Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Based on arch/arm/mm/fault.c
  3 *
  4 * Copyright (C) 1995  Linus Torvalds
  5 * Copyright (C) 1995-2004 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 *
 17 * You should have received a copy of the GNU General Public License
 18 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 19 */
 20
 21#include <linux/module.h>
 
 
 
 22#include <linux/signal.h>
 23#include <linux/mm.h>
 24#include <linux/hardirq.h>
 25#include <linux/init.h>
 
 26#include <linux/kprobes.h>
 27#include <linux/uaccess.h>
 28#include <linux/page-flags.h>
 29#include <linux/sched.h>
 
 30#include <linux/highmem.h>
 31#include <linux/perf_event.h>
 
 
 32
 
 
 
 33#include <asm/cpufeature.h>
 34#include <asm/exception.h>
 
 35#include <asm/debug-monitors.h>
 36#include <asm/esr.h>
 
 
 
 37#include <asm/sysreg.h>
 38#include <asm/system_misc.h>
 39#include <asm/pgtable.h>
 40#include <asm/tlbflush.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41
 42static const char *fault_name(unsigned int esr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43
 44/*
 45 * Dump out the page tables associated with 'addr' in mm 'mm'.
 46 */
 47void show_pte(struct mm_struct *mm, unsigned long addr)
 48{
 49	pgd_t *pgd;
 
 
 50
 51	if (!mm)
 
 
 
 
 
 
 
 
 
 52		mm = &init_mm;
 
 
 
 
 
 53
 54	pr_alert("pgd = %p\n", mm->pgd);
 55	pgd = pgd_offset(mm, addr);
 56	pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
 
 
 
 57
 58	do {
 59		pud_t *pud;
 60		pmd_t *pmd;
 61		pte_t *pte;
 
 
 
 
 62
 63		if (pgd_none(*pgd) || pgd_bad(*pgd))
 
 
 
 64			break;
 65
 66		pud = pud_offset(pgd, addr);
 67		printk(", *pud=%016llx", pud_val(*pud));
 68		if (pud_none(*pud) || pud_bad(*pud))
 
 69			break;
 70
 71		pmd = pmd_offset(pud, addr);
 72		printk(", *pmd=%016llx", pmd_val(*pmd));
 73		if (pmd_none(*pmd) || pmd_bad(*pmd))
 
 74			break;
 75
 76		pte = pte_offset_map(pmd, addr);
 77		printk(", *pte=%016llx", pte_val(*pte));
 78		pte_unmap(pte);
 
 79	} while(0);
 80
 81	printk("\n");
 82}
 83
 84/*
 85 * The kernel tried to access some page that wasn't present.
 
 
 
 
 
 
 
 86 */
 87static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
 88			      unsigned int esr, struct pt_regs *regs)
 
 89{
 
 
 
 
 
 
 
 
 
 90	/*
 91	 * Are we prepared to handle this kernel fault?
 
 
 
 92	 */
 93	if (fixup_exception(regs))
 94		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95
 96	/*
 97	 * No handler, we'll have to terminate things with extreme prejudice.
 
 98	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99	bust_spinlocks(1);
100	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
101		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
102		 "paging request", addr);
103
104	show_pte(mm, addr);
 
 
 
 
 
105	die("Oops", regs, esr);
106	bust_spinlocks(0);
107	do_exit(SIGKILL);
108}
109
110/*
111 * Something tried to access memory that isn't in our memory map. User mode
112 * accesses just cause a SIGSEGV
113 */
114static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
115			    unsigned int esr, unsigned int sig, int code,
116			    struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117{
118	struct siginfo si;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
121		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
122			tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
123			addr, esr);
124		show_pte(tsk->mm, addr);
125		show_regs(regs);
126	}
127
128	tsk->thread.fault_address = addr;
129	tsk->thread.fault_code = esr;
130	si.si_signo = sig;
131	si.si_errno = 0;
132	si.si_code = code;
133	si.si_addr = (void __user *)addr;
134	force_sig_info(sig, &si, tsk);
 
 
 
 
 
 
 
 
 
 
135}
136
137static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
138{
139	struct task_struct *tsk = current;
140	struct mm_struct *mm = tsk->active_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
142	/*
143	 * If we are in kernel mode at this point, we have no context to
144	 * handle this fault with.
145	 */
146	if (user_mode(regs))
147		__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
148	else
149		__do_kernel_fault(mm, addr, esr, regs);
 
 
 
 
150}
151
152#define VM_FAULT_BADMAP		0x010000
153#define VM_FAULT_BADACCESS	0x020000
154
155#define ESR_LNX_EXEC		(1 << 24)
156
157static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
158			   unsigned int mm_flags, unsigned long vm_flags,
159			   struct task_struct *tsk)
160{
161	struct vm_area_struct *vma;
162	int fault;
163
164	vma = find_vma(mm, addr);
165	fault = VM_FAULT_BADMAP;
166	if (unlikely(!vma))
167		goto out;
168	if (unlikely(vma->vm_start > addr))
169		goto check_stack;
170
171	/*
172	 * Ok, we have a good vm_area for this memory access, so we can handle
173	 * it.
174	 */
175good_area:
 
 
 
 
 
 
176	/*
177	 * Check that the permissions on the VMA allow for the fault which
178	 * occurred. If we encountered a write or exec fault, we must have
179	 * appropriate permissions, otherwise we allow any permission.
180	 */
181	if (!(vma->vm_flags & vm_flags)) {
182		fault = VM_FAULT_BADACCESS;
183		goto out;
184	}
185
186	return handle_mm_fault(mm, vma, addr & PAGE_MASK, mm_flags);
187
188check_stack:
189	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
190		goto good_area;
191out:
192	return fault;
193}
194
195static inline int permission_fault(unsigned int esr)
196{
197	unsigned int ec       = (esr & ESR_ELx_EC_MASK) >> ESR_ELx_EC_SHIFT;
198	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
199
200	return (ec == ESR_ELx_EC_DABT_CUR && fsc_type == ESR_ELx_FSC_PERM);
 
 
 
 
 
 
201}
202
203static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
204				   struct pt_regs *regs)
205{
206	struct task_struct *tsk;
207	struct mm_struct *mm;
208	int fault, sig, code;
209	unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
210	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
211
212	tsk = current;
213	mm  = tsk->mm;
214
215	/* Enable interrupts if they were enabled in the parent context. */
216	if (interrupts_enabled(regs))
217		local_irq_enable();
218
219	/*
220	 * If we're in an interrupt or have no user context, we must not take
221	 * the fault.
222	 */
223	if (faulthandler_disabled() || !mm)
224		goto no_context;
225
226	if (user_mode(regs))
227		mm_flags |= FAULT_FLAG_USER;
228
229	if (esr & ESR_LNX_EXEC) {
 
 
 
 
 
 
 
230		vm_flags = VM_EXEC;
231	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
 
 
232		vm_flags = VM_WRITE;
233		mm_flags |= FAULT_FLAG_WRITE;
 
 
 
 
 
 
 
 
234	}
235
236	if (permission_fault(esr) && (addr < USER_DS)) {
237		if (get_fs() == KERNEL_DS)
238			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
 
239
240		if (!search_exception_tables(regs->pc))
241			die("Accessing user space memory outside uaccess.h routines", regs, esr);
 
242	}
243
 
 
244	/*
245	 * As per x86, we may deadlock here. However, since the kernel only
246	 * validly references user space from well defined areas of the code,
247	 * we can bug out early if this is from code which shouldn't.
248	 */
249	if (!down_read_trylock(&mm->mmap_sem)) {
250		if (!user_mode(regs) && !search_exception_tables(regs->pc))
251			goto no_context;
252retry:
253		down_read(&mm->mmap_sem);
254	} else {
255		/*
256		 * The above down_read_trylock() might have succeeded in which
257		 * case, we'll have missed the might_sleep() from down_read().
258		 */
259		might_sleep();
260#ifdef CONFIG_DEBUG_VM
261		if (!user_mode(regs) && !search_exception_tables(regs->pc))
 
262			goto no_context;
 
263#endif
264	}
265
266	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
267
268	/*
269	 * If we need to retry but a fatal signal is pending, handle the
270	 * signal first. We do not need to release the mmap_sem because it
271	 * would already be released in __lock_page_or_retry in mm/filemap.c.
272	 */
273	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
274		return 0;
 
275
276	/*
277	 * Major/minor page fault accounting is only done on the initial
278	 * attempt. If we go through a retry, it is extremely likely that the
279	 * page will be found in page cache at that point.
280	 */
281
282	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
283	if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
284		if (fault & VM_FAULT_MAJOR) {
285			tsk->maj_flt++;
286			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
287				      addr);
288		} else {
289			tsk->min_flt++;
290			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
291				      addr);
292		}
293		if (fault & VM_FAULT_RETRY) {
294			/*
295			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
296			 * starvation.
297			 */
298			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
299			mm_flags |= FAULT_FLAG_TRIED;
300			goto retry;
301		}
302	}
303
304	up_read(&mm->mmap_sem);
305
306	/*
307	 * Handle the "normal" case first - VM_FAULT_MAJOR
308	 */
309	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
310			      VM_FAULT_BADACCESS))))
311		return 0;
312
313	/*
314	 * If we are in kernel mode at this point, we have no context to
315	 * handle this fault with.
316	 */
317	if (!user_mode(regs))
318		goto no_context;
319
320	if (fault & VM_FAULT_OOM) {
321		/*
322		 * We ran out of memory, call the OOM killer, and return to
323		 * userspace (which will retry the fault, or kill us if we got
324		 * oom-killed).
325		 */
326		pagefault_out_of_memory();
327		return 0;
328	}
329
 
 
330	if (fault & VM_FAULT_SIGBUS) {
331		/*
332		 * We had some memory, but were unable to successfully fix up
333		 * this page fault.
334		 */
335		sig = SIGBUS;
336		code = BUS_ADRERR;
 
 
 
 
 
 
 
337	} else {
338		/*
339		 * Something tried to access memory that isn't in our memory
340		 * map.
341		 */
342		sig = SIGSEGV;
343		code = fault == VM_FAULT_BADACCESS ?
344			SEGV_ACCERR : SEGV_MAPERR;
345	}
346
347	__do_user_fault(tsk, addr, esr, sig, code, regs);
348	return 0;
349
350no_context:
351	__do_kernel_fault(mm, addr, esr, regs);
352	return 0;
353}
354
355/*
356 * First Level Translation Fault Handler
357 *
358 * We enter here because the first level page table doesn't contain a valid
359 * entry for the address.
360 *
361 * If the address is in kernel space (>= TASK_SIZE), then we are probably
362 * faulting in the vmalloc() area.
363 *
364 * If the init_task's first level page tables contains the relevant entry, we
365 * copy the it to this task.  If not, we send the process a signal, fixup the
366 * exception, or oops the kernel.
367 *
368 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
369 * or a critical region, and should only copy the information from the master
370 * page table, nothing more.
371 */
372static int __kprobes do_translation_fault(unsigned long addr,
373					  unsigned int esr,
374					  struct pt_regs *regs)
375{
376	if (addr < TASK_SIZE)
377		return do_page_fault(addr, esr, regs);
 
 
378
379	do_bad_area(addr, esr, regs);
380	return 0;
381}
382
383static int do_alignment_fault(unsigned long addr, unsigned int esr,
384			      struct pt_regs *regs)
385{
386	do_bad_area(addr, esr, regs);
387	return 0;
388}
389
390/*
391 * This abort handler always returns "fault".
392 */
393static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
394{
395	return 1;
396}
397
398static struct fault_info {
399	int	(*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
400	int	sig;
401	int	code;
402	const char *name;
403} fault_info[] = {
404	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
405	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
406	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
407	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
409	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
410	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
411	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
412	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
413	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
414	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
415	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
416	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
417	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
418	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
419	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
420	{ do_bad,		SIGBUS,  0,		"synchronous external abort"	},
421	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
422	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
423	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
424	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
425	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
426	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
427	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
428	{ do_bad,		SIGBUS,  0,		"synchronous parity error"	},
429	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
430	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
431	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
432	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
433	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
434	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
435	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
436	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
437	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
438	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
439	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
440	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
441	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
442	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
443	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
444	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
445	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
446	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
447	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
448	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
449	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
450	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
451	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
452	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
453	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
454	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
455	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
456	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
457	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
458	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
459	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
460	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
461	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
462	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
463	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
464	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
465	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
466	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
467	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
468};
469
470static const char *fault_name(unsigned int esr)
471{
472	const struct fault_info *inf = fault_info + (esr & 63);
473	return inf->name;
474}
475
476/*
477 * Dispatch a data abort to the relevant handler.
478 */
479asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
480					 struct pt_regs *regs)
481{
482	const struct fault_info *inf = fault_info + (esr & 63);
483	struct siginfo info;
484
485	if (!inf->fn(addr, esr, regs))
486		return;
487
488	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
489		 inf->name, esr, addr);
 
 
 
490
491	info.si_signo = inf->sig;
492	info.si_errno = 0;
493	info.si_code  = inf->code;
494	info.si_addr  = (void __user *)addr;
495	arm64_notify_die("", regs, &info, esr);
 
496}
 
497
498/*
499 * Handle stack alignment exceptions.
500 */
501asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
502					   unsigned int esr,
503					   struct pt_regs *regs)
504{
505	struct siginfo info;
506	struct task_struct *tsk = current;
507
508	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
509		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
510				    tsk->comm, task_pid_nr(tsk),
511				    esr_get_class_string(esr), (void *)regs->pc,
512				    (void *)regs->sp);
513
514	info.si_signo = SIGBUS;
515	info.si_errno = 0;
516	info.si_code  = BUS_ADRALN;
517	info.si_addr  = (void __user *)addr;
518	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
519}
 
520
521int __init early_brk64(unsigned long addr, unsigned int esr,
522		       struct pt_regs *regs);
523
524/*
525 * __refdata because early_brk64 is __init, but the reference to it is
526 * clobbered at arch_initcall time.
527 * See traps.c and debug-monitors.c:debug_traps_init().
528 */
529static struct fault_info __refdata debug_fault_info[] = {
530	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
531	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
532	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
533	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
534	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
535	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
536	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
537	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
538};
539
540void __init hook_debug_fault_code(int nr,
541				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
542				  int sig, int code, const char *name)
543{
544	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
545
546	debug_fault_info[nr].fn		= fn;
547	debug_fault_info[nr].sig	= sig;
548	debug_fault_info[nr].code	= code;
549	debug_fault_info[nr].name	= name;
550}
551
552asmlinkage int __exception do_debug_exception(unsigned long addr,
553					      unsigned int esr,
554					      struct pt_regs *regs)
555{
556	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
557	struct siginfo info;
558
559	if (!inf->fn(addr, esr, regs))
560		return 1;
561
562	pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
563		 inf->name, esr, addr);
564
565	info.si_signo = inf->sig;
566	info.si_errno = 0;
567	info.si_code  = inf->code;
568	info.si_addr  = (void __user *)addr;
569	arm64_notify_die("", regs, &info, 0);
570
571	return 0;
 
572}
 
573
574#ifdef CONFIG_ARM64_PAN
575void cpu_enable_pan(void *__unused)
576{
577	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
578}
579#endif /* CONFIG_ARM64_PAN */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580
581#ifdef CONFIG_ARM64_UAO
582/*
583 * Kernel threads have fs=KERNEL_DS by default, and don't need to call
584 * set_fs(), devtmpfs in particular relies on this behaviour.
585 * We need to enable the feature at runtime (instead of adding it to
586 * PSR_MODE_EL1h) as the feature may not be implemented by the cpu.
587 */
588void cpu_enable_uao(void *__unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589{
590	asm(SET_PSTATE_UAO(1));
 
 
591}
592#endif /* CONFIG_ARM64_UAO */
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/mm/fault.c
  4 *
  5 * Copyright (C) 1995  Linus Torvalds
  6 * Copyright (C) 1995-2004 Russell King
  7 * Copyright (C) 2012 ARM Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <linux/acpi.h>
 11#include <linux/bitfield.h>
 12#include <linux/extable.h>
 13#include <linux/kfence.h>
 14#include <linux/signal.h>
 15#include <linux/mm.h>
 16#include <linux/hardirq.h>
 17#include <linux/init.h>
 18#include <linux/kasan.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/page-flags.h>
 22#include <linux/sched/signal.h>
 23#include <linux/sched/debug.h>
 24#include <linux/highmem.h>
 25#include <linux/perf_event.h>
 26#include <linux/preempt.h>
 27#include <linux/hugetlb.h>
 28
 29#include <asm/acpi.h>
 30#include <asm/bug.h>
 31#include <asm/cmpxchg.h>
 32#include <asm/cpufeature.h>
 33#include <asm/exception.h>
 34#include <asm/daifflags.h>
 35#include <asm/debug-monitors.h>
 36#include <asm/esr.h>
 37#include <asm/kprobes.h>
 38#include <asm/mte.h>
 39#include <asm/processor.h>
 40#include <asm/sysreg.h>
 41#include <asm/system_misc.h>
 
 42#include <asm/tlbflush.h>
 43#include <asm/traps.h>
 44
 45struct fault_info {
 46	int	(*fn)(unsigned long far, unsigned int esr,
 47		      struct pt_regs *regs);
 48	int	sig;
 49	int	code;
 50	const char *name;
 51};
 52
 53static const struct fault_info fault_info[];
 54static struct fault_info debug_fault_info[];
 55
 56static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
 57{
 58	return fault_info + (esr & ESR_ELx_FSC);
 59}
 60
 61static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
 62{
 63	return debug_fault_info + DBG_ESR_EVT(esr);
 64}
 65
 66static void data_abort_decode(unsigned int esr)
 67{
 68	pr_alert("Data abort info:\n");
 69
 70	if (esr & ESR_ELx_ISV) {
 71		pr_alert("  Access size = %u byte(s)\n",
 72			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
 73		pr_alert("  SSE = %lu, SRT = %lu\n",
 74			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
 75			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
 76		pr_alert("  SF = %lu, AR = %lu\n",
 77			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
 78			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
 79	} else {
 80		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
 81	}
 82
 83	pr_alert("  CM = %lu, WnR = %lu\n",
 84		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
 85		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
 86}
 87
 88static void mem_abort_decode(unsigned int esr)
 89{
 90	pr_alert("Mem abort info:\n");
 91
 92	pr_alert("  ESR = 0x%08x\n", esr);
 93	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
 94		 ESR_ELx_EC(esr), esr_get_class_string(esr),
 95		 (esr & ESR_ELx_IL) ? 32 : 16);
 96	pr_alert("  SET = %lu, FnV = %lu\n",
 97		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
 98		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
 99	pr_alert("  EA = %lu, S1PTW = %lu\n",
100		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
101		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
102	pr_alert("  FSC = 0x%02x: %s\n", (esr & ESR_ELx_FSC),
103		 esr_to_fault_info(esr)->name);
104
105	if (esr_is_data_abort(esr))
106		data_abort_decode(esr);
107}
108
109static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
110{
111	/* Either init_pg_dir or swapper_pg_dir */
112	if (mm == &init_mm)
113		return __pa_symbol(mm->pgd);
114
115	return (unsigned long)virt_to_phys(mm->pgd);
116}
117
118/*
119 * Dump out the page tables associated with 'addr' in the currently active mm.
120 */
121static void show_pte(unsigned long addr)
122{
123	struct mm_struct *mm;
124	pgd_t *pgdp;
125	pgd_t pgd;
126
127	if (is_ttbr0_addr(addr)) {
128		/* TTBR0 */
129		mm = current->active_mm;
130		if (mm == &init_mm) {
131			pr_alert("[%016lx] user address but active_mm is swapper\n",
132				 addr);
133			return;
134		}
135	} else if (is_ttbr1_addr(addr)) {
136		/* TTBR1 */
137		mm = &init_mm;
138	} else {
139		pr_alert("[%016lx] address between user and kernel address ranges\n",
140			 addr);
141		return;
142	}
143
144	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
145		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
146		 vabits_actual, mm_to_pgd_phys(mm));
147	pgdp = pgd_offset(mm, addr);
148	pgd = READ_ONCE(*pgdp);
149	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
150
151	do {
152		p4d_t *p4dp, p4d;
153		pud_t *pudp, pud;
154		pmd_t *pmdp, pmd;
155		pte_t *ptep, pte;
156
157		if (pgd_none(pgd) || pgd_bad(pgd))
158			break;
159
160		p4dp = p4d_offset(pgdp, addr);
161		p4d = READ_ONCE(*p4dp);
162		pr_cont(", p4d=%016llx", p4d_val(p4d));
163		if (p4d_none(p4d) || p4d_bad(p4d))
164			break;
165
166		pudp = pud_offset(p4dp, addr);
167		pud = READ_ONCE(*pudp);
168		pr_cont(", pud=%016llx", pud_val(pud));
169		if (pud_none(pud) || pud_bad(pud))
170			break;
171
172		pmdp = pmd_offset(pudp, addr);
173		pmd = READ_ONCE(*pmdp);
174		pr_cont(", pmd=%016llx", pmd_val(pmd));
175		if (pmd_none(pmd) || pmd_bad(pmd))
176			break;
177
178		ptep = pte_offset_map(pmdp, addr);
179		pte = READ_ONCE(*ptep);
180		pr_cont(", pte=%016llx", pte_val(pte));
181		pte_unmap(ptep);
182	} while(0);
183
184	pr_cont("\n");
185}
186
187/*
188 * This function sets the access flags (dirty, accessed), as well as write
189 * permission, and only to a more permissive setting.
190 *
191 * It needs to cope with hardware update of the accessed/dirty state by other
192 * agents in the system and can safely skip the __sync_icache_dcache() call as,
193 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
194 *
195 * Returns whether or not the PTE actually changed.
196 */
197int ptep_set_access_flags(struct vm_area_struct *vma,
198			  unsigned long address, pte_t *ptep,
199			  pte_t entry, int dirty)
200{
201	pteval_t old_pteval, pteval;
202	pte_t pte = READ_ONCE(*ptep);
203
204	if (pte_same(pte, entry))
205		return 0;
206
207	/* only preserve the access flags and write permission */
208	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
209
210	/*
211	 * Setting the flags must be done atomically to avoid racing with the
212	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
213	 * be set to the most permissive (lowest value) of *ptep and entry
214	 * (calculated as: a & b == ~(~a | ~b)).
215	 */
216	pte_val(entry) ^= PTE_RDONLY;
217	pteval = pte_val(pte);
218	do {
219		old_pteval = pteval;
220		pteval ^= PTE_RDONLY;
221		pteval |= pte_val(entry);
222		pteval ^= PTE_RDONLY;
223		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
224	} while (pteval != old_pteval);
225
226	/* Invalidate a stale read-only entry */
227	if (dirty)
228		flush_tlb_page(vma, address);
229	return 1;
230}
231
232static bool is_el1_instruction_abort(unsigned int esr)
233{
234	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
235}
236
237static bool is_el1_data_abort(unsigned int esr)
238{
239	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
240}
241
242static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
243					   struct pt_regs *regs)
244{
245	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
246
247	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
248		return false;
249
250	if (fsc_type == ESR_ELx_FSC_PERM)
251		return true;
252
253	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
254		return fsc_type == ESR_ELx_FSC_FAULT &&
255			(regs->pstate & PSR_PAN_BIT);
256
257	return false;
258}
259
260static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
261							unsigned int esr,
262							struct pt_regs *regs)
263{
264	unsigned long flags;
265	u64 par, dfsc;
266
267	if (!is_el1_data_abort(esr) ||
268	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
269		return false;
270
271	local_irq_save(flags);
272	asm volatile("at s1e1r, %0" :: "r" (addr));
273	isb();
274	par = read_sysreg_par();
275	local_irq_restore(flags);
276
277	/*
278	 * If we now have a valid translation, treat the translation fault as
279	 * spurious.
280	 */
281	if (!(par & SYS_PAR_EL1_F))
282		return true;
283
284	/*
285	 * If we got a different type of fault from the AT instruction,
286	 * treat the translation fault as spurious.
287	 */
288	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
289	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
290}
291
292static void die_kernel_fault(const char *msg, unsigned long addr,
293			     unsigned int esr, struct pt_regs *regs)
294{
295	bust_spinlocks(1);
 
 
 
296
297	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
298		 addr);
299
300	mem_abort_decode(esr);
301
302	show_pte(addr);
303	die("Oops", regs, esr);
304	bust_spinlocks(0);
305	do_exit(SIGKILL);
306}
307
308#ifdef CONFIG_KASAN_HW_TAGS
309static void report_tag_fault(unsigned long addr, unsigned int esr,
310			     struct pt_regs *regs)
311{
312	static bool reported;
313	bool is_write;
314
315	if (READ_ONCE(reported))
316		return;
317
318	/*
319	 * This is used for KASAN tests and assumes that no MTE faults
320	 * happened before running the tests.
321	 */
322	if (mte_report_once())
323		WRITE_ONCE(reported, true);
324
325	/*
326	 * SAS bits aren't set for all faults reported in EL1, so we can't
327	 * find out access size.
328	 */
329	is_write = !!(esr & ESR_ELx_WNR);
330	kasan_report(addr, 0, is_write, regs->pc);
331}
332#else
333/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
334static inline void report_tag_fault(unsigned long addr, unsigned int esr,
335				    struct pt_regs *regs) { }
336#endif
337
338static void do_tag_recovery(unsigned long addr, unsigned int esr,
339			   struct pt_regs *regs)
340{
341
342	report_tag_fault(addr, esr, regs);
343
344	/*
345	 * Disable MTE Tag Checking on the local CPU for the current EL.
346	 * It will be done lazily on the other CPUs when they will hit a
347	 * tag fault.
348	 */
349	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
350	isb();
351}
352
353static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
354{
355	unsigned int fsc = esr & ESR_ELx_FSC;
356
357	if (!is_el1_data_abort(esr))
358		return false;
359
360	if (fsc == ESR_ELx_FSC_MTE)
361		return true;
362
363	return false;
364}
365
366static void __do_kernel_fault(unsigned long addr, unsigned int esr,
367			      struct pt_regs *regs)
368{
369	const char *msg;
370
371	/*
372	 * Are we prepared to handle this kernel fault?
373	 * We are almost certainly not prepared to handle instruction faults.
374	 */
375	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
376		return;
377
378	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
379	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
380		return;
381
382	if (is_el1_mte_sync_tag_check_fault(esr)) {
383		do_tag_recovery(addr, esr, regs);
384
385		return;
 
 
 
 
 
386	}
387
388	if (is_el1_permission_fault(addr, esr, regs)) {
389		if (esr & ESR_ELx_WNR)
390			msg = "write to read-only memory";
391		else if (is_el1_instruction_abort(esr))
392			msg = "execute from non-executable memory";
393		else
394			msg = "read from unreadable memory";
395	} else if (addr < PAGE_SIZE) {
396		msg = "NULL pointer dereference";
397	} else {
398		if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
399			return;
400
401		msg = "paging request";
402	}
403
404	die_kernel_fault(msg, addr, esr, regs);
405}
406
407static void set_thread_esr(unsigned long address, unsigned int esr)
408{
409	current->thread.fault_address = address;
410
411	/*
412	 * If the faulting address is in the kernel, we must sanitize the ESR.
413	 * From userspace's point of view, kernel-only mappings don't exist
414	 * at all, so we report them as level 0 translation faults.
415	 * (This is not quite the way that "no mapping there at all" behaves:
416	 * an alignment fault not caused by the memory type would take
417	 * precedence over translation fault for a real access to empty
418	 * space. Unfortunately we can't easily distinguish "alignment fault
419	 * not caused by memory type" from "alignment fault caused by memory
420	 * type", so we ignore this wrinkle and just return the translation
421	 * fault.)
422	 */
423	if (!is_ttbr0_addr(current->thread.fault_address)) {
424		switch (ESR_ELx_EC(esr)) {
425		case ESR_ELx_EC_DABT_LOW:
426			/*
427			 * These bits provide only information about the
428			 * faulting instruction, which userspace knows already.
429			 * We explicitly clear bits which are architecturally
430			 * RES0 in case they are given meanings in future.
431			 * We always report the ESR as if the fault was taken
432			 * to EL1 and so ISV and the bits in ISS[23:14] are
433			 * clear. (In fact it always will be a fault to EL1.)
434			 */
435			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
436				ESR_ELx_CM | ESR_ELx_WNR;
437			esr |= ESR_ELx_FSC_FAULT;
438			break;
439		case ESR_ELx_EC_IABT_LOW:
440			/*
441			 * Claim a level 0 translation fault.
442			 * All other bits are architecturally RES0 for faults
443			 * reported with that DFSC value, so we clear them.
444			 */
445			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
446			esr |= ESR_ELx_FSC_FAULT;
447			break;
448		default:
449			/*
450			 * This should never happen (entry.S only brings us
451			 * into this code for insn and data aborts from a lower
452			 * exception level). Fail safe by not providing an ESR
453			 * context record at all.
454			 */
455			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
456			esr = 0;
457			break;
458		}
459	}
460
461	current->thread.fault_code = esr;
462}
463
464static void do_bad_area(unsigned long far, unsigned int esr,
465			struct pt_regs *regs)
466{
467	unsigned long addr = untagged_addr(far);
468
469	/*
470	 * If we are in kernel mode at this point, we have no context to
471	 * handle this fault with.
472	 */
473	if (user_mode(regs)) {
474		const struct fault_info *inf = esr_to_fault_info(esr);
475
476		set_thread_esr(addr, esr);
477		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
478	} else {
479		__do_kernel_fault(addr, esr, regs);
480	}
481}
482
483#define VM_FAULT_BADMAP		0x010000
484#define VM_FAULT_BADACCESS	0x020000
485
486static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
487				  unsigned int mm_flags, unsigned long vm_flags,
488				  struct pt_regs *regs)
 
 
489{
490	struct vm_area_struct *vma = find_vma(mm, addr);
 
491
 
 
492	if (unlikely(!vma))
493		return VM_FAULT_BADMAP;
 
 
494
495	/*
496	 * Ok, we have a good vm_area for this memory access, so we can handle
497	 * it.
498	 */
499	if (unlikely(vma->vm_start > addr)) {
500		if (!(vma->vm_flags & VM_GROWSDOWN))
501			return VM_FAULT_BADMAP;
502		if (expand_stack(vma, addr))
503			return VM_FAULT_BADMAP;
504	}
505
506	/*
507	 * Check that the permissions on the VMA allow for the fault which
508	 * occurred.
 
509	 */
510	if (!(vma->vm_flags & vm_flags))
511		return VM_FAULT_BADACCESS;
512	return handle_mm_fault(vma, addr, mm_flags, regs);
 
 
 
 
 
 
 
 
 
513}
514
515static bool is_el0_instruction_abort(unsigned int esr)
516{
517	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
518}
519
520/*
521 * Note: not valid for EL1 DC IVAC, but we never use that such that it
522 * should fault. EL0 cannot issue DC IVAC (undef).
523 */
524static bool is_write_abort(unsigned int esr)
525{
526	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
527}
528
529static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
530				   struct pt_regs *regs)
531{
532	const struct fault_info *inf;
533	struct mm_struct *mm = current->mm;
534	vm_fault_t fault;
535	unsigned long vm_flags;
536	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
537	unsigned long addr = untagged_addr(far);
538
539	if (kprobe_page_fault(regs, esr))
540		return 0;
 
 
 
541
542	/*
543	 * If we're in an interrupt or have no user context, we must not take
544	 * the fault.
545	 */
546	if (faulthandler_disabled() || !mm)
547		goto no_context;
548
549	if (user_mode(regs))
550		mm_flags |= FAULT_FLAG_USER;
551
552	/*
553	 * vm_flags tells us what bits we must have in vma->vm_flags
554	 * for the fault to be benign, __do_page_fault() would check
555	 * vma->vm_flags & vm_flags and returns an error if the
556	 * intersection is empty
557	 */
558	if (is_el0_instruction_abort(esr)) {
559		/* It was exec fault */
560		vm_flags = VM_EXEC;
561		mm_flags |= FAULT_FLAG_INSTRUCTION;
562	} else if (is_write_abort(esr)) {
563		/* It was write fault */
564		vm_flags = VM_WRITE;
565		mm_flags |= FAULT_FLAG_WRITE;
566	} else {
567		/* It was read fault */
568		vm_flags = VM_READ;
569		/* Write implies read */
570		vm_flags |= VM_WRITE;
571		/* If EPAN is absent then exec implies read */
572		if (!cpus_have_const_cap(ARM64_HAS_EPAN))
573			vm_flags |= VM_EXEC;
574	}
575
576	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
577		if (is_el1_instruction_abort(esr))
578			die_kernel_fault("execution of user memory",
579					 addr, esr, regs);
580
581		if (!search_exception_tables(regs->pc))
582			die_kernel_fault("access to user memory outside uaccess routines",
583					 addr, esr, regs);
584	}
585
586	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
587
588	/*
589	 * As per x86, we may deadlock here. However, since the kernel only
590	 * validly references user space from well defined areas of the code,
591	 * we can bug out early if this is from code which shouldn't.
592	 */
593	if (!mmap_read_trylock(mm)) {
594		if (!user_mode(regs) && !search_exception_tables(regs->pc))
595			goto no_context;
596retry:
597		mmap_read_lock(mm);
598	} else {
599		/*
600		 * The above mmap_read_trylock() might have succeeded in which
601		 * case, we'll have missed the might_sleep() from down_read().
602		 */
603		might_sleep();
604#ifdef CONFIG_DEBUG_VM
605		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
606			mmap_read_unlock(mm);
607			goto no_context;
608		}
609#endif
610	}
611
612	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
613
614	/* Quick path to respond to signals */
615	if (fault_signal_pending(fault, regs)) {
616		if (!user_mode(regs))
617			goto no_context;
 
 
618		return 0;
619	}
620
621	if (fault & VM_FAULT_RETRY) {
622		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
623			mm_flags |= FAULT_FLAG_TRIED;
624			goto retry;
625		}
626	}
627	mmap_read_unlock(mm);
 
628
629	/*
630	 * Handle the "normal" (no error) case first.
631	 */
632	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
633			      VM_FAULT_BADACCESS))))
634		return 0;
635
636	/*
637	 * If we are in kernel mode at this point, we have no context to
638	 * handle this fault with.
639	 */
640	if (!user_mode(regs))
641		goto no_context;
642
643	if (fault & VM_FAULT_OOM) {
644		/*
645		 * We ran out of memory, call the OOM killer, and return to
646		 * userspace (which will retry the fault, or kill us if we got
647		 * oom-killed).
648		 */
649		pagefault_out_of_memory();
650		return 0;
651	}
652
653	inf = esr_to_fault_info(esr);
654	set_thread_esr(addr, esr);
655	if (fault & VM_FAULT_SIGBUS) {
656		/*
657		 * We had some memory, but were unable to successfully fix up
658		 * this page fault.
659		 */
660		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
661	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
662		unsigned int lsb;
663
664		lsb = PAGE_SHIFT;
665		if (fault & VM_FAULT_HWPOISON_LARGE)
666			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
667
668		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
669	} else {
670		/*
671		 * Something tried to access memory that isn't in our memory
672		 * map.
673		 */
674		arm64_force_sig_fault(SIGSEGV,
675				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
676				      far, inf->name);
677	}
678
 
679	return 0;
680
681no_context:
682	__do_kernel_fault(addr, esr, regs);
683	return 0;
684}
685
686static int __kprobes do_translation_fault(unsigned long far,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687					  unsigned int esr,
688					  struct pt_regs *regs)
689{
690	unsigned long addr = untagged_addr(far);
691
692	if (is_ttbr0_addr(addr))
693		return do_page_fault(far, esr, regs);
694
695	do_bad_area(far, esr, regs);
696	return 0;
697}
698
699static int do_alignment_fault(unsigned long far, unsigned int esr,
700			      struct pt_regs *regs)
701{
702	do_bad_area(far, esr, regs);
703	return 0;
704}
705
706static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
 
 
 
707{
708	return 1; /* "fault" */
709}
710
711static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
712{
713	const struct fault_info *inf;
714	unsigned long siaddr;
715
716	inf = esr_to_fault_info(esr);
717
718	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
719		/*
720		 * APEI claimed this as a firmware-first notification.
721		 * Some processing deferred to task_work before ret_to_user().
722		 */
723		return 0;
724	}
725
726	if (esr & ESR_ELx_FnV) {
727		siaddr = 0;
728	} else {
729		/*
730		 * The architecture specifies that the tag bits of FAR_EL1 are
731		 * UNKNOWN for synchronous external aborts. Mask them out now
732		 * so that userspace doesn't see them.
733		 */
734		siaddr  = untagged_addr(far);
735	}
736	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
737
738	return 0;
739}
740
741static int do_tag_check_fault(unsigned long far, unsigned int esr,
742			      struct pt_regs *regs)
743{
744	/*
745	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
746	 * for tag check faults. Set them to corresponding bits in the untagged
747	 * address.
748	 */
749	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
750	do_bad_area(far, esr, regs);
751	return 0;
752}
753
754static const struct fault_info fault_info[] = {
755	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
756	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
757	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
758	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
759	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
760	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
761	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
762	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
763	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
764	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
765	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
766	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
767	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
768	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
769	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
770	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
771	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
772	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
773	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
774	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
775	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
776	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
777	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
778	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
779	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
780	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
781	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
782	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
783	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
784	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
785	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
786	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
787	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
788	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
789	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
790	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
791	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
792	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
793	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
794	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
795	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
796	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
797	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
798	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
799	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
800	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
801	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
802	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
803	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
804	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
805	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
806	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
807	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
808	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
809	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
810	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
811	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
812	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
813	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
814	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
815	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
816	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
817	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
818	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
819};
820
821void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
822{
823	const struct fault_info *inf = esr_to_fault_info(esr);
824	unsigned long addr = untagged_addr(far);
 
825
826	if (!inf->fn(far, esr, regs))
 
 
 
 
 
 
 
 
 
827		return;
828
829	if (!user_mode(regs)) {
830		pr_alert("Unhandled fault at 0x%016lx\n", addr);
831		mem_abort_decode(esr);
832		show_pte(addr);
833	}
834
835	/*
836	 * At this point we have an unrecognized fault type whose tag bits may
837	 * have been defined as UNKNOWN. Therefore we only expose the untagged
838	 * address to the signal handler.
839	 */
840	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
841}
842NOKPROBE_SYMBOL(do_mem_abort);
843
844void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
 
 
 
 
 
845{
846	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
847			 addr, esr);
 
 
 
 
 
 
 
 
 
 
 
 
848}
849NOKPROBE_SYMBOL(do_sp_pc_abort);
850
851int __init early_brk64(unsigned long addr, unsigned int esr,
852		       struct pt_regs *regs);
853
854/*
855 * __refdata because early_brk64 is __init, but the reference to it is
856 * clobbered at arch_initcall time.
857 * See traps.c and debug-monitors.c:debug_traps_init().
858 */
859static struct fault_info __refdata debug_fault_info[] = {
860	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
861	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
862	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
863	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
864	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
865	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
866	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
867	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
868};
869
870void __init hook_debug_fault_code(int nr,
871				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
872				  int sig, int code, const char *name)
873{
874	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
875
876	debug_fault_info[nr].fn		= fn;
877	debug_fault_info[nr].sig	= sig;
878	debug_fault_info[nr].code	= code;
879	debug_fault_info[nr].name	= name;
880}
881
882/*
883 * In debug exception context, we explicitly disable preemption despite
884 * having interrupts disabled.
885 * This serves two purposes: it makes it much less likely that we would
886 * accidentally schedule in exception context and it will force a warning
887 * if we somehow manage to schedule by accident.
888 */
889static void debug_exception_enter(struct pt_regs *regs)
890{
891	preempt_disable();
 
 
 
 
 
 
 
 
892
893	/* This code is a bit fragile.  Test it. */
894	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
895}
896NOKPROBE_SYMBOL(debug_exception_enter);
897
898static void debug_exception_exit(struct pt_regs *regs)
 
899{
900	preempt_enable_no_resched();
901}
902NOKPROBE_SYMBOL(debug_exception_exit);
903
904void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
905			struct pt_regs *regs)
906{
907	const struct fault_info *inf = esr_to_debug_fault_info(esr);
908	unsigned long pc = instruction_pointer(regs);
909
910	debug_exception_enter(regs);
911
912	if (user_mode(regs) && !is_ttbr0_addr(pc))
913		arm64_apply_bp_hardening();
914
915	if (inf->fn(addr_if_watchpoint, esr, regs)) {
916		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
917	}
918
919	debug_exception_exit(regs);
920}
921NOKPROBE_SYMBOL(do_debug_exception);
922
 
923/*
924 * Used during anonymous page fault handling.
 
 
 
925 */
926struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
927						unsigned long vaddr)
928{
929	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
930
931	/*
932	 * If the page is mapped with PROT_MTE, initialise the tags at the
933	 * point of allocation and page zeroing as this is usually faster than
934	 * separate DC ZVA and STGM.
935	 */
936	if (vma->vm_flags & VM_MTE)
937		flags |= __GFP_ZEROTAGS;
938
939	return alloc_page_vma(flags, vma, vaddr);
940}
941
942void tag_clear_highpage(struct page *page)
943{
944	mte_zero_clear_page_tags(page_address(page));
945	page_kasan_tag_reset(page);
946	set_bit(PG_mte_tagged, &page->flags);
947}