLOBAL(retint_user)
500 mov %rsp,%rdi
501 call prepare_exit_to_usermode
502 TRACE_IRQS_IRETQ
503 SWAPGS
504 jmp restore_regs_and_iret
505
506/* Returning to kernel space */
507retint_kernel:
508#ifdef CONFIG_PREEMPT
509 /* Interrupts are off */
510 /* Check if we need preemption */
511 bt $9, EFLAGS(%rsp) /* were interrupts off? */
512 jnc 1f
5130: cmpl $0, PER_CPU_VAR(__preempt_count)
514 jnz 1f
515 call preempt_schedule_irq
516 jmp 0b
5171:
518#endif
519 /*
520 * The iretq could re-enable interrupts:
521 */
522 TRACE_IRQS_IRETQ
523
524/*
525 * At this label, code paths which return to kernel and to user,
526 * which come from interrupts/exception and from syscalls, merge.
527 */
528GLOBAL(restore_regs_and_iret)
529 RESTORE_EXTRA_REGS
530restore_c_regs_and_iret:
531 RESTORE_C_REGS
532 REMOVE_PT_GPREGS_FROM_STACK 8
533 INTERRUPT_RETURN
534
535ENTRY(native_iret)
536 /*
537 * Are we returning to a stack segment from the LDT? Note: in
538 * 64-bit mode SS:RSP on the exception stack is always valid.
539 */
540#ifdef CONFIG_X86_ESPFIX64
541 testb $4, (SS-RIP)(%rsp)
542 jnz native_irq_return_ldt
543#endif
544
545.global native_irq_return_iret
546native_irq_return_iret:
547 /*
548 * This may fault. Non-paranoid faults on return to userspace are
549 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
550 * Double-faults due to espfix64 are handled in do_double_fault.
551 * Other faults here are fatal.
552 */
553 iretq
554
555#ifdef CONFIG_X86_ESPFIX64
556native_irq_return_ldt:
557 pushq %rax
558 pushq %rdi
559 SWAPGS
560 movq PER_CPU_VAR(espfix_waddr), %rdi
561 movq %rax, (0*8)(%rdi) /* RAX */
562 movq (2*8)(%rsp), %rax /* RIP */
563 movq %rax, (1*8)(%rdi)
564 movq (3*8)(%rsp), %rax /* CS */
565 movq %rax, (2*8)(%rdi)
566 movq (4*8)(%rsp), %rax /* RFLAGS */
567 movq %rax, (3*8)(%rdi)
568 movq (6*8)(%rsp), %rax /* SS */
569 movq %rax, (5*8)(%rdi)
570 movq (5*8)(%rsp), %rax /* RSP */
571 movq %rax, (4*8)(%rdi)
572 andl $0xffff0000, %eax
573 popq %rdi
574 orq PER_CPU_VAR(espfix_stack), %rax
575 SWAPGS
576 movq %rax, %rsp
577 popq %rax
578 jmp native_irq_return_iret
579#endif
580END(common_interrupt)
581
582/*
583 * APIC interrupts.
584 */
585.macro apicinterrupt3 num sym do_sym
586ENTRY(\sym)
587 ASM_CLAC
588 pushq $~(\num)
589.Lcommon_\sym:
590 interrupt \do_sym
591 jmp ret_from_intr
592END(\sym)
593.endm
594
595#ifdef CONFIG_TRACING
596#define trace(sym) trace_##sym
597#define smp_trace(sym) smp_trace_##sym
598
599.macro trace_apicinterrupt num sym
600apicinterrupt3 \num trace(\sym) smp_trace(\sym)
601.endm
602#else
603.macro trace_apicinterrupt num sym do_sym
604.endm
605#endif
606
607.macro apicinterrupt num sym do_sym
608apicinterrupt3 \num \sym \do_sym
609trace_apicinterrupt \num \sym
610.endm
611
612#ifdef CONFIG_SMP
613apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
614apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
615#endif
616
617#ifdef CONFIG_X86_UV
618apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
619#endif
620
621apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
622apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
623
624#ifdef CONFIG_HAVE_KVM
625apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
626apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
627#endif
628
629#ifdef CONFIG_X86_MCE_THRESHOLD
630apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
631#endif
632
633#ifdef CONFIG_X86_MCE_AMD
634apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
635#endif
636
637#ifdef CONFIG_X86_THERMAL_VECTOR
638apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
639#endif
640
641#ifdef CONFIG_SMP
642apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
643apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
644apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
645#endif
646
647apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
648apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
649
650#ifdef CONFIG_IRQ_WORK
651apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
652#endif
653
654/*
655 * Exception entry points.
656 */
657#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
658
659.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
660ENTRY(\sym)
661 /* Sanity check */
662 .if \shift_ist != -1 && \paranoid == 0
663 .error "using shift_ist requires paranoid=1"
664 .endif
665
666 ASM_CLAC
667 PARAVIRT_ADJUST_EXCEPTION_FRAME
668
669 .ifeq \has_error_code
670 pushq $-1 /* ORIG_RAX: no syscall to restart */
671 .endif
672
673 ALLOC_PT_GPREGS_ON_STACK
674
675 .if \paranoid
676 .if \paranoid == 1
677 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
678 jnz 1f
679 .endif
680 call paranoid_entry
681 .else
682 call error_entry
683 .endif
684 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
685
686 .if \paranoid
687 .if \shift_ist != -1
688 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
689 .else
690 TRACE_IRQS_OFF
691 .endif
692 .endif
693
694 movq %rsp, %rdi /* pt_regs pointer */
695
696 .if \has_error_code
697 movq ORIG_RAX(%rsp), %rsi /* get error code */
698 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
699 .else
700 xorl %esi, %esi /* no error code */
701 .endif
702
703 .if \shift_ist != -1
704 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
705 .endif
706
707 call \do_sym
708
709 .if \shift_ist != -1
710 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
711 .endif
712
713 /* these procedures expect "no swapgs" flag in ebx */
714 .if \paranoid
715 jmp paranoid_exit
716 .else
717 jmp error_exit
718 .endif
719
720 .if \paranoid == 1
721 /*
722 * Paranoid entry from userspace. Switch stacks and treat it
723 * as a normal entry. This means that paranoid handlers
724 * run in real process context if user_mode(regs).
725 */
7261:
727 call error_entry
728
729
730 movq %rsp, %rdi /* pt_regs pointer */
731 call sync_regs
732 movq %rax, %rsp /* switch stack */
733
734 movq %rsp, %rdi /* pt_regs pointer */
735
736 .if \has_error_code
737 movq ORIG_RAX(%rsp), %rsi /* get error code */
738 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
739 .else
740 xorl %esi, %esi /* no error code */
741 .endif
742
743 call \do_sym
744
745 jmp error_exit /* %ebx: no swapgs flag */
746 .endif
747END(\sym)
748.endm
749
750#ifdef CONFIG_TRACING
751.macro trace_idtentry sym do_sym has_error_code:req
752idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
753idtentry \sym \do_sym has_error_code=\has_error_code
754.endm
755#else
756.macro trace_idtentry sym do_sym has_error_code:req
757idtentry \sym \do_sym has_error_code=\has_error_code
758.endm
759#endif
760
761idtentry divide_error do_divide_error has_error_code=0
762idtentry overflow do_overflow has_error_code=0
763idtentry bounds do_bounds has_error_code=0
764idtentry invalid_op do_invalid_op has_error_code=0
765idtentry device_not_available do_device_not_available has_error_code=0
766idtentry double_fault do_double_fault has_error_code=1 paranoid=2
767idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
768idtentry invalid_TSS do_invalid_TSS has_error_code=1
769idtentry segment_not_present do_segment_not_present has_error_code=1
770idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
771idtentry coprocessor_error do_coprocessor_error has_error_code=0
772idtentry alignment_check do_alignment_check has_error_code=1
773idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
774
775
776 /*
777 * Reload gs selector with exception handling
778 * edi: new selector
779 */
780ENTRY(native_load_gs_index)
781 pushfq
782 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
783 SWAPGS
784gs_change:
785 movl %edi, %gs
7862: mfence /* workaround */
787 SWAPGS
788 popfq
789 ret
790END(native_load_gs_index)
791
792 _ASM_EXTABLE(gs_change, bad_gs)
793 .section .fixup, "ax"
794 /* running with kernelgs */
795bad_gs:
796 SWAPGS /* switch back to user gs */
797 xorl %eax, %eax
798 movl %eax, %gs
799 jmp 2b
800 .previous
801
802/* Call softirq on interrupt stack. Interrupts are off. */
803ENTRY(do_softirq_own_stack)
804 pushq %rbp
805 mov %rsp, %rbp
806 incl PER_CPU_VAR(irq_count)
807 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
808 push %rbp /* frame pointer backlink */
809 call __do_softirq
810 leaveq
811 decl PER_CPU_VAR(irq_count)
812 ret
813END(do_softirq_own_stack)
814
815#ifdef CONFIG_XEN
816idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
817
818/*
819 * A note on the "critical region" in our callback handler.
820 * We want to avoid stacking callback handlers due to events occurring
821 * during handling of the last event. To do this, we keep events disabled
822 * until we've done all processing. HOWEVER, we must enable events before
823 * popping the stack frame (can't be done atomically) and so it would still
824 * be possible to get enough handler activations to overflow the stack.
825 * Although unlikely, bugs of that kind are hard to track down, so we'd
826 * like to avoid the possibility.
827 * So, on entry to the handler we detect whether we interrupted an
828 * existing activation in its critical region -- if so, we pop the current
829 * activation and restart the handler using the previous one.
830 */
831ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
832
833/*
834 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
835 * see the correct pointer to the pt_regs
836 */
837 movq %rdi, %rsp /* we don't return, adjust the stack frame */
83811: incl PER_CPU_VAR(irq_count)
839 movq %rsp, %rbp
840 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
841 pushq %rbp /* frame pointer backlink */
842 call xen_evtchn_do_upcall
843 popq %rsp
844 decl PER_CPU_VAR(irq_count)
845#ifndef CONFIG_PREEMPT
846 call xen_maybe_preempt_hcall
847#endif
848 jmp error_exit
849END(xen_do_hypervisor_callback)
850
851/*
852 * Hypervisor uses this for application faults while it executes.
853 * We get here for two reasons:
854 * 1. Fault while reloading DS, ES, FS or GS
855 * 2. Fault while executing IRET
856 * Category 1 we do not need to fix up as Xen has already reloaded all segment
857 * registers that could be reloaded and zeroed the others.
858 * Category 2 we fix up by killing the current process. We cannot use the
859 * normal Linux return path in this case because if we use the IRET hypercall
860 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
861 * We distinguish between categories by comparing each saved segment register
862 * with its current contents: any discrepancy means we in category 1.
863 */
864ENTRY(xen_failsafe_callback)
865 movl %ds, %ecx
866 cmpw %cx, 0x10(%rsp)
867 jne 1f
868 movl %es, %ecx
869 cmpw %cx, 0x18(%rsp)
870 jne 1f
871 movl %fs, %ecx
872 cmpw %cx, 0x20(%rsp)
873 jne 1f
874 movl %gs, %ecx
875 cmpw %cx, 0x28(%rsp)
876 jne 1f
877 /* All segments match their saved values => Category 2 (Bad IRET). */
878 movq (%rsp), %rcx
879 movq 8(%rsp), %r11
880 addq $0x30, %rsp
881 pushq $0 /* RIP */
882 pushq %r11
883 pushq %rcx
884 jmp general_protection
8851: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
886 movq (%rsp), %rcx
887 movq 8(%rsp), %r11
888 addq $0x30, %rsp
889 pushq $-1 /* orig_ax = -1 => not a system call */
890 ALLOC_PT_GPREGS_ON_STACK
891 SAVE_C_REGS
892 SAVE_EXTRA_REGS
893 jmp error_exit
894END(xen_failsafe_callback)
895
896apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
897 xen_hvm_callback_vector xen_evtchn_do_upcall
898
899#endif /* CONFIG_XEN */
900
901#if IS_ENABLED(CONFIG_HYPERV)
902apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
903 hyperv_callback_vector hyperv_vector_handler
904#endif /* CONFIG_HYPERV */
905
906idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
907idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
908idtentry stack_segment do_stack_segment has_error_code=1
909
910#ifdef CONFIG_XEN
911idtentry xen_debug do_debug has_error_code=0
912idtentry xen_int3 do_int3 has_error_code=0
913idtentry xen_stack_segment do_stack_segment has_error_code=1
914#endif
915
916idtentry general_protection do_general_protection has_error_code=1
917trace_idtentry page_fault do_page_fault has_error_code=1
918
919#ifdef CONFIG_KVM_GUEST
920idtentry async_page_fault do_async_page_fault has_error_code=1
921#endif
922
923#ifdef CONFIG_X86_MCE
924idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
925#endif
926
927/*
928 * Save all registers in pt_regs, and switch gs if needed.
929 * Use slow, but surefire "are we in kernel?" check.
930 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
931 */
932ENTRY(paranoid_entry)
933 cld
934 SAVE_C_REGS 8
935 SAVE_EXTRA_REGS 8
936 movl $1, %ebx
937 movl $MSR_GS_BASE, %ecx
938 rdmsr
939 testl %edx, %edx
940 js 1f /* negative -> in kernel */
941 SWAPGS
942 xorl %ebx, %ebx
9431: ret
944END(paranoid_entry)
945
946/*
947 * "Paranoid" exit path from exception stack. This is invoked
948 * only on return from non-NMI IST interrupts that came
949 * from kernel space.
950 *
951 * We may be returning to very strange contexts (e.g. very early
952 * in syscall entry), so checking for preemption here would
953 * be complicated. Fortunately, we there's no good reason
954 * to try to handle preemption here.
955 *
956 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
957 */
958ENTRY(paranoid_exit)
959 DISABLE_INTERRUPTS(CLBR_NONE)
960 TRACE_IRQS_OFF_DEBUG
961 testl %ebx, %ebx /* swapgs needed? */
962 jnz paranoid_exit_no_swapgs
963 TRACE_IRQS_IRETQ
964 SWAPGS_UNSAFE_STACK
965 jmp paranoid_exit_restore
966paranoid_exit_no_swapgs:
967 TRACE_IRQS_IRETQ_DEBUG
968paranoid_exit_restore:
969 RESTORE_EXTRA_REGS
970 RESTORE_C_REGS
971 REMOVE_PT_GPREGS_FROM_STACK 8
972 INTERRUPT_RETURN
973END(paranoid_exit)
974
975/*
976 * Save all registers in pt_regs, and switch gs if needed.
977 * Return: EBX=0: came from user mode; EBX=1: otherwise
978 */
979ENTRY(error_entry)
980 cld
981 SAVE_C_REGS 8
982 SAVE_EXTRA_REGS 8
983 xorl %ebx, %ebx
984 testb $3, CS+8(%rsp)
985 jz .Lerror_kernelspace
986
987.Lerror_entry_from_usermode_swapgs:
988 /*
989 * We entered from user mode or we're pretending to have entered
990 * from user mode due to an IRET fault.
991 */
992 SWAPGS
993
994.Lerror_entry_from_usermode_after_swapgs:
995 /*
996 * We need to tell lockdep that IRQs are off. We can't do this until
997 * we fix gsbase, and we should do it before enter_from_user_mode
998 * (which can take locks).
999 */
1000 TRACE_IRQS_OFF
1001 CALL_enter_from_user_mode
1002 ret
1003
1004.Lerror_entry_done:
1005 TRACE_IRQS_OFF
1006 ret
1007
1008 /*
1009 * There are two places in the kernel that can potentially fault with
1010 * usergs. Handle them here. B stepping K8s sometimes report a
1011 * truncated RIP for IRET exceptions returning to compat mode. Check
1012 * for these here too.
1013 */
1014.Lerror_kernelspace:
1015 incl %ebx
1016 leaq native_irq_return_iret(%rip), %rcx
1017 cmpq %rcx, RIP+8(%rsp)
1018 je .Lerror_bad_iret
1019 movl %ecx, %eax /* zero extend */
1020 cmpq %rax, RIP+8(%rsp)
1021 je .Lbstep_iret
1022 cmpq $gs_change, RIP+8(%rsp)
1023 jne .Lerror_entry_done
1024
1025 /*
1026 * hack: gs_change can fail with user gsbase. If this happens, fix up
1027 * gsbase and proceed. We'll fix up the exception and land in
1028 * gs_change's error handler with kernel gsbase.
1029 */
1030 jmp .Lerror_entry_from_usermode_swapgs
1031
1032.Lbstep_iret:
1033 /* Fix truncated RIP */
1034 movq %rcx, RIP+8(%rsp)
1035 /* fall through */
1036
1037.Lerror_bad_iret:
1038 /*
1039 * We came from an IRET to user mode, so we have user gsbase.
1040 * Switch to kernel gsbase:
1041 */
1042 SWAPGS
1043
1044 /*
1045 * Pretend that the exception came from user mode: set up pt_regs
1046 * as if we faulted immediately after IRET and clear EBX so that
1047 * error_exit knows that we will be returning to user mode.
1048 */
1049 mov %rsp, %rdi
1050 call fixup_bad_iret
1051 mov %rax, %rsp
1052 decl %ebx
1053 jmp .Lerror_entry_from_usermode_after_swapgs
1054END(error_entry)
1055
1056
1057/*
1058 * On entry, EBS is a "return to kernel mode" flag:
1059 * 1: already in kernel mode, don't need SWAPGS
1060 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1061 */
1062ENTRY(error_exit)
1063 movl %ebx, %eax
1064 DISABLE_INTERRUPTS(CLBR_NONE)
1065 TRACE_IRQS_OFF
1066 testl %eax, %eax
1067 jnz retint_kernel
1068 jmp retint_user
1069END(error_exit)
1070
1071/* Runs on exception stack */
1072ENTRY(nmi)
1073 /*
1074 * Fix up the exception frame if we're on Xen.
1075 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1076 * one value to the stack on native, so it may clobber the rdx
1077 * scratch slot, but it won't clobber any of the important
1078 * slots past it.
1079 *
1080 * Xen is a different story, because the Xen frame itself overlaps
1081 * the "NMI executing" variable.
1082 */
1083 PARAVIRT_ADJUST_EXCEPTION_FRAME
1084
1085 /*
1086 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1087 * the iretq it performs will take us out of NMI context.
1088 * This means that we can have nested NMIs where the next
1089 * NMI is using the top of the stack of the previous NMI. We
1090 * can't let it execute because the nested NMI will corrupt the
1091 * stack of the previous NMI. NMI handlers are not re-entrant
1092 * anyway.
1093 *
1094 * To handle this case we do the following:
1095 * Check the a special location on the stack that contains
1096 * a variable that is set when NMIs are executing.
1097 * The interrupted task's stack is also checked to see if it
1098 * is an NMI stack.
1099 * If the variable is not set and the stack is not the NMI
1100 * stack then:
1101 * o Set the special variable on the stack
1102 * o Copy the interrupt frame into an "outermost" location on the
1103 * stack
1104 * o Copy the interrupt frame into an "iret" location on the stack
1105 * o Continue processing the NMI
1106 * If the variable is set or the previous stack is the NMI stack:
1107 * o Modify the "iret" location to jump to the repeat_nmi
1108 * o return back to the first NMI
1109 *
1110 * Now on exit of the first NMI, we first clear the stack variable
1111 * The NMI stack will tell any nested NMIs at that point that it is
1112 * nested. Then we pop the stack normally with iret, and if there was
1113 * a nested NMI that updated the copy interrupt stack frame, a
1114 * jump will be made to the repeat_nmi code that will handle the second
1115 * NMI.
1116 *
1117 * However, espfix prevents us from directly returning to userspace
1118 * with a single IRET instruction. Similarly, IRET to user mode
1119 * can fault. We therefore handle NMIs from user space like
1120 * other IST entries.
1121 */
1122
1123 /* Use %rdx as our temp variable throughout */
1124 pushq %rdx
1125
1126 testb $3, CS-RIP+8(%rsp)
1127 jz .Lnmi_from_kernel
1128
1129 /*
1130 * NMI from user mode. We need to run on the thread stack, but we
1131 * can't go through the normal entry paths: NMIs are masked, and
1132 * we don't want to enable interrupts, because then we'll end
1133 * up in an awkward situation in which IRQs are on but NMIs
1134 * are off.
1135 *
1136 * We also must not push anything to the stack before switching
1137 * stacks lest we corrupt the "NMI executing" variable.
1138 */
1139
1140 SWAPGS_UNSAFE_STACK
1141 cld
1142 movq %rsp, %rdx
1143 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1144 pushq 5*8(%rdx) /* pt_regs->ss */
1145 pushq 4*8(%rdx) /* pt_regs->rsp */
1146 pushq 3*8(%rdx) /* pt_regs->flags */
1147 pushq 2*8(%rdx) /* pt_regs->cs */
1148 pushq 1*8(%rdx) /* pt_regs->rip */
1149 pushq $-1 /* pt_regs->orig_ax */
1150 pushq %rdi /* pt_regs->di */
1151 pushq %rsi /* pt_regs->si */
1152 pushq (%rdx) /* pt_regs->dx */
1153 pushq %rcx /* pt_regs->cx */
1154 pushq %rax /* pt_regs->ax */
1155 pushq %r8 /* pt_regs->r8 */
1156 pushq %r9 /* pt_regs->r9 */
1157 pushq %r10 /* pt_regs->r10 */
1158 pushq %r11 /* pt_regs->r11 */
1159 pushq %rbx /* pt_regs->rbx */
1160 pushq %rbp /* pt_regs->rbp */
1161 pushq %r12 /* pt_regs->r12 */
1162 pushq %r13 /* pt_regs->r13 */
1163 pushq %r14 /* pt_regs->r14 */
1164 pushq %r15 /* pt_regs->r15 */
1165
1166 /*
1167 * At this point we no longer need to worry about stack damage
1168 * due to nesting -- we're on the normal thread stack and we're
1169 * done with the NMI stack.
1170 */
1171
1172 movq %rsp, %rdi
1173 movq $-1, %rsi
1174 call do_nmi
1175
1176 /*
1177 * Return back to user mode. We must *not* do the normal exit
1178 * work, because we don't want to enable interrupts. Fortunately,
1179 * do_nmi doesn't modify pt_regs.
1180 */
1181 SWAPGS
1182 jmp restore_c_regs_and_iret
1183
1184.Lnmi_from_kernel:
1185 /*
1186 * Here's what our stack frame will look like:
1187 * +---------------------------------------------------------+
1188 * | original SS |
1189 * | original Return RSP |
1190 * | original RFLAGS |
1191 * | original CS |
1192 * | original RIP |
1193 * +---------------------------------------------------------+
1194 * | temp storage for rdx |
1195 * +---------------------------------------------------------+
1196 * | "NMI executing" variable |
1197 * +---------------------------------------------------------+
1198 * | iret SS } Copied from "outermost" frame |
1199 * | iret Return RSP } on each loop iteration; overwritten |
1200 * | iret RFLAGS } by a nested NMI to force another |
1201 * | iret CS } iteration if needed. |
1202 * | iret RIP } |
1203 * +---------------------------------------------------------+
1204 * | outermost SS } initialized in first_nmi; |
1205 * | outermost Return RSP } will not be changed before |
1206 * | outermost RFLAGS } NMI processing is done. |
1207 * | outermost CS } Copied to "iret" frame on each |
1208 * | outermost RIP } iteration. |
1209 * +---------------------------------------------------------+
1210 * | pt_regs |
1211 * +---------------------------------------------------------+
1212 *
1213 * The "original" frame is used by hardware. Before re-enabling
1214 * NMIs, we need to be done with it, and we need to leave enough
1215 * space for the asm code here.
1216 *
1217 * We return by executing IRET while RSP points to the "iret" frame.
1218 * That will either return for real or it will loop back into NMI
1219 * processing.
1220 *
1221 * The "outermost" frame is copied to the "iret" frame on each
1222 * iteration of the loop, so each iteration starts with the "iret"
1223 * frame pointing to the final return target.
1224 */
1225
1226 /*
1227 * Determine whether we're a nested NMI.
1228 *
1229 * If we interrupted kernel code between repeat_nmi and
1230 * end_repeat_nmi, then we are a nested NMI. We must not
1231 * modify the "iret" frame because it's being written by
1232 * the outer NMI. That's okay; the outer NMI handler is
1233 * about to about to call do_nmi anyway, so we can just
1234 * resume the outer NMI.
1235 */
1236
1237 movq $repeat_nmi, %rdx
1238 cmpq 8(%rsp), %rdx
1239 ja 1f
1240 movq $end_repeat_nmi, %rdx
1241 cmpq 8(%rsp), %rdx
1242 ja nested_nmi_out
12431:
1244
1245 /*
1246 * Now check "NMI executing". If it's set, then we're nested.
1247 * This will not detect if we interrupted an outer NMI just
1248 * before IRET.
1249 */
1250 cmpl $1, -8(%rsp)
1251 je nested_nmi
1252
1253 /*
1254 * Now test if the previous stack was an NMI stack. This covers
1255 * the case where we interrupt an outer NMI after it clears
1256 * "NMI executing" but before IRET. We need to be careful, though:
1257 * there is one case in which RSP could point to the NMI stack
1258 * despite there being no NMI active: naughty userspace controls
1259 * RSP at the very beginning of the SYSCALL targets. We can
1260 * pull a fast one on naughty userspace, though: we program
1261 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1262 * if it controls the kernel's RSP. We set DF before we clear
1263 * "NMI executing".
1264 */
1265 lea 6*8(%rsp), %rdx
1266 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1267 cmpq %rdx, 4*8(%rsp)
1268 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1269 ja first_nmi
1270
1271 subq $EXCEPTION_STKSZ, %rdx
1272 cmpq %rdx, 4*8(%rsp)
1273 /* If it is below the NMI stack, it is a normal NMI */
1274 jb first_nmi
1275
1276 /* Ah, it is within the NMI stack. */
1277
1278 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1279 jz first_nmi /* RSP was user controlled. */
1280
1281 /* This is a nested NMI. */
1282
1283nested_nmi:
1284 /*
1285 * Modify the "iret" frame to point to repeat_nmi, forcing another
1286 * iteration of NMI handling.
1287 */
1288 subq $8, %rsp
1289 leaq -10*8(%rsp), %rdx
1290 pushq $__KERNEL_DS
1291 pushq %rdx
1292 pushfq
1293 pushq $__KERNEL_CS
1294 pushq $repeat_nmi
1295
1296 /* Put stack back */
1297 addq $(6*8), %rsp
1298
1299nested_nmi_out:
1300 popq %rdx
1301
1302 /* We are returning to kernel mode, so this cannot result in a fault. */
1303 INTERRUPT_RETURN
1304
1305first_nmi:
1306 /* Restore rdx. */
1307 movq (%rsp), %rdx
1308
1309 /* Make room for "NMI executing". */
1310 pushq $0
1311
1312 /* Leave room for the "iret" frame */
1313 subq $(5*8), %rsp
1314
1315 /* Copy the "original" frame to the "outermost" frame */
1316 .rept 5
1317 pushq 11*8(%rsp)
1318 .endr
1319
1320 /* Everything up to here is safe from nested NMIs */
1321
1322#ifdef CONFIG_DEBUG_ENTRY
1323 /*
1324 * For ease of testing, unmask NMIs right away. Disabled by
1325 * default because IRET is very expensive.
1326 */
1327 pushq $0 /* SS */
1328 pushq %rsp /* RSP (minus 8 because of the previous push) */
1329 addq $8, (%rsp) /* Fix up RSP */
1330 pushfq /* RFLAGS */
1331 pushq $__KERNEL_CS /* CS */
1332 pushq $1f /* RIP */
1333 INTERRUPT_RETURN /* continues at repeat_nmi below */
13341:
1335#endif
1336
1337repeat_nmi:
1338 /*
1339 * If there was a nested NMI, the first NMI's iret will return
1340 * here. But NMIs are still enabled and we can take another
1341 * nested NMI. The nested NMI checks the interrupted RIP to see
1342 * if it is between repeat_nmi and end_repeat_nmi, and if so
1343 * it will just return, as we are about to repeat an NMI anyway.
1344 * This makes it safe to copy to the stack frame that a nested
1345 * NMI will update.
1346 *
1347 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1348 * we're repeating an NMI, gsbase has the same value that it had on
1349 * the first iteration. paranoid_entry will load the kernel
1350 * gsbase if needed before we call do_nmi. "NMI executing"
1351 * is zero.
1352 */
1353 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1354
1355 /*
1356 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1357 * here must not modify the "iret" frame while we're writing to
1358 * it or it will end up containing garbage.
1359 */
1360 addq $(10*8), %rsp
1361 .rept 5
1362 pushq -6*8(%rsp)
1363 .endr
1364 subq $(5*8), %rsp
1365end_repeat_nmi:
1366
1367 /*
1368 * Everything below this point can be preempted by a nested NMI.
1369 * If this happens, then the inner NMI will change the "iret"
1370 * frame to point back to repeat_nmi.
1371 */
1372 pushq $-1 /* ORIG_RAX: no syscall to restart */
1373 ALLOC_PT_GPREGS_ON_STACK
1374
1375 /*
1376 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1377 * as we should not be calling schedule in NMI context.
1378 * Even with normal interrupts enabled. An NMI should not be
1379 * setting NEED_RESCHED or anything that normal interrupts and
1380 * exceptions might do.
1381 */
1382 call paranoid_entry
1383
1384 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1385 movq %rsp, %rdi
1386 movq $-1, %rsi
1387 call do_nmi
1388
1389 testl %ebx, %ebx /* swapgs needed? */
1390 jnz nmi_restore
1391nmi_swapgs:
1392 SWAPGS_UNSAFE_STACK
1393nmi_restore:
1394 RESTORE_EXTRA_REGS
1395 RESTORE_C_REGS
1396
1397 /* Point RSP at the "iret" frame. */
1398 REMOVE_PT_GPREGS_FROM_STACK 6*8
1399
1400 /*
1401 * Clear "NMI executing". Set DF first so that we can easily
1402 * distinguish the remaining code between here and IRET from
1403 * the SYSCALL entry and exit paths. On a native kernel, we
1404 * could just inspect RIP, but, on paravirt kernels,
1405 * INTERRUPT_RETURN can translate into a jump into a
1406 * hypercall page.
1407 */
1408 std
1409 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1410
1411 /*
1412 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1413 * stack in a single instruction. We are returning to kernel
1414 * mode, so this cannot result in a fault.
1415 */
1416 INTERRUPT_RETURN
1417END(nmi)
1418
1419ENTRY(ignore_sysret)
1420 mov $-ENOSYS, %eax
1421 sysret
1422END(ignore_sysret)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry: Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49/*
50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
51 *
52 * This is the only entry point used for 64-bit system calls. The
53 * hardware interface is reasonably well designed and the register to
54 * argument mapping Linux uses fits well with the registers that are
55 * available when SYSCALL is used.
56 *
57 * SYSCALL instructions can be found inlined in libc implementations as
58 * well as some other programs and libraries. There are also a handful
59 * of SYSCALL instructions in the vDSO used, for example, as a
60 * clock_gettimeofday fallback.
61 *
62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
63 * then loads new ss, cs, and rip from previously programmed MSRs.
64 * rflags gets masked by a value from another MSR (so CLD and CLAC
65 * are not needed). SYSCALL does not save anything on the stack
66 * and does not change rsp.
67 *
68 * Registers on entry:
69 * rax system call number
70 * rcx return address
71 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
72 * rdi arg0
73 * rsi arg1
74 * rdx arg2
75 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
76 * r8 arg4
77 * r9 arg5
78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
79 *
80 * Only called from user space.
81 *
82 * When user can change pt_regs->foo always force IRET. That is because
83 * it deals with uncanonical addresses better. SYSRET has trouble
84 * with them due to bugs in both AMD and Intel CPUs.
85 */
86
87SYM_CODE_START(entry_SYSCALL_64)
88 UNWIND_HINT_EMPTY
89
90 swapgs
91 /* tss.sp2 is scratch space. */
92 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
93 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
94 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
95
96SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
97
98 /* Construct struct pt_regs on stack */
99 pushq $__USER_DS /* pt_regs->ss */
100 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
101 pushq %r11 /* pt_regs->flags */
102 pushq $__USER_CS /* pt_regs->cs */
103 pushq %rcx /* pt_regs->ip */
104SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
105 pushq %rax /* pt_regs->orig_ax */
106
107 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
108
109 /* IRQs are off. */
110 movq %rsp, %rdi
111 /* Sign extend the lower 32bit as syscall numbers are treated as int */
112 movslq %eax, %rsi
113 call do_syscall_64 /* returns with IRQs disabled */
114
115 /*
116 * Try to use SYSRET instead of IRET if we're returning to
117 * a completely clean 64-bit userspace context. If we're not,
118 * go to the slow exit path.
119 * In the Xen PV case we must use iret anyway.
120 */
121
122 ALTERNATIVE "", "jmp swapgs_restore_regs_and_return_to_usermode", \
123 X86_FEATURE_XENPV
124
125 movq RCX(%rsp), %rcx
126 movq RIP(%rsp), %r11
127
128 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
129 jne swapgs_restore_regs_and_return_to_usermode
130
131 /*
132 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
133 * in kernel space. This essentially lets the user take over
134 * the kernel, since userspace controls RSP.
135 *
136 * If width of "canonical tail" ever becomes variable, this will need
137 * to be updated to remain correct on both old and new CPUs.
138 *
139 * Change top bits to match most significant bit (47th or 56th bit
140 * depending on paging mode) in the address.
141 */
142#ifdef CONFIG_X86_5LEVEL
143 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
144 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
145#else
146 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
147 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
148#endif
149
150 /* If this changed %rcx, it was not canonical */
151 cmpq %rcx, %r11
152 jne swapgs_restore_regs_and_return_to_usermode
153
154 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
155 jne swapgs_restore_regs_and_return_to_usermode
156
157 movq R11(%rsp), %r11
158 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
159 jne swapgs_restore_regs_and_return_to_usermode
160
161 /*
162 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
163 * restore RF properly. If the slowpath sets it for whatever reason, we
164 * need to restore it correctly.
165 *
166 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
167 * trap from userspace immediately after SYSRET. This would cause an
168 * infinite loop whenever #DB happens with register state that satisfies
169 * the opportunistic SYSRET conditions. For example, single-stepping
170 * this user code:
171 *
172 * movq $stuck_here, %rcx
173 * pushfq
174 * popq %r11
175 * stuck_here:
176 *
177 * would never get past 'stuck_here'.
178 */
179 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
180 jnz swapgs_restore_regs_and_return_to_usermode
181
182 /* nothing to check for RSP */
183
184 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
185 jne swapgs_restore_regs_and_return_to_usermode
186
187 /*
188 * We win! This label is here just for ease of understanding
189 * perf profiles. Nothing jumps here.
190 */
191syscall_return_via_sysret:
192 /* rcx and r11 are already restored (see code above) */
193 POP_REGS pop_rdi=0 skip_r11rcx=1
194
195 /*
196 * Now all regs are restored except RSP and RDI.
197 * Save old stack pointer and switch to trampoline stack.
198 */
199 movq %rsp, %rdi
200 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
201 UNWIND_HINT_EMPTY
202
203 pushq RSP-RDI(%rdi) /* RSP */
204 pushq (%rdi) /* RDI */
205
206 /*
207 * We are on the trampoline stack. All regs except RDI are live.
208 * We can do future final exit work right here.
209 */
210 STACKLEAK_ERASE_NOCLOBBER
211
212 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
213
214 popq %rdi
215 popq %rsp
216 swapgs
217 sysretq
218SYM_CODE_END(entry_SYSCALL_64)
219
220/*
221 * %rdi: prev task
222 * %rsi: next task
223 */
224.pushsection .text, "ax"
225SYM_FUNC_START(__switch_to_asm)
226 /*
227 * Save callee-saved registers
228 * This must match the order in inactive_task_frame
229 */
230 pushq %rbp
231 pushq %rbx
232 pushq %r12
233 pushq %r13
234 pushq %r14
235 pushq %r15
236
237 /* switch stack */
238 movq %rsp, TASK_threadsp(%rdi)
239 movq TASK_threadsp(%rsi), %rsp
240
241#ifdef CONFIG_STACKPROTECTOR
242 movq TASK_stack_canary(%rsi), %rbx
243 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
244#endif
245
246#ifdef CONFIG_RETPOLINE
247 /*
248 * When switching from a shallower to a deeper call stack
249 * the RSB may either underflow or use entries populated
250 * with userspace addresses. On CPUs where those concerns
251 * exist, overwrite the RSB with entries which capture
252 * speculative execution to prevent attack.
253 */
254 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
255#endif
256
257 /* restore callee-saved registers */
258 popq %r15
259 popq %r14
260 popq %r13
261 popq %r12
262 popq %rbx
263 popq %rbp
264
265 jmp __switch_to
266SYM_FUNC_END(__switch_to_asm)
267.popsection
268
269/*
270 * A newly forked process directly context switches into this address.
271 *
272 * rax: prev task we switched from
273 * rbx: kernel thread func (NULL for user thread)
274 * r12: kernel thread arg
275 */
276.pushsection .text, "ax"
277SYM_CODE_START(ret_from_fork)
278 UNWIND_HINT_EMPTY
279 movq %rax, %rdi
280 call schedule_tail /* rdi: 'prev' task parameter */
281
282 testq %rbx, %rbx /* from kernel_thread? */
283 jnz 1f /* kernel threads are uncommon */
284
2852:
286 UNWIND_HINT_REGS
287 movq %rsp, %rdi
288 call syscall_exit_to_user_mode /* returns with IRQs disabled */
289 jmp swapgs_restore_regs_and_return_to_usermode
290
2911:
292 /* kernel thread */
293 UNWIND_HINT_EMPTY
294 movq %r12, %rdi
295 CALL_NOSPEC rbx
296 /*
297 * A kernel thread is allowed to return here after successfully
298 * calling kernel_execve(). Exit to userspace to complete the execve()
299 * syscall.
300 */
301 movq $0, RAX(%rsp)
302 jmp 2b
303SYM_CODE_END(ret_from_fork)
304.popsection
305
306.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
307#ifdef CONFIG_DEBUG_ENTRY
308 pushq %rax
309 SAVE_FLAGS
310 testl $X86_EFLAGS_IF, %eax
311 jz .Lokay_\@
312 ud2
313.Lokay_\@:
314 popq %rax
315#endif
316.endm
317
318/**
319 * idtentry_body - Macro to emit code calling the C function
320 * @cfunc: C function to be called
321 * @has_error_code: Hardware pushed error code on stack
322 */
323.macro idtentry_body cfunc has_error_code:req
324
325 call error_entry
326 UNWIND_HINT_REGS
327
328 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/
329
330 .if \has_error_code == 1
331 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
332 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
333 .endif
334
335 call \cfunc
336
337 jmp error_return
338.endm
339
340/**
341 * idtentry - Macro to generate entry stubs for simple IDT entries
342 * @vector: Vector number
343 * @asmsym: ASM symbol for the entry point
344 * @cfunc: C function to be called
345 * @has_error_code: Hardware pushed error code on stack
346 *
347 * The macro emits code to set up the kernel context for straight forward
348 * and simple IDT entries. No IST stack, no paranoid entry checks.
349 */
350.macro idtentry vector asmsym cfunc has_error_code:req
351SYM_CODE_START(\asmsym)
352 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
353 ASM_CLAC
354
355 .if \has_error_code == 0
356 pushq $-1 /* ORIG_RAX: no syscall to restart */
357 .endif
358
359 .if \vector == X86_TRAP_BP
360 /*
361 * If coming from kernel space, create a 6-word gap to allow the
362 * int3 handler to emulate a call instruction.
363 */
364 testb $3, CS-ORIG_RAX(%rsp)
365 jnz .Lfrom_usermode_no_gap_\@
366 .rept 6
367 pushq 5*8(%rsp)
368 .endr
369 UNWIND_HINT_IRET_REGS offset=8
370.Lfrom_usermode_no_gap_\@:
371 .endif
372
373 idtentry_body \cfunc \has_error_code
374
375_ASM_NOKPROBE(\asmsym)
376SYM_CODE_END(\asmsym)
377.endm
378
379/*
380 * Interrupt entry/exit.
381 *
382 + The interrupt stubs push (vector) onto the stack, which is the error_code
383 * position of idtentry exceptions, and jump to one of the two idtentry points
384 * (common/spurious).
385 *
386 * common_interrupt is a hotpath, align it to a cache line
387 */
388.macro idtentry_irq vector cfunc
389 .p2align CONFIG_X86_L1_CACHE_SHIFT
390 idtentry \vector asm_\cfunc \cfunc has_error_code=1
391.endm
392
393/*
394 * System vectors which invoke their handlers directly and are not
395 * going through the regular common device interrupt handling code.
396 */
397.macro idtentry_sysvec vector cfunc
398 idtentry \vector asm_\cfunc \cfunc has_error_code=0
399.endm
400
401/**
402 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
403 * @vector: Vector number
404 * @asmsym: ASM symbol for the entry point
405 * @cfunc: C function to be called
406 *
407 * The macro emits code to set up the kernel context for #MC and #DB
408 *
409 * If the entry comes from user space it uses the normal entry path
410 * including the return to user space work and preemption checks on
411 * exit.
412 *
413 * If hits in kernel mode then it needs to go through the paranoid
414 * entry as the exception can hit any random state. No preemption
415 * check on exit to keep the paranoid path simple.
416 */
417.macro idtentry_mce_db vector asmsym cfunc
418SYM_CODE_START(\asmsym)
419 UNWIND_HINT_IRET_REGS
420 ASM_CLAC
421
422 pushq $-1 /* ORIG_RAX: no syscall to restart */
423
424 /*
425 * If the entry is from userspace, switch stacks and treat it as
426 * a normal entry.
427 */
428 testb $3, CS-ORIG_RAX(%rsp)
429 jnz .Lfrom_usermode_switch_stack_\@
430
431 /* paranoid_entry returns GS information for paranoid_exit in EBX. */
432 call paranoid_entry
433
434 UNWIND_HINT_REGS
435
436 movq %rsp, %rdi /* pt_regs pointer */
437
438 call \cfunc
439
440 jmp paranoid_exit
441
442 /* Switch to the regular task stack and use the noist entry point */
443.Lfrom_usermode_switch_stack_\@:
444 idtentry_body noist_\cfunc, has_error_code=0
445
446_ASM_NOKPROBE(\asmsym)
447SYM_CODE_END(\asmsym)
448.endm
449
450#ifdef CONFIG_AMD_MEM_ENCRYPT
451/**
452 * idtentry_vc - Macro to generate entry stub for #VC
453 * @vector: Vector number
454 * @asmsym: ASM symbol for the entry point
455 * @cfunc: C function to be called
456 *
457 * The macro emits code to set up the kernel context for #VC. The #VC handler
458 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
459 *
460 * To make this work the #VC entry code tries its best to pretend it doesn't use
461 * an IST stack by switching to the task stack if coming from user-space (which
462 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
463 * entered from kernel-mode.
464 *
465 * If entered from kernel-mode the return stack is validated first, and if it is
466 * not safe to use (e.g. because it points to the entry stack) the #VC handler
467 * will switch to a fall-back stack (VC2) and call a special handler function.
468 *
469 * The macro is only used for one vector, but it is planned to be extended in
470 * the future for the #HV exception.
471 */
472.macro idtentry_vc vector asmsym cfunc
473SYM_CODE_START(\asmsym)
474 UNWIND_HINT_IRET_REGS
475 ASM_CLAC
476
477 /*
478 * If the entry is from userspace, switch stacks and treat it as
479 * a normal entry.
480 */
481 testb $3, CS-ORIG_RAX(%rsp)
482 jnz .Lfrom_usermode_switch_stack_\@
483
484 /*
485 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
486 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
487 */
488 call paranoid_entry
489
490 UNWIND_HINT_REGS
491
492 /*
493 * Switch off the IST stack to make it free for nested exceptions. The
494 * vc_switch_off_ist() function will switch back to the interrupted
495 * stack if it is safe to do so. If not it switches to the VC fall-back
496 * stack.
497 */
498 movq %rsp, %rdi /* pt_regs pointer */
499 call vc_switch_off_ist
500 movq %rax, %rsp /* Switch to new stack */
501
502 UNWIND_HINT_REGS
503
504 /* Update pt_regs */
505 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
506 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
507
508 movq %rsp, %rdi /* pt_regs pointer */
509
510 call kernel_\cfunc
511
512 /*
513 * No need to switch back to the IST stack. The current stack is either
514 * identical to the stack in the IRET frame or the VC fall-back stack,
515 * so it is definitely mapped even with PTI enabled.
516 */
517 jmp paranoid_exit
518
519 /* Switch to the regular task stack */
520.Lfrom_usermode_switch_stack_\@:
521 idtentry_body user_\cfunc, has_error_code=1
522
523_ASM_NOKPROBE(\asmsym)
524SYM_CODE_END(\asmsym)
525.endm
526#endif
527
528/*
529 * Double fault entry. Straight paranoid. No checks from which context
530 * this comes because for the espfix induced #DF this would do the wrong
531 * thing.
532 */
533.macro idtentry_df vector asmsym cfunc
534SYM_CODE_START(\asmsym)
535 UNWIND_HINT_IRET_REGS offset=8
536 ASM_CLAC
537
538 /* paranoid_entry returns GS information for paranoid_exit in EBX. */
539 call paranoid_entry
540 UNWIND_HINT_REGS
541
542 movq %rsp, %rdi /* pt_regs pointer into first argument */
543 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/
544 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
545 call \cfunc
546
547 jmp paranoid_exit
548
549_ASM_NOKPROBE(\asmsym)
550SYM_CODE_END(\asmsym)
551.endm
552
553/*
554 * Include the defines which emit the idt entries which are shared
555 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
556 * so the stacktrace boundary checks work.
557 */
558 .align 16
559 .globl __irqentry_text_start
560__irqentry_text_start:
561
562#include <asm/idtentry.h>
563
564 .align 16
565 .globl __irqentry_text_end
566__irqentry_text_end:
567
568SYM_CODE_START_LOCAL(common_interrupt_return)
569SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
570#ifdef CONFIG_DEBUG_ENTRY
571 /* Assert that pt_regs indicates user mode. */
572 testb $3, CS(%rsp)
573 jnz 1f
574 ud2
5751:
576#endif
577 POP_REGS pop_rdi=0
578
579 /*
580 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
581 * Save old stack pointer and switch to trampoline stack.
582 */
583 movq %rsp, %rdi
584 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
585 UNWIND_HINT_EMPTY
586
587 /* Copy the IRET frame to the trampoline stack. */
588 pushq 6*8(%rdi) /* SS */
589 pushq 5*8(%rdi) /* RSP */
590 pushq 4*8(%rdi) /* EFLAGS */
591 pushq 3*8(%rdi) /* CS */
592 pushq 2*8(%rdi) /* RIP */
593
594 /* Push user RDI on the trampoline stack. */
595 pushq (%rdi)
596
597 /*
598 * We are on the trampoline stack. All regs except RDI are live.
599 * We can do future final exit work right here.
600 */
601 STACKLEAK_ERASE_NOCLOBBER
602
603 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
604
605 /* Restore RDI. */
606 popq %rdi
607 SWAPGS
608 INTERRUPT_RETURN
609
610
611SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
612#ifdef CONFIG_DEBUG_ENTRY
613 /* Assert that pt_regs indicates kernel mode. */
614 testb $3, CS(%rsp)
615 jz 1f
616 ud2
6171:
618#endif
619 POP_REGS
620 addq $8, %rsp /* skip regs->orig_ax */
621 /*
622 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
623 * when returning from IPI handler.
624 */
625 INTERRUPT_RETURN
626
627SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
628 UNWIND_HINT_IRET_REGS
629 /*
630 * Are we returning to a stack segment from the LDT? Note: in
631 * 64-bit mode SS:RSP on the exception stack is always valid.
632 */
633#ifdef CONFIG_X86_ESPFIX64
634 testb $4, (SS-RIP)(%rsp)
635 jnz native_irq_return_ldt
636#endif
637
638SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
639 /*
640 * This may fault. Non-paranoid faults on return to userspace are
641 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
642 * Double-faults due to espfix64 are handled in exc_double_fault.
643 * Other faults here are fatal.
644 */
645 iretq
646
647#ifdef CONFIG_X86_ESPFIX64
648native_irq_return_ldt:
649 /*
650 * We are running with user GSBASE. All GPRs contain their user
651 * values. We have a percpu ESPFIX stack that is eight slots
652 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
653 * of the ESPFIX stack.
654 *
655 * We clobber RAX and RDI in this code. We stash RDI on the
656 * normal stack and RAX on the ESPFIX stack.
657 *
658 * The ESPFIX stack layout we set up looks like this:
659 *
660 * --- top of ESPFIX stack ---
661 * SS
662 * RSP
663 * RFLAGS
664 * CS
665 * RIP <-- RSP points here when we're done
666 * RAX <-- espfix_waddr points here
667 * --- bottom of ESPFIX stack ---
668 */
669
670 pushq %rdi /* Stash user RDI */
671 swapgs /* to kernel GS */
672 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
673
674 movq PER_CPU_VAR(espfix_waddr), %rdi
675 movq %rax, (0*8)(%rdi) /* user RAX */
676 movq (1*8)(%rsp), %rax /* user RIP */
677 movq %rax, (1*8)(%rdi)
678 movq (2*8)(%rsp), %rax /* user CS */
679 movq %rax, (2*8)(%rdi)
680 movq (3*8)(%rsp), %rax /* user RFLAGS */
681 movq %rax, (3*8)(%rdi)
682 movq (5*8)(%rsp), %rax /* user SS */
683 movq %rax, (5*8)(%rdi)
684 movq (4*8)(%rsp), %rax /* user RSP */
685 movq %rax, (4*8)(%rdi)
686 /* Now RAX == RSP. */
687
688 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
689
690 /*
691 * espfix_stack[31:16] == 0. The page tables are set up such that
692 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
693 * espfix_waddr for any X. That is, there are 65536 RO aliases of
694 * the same page. Set up RSP so that RSP[31:16] contains the
695 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
696 * still points to an RO alias of the ESPFIX stack.
697 */
698 orq PER_CPU_VAR(espfix_stack), %rax
699
700 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
701 swapgs /* to user GS */
702 popq %rdi /* Restore user RDI */
703
704 movq %rax, %rsp
705 UNWIND_HINT_IRET_REGS offset=8
706
707 /*
708 * At this point, we cannot write to the stack any more, but we can
709 * still read.
710 */
711 popq %rax /* Restore user RAX */
712
713 /*
714 * RSP now points to an ordinary IRET frame, except that the page
715 * is read-only and RSP[31:16] are preloaded with the userspace
716 * values. We can now IRET back to userspace.
717 */
718 jmp native_irq_return_iret
719#endif
720SYM_CODE_END(common_interrupt_return)
721_ASM_NOKPROBE(common_interrupt_return)
722
723/*
724 * Reload gs selector with exception handling
725 * edi: new selector
726 *
727 * Is in entry.text as it shouldn't be instrumented.
728 */
729SYM_FUNC_START(asm_load_gs_index)
730 FRAME_BEGIN
731 swapgs
732.Lgs_change:
733 movl %edi, %gs
7342: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
735 swapgs
736 FRAME_END
737 ret
738SYM_FUNC_END(asm_load_gs_index)
739EXPORT_SYMBOL(asm_load_gs_index)
740
741 _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
742 .section .fixup, "ax"
743 /* running with kernelgs */
744SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
745 swapgs /* switch back to user gs */
746.macro ZAP_GS
747 /* This can't be a string because the preprocessor needs to see it. */
748 movl $__USER_DS, %eax
749 movl %eax, %gs
750.endm
751 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
752 xorl %eax, %eax
753 movl %eax, %gs
754 jmp 2b
755SYM_CODE_END(.Lbad_gs)
756 .previous
757
758#ifdef CONFIG_XEN_PV
759/*
760 * A note on the "critical region" in our callback handler.
761 * We want to avoid stacking callback handlers due to events occurring
762 * during handling of the last event. To do this, we keep events disabled
763 * until we've done all processing. HOWEVER, we must enable events before
764 * popping the stack frame (can't be done atomically) and so it would still
765 * be possible to get enough handler activations to overflow the stack.
766 * Although unlikely, bugs of that kind are hard to track down, so we'd
767 * like to avoid the possibility.
768 * So, on entry to the handler we detect whether we interrupted an
769 * existing activation in its critical region -- if so, we pop the current
770 * activation and restart the handler using the previous one.
771 *
772 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
773 */
774SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
775
776/*
777 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
778 * see the correct pointer to the pt_regs
779 */
780 UNWIND_HINT_FUNC
781 movq %rdi, %rsp /* we don't return, adjust the stack frame */
782 UNWIND_HINT_REGS
783
784 call xen_pv_evtchn_do_upcall
785
786 jmp error_return
787SYM_CODE_END(exc_xen_hypervisor_callback)
788
789/*
790 * Hypervisor uses this for application faults while it executes.
791 * We get here for two reasons:
792 * 1. Fault while reloading DS, ES, FS or GS
793 * 2. Fault while executing IRET
794 * Category 1 we do not need to fix up as Xen has already reloaded all segment
795 * registers that could be reloaded and zeroed the others.
796 * Category 2 we fix up by killing the current process. We cannot use the
797 * normal Linux return path in this case because if we use the IRET hypercall
798 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
799 * We distinguish between categories by comparing each saved segment register
800 * with its current contents: any discrepancy means we in category 1.
801 */
802SYM_CODE_START(xen_failsafe_callback)
803 UNWIND_HINT_EMPTY
804 movl %ds, %ecx
805 cmpw %cx, 0x10(%rsp)
806 jne 1f
807 movl %es, %ecx
808 cmpw %cx, 0x18(%rsp)
809 jne 1f
810 movl %fs, %ecx
811 cmpw %cx, 0x20(%rsp)
812 jne 1f
813 movl %gs, %ecx
814 cmpw %cx, 0x28(%rsp)
815 jne 1f
816 /* All segments match their saved values => Category 2 (Bad IRET). */
817 movq (%rsp), %rcx
818 movq 8(%rsp), %r11
819 addq $0x30, %rsp
820 pushq $0 /* RIP */
821 UNWIND_HINT_IRET_REGS offset=8
822 jmp asm_exc_general_protection
8231: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
824 movq (%rsp), %rcx
825 movq 8(%rsp), %r11
826 addq $0x30, %rsp
827 UNWIND_HINT_IRET_REGS
828 pushq $-1 /* orig_ax = -1 => not a system call */
829 PUSH_AND_CLEAR_REGS
830 ENCODE_FRAME_POINTER
831 jmp error_return
832SYM_CODE_END(xen_failsafe_callback)
833#endif /* CONFIG_XEN_PV */
834
835/*
836 * Save all registers in pt_regs. Return GSBASE related information
837 * in EBX depending on the availability of the FSGSBASE instructions:
838 *
839 * FSGSBASE R/EBX
840 * N 0 -> SWAPGS on exit
841 * 1 -> no SWAPGS on exit
842 *
843 * Y GSBASE value at entry, must be restored in paranoid_exit
844 */
845SYM_CODE_START_LOCAL(paranoid_entry)
846 UNWIND_HINT_FUNC
847 cld
848 PUSH_AND_CLEAR_REGS save_ret=1
849 ENCODE_FRAME_POINTER 8
850
851 /*
852 * Always stash CR3 in %r14. This value will be restored,
853 * verbatim, at exit. Needed if paranoid_entry interrupted
854 * another entry that already switched to the user CR3 value
855 * but has not yet returned to userspace.
856 *
857 * This is also why CS (stashed in the "iret frame" by the
858 * hardware at entry) can not be used: this may be a return
859 * to kernel code, but with a user CR3 value.
860 *
861 * Switching CR3 does not depend on kernel GSBASE so it can
862 * be done before switching to the kernel GSBASE. This is
863 * required for FSGSBASE because the kernel GSBASE has to
864 * be retrieved from a kernel internal table.
865 */
866 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
867
868 /*
869 * Handling GSBASE depends on the availability of FSGSBASE.
870 *
871 * Without FSGSBASE the kernel enforces that negative GSBASE
872 * values indicate kernel GSBASE. With FSGSBASE no assumptions
873 * can be made about the GSBASE value when entering from user
874 * space.
875 */
876 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
877
878 /*
879 * Read the current GSBASE and store it in %rbx unconditionally,
880 * retrieve and set the current CPUs kernel GSBASE. The stored value
881 * has to be restored in paranoid_exit unconditionally.
882 *
883 * The unconditional write to GS base below ensures that no subsequent
884 * loads based on a mispredicted GS base can happen, therefore no LFENCE
885 * is needed here.
886 */
887 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
888 ret
889
890.Lparanoid_entry_checkgs:
891 /* EBX = 1 -> kernel GSBASE active, no restore required */
892 movl $1, %ebx
893 /*
894 * The kernel-enforced convention is a negative GSBASE indicates
895 * a kernel value. No SWAPGS needed on entry and exit.
896 */
897 movl $MSR_GS_BASE, %ecx
898 rdmsr
899 testl %edx, %edx
900 jns .Lparanoid_entry_swapgs
901 ret
902
903.Lparanoid_entry_swapgs:
904 swapgs
905
906 /*
907 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
908 * unconditional CR3 write, even in the PTI case. So do an lfence
909 * to prevent GS speculation, regardless of whether PTI is enabled.
910 */
911 FENCE_SWAPGS_KERNEL_ENTRY
912
913 /* EBX = 0 -> SWAPGS required on exit */
914 xorl %ebx, %ebx
915 ret
916SYM_CODE_END(paranoid_entry)
917
918/*
919 * "Paranoid" exit path from exception stack. This is invoked
920 * only on return from non-NMI IST interrupts that came
921 * from kernel space.
922 *
923 * We may be returning to very strange contexts (e.g. very early
924 * in syscall entry), so checking for preemption here would
925 * be complicated. Fortunately, there's no good reason to try
926 * to handle preemption here.
927 *
928 * R/EBX contains the GSBASE related information depending on the
929 * availability of the FSGSBASE instructions:
930 *
931 * FSGSBASE R/EBX
932 * N 0 -> SWAPGS on exit
933 * 1 -> no SWAPGS on exit
934 *
935 * Y User space GSBASE, must be restored unconditionally
936 */
937SYM_CODE_START_LOCAL(paranoid_exit)
938 UNWIND_HINT_REGS
939 /*
940 * The order of operations is important. RESTORE_CR3 requires
941 * kernel GSBASE.
942 *
943 * NB to anyone to try to optimize this code: this code does
944 * not execute at all for exceptions from user mode. Those
945 * exceptions go through error_exit instead.
946 */
947 RESTORE_CR3 scratch_reg=%rax save_reg=%r14
948
949 /* Handle the three GSBASE cases */
950 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
951
952 /* With FSGSBASE enabled, unconditionally restore GSBASE */
953 wrgsbase %rbx
954 jmp restore_regs_and_return_to_kernel
955
956.Lparanoid_exit_checkgs:
957 /* On non-FSGSBASE systems, conditionally do SWAPGS */
958 testl %ebx, %ebx
959 jnz restore_regs_and_return_to_kernel
960
961 /* We are returning to a context with user GSBASE */
962 swapgs
963 jmp restore_regs_and_return_to_kernel
964SYM_CODE_END(paranoid_exit)
965
966/*
967 * Save all registers in pt_regs, and switch GS if needed.
968 */
969SYM_CODE_START_LOCAL(error_entry)
970 UNWIND_HINT_FUNC
971 cld
972 PUSH_AND_CLEAR_REGS save_ret=1
973 ENCODE_FRAME_POINTER 8
974 testb $3, CS+8(%rsp)
975 jz .Lerror_kernelspace
976
977 /*
978 * We entered from user mode or we're pretending to have entered
979 * from user mode due to an IRET fault.
980 */
981 SWAPGS
982 FENCE_SWAPGS_USER_ENTRY
983 /* We have user CR3. Change to kernel CR3. */
984 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
985
986.Lerror_entry_from_usermode_after_swapgs:
987 /* Put us onto the real thread stack. */
988 popq %r12 /* save return addr in %12 */
989 movq %rsp, %rdi /* arg0 = pt_regs pointer */
990 call sync_regs
991 movq %rax, %rsp /* switch stack */
992 ENCODE_FRAME_POINTER
993 pushq %r12
994 ret
995
996.Lerror_entry_done_lfence:
997 FENCE_SWAPGS_KERNEL_ENTRY
998.Lerror_entry_done:
999 ret
1000
1001 /*
1002 * There are two places in the kernel that can potentially fault with
1003 * usergs. Handle them here. B stepping K8s sometimes report a
1004 * truncated RIP for IRET exceptions returning to compat mode. Check
1005 * for these here too.
1006 */
1007.Lerror_kernelspace:
1008 leaq native_irq_return_iret(%rip), %rcx
1009 cmpq %rcx, RIP+8(%rsp)
1010 je .Lerror_bad_iret
1011 movl %ecx, %eax /* zero extend */
1012 cmpq %rax, RIP+8(%rsp)
1013 je .Lbstep_iret
1014 cmpq $.Lgs_change, RIP+8(%rsp)
1015 jne .Lerror_entry_done_lfence
1016
1017 /*
1018 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1019 * gsbase and proceed. We'll fix up the exception and land in
1020 * .Lgs_change's error handler with kernel gsbase.
1021 */
1022 SWAPGS
1023 FENCE_SWAPGS_USER_ENTRY
1024 jmp .Lerror_entry_done
1025
1026.Lbstep_iret:
1027 /* Fix truncated RIP */
1028 movq %rcx, RIP+8(%rsp)
1029 /* fall through */
1030
1031.Lerror_bad_iret:
1032 /*
1033 * We came from an IRET to user mode, so we have user
1034 * gsbase and CR3. Switch to kernel gsbase and CR3:
1035 */
1036 SWAPGS
1037 FENCE_SWAPGS_USER_ENTRY
1038 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1039
1040 /*
1041 * Pretend that the exception came from user mode: set up pt_regs
1042 * as if we faulted immediately after IRET.
1043 */
1044 mov %rsp, %rdi
1045 call fixup_bad_iret
1046 mov %rax, %rsp
1047 jmp .Lerror_entry_from_usermode_after_swapgs
1048SYM_CODE_END(error_entry)
1049
1050SYM_CODE_START_LOCAL(error_return)
1051 UNWIND_HINT_REGS
1052 DEBUG_ENTRY_ASSERT_IRQS_OFF
1053 testb $3, CS(%rsp)
1054 jz restore_regs_and_return_to_kernel
1055 jmp swapgs_restore_regs_and_return_to_usermode
1056SYM_CODE_END(error_return)
1057
1058/*
1059 * Runs on exception stack. Xen PV does not go through this path at all,
1060 * so we can use real assembly here.
1061 *
1062 * Registers:
1063 * %r14: Used to save/restore the CR3 of the interrupted context
1064 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1065 */
1066SYM_CODE_START(asm_exc_nmi)
1067 UNWIND_HINT_IRET_REGS
1068
1069 /*
1070 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1071 * the iretq it performs will take us out of NMI context.
1072 * This means that we can have nested NMIs where the next
1073 * NMI is using the top of the stack of the previous NMI. We
1074 * can't let it execute because the nested NMI will corrupt the
1075 * stack of the previous NMI. NMI handlers are not re-entrant
1076 * anyway.
1077 *
1078 * To handle this case we do the following:
1079 * Check the a special location on the stack that contains
1080 * a variable that is set when NMIs are executing.
1081 * The interrupted task's stack is also checked to see if it
1082 * is an NMI stack.
1083 * If the variable is not set and the stack is not the NMI
1084 * stack then:
1085 * o Set the special variable on the stack
1086 * o Copy the interrupt frame into an "outermost" location on the
1087 * stack
1088 * o Copy the interrupt frame into an "iret" location on the stack
1089 * o Continue processing the NMI
1090 * If the variable is set or the previous stack is the NMI stack:
1091 * o Modify the "iret" location to jump to the repeat_nmi
1092 * o return back to the first NMI
1093 *
1094 * Now on exit of the first NMI, we first clear the stack variable
1095 * The NMI stack will tell any nested NMIs at that point that it is
1096 * nested. Then we pop the stack normally with iret, and if there was
1097 * a nested NMI that updated the copy interrupt stack frame, a
1098 * jump will be made to the repeat_nmi code that will handle the second
1099 * NMI.
1100 *
1101 * However, espfix prevents us from directly returning to userspace
1102 * with a single IRET instruction. Similarly, IRET to user mode
1103 * can fault. We therefore handle NMIs from user space like
1104 * other IST entries.
1105 */
1106
1107 ASM_CLAC
1108
1109 /* Use %rdx as our temp variable throughout */
1110 pushq %rdx
1111
1112 testb $3, CS-RIP+8(%rsp)
1113 jz .Lnmi_from_kernel
1114
1115 /*
1116 * NMI from user mode. We need to run on the thread stack, but we
1117 * can't go through the normal entry paths: NMIs are masked, and
1118 * we don't want to enable interrupts, because then we'll end
1119 * up in an awkward situation in which IRQs are on but NMIs
1120 * are off.
1121 *
1122 * We also must not push anything to the stack before switching
1123 * stacks lest we corrupt the "NMI executing" variable.
1124 */
1125
1126 swapgs
1127 cld
1128 FENCE_SWAPGS_USER_ENTRY
1129 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1130 movq %rsp, %rdx
1131 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1132 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1133 pushq 5*8(%rdx) /* pt_regs->ss */
1134 pushq 4*8(%rdx) /* pt_regs->rsp */
1135 pushq 3*8(%rdx) /* pt_regs->flags */
1136 pushq 2*8(%rdx) /* pt_regs->cs */
1137 pushq 1*8(%rdx) /* pt_regs->rip */
1138 UNWIND_HINT_IRET_REGS
1139 pushq $-1 /* pt_regs->orig_ax */
1140 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1141 ENCODE_FRAME_POINTER
1142
1143 /*
1144 * At this point we no longer need to worry about stack damage
1145 * due to nesting -- we're on the normal thread stack and we're
1146 * done with the NMI stack.
1147 */
1148
1149 movq %rsp, %rdi
1150 movq $-1, %rsi
1151 call exc_nmi
1152
1153 /*
1154 * Return back to user mode. We must *not* do the normal exit
1155 * work, because we don't want to enable interrupts.
1156 */
1157 jmp swapgs_restore_regs_and_return_to_usermode
1158
1159.Lnmi_from_kernel:
1160 /*
1161 * Here's what our stack frame will look like:
1162 * +---------------------------------------------------------+
1163 * | original SS |
1164 * | original Return RSP |
1165 * | original RFLAGS |
1166 * | original CS |
1167 * | original RIP |
1168 * +---------------------------------------------------------+
1169 * | temp storage for rdx |
1170 * +---------------------------------------------------------+
1171 * | "NMI executing" variable |
1172 * +---------------------------------------------------------+
1173 * | iret SS } Copied from "outermost" frame |
1174 * | iret Return RSP } on each loop iteration; overwritten |
1175 * | iret RFLAGS } by a nested NMI to force another |
1176 * | iret CS } iteration if needed. |
1177 * | iret RIP } |
1178 * +---------------------------------------------------------+
1179 * | outermost SS } initialized in first_nmi; |
1180 * | outermost Return RSP } will not be changed before |
1181 * | outermost RFLAGS } NMI processing is done. |
1182 * | outermost CS } Copied to "iret" frame on each |
1183 * | outermost RIP } iteration. |
1184 * +---------------------------------------------------------+
1185 * | pt_regs |
1186 * +---------------------------------------------------------+
1187 *
1188 * The "original" frame is used by hardware. Before re-enabling
1189 * NMIs, we need to be done with it, and we need to leave enough
1190 * space for the asm code here.
1191 *
1192 * We return by executing IRET while RSP points to the "iret" frame.
1193 * That will either return for real or it will loop back into NMI
1194 * processing.
1195 *
1196 * The "outermost" frame is copied to the "iret" frame on each
1197 * iteration of the loop, so each iteration starts with the "iret"
1198 * frame pointing to the final return target.
1199 */
1200
1201 /*
1202 * Determine whether we're a nested NMI.
1203 *
1204 * If we interrupted kernel code between repeat_nmi and
1205 * end_repeat_nmi, then we are a nested NMI. We must not
1206 * modify the "iret" frame because it's being written by
1207 * the outer NMI. That's okay; the outer NMI handler is
1208 * about to about to call exc_nmi() anyway, so we can just
1209 * resume the outer NMI.
1210 */
1211
1212 movq $repeat_nmi, %rdx
1213 cmpq 8(%rsp), %rdx
1214 ja 1f
1215 movq $end_repeat_nmi, %rdx
1216 cmpq 8(%rsp), %rdx
1217 ja nested_nmi_out
12181:
1219
1220 /*
1221 * Now check "NMI executing". If it's set, then we're nested.
1222 * This will not detect if we interrupted an outer NMI just
1223 * before IRET.
1224 */
1225 cmpl $1, -8(%rsp)
1226 je nested_nmi
1227
1228 /*
1229 * Now test if the previous stack was an NMI stack. This covers
1230 * the case where we interrupt an outer NMI after it clears
1231 * "NMI executing" but before IRET. We need to be careful, though:
1232 * there is one case in which RSP could point to the NMI stack
1233 * despite there being no NMI active: naughty userspace controls
1234 * RSP at the very beginning of the SYSCALL targets. We can
1235 * pull a fast one on naughty userspace, though: we program
1236 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1237 * if it controls the kernel's RSP. We set DF before we clear
1238 * "NMI executing".
1239 */
1240 lea 6*8(%rsp), %rdx
1241 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1242 cmpq %rdx, 4*8(%rsp)
1243 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1244 ja first_nmi
1245
1246 subq $EXCEPTION_STKSZ, %rdx
1247 cmpq %rdx, 4*8(%rsp)
1248 /* If it is below the NMI stack, it is a normal NMI */
1249 jb first_nmi
1250
1251 /* Ah, it is within the NMI stack. */
1252
1253 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1254 jz first_nmi /* RSP was user controlled. */
1255
1256 /* This is a nested NMI. */
1257
1258nested_nmi:
1259 /*
1260 * Modify the "iret" frame to point to repeat_nmi, forcing another
1261 * iteration of NMI handling.
1262 */
1263 subq $8, %rsp
1264 leaq -10*8(%rsp), %rdx
1265 pushq $__KERNEL_DS
1266 pushq %rdx
1267 pushfq
1268 pushq $__KERNEL_CS
1269 pushq $repeat_nmi
1270
1271 /* Put stack back */
1272 addq $(6*8), %rsp
1273
1274nested_nmi_out:
1275 popq %rdx
1276
1277 /* We are returning to kernel mode, so this cannot result in a fault. */
1278 iretq
1279
1280first_nmi:
1281 /* Restore rdx. */
1282 movq (%rsp), %rdx
1283
1284 /* Make room for "NMI executing". */
1285 pushq $0
1286
1287 /* Leave room for the "iret" frame */
1288 subq $(5*8), %rsp
1289
1290 /* Copy the "original" frame to the "outermost" frame */
1291 .rept 5
1292 pushq 11*8(%rsp)
1293 .endr
1294 UNWIND_HINT_IRET_REGS
1295
1296 /* Everything up to here is safe from nested NMIs */
1297
1298#ifdef CONFIG_DEBUG_ENTRY
1299 /*
1300 * For ease of testing, unmask NMIs right away. Disabled by
1301 * default because IRET is very expensive.
1302 */
1303 pushq $0 /* SS */
1304 pushq %rsp /* RSP (minus 8 because of the previous push) */
1305 addq $8, (%rsp) /* Fix up RSP */
1306 pushfq /* RFLAGS */
1307 pushq $__KERNEL_CS /* CS */
1308 pushq $1f /* RIP */
1309 iretq /* continues at repeat_nmi below */
1310 UNWIND_HINT_IRET_REGS
13111:
1312#endif
1313
1314repeat_nmi:
1315 /*
1316 * If there was a nested NMI, the first NMI's iret will return
1317 * here. But NMIs are still enabled and we can take another
1318 * nested NMI. The nested NMI checks the interrupted RIP to see
1319 * if it is between repeat_nmi and end_repeat_nmi, and if so
1320 * it will just return, as we are about to repeat an NMI anyway.
1321 * This makes it safe to copy to the stack frame that a nested
1322 * NMI will update.
1323 *
1324 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1325 * we're repeating an NMI, gsbase has the same value that it had on
1326 * the first iteration. paranoid_entry will load the kernel
1327 * gsbase if needed before we call exc_nmi(). "NMI executing"
1328 * is zero.
1329 */
1330 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1331
1332 /*
1333 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1334 * here must not modify the "iret" frame while we're writing to
1335 * it or it will end up containing garbage.
1336 */
1337 addq $(10*8), %rsp
1338 .rept 5
1339 pushq -6*8(%rsp)
1340 .endr
1341 subq $(5*8), %rsp
1342end_repeat_nmi:
1343
1344 /*
1345 * Everything below this point can be preempted by a nested NMI.
1346 * If this happens, then the inner NMI will change the "iret"
1347 * frame to point back to repeat_nmi.
1348 */
1349 pushq $-1 /* ORIG_RAX: no syscall to restart */
1350
1351 /*
1352 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1353 * as we should not be calling schedule in NMI context.
1354 * Even with normal interrupts enabled. An NMI should not be
1355 * setting NEED_RESCHED or anything that normal interrupts and
1356 * exceptions might do.
1357 */
1358 call paranoid_entry
1359 UNWIND_HINT_REGS
1360
1361 movq %rsp, %rdi
1362 movq $-1, %rsi
1363 call exc_nmi
1364
1365 /* Always restore stashed CR3 value (see paranoid_entry) */
1366 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1367
1368 /*
1369 * The above invocation of paranoid_entry stored the GSBASE
1370 * related information in R/EBX depending on the availability
1371 * of FSGSBASE.
1372 *
1373 * If FSGSBASE is enabled, restore the saved GSBASE value
1374 * unconditionally, otherwise take the conditional SWAPGS path.
1375 */
1376 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1377
1378 wrgsbase %rbx
1379 jmp nmi_restore
1380
1381nmi_no_fsgsbase:
1382 /* EBX == 0 -> invoke SWAPGS */
1383 testl %ebx, %ebx
1384 jnz nmi_restore
1385
1386nmi_swapgs:
1387 swapgs
1388
1389nmi_restore:
1390 POP_REGS
1391
1392 /*
1393 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1394 * at the "iret" frame.
1395 */
1396 addq $6*8, %rsp
1397
1398 /*
1399 * Clear "NMI executing". Set DF first so that we can easily
1400 * distinguish the remaining code between here and IRET from
1401 * the SYSCALL entry and exit paths.
1402 *
1403 * We arguably should just inspect RIP instead, but I (Andy) wrote
1404 * this code when I had the misapprehension that Xen PV supported
1405 * NMIs, and Xen PV would break that approach.
1406 */
1407 std
1408 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1409
1410 /*
1411 * iretq reads the "iret" frame and exits the NMI stack in a
1412 * single instruction. We are returning to kernel mode, so this
1413 * cannot result in a fault. Similarly, we don't need to worry
1414 * about espfix64 on the way back to kernel mode.
1415 */
1416 iretq
1417SYM_CODE_END(asm_exc_nmi)
1418
1419#ifndef CONFIG_IA32_EMULATION
1420/*
1421 * This handles SYSCALL from 32-bit code. There is no way to program
1422 * MSRs to fully disable 32-bit SYSCALL.
1423 */
1424SYM_CODE_START(ignore_sysret)
1425 UNWIND_HINT_EMPTY
1426 mov $-ENOSYS, %eax
1427 sysretl
1428SYM_CODE_END(ignore_sysret)
1429#endif
1430
1431.pushsection .text, "ax"
1432SYM_CODE_START(rewind_stack_do_exit)
1433 UNWIND_HINT_FUNC
1434 /* Prevent any naive code from trying to unwind to our caller. */
1435 xorl %ebp, %ebp
1436
1437 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1438 leaq -PTREGS_SIZE(%rax), %rsp
1439 UNWIND_HINT_REGS
1440
1441 call do_exit
1442SYM_CODE_END(rewind_stack_do_exit)
1443.popsection