Loading...
1/*
2 * numa.c
3 *
4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
5 */
6
7#include "../perf.h"
8#include "../builtin.h"
9#include "../util/util.h"
10#include <subcmd/parse-options.h>
11#include "../util/cloexec.h"
12
13#include "bench.h"
14
15#include <errno.h>
16#include <sched.h>
17#include <stdio.h>
18#include <assert.h>
19#include <malloc.h>
20#include <signal.h>
21#include <stdlib.h>
22#include <string.h>
23#include <unistd.h>
24#include <pthread.h>
25#include <sys/mman.h>
26#include <sys/time.h>
27#include <sys/resource.h>
28#include <sys/wait.h>
29#include <sys/prctl.h>
30#include <sys/types.h>
31
32#include <numa.h>
33#include <numaif.h>
34
35/*
36 * Regular printout to the terminal, supressed if -q is specified:
37 */
38#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
39
40/*
41 * Debug printf:
42 */
43#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
44
45struct thread_data {
46 int curr_cpu;
47 cpu_set_t bind_cpumask;
48 int bind_node;
49 u8 *process_data;
50 int process_nr;
51 int thread_nr;
52 int task_nr;
53 unsigned int loops_done;
54 u64 val;
55 u64 runtime_ns;
56 u64 system_time_ns;
57 u64 user_time_ns;
58 double speed_gbs;
59 pthread_mutex_t *process_lock;
60};
61
62/* Parameters set by options: */
63
64struct params {
65 /* Startup synchronization: */
66 bool serialize_startup;
67
68 /* Task hierarchy: */
69 int nr_proc;
70 int nr_threads;
71
72 /* Working set sizes: */
73 const char *mb_global_str;
74 const char *mb_proc_str;
75 const char *mb_proc_locked_str;
76 const char *mb_thread_str;
77
78 double mb_global;
79 double mb_proc;
80 double mb_proc_locked;
81 double mb_thread;
82
83 /* Access patterns to the working set: */
84 bool data_reads;
85 bool data_writes;
86 bool data_backwards;
87 bool data_zero_memset;
88 bool data_rand_walk;
89 u32 nr_loops;
90 u32 nr_secs;
91 u32 sleep_usecs;
92
93 /* Working set initialization: */
94 bool init_zero;
95 bool init_random;
96 bool init_cpu0;
97
98 /* Misc options: */
99 int show_details;
100 int run_all;
101 int thp;
102
103 long bytes_global;
104 long bytes_process;
105 long bytes_process_locked;
106 long bytes_thread;
107
108 int nr_tasks;
109 bool show_quiet;
110
111 bool show_convergence;
112 bool measure_convergence;
113
114 int perturb_secs;
115 int nr_cpus;
116 int nr_nodes;
117
118 /* Affinity options -C and -N: */
119 char *cpu_list_str;
120 char *node_list_str;
121};
122
123
124/* Global, read-writable area, accessible to all processes and threads: */
125
126struct global_info {
127 u8 *data;
128
129 pthread_mutex_t startup_mutex;
130 int nr_tasks_started;
131
132 pthread_mutex_t startup_done_mutex;
133
134 pthread_mutex_t start_work_mutex;
135 int nr_tasks_working;
136
137 pthread_mutex_t stop_work_mutex;
138 u64 bytes_done;
139
140 struct thread_data *threads;
141
142 /* Convergence latency measurement: */
143 bool all_converged;
144 bool stop_work;
145
146 int print_once;
147
148 struct params p;
149};
150
151static struct global_info *g = NULL;
152
153static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
154static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
155
156struct params p0;
157
158static const struct option options[] = {
159 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
160 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
161
162 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
163 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
164 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
165 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
166
167 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
168 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
169 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
170
171 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
172 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
173 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
174 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
175 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
176
177
178 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
179 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
180 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
181 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
182
183 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
184 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
185 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
186 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"),
187 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
188 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
189 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
190
191 /* Special option string parsing callbacks: */
192 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
193 "bind the first N tasks to these specific cpus (the rest is unbound)",
194 parse_cpus_opt),
195 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
196 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
197 parse_nodes_opt),
198 OPT_END()
199};
200
201static const char * const bench_numa_usage[] = {
202 "perf bench numa <options>",
203 NULL
204};
205
206static const char * const numa_usage[] = {
207 "perf bench numa mem [<options>]",
208 NULL
209};
210
211static cpu_set_t bind_to_cpu(int target_cpu)
212{
213 cpu_set_t orig_mask, mask;
214 int ret;
215
216 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
217 BUG_ON(ret);
218
219 CPU_ZERO(&mask);
220
221 if (target_cpu == -1) {
222 int cpu;
223
224 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
225 CPU_SET(cpu, &mask);
226 } else {
227 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
228 CPU_SET(target_cpu, &mask);
229 }
230
231 ret = sched_setaffinity(0, sizeof(mask), &mask);
232 BUG_ON(ret);
233
234 return orig_mask;
235}
236
237static cpu_set_t bind_to_node(int target_node)
238{
239 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
240 cpu_set_t orig_mask, mask;
241 int cpu;
242 int ret;
243
244 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
245 BUG_ON(!cpus_per_node);
246
247 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
248 BUG_ON(ret);
249
250 CPU_ZERO(&mask);
251
252 if (target_node == -1) {
253 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
254 CPU_SET(cpu, &mask);
255 } else {
256 int cpu_start = (target_node + 0) * cpus_per_node;
257 int cpu_stop = (target_node + 1) * cpus_per_node;
258
259 BUG_ON(cpu_stop > g->p.nr_cpus);
260
261 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
262 CPU_SET(cpu, &mask);
263 }
264
265 ret = sched_setaffinity(0, sizeof(mask), &mask);
266 BUG_ON(ret);
267
268 return orig_mask;
269}
270
271static void bind_to_cpumask(cpu_set_t mask)
272{
273 int ret;
274
275 ret = sched_setaffinity(0, sizeof(mask), &mask);
276 BUG_ON(ret);
277}
278
279static void mempol_restore(void)
280{
281 int ret;
282
283 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
284
285 BUG_ON(ret);
286}
287
288static void bind_to_memnode(int node)
289{
290 unsigned long nodemask;
291 int ret;
292
293 if (node == -1)
294 return;
295
296 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
297 nodemask = 1L << node;
298
299 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
300 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
301
302 BUG_ON(ret);
303}
304
305#define HPSIZE (2*1024*1024)
306
307#define set_taskname(fmt...) \
308do { \
309 char name[20]; \
310 \
311 snprintf(name, 20, fmt); \
312 prctl(PR_SET_NAME, name); \
313} while (0)
314
315static u8 *alloc_data(ssize_t bytes0, int map_flags,
316 int init_zero, int init_cpu0, int thp, int init_random)
317{
318 cpu_set_t orig_mask;
319 ssize_t bytes;
320 u8 *buf;
321 int ret;
322
323 if (!bytes0)
324 return NULL;
325
326 /* Allocate and initialize all memory on CPU#0: */
327 if (init_cpu0) {
328 orig_mask = bind_to_node(0);
329 bind_to_memnode(0);
330 }
331
332 bytes = bytes0 + HPSIZE;
333
334 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
335 BUG_ON(buf == (void *)-1);
336
337 if (map_flags == MAP_PRIVATE) {
338 if (thp > 0) {
339 ret = madvise(buf, bytes, MADV_HUGEPAGE);
340 if (ret && !g->print_once) {
341 g->print_once = 1;
342 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
343 }
344 }
345 if (thp < 0) {
346 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
347 if (ret && !g->print_once) {
348 g->print_once = 1;
349 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
350 }
351 }
352 }
353
354 if (init_zero) {
355 bzero(buf, bytes);
356 } else {
357 /* Initialize random contents, different in each word: */
358 if (init_random) {
359 u64 *wbuf = (void *)buf;
360 long off = rand();
361 long i;
362
363 for (i = 0; i < bytes/8; i++)
364 wbuf[i] = i + off;
365 }
366 }
367
368 /* Align to 2MB boundary: */
369 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
370
371 /* Restore affinity: */
372 if (init_cpu0) {
373 bind_to_cpumask(orig_mask);
374 mempol_restore();
375 }
376
377 return buf;
378}
379
380static void free_data(void *data, ssize_t bytes)
381{
382 int ret;
383
384 if (!data)
385 return;
386
387 ret = munmap(data, bytes);
388 BUG_ON(ret);
389}
390
391/*
392 * Create a shared memory buffer that can be shared between processes, zeroed:
393 */
394static void * zalloc_shared_data(ssize_t bytes)
395{
396 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
397}
398
399/*
400 * Create a shared memory buffer that can be shared between processes:
401 */
402static void * setup_shared_data(ssize_t bytes)
403{
404 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
405}
406
407/*
408 * Allocate process-local memory - this will either be shared between
409 * threads of this process, or only be accessed by this thread:
410 */
411static void * setup_private_data(ssize_t bytes)
412{
413 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
414}
415
416/*
417 * Return a process-shared (global) mutex:
418 */
419static void init_global_mutex(pthread_mutex_t *mutex)
420{
421 pthread_mutexattr_t attr;
422
423 pthread_mutexattr_init(&attr);
424 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
425 pthread_mutex_init(mutex, &attr);
426}
427
428static int parse_cpu_list(const char *arg)
429{
430 p0.cpu_list_str = strdup(arg);
431
432 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
433
434 return 0;
435}
436
437static int parse_setup_cpu_list(void)
438{
439 struct thread_data *td;
440 char *str0, *str;
441 int t;
442
443 if (!g->p.cpu_list_str)
444 return 0;
445
446 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
447
448 str0 = str = strdup(g->p.cpu_list_str);
449 t = 0;
450
451 BUG_ON(!str);
452
453 tprintf("# binding tasks to CPUs:\n");
454 tprintf("# ");
455
456 while (true) {
457 int bind_cpu, bind_cpu_0, bind_cpu_1;
458 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
459 int bind_len;
460 int step;
461 int mul;
462
463 tok = strsep(&str, ",");
464 if (!tok)
465 break;
466
467 tok_end = strstr(tok, "-");
468
469 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
470 if (!tok_end) {
471 /* Single CPU specified: */
472 bind_cpu_0 = bind_cpu_1 = atol(tok);
473 } else {
474 /* CPU range specified (for example: "5-11"): */
475 bind_cpu_0 = atol(tok);
476 bind_cpu_1 = atol(tok_end + 1);
477 }
478
479 step = 1;
480 tok_step = strstr(tok, "#");
481 if (tok_step) {
482 step = atol(tok_step + 1);
483 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
484 }
485
486 /*
487 * Mask length.
488 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
489 * where the _4 means the next 4 CPUs are allowed.
490 */
491 bind_len = 1;
492 tok_len = strstr(tok, "_");
493 if (tok_len) {
494 bind_len = atol(tok_len + 1);
495 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
496 }
497
498 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
499 mul = 1;
500 tok_mul = strstr(tok, "x");
501 if (tok_mul) {
502 mul = atol(tok_mul + 1);
503 BUG_ON(mul <= 0);
504 }
505
506 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
507
508 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
509 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
510 return -1;
511 }
512
513 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
514 BUG_ON(bind_cpu_0 > bind_cpu_1);
515
516 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
517 int i;
518
519 for (i = 0; i < mul; i++) {
520 int cpu;
521
522 if (t >= g->p.nr_tasks) {
523 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
524 goto out;
525 }
526 td = g->threads + t;
527
528 if (t)
529 tprintf(",");
530 if (bind_len > 1) {
531 tprintf("%2d/%d", bind_cpu, bind_len);
532 } else {
533 tprintf("%2d", bind_cpu);
534 }
535
536 CPU_ZERO(&td->bind_cpumask);
537 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
538 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
539 CPU_SET(cpu, &td->bind_cpumask);
540 }
541 t++;
542 }
543 }
544 }
545out:
546
547 tprintf("\n");
548
549 if (t < g->p.nr_tasks)
550 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
551
552 free(str0);
553 return 0;
554}
555
556static int parse_cpus_opt(const struct option *opt __maybe_unused,
557 const char *arg, int unset __maybe_unused)
558{
559 if (!arg)
560 return -1;
561
562 return parse_cpu_list(arg);
563}
564
565static int parse_node_list(const char *arg)
566{
567 p0.node_list_str = strdup(arg);
568
569 dprintf("got NODE list: {%s}\n", p0.node_list_str);
570
571 return 0;
572}
573
574static int parse_setup_node_list(void)
575{
576 struct thread_data *td;
577 char *str0, *str;
578 int t;
579
580 if (!g->p.node_list_str)
581 return 0;
582
583 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
584
585 str0 = str = strdup(g->p.node_list_str);
586 t = 0;
587
588 BUG_ON(!str);
589
590 tprintf("# binding tasks to NODEs:\n");
591 tprintf("# ");
592
593 while (true) {
594 int bind_node, bind_node_0, bind_node_1;
595 char *tok, *tok_end, *tok_step, *tok_mul;
596 int step;
597 int mul;
598
599 tok = strsep(&str, ",");
600 if (!tok)
601 break;
602
603 tok_end = strstr(tok, "-");
604
605 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
606 if (!tok_end) {
607 /* Single NODE specified: */
608 bind_node_0 = bind_node_1 = atol(tok);
609 } else {
610 /* NODE range specified (for example: "5-11"): */
611 bind_node_0 = atol(tok);
612 bind_node_1 = atol(tok_end + 1);
613 }
614
615 step = 1;
616 tok_step = strstr(tok, "#");
617 if (tok_step) {
618 step = atol(tok_step + 1);
619 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
620 }
621
622 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
623 mul = 1;
624 tok_mul = strstr(tok, "x");
625 if (tok_mul) {
626 mul = atol(tok_mul + 1);
627 BUG_ON(mul <= 0);
628 }
629
630 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
631
632 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
633 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
634 return -1;
635 }
636
637 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
638 BUG_ON(bind_node_0 > bind_node_1);
639
640 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
641 int i;
642
643 for (i = 0; i < mul; i++) {
644 if (t >= g->p.nr_tasks) {
645 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
646 goto out;
647 }
648 td = g->threads + t;
649
650 if (!t)
651 tprintf(" %2d", bind_node);
652 else
653 tprintf(",%2d", bind_node);
654
655 td->bind_node = bind_node;
656 t++;
657 }
658 }
659 }
660out:
661
662 tprintf("\n");
663
664 if (t < g->p.nr_tasks)
665 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
666
667 free(str0);
668 return 0;
669}
670
671static int parse_nodes_opt(const struct option *opt __maybe_unused,
672 const char *arg, int unset __maybe_unused)
673{
674 if (!arg)
675 return -1;
676
677 return parse_node_list(arg);
678
679 return 0;
680}
681
682#define BIT(x) (1ul << x)
683
684static inline uint32_t lfsr_32(uint32_t lfsr)
685{
686 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
687 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
688}
689
690/*
691 * Make sure there's real data dependency to RAM (when read
692 * accesses are enabled), so the compiler, the CPU and the
693 * kernel (KSM, zero page, etc.) cannot optimize away RAM
694 * accesses:
695 */
696static inline u64 access_data(u64 *data __attribute__((unused)), u64 val)
697{
698 if (g->p.data_reads)
699 val += *data;
700 if (g->p.data_writes)
701 *data = val + 1;
702 return val;
703}
704
705/*
706 * The worker process does two types of work, a forwards going
707 * loop and a backwards going loop.
708 *
709 * We do this so that on multiprocessor systems we do not create
710 * a 'train' of processing, with highly synchronized processes,
711 * skewing the whole benchmark.
712 */
713static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
714{
715 long words = bytes/sizeof(u64);
716 u64 *data = (void *)__data;
717 long chunk_0, chunk_1;
718 u64 *d0, *d, *d1;
719 long off;
720 long i;
721
722 BUG_ON(!data && words);
723 BUG_ON(data && !words);
724
725 if (!data)
726 return val;
727
728 /* Very simple memset() work variant: */
729 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
730 bzero(data, bytes);
731 return val;
732 }
733
734 /* Spread out by PID/TID nr and by loop nr: */
735 chunk_0 = words/nr_max;
736 chunk_1 = words/g->p.nr_loops;
737 off = nr*chunk_0 + loop*chunk_1;
738
739 while (off >= words)
740 off -= words;
741
742 if (g->p.data_rand_walk) {
743 u32 lfsr = nr + loop + val;
744 int j;
745
746 for (i = 0; i < words/1024; i++) {
747 long start, end;
748
749 lfsr = lfsr_32(lfsr);
750
751 start = lfsr % words;
752 end = min(start + 1024, words-1);
753
754 if (g->p.data_zero_memset) {
755 bzero(data + start, (end-start) * sizeof(u64));
756 } else {
757 for (j = start; j < end; j++)
758 val = access_data(data + j, val);
759 }
760 }
761 } else if (!g->p.data_backwards || (nr + loop) & 1) {
762
763 d0 = data + off;
764 d = data + off + 1;
765 d1 = data + words;
766
767 /* Process data forwards: */
768 for (;;) {
769 if (unlikely(d >= d1))
770 d = data;
771 if (unlikely(d == d0))
772 break;
773
774 val = access_data(d, val);
775
776 d++;
777 }
778 } else {
779 /* Process data backwards: */
780
781 d0 = data + off;
782 d = data + off - 1;
783 d1 = data + words;
784
785 /* Process data forwards: */
786 for (;;) {
787 if (unlikely(d < data))
788 d = data + words-1;
789 if (unlikely(d == d0))
790 break;
791
792 val = access_data(d, val);
793
794 d--;
795 }
796 }
797
798 return val;
799}
800
801static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
802{
803 unsigned int cpu;
804
805 cpu = sched_getcpu();
806
807 g->threads[task_nr].curr_cpu = cpu;
808 prctl(0, bytes_worked);
809}
810
811#define MAX_NR_NODES 64
812
813/*
814 * Count the number of nodes a process's threads
815 * are spread out on.
816 *
817 * A count of 1 means that the process is compressed
818 * to a single node. A count of g->p.nr_nodes means it's
819 * spread out on the whole system.
820 */
821static int count_process_nodes(int process_nr)
822{
823 char node_present[MAX_NR_NODES] = { 0, };
824 int nodes;
825 int n, t;
826
827 for (t = 0; t < g->p.nr_threads; t++) {
828 struct thread_data *td;
829 int task_nr;
830 int node;
831
832 task_nr = process_nr*g->p.nr_threads + t;
833 td = g->threads + task_nr;
834
835 node = numa_node_of_cpu(td->curr_cpu);
836 if (node < 0) /* curr_cpu was likely still -1 */
837 return 0;
838
839 node_present[node] = 1;
840 }
841
842 nodes = 0;
843
844 for (n = 0; n < MAX_NR_NODES; n++)
845 nodes += node_present[n];
846
847 return nodes;
848}
849
850/*
851 * Count the number of distinct process-threads a node contains.
852 *
853 * A count of 1 means that the node contains only a single
854 * process. If all nodes on the system contain at most one
855 * process then we are well-converged.
856 */
857static int count_node_processes(int node)
858{
859 int processes = 0;
860 int t, p;
861
862 for (p = 0; p < g->p.nr_proc; p++) {
863 for (t = 0; t < g->p.nr_threads; t++) {
864 struct thread_data *td;
865 int task_nr;
866 int n;
867
868 task_nr = p*g->p.nr_threads + t;
869 td = g->threads + task_nr;
870
871 n = numa_node_of_cpu(td->curr_cpu);
872 if (n == node) {
873 processes++;
874 break;
875 }
876 }
877 }
878
879 return processes;
880}
881
882static void calc_convergence_compression(int *strong)
883{
884 unsigned int nodes_min, nodes_max;
885 int p;
886
887 nodes_min = -1;
888 nodes_max = 0;
889
890 for (p = 0; p < g->p.nr_proc; p++) {
891 unsigned int nodes = count_process_nodes(p);
892
893 if (!nodes) {
894 *strong = 0;
895 return;
896 }
897
898 nodes_min = min(nodes, nodes_min);
899 nodes_max = max(nodes, nodes_max);
900 }
901
902 /* Strong convergence: all threads compress on a single node: */
903 if (nodes_min == 1 && nodes_max == 1) {
904 *strong = 1;
905 } else {
906 *strong = 0;
907 tprintf(" {%d-%d}", nodes_min, nodes_max);
908 }
909}
910
911static void calc_convergence(double runtime_ns_max, double *convergence)
912{
913 unsigned int loops_done_min, loops_done_max;
914 int process_groups;
915 int nodes[MAX_NR_NODES];
916 int distance;
917 int nr_min;
918 int nr_max;
919 int strong;
920 int sum;
921 int nr;
922 int node;
923 int cpu;
924 int t;
925
926 if (!g->p.show_convergence && !g->p.measure_convergence)
927 return;
928
929 for (node = 0; node < g->p.nr_nodes; node++)
930 nodes[node] = 0;
931
932 loops_done_min = -1;
933 loops_done_max = 0;
934
935 for (t = 0; t < g->p.nr_tasks; t++) {
936 struct thread_data *td = g->threads + t;
937 unsigned int loops_done;
938
939 cpu = td->curr_cpu;
940
941 /* Not all threads have written it yet: */
942 if (cpu < 0)
943 continue;
944
945 node = numa_node_of_cpu(cpu);
946
947 nodes[node]++;
948
949 loops_done = td->loops_done;
950 loops_done_min = min(loops_done, loops_done_min);
951 loops_done_max = max(loops_done, loops_done_max);
952 }
953
954 nr_max = 0;
955 nr_min = g->p.nr_tasks;
956 sum = 0;
957
958 for (node = 0; node < g->p.nr_nodes; node++) {
959 nr = nodes[node];
960 nr_min = min(nr, nr_min);
961 nr_max = max(nr, nr_max);
962 sum += nr;
963 }
964 BUG_ON(nr_min > nr_max);
965
966 BUG_ON(sum > g->p.nr_tasks);
967
968 if (0 && (sum < g->p.nr_tasks))
969 return;
970
971 /*
972 * Count the number of distinct process groups present
973 * on nodes - when we are converged this will decrease
974 * to g->p.nr_proc:
975 */
976 process_groups = 0;
977
978 for (node = 0; node < g->p.nr_nodes; node++) {
979 int processes = count_node_processes(node);
980
981 nr = nodes[node];
982 tprintf(" %2d/%-2d", nr, processes);
983
984 process_groups += processes;
985 }
986
987 distance = nr_max - nr_min;
988
989 tprintf(" [%2d/%-2d]", distance, process_groups);
990
991 tprintf(" l:%3d-%-3d (%3d)",
992 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
993
994 if (loops_done_min && loops_done_max) {
995 double skew = 1.0 - (double)loops_done_min/loops_done_max;
996
997 tprintf(" [%4.1f%%]", skew * 100.0);
998 }
999
1000 calc_convergence_compression(&strong);
1001
1002 if (strong && process_groups == g->p.nr_proc) {
1003 if (!*convergence) {
1004 *convergence = runtime_ns_max;
1005 tprintf(" (%6.1fs converged)\n", *convergence/1e9);
1006 if (g->p.measure_convergence) {
1007 g->all_converged = true;
1008 g->stop_work = true;
1009 }
1010 }
1011 } else {
1012 if (*convergence) {
1013 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9);
1014 *convergence = 0;
1015 }
1016 tprintf("\n");
1017 }
1018}
1019
1020static void show_summary(double runtime_ns_max, int l, double *convergence)
1021{
1022 tprintf("\r # %5.1f%% [%.1f mins]",
1023 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0);
1024
1025 calc_convergence(runtime_ns_max, convergence);
1026
1027 if (g->p.show_details >= 0)
1028 fflush(stdout);
1029}
1030
1031static void *worker_thread(void *__tdata)
1032{
1033 struct thread_data *td = __tdata;
1034 struct timeval start0, start, stop, diff;
1035 int process_nr = td->process_nr;
1036 int thread_nr = td->thread_nr;
1037 unsigned long last_perturbance;
1038 int task_nr = td->task_nr;
1039 int details = g->p.show_details;
1040 int first_task, last_task;
1041 double convergence = 0;
1042 u64 val = td->val;
1043 double runtime_ns_max;
1044 u8 *global_data;
1045 u8 *process_data;
1046 u8 *thread_data;
1047 u64 bytes_done;
1048 long work_done;
1049 u32 l;
1050 struct rusage rusage;
1051
1052 bind_to_cpumask(td->bind_cpumask);
1053 bind_to_memnode(td->bind_node);
1054
1055 set_taskname("thread %d/%d", process_nr, thread_nr);
1056
1057 global_data = g->data;
1058 process_data = td->process_data;
1059 thread_data = setup_private_data(g->p.bytes_thread);
1060
1061 bytes_done = 0;
1062
1063 last_task = 0;
1064 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1065 last_task = 1;
1066
1067 first_task = 0;
1068 if (process_nr == 0 && thread_nr == 0)
1069 first_task = 1;
1070
1071 if (details >= 2) {
1072 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1073 process_nr, thread_nr, global_data, process_data, thread_data);
1074 }
1075
1076 if (g->p.serialize_startup) {
1077 pthread_mutex_lock(&g->startup_mutex);
1078 g->nr_tasks_started++;
1079 pthread_mutex_unlock(&g->startup_mutex);
1080
1081 /* Here we will wait for the main process to start us all at once: */
1082 pthread_mutex_lock(&g->start_work_mutex);
1083 g->nr_tasks_working++;
1084
1085 /* Last one wake the main process: */
1086 if (g->nr_tasks_working == g->p.nr_tasks)
1087 pthread_mutex_unlock(&g->startup_done_mutex);
1088
1089 pthread_mutex_unlock(&g->start_work_mutex);
1090 }
1091
1092 gettimeofday(&start0, NULL);
1093
1094 start = stop = start0;
1095 last_perturbance = start.tv_sec;
1096
1097 for (l = 0; l < g->p.nr_loops; l++) {
1098 start = stop;
1099
1100 if (g->stop_work)
1101 break;
1102
1103 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1104 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1105 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1106
1107 if (g->p.sleep_usecs) {
1108 pthread_mutex_lock(td->process_lock);
1109 usleep(g->p.sleep_usecs);
1110 pthread_mutex_unlock(td->process_lock);
1111 }
1112 /*
1113 * Amount of work to be done under a process-global lock:
1114 */
1115 if (g->p.bytes_process_locked) {
1116 pthread_mutex_lock(td->process_lock);
1117 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1118 pthread_mutex_unlock(td->process_lock);
1119 }
1120
1121 work_done = g->p.bytes_global + g->p.bytes_process +
1122 g->p.bytes_process_locked + g->p.bytes_thread;
1123
1124 update_curr_cpu(task_nr, work_done);
1125 bytes_done += work_done;
1126
1127 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1128 continue;
1129
1130 td->loops_done = l;
1131
1132 gettimeofday(&stop, NULL);
1133
1134 /* Check whether our max runtime timed out: */
1135 if (g->p.nr_secs) {
1136 timersub(&stop, &start0, &diff);
1137 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1138 g->stop_work = true;
1139 break;
1140 }
1141 }
1142
1143 /* Update the summary at most once per second: */
1144 if (start.tv_sec == stop.tv_sec)
1145 continue;
1146
1147 /*
1148 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1149 * by migrating to CPU#0:
1150 */
1151 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1152 cpu_set_t orig_mask;
1153 int target_cpu;
1154 int this_cpu;
1155
1156 last_perturbance = stop.tv_sec;
1157
1158 /*
1159 * Depending on where we are running, move into
1160 * the other half of the system, to create some
1161 * real disturbance:
1162 */
1163 this_cpu = g->threads[task_nr].curr_cpu;
1164 if (this_cpu < g->p.nr_cpus/2)
1165 target_cpu = g->p.nr_cpus-1;
1166 else
1167 target_cpu = 0;
1168
1169 orig_mask = bind_to_cpu(target_cpu);
1170
1171 /* Here we are running on the target CPU already */
1172 if (details >= 1)
1173 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1174
1175 bind_to_cpumask(orig_mask);
1176 }
1177
1178 if (details >= 3) {
1179 timersub(&stop, &start, &diff);
1180 runtime_ns_max = diff.tv_sec * 1000000000;
1181 runtime_ns_max += diff.tv_usec * 1000;
1182
1183 if (details >= 0) {
1184 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1185 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1186 }
1187 fflush(stdout);
1188 }
1189 if (!last_task)
1190 continue;
1191
1192 timersub(&stop, &start0, &diff);
1193 runtime_ns_max = diff.tv_sec * 1000000000ULL;
1194 runtime_ns_max += diff.tv_usec * 1000ULL;
1195
1196 show_summary(runtime_ns_max, l, &convergence);
1197 }
1198
1199 gettimeofday(&stop, NULL);
1200 timersub(&stop, &start0, &diff);
1201 td->runtime_ns = diff.tv_sec * 1000000000ULL;
1202 td->runtime_ns += diff.tv_usec * 1000ULL;
1203 td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9;
1204
1205 getrusage(RUSAGE_THREAD, &rusage);
1206 td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL;
1207 td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL;
1208 td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL;
1209 td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL;
1210
1211 free_data(thread_data, g->p.bytes_thread);
1212
1213 pthread_mutex_lock(&g->stop_work_mutex);
1214 g->bytes_done += bytes_done;
1215 pthread_mutex_unlock(&g->stop_work_mutex);
1216
1217 return NULL;
1218}
1219
1220/*
1221 * A worker process starts a couple of threads:
1222 */
1223static void worker_process(int process_nr)
1224{
1225 pthread_mutex_t process_lock;
1226 struct thread_data *td;
1227 pthread_t *pthreads;
1228 u8 *process_data;
1229 int task_nr;
1230 int ret;
1231 int t;
1232
1233 pthread_mutex_init(&process_lock, NULL);
1234 set_taskname("process %d", process_nr);
1235
1236 /*
1237 * Pick up the memory policy and the CPU binding of our first thread,
1238 * so that we initialize memory accordingly:
1239 */
1240 task_nr = process_nr*g->p.nr_threads;
1241 td = g->threads + task_nr;
1242
1243 bind_to_memnode(td->bind_node);
1244 bind_to_cpumask(td->bind_cpumask);
1245
1246 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1247 process_data = setup_private_data(g->p.bytes_process);
1248
1249 if (g->p.show_details >= 3) {
1250 printf(" # process %2d global mem: %p, process mem: %p\n",
1251 process_nr, g->data, process_data);
1252 }
1253
1254 for (t = 0; t < g->p.nr_threads; t++) {
1255 task_nr = process_nr*g->p.nr_threads + t;
1256 td = g->threads + task_nr;
1257
1258 td->process_data = process_data;
1259 td->process_nr = process_nr;
1260 td->thread_nr = t;
1261 td->task_nr = task_nr;
1262 td->val = rand();
1263 td->curr_cpu = -1;
1264 td->process_lock = &process_lock;
1265
1266 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1267 BUG_ON(ret);
1268 }
1269
1270 for (t = 0; t < g->p.nr_threads; t++) {
1271 ret = pthread_join(pthreads[t], NULL);
1272 BUG_ON(ret);
1273 }
1274
1275 free_data(process_data, g->p.bytes_process);
1276 free(pthreads);
1277}
1278
1279static void print_summary(void)
1280{
1281 if (g->p.show_details < 0)
1282 return;
1283
1284 printf("\n ###\n");
1285 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1286 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1287 printf(" # %5dx %5ldMB global shared mem operations\n",
1288 g->p.nr_loops, g->p.bytes_global/1024/1024);
1289 printf(" # %5dx %5ldMB process shared mem operations\n",
1290 g->p.nr_loops, g->p.bytes_process/1024/1024);
1291 printf(" # %5dx %5ldMB thread local mem operations\n",
1292 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1293
1294 printf(" ###\n");
1295
1296 printf("\n ###\n"); fflush(stdout);
1297}
1298
1299static void init_thread_data(void)
1300{
1301 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1302 int t;
1303
1304 g->threads = zalloc_shared_data(size);
1305
1306 for (t = 0; t < g->p.nr_tasks; t++) {
1307 struct thread_data *td = g->threads + t;
1308 int cpu;
1309
1310 /* Allow all nodes by default: */
1311 td->bind_node = -1;
1312
1313 /* Allow all CPUs by default: */
1314 CPU_ZERO(&td->bind_cpumask);
1315 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1316 CPU_SET(cpu, &td->bind_cpumask);
1317 }
1318}
1319
1320static void deinit_thread_data(void)
1321{
1322 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1323
1324 free_data(g->threads, size);
1325}
1326
1327static int init(void)
1328{
1329 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1330
1331 /* Copy over options: */
1332 g->p = p0;
1333
1334 g->p.nr_cpus = numa_num_configured_cpus();
1335
1336 g->p.nr_nodes = numa_max_node() + 1;
1337
1338 /* char array in count_process_nodes(): */
1339 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1340
1341 if (g->p.show_quiet && !g->p.show_details)
1342 g->p.show_details = -1;
1343
1344 /* Some memory should be specified: */
1345 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1346 return -1;
1347
1348 if (g->p.mb_global_str) {
1349 g->p.mb_global = atof(g->p.mb_global_str);
1350 BUG_ON(g->p.mb_global < 0);
1351 }
1352
1353 if (g->p.mb_proc_str) {
1354 g->p.mb_proc = atof(g->p.mb_proc_str);
1355 BUG_ON(g->p.mb_proc < 0);
1356 }
1357
1358 if (g->p.mb_proc_locked_str) {
1359 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1360 BUG_ON(g->p.mb_proc_locked < 0);
1361 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1362 }
1363
1364 if (g->p.mb_thread_str) {
1365 g->p.mb_thread = atof(g->p.mb_thread_str);
1366 BUG_ON(g->p.mb_thread < 0);
1367 }
1368
1369 BUG_ON(g->p.nr_threads <= 0);
1370 BUG_ON(g->p.nr_proc <= 0);
1371
1372 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1373
1374 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1375 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1376 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1377 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1378
1379 g->data = setup_shared_data(g->p.bytes_global);
1380
1381 /* Startup serialization: */
1382 init_global_mutex(&g->start_work_mutex);
1383 init_global_mutex(&g->startup_mutex);
1384 init_global_mutex(&g->startup_done_mutex);
1385 init_global_mutex(&g->stop_work_mutex);
1386
1387 init_thread_data();
1388
1389 tprintf("#\n");
1390 if (parse_setup_cpu_list() || parse_setup_node_list())
1391 return -1;
1392 tprintf("#\n");
1393
1394 print_summary();
1395
1396 return 0;
1397}
1398
1399static void deinit(void)
1400{
1401 free_data(g->data, g->p.bytes_global);
1402 g->data = NULL;
1403
1404 deinit_thread_data();
1405
1406 free_data(g, sizeof(*g));
1407 g = NULL;
1408}
1409
1410/*
1411 * Print a short or long result, depending on the verbosity setting:
1412 */
1413static void print_res(const char *name, double val,
1414 const char *txt_unit, const char *txt_short, const char *txt_long)
1415{
1416 if (!name)
1417 name = "main,";
1418
1419 if (!g->p.show_quiet)
1420 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1421 else
1422 printf(" %14.3f %s\n", val, txt_long);
1423}
1424
1425static int __bench_numa(const char *name)
1426{
1427 struct timeval start, stop, diff;
1428 u64 runtime_ns_min, runtime_ns_sum;
1429 pid_t *pids, pid, wpid;
1430 double delta_runtime;
1431 double runtime_avg;
1432 double runtime_sec_max;
1433 double runtime_sec_min;
1434 int wait_stat;
1435 double bytes;
1436 int i, t, p;
1437
1438 if (init())
1439 return -1;
1440
1441 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1442 pid = -1;
1443
1444 /* All threads try to acquire it, this way we can wait for them to start up: */
1445 pthread_mutex_lock(&g->start_work_mutex);
1446
1447 if (g->p.serialize_startup) {
1448 tprintf(" #\n");
1449 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1450 }
1451
1452 gettimeofday(&start, NULL);
1453
1454 for (i = 0; i < g->p.nr_proc; i++) {
1455 pid = fork();
1456 dprintf(" # process %2d: PID %d\n", i, pid);
1457
1458 BUG_ON(pid < 0);
1459 if (!pid) {
1460 /* Child process: */
1461 worker_process(i);
1462
1463 exit(0);
1464 }
1465 pids[i] = pid;
1466
1467 }
1468 /* Wait for all the threads to start up: */
1469 while (g->nr_tasks_started != g->p.nr_tasks)
1470 usleep(1000);
1471
1472 BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1473
1474 if (g->p.serialize_startup) {
1475 double startup_sec;
1476
1477 pthread_mutex_lock(&g->startup_done_mutex);
1478
1479 /* This will start all threads: */
1480 pthread_mutex_unlock(&g->start_work_mutex);
1481
1482 /* This mutex is locked - the last started thread will wake us: */
1483 pthread_mutex_lock(&g->startup_done_mutex);
1484
1485 gettimeofday(&stop, NULL);
1486
1487 timersub(&stop, &start, &diff);
1488
1489 startup_sec = diff.tv_sec * 1000000000.0;
1490 startup_sec += diff.tv_usec * 1000.0;
1491 startup_sec /= 1e9;
1492
1493 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1494 tprintf(" #\n");
1495
1496 start = stop;
1497 pthread_mutex_unlock(&g->startup_done_mutex);
1498 } else {
1499 gettimeofday(&start, NULL);
1500 }
1501
1502 /* Parent process: */
1503
1504
1505 for (i = 0; i < g->p.nr_proc; i++) {
1506 wpid = waitpid(pids[i], &wait_stat, 0);
1507 BUG_ON(wpid < 0);
1508 BUG_ON(!WIFEXITED(wait_stat));
1509
1510 }
1511
1512 runtime_ns_sum = 0;
1513 runtime_ns_min = -1LL;
1514
1515 for (t = 0; t < g->p.nr_tasks; t++) {
1516 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1517
1518 runtime_ns_sum += thread_runtime_ns;
1519 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1520 }
1521
1522 gettimeofday(&stop, NULL);
1523 timersub(&stop, &start, &diff);
1524
1525 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1526
1527 tprintf("\n ###\n");
1528 tprintf("\n");
1529
1530 runtime_sec_max = diff.tv_sec * 1000000000.0;
1531 runtime_sec_max += diff.tv_usec * 1000.0;
1532 runtime_sec_max /= 1e9;
1533
1534 runtime_sec_min = runtime_ns_min/1e9;
1535
1536 bytes = g->bytes_done;
1537 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9;
1538
1539 if (g->p.measure_convergence) {
1540 print_res(name, runtime_sec_max,
1541 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1542 }
1543
1544 print_res(name, runtime_sec_max,
1545 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1546
1547 print_res(name, runtime_sec_min,
1548 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1549
1550 print_res(name, runtime_avg,
1551 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1552
1553 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1554 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1555 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1556
1557 print_res(name, bytes / g->p.nr_tasks / 1e9,
1558 "GB,", "data/thread", "GB data processed, per thread");
1559
1560 print_res(name, bytes / 1e9,
1561 "GB,", "data-total", "GB data processed, total");
1562
1563 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks),
1564 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1565
1566 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1567 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1568
1569 print_res(name, bytes / runtime_sec_max / 1e9,
1570 "GB/sec,", "total-speed", "GB/sec total speed");
1571
1572 if (g->p.show_details >= 2) {
1573 char tname[32];
1574 struct thread_data *td;
1575 for (p = 0; p < g->p.nr_proc; p++) {
1576 for (t = 0; t < g->p.nr_threads; t++) {
1577 memset(tname, 0, 32);
1578 td = g->threads + p*g->p.nr_threads + t;
1579 snprintf(tname, 32, "process%d:thread%d", p, t);
1580 print_res(tname, td->speed_gbs,
1581 "GB/sec", "thread-speed", "GB/sec/thread speed");
1582 print_res(tname, td->system_time_ns / 1e9,
1583 "secs", "thread-system-time", "system CPU time/thread");
1584 print_res(tname, td->user_time_ns / 1e9,
1585 "secs", "thread-user-time", "user CPU time/thread");
1586 }
1587 }
1588 }
1589
1590 free(pids);
1591
1592 deinit();
1593
1594 return 0;
1595}
1596
1597#define MAX_ARGS 50
1598
1599static int command_size(const char **argv)
1600{
1601 int size = 0;
1602
1603 while (*argv) {
1604 size++;
1605 argv++;
1606 }
1607
1608 BUG_ON(size >= MAX_ARGS);
1609
1610 return size;
1611}
1612
1613static void init_params(struct params *p, const char *name, int argc, const char **argv)
1614{
1615 int i;
1616
1617 printf("\n # Running %s \"perf bench numa", name);
1618
1619 for (i = 0; i < argc; i++)
1620 printf(" %s", argv[i]);
1621
1622 printf("\"\n");
1623
1624 memset(p, 0, sizeof(*p));
1625
1626 /* Initialize nonzero defaults: */
1627
1628 p->serialize_startup = 1;
1629 p->data_reads = true;
1630 p->data_writes = true;
1631 p->data_backwards = true;
1632 p->data_rand_walk = true;
1633 p->nr_loops = -1;
1634 p->init_random = true;
1635 p->mb_global_str = "1";
1636 p->nr_proc = 1;
1637 p->nr_threads = 1;
1638 p->nr_secs = 5;
1639 p->run_all = argc == 1;
1640}
1641
1642static int run_bench_numa(const char *name, const char **argv)
1643{
1644 int argc = command_size(argv);
1645
1646 init_params(&p0, name, argc, argv);
1647 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1648 if (argc)
1649 goto err;
1650
1651 if (__bench_numa(name))
1652 goto err;
1653
1654 return 0;
1655
1656err:
1657 return -1;
1658}
1659
1660#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1661#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1662
1663#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1664#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1665
1666#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1667#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1668
1669/*
1670 * The built-in test-suite executed by "perf bench numa -a".
1671 *
1672 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1673 */
1674static const char *tests[][MAX_ARGS] = {
1675 /* Basic single-stream NUMA bandwidth measurements: */
1676 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1677 "-C" , "0", "-M", "0", OPT_BW_RAM },
1678 { "RAM-bw-local-NOTHP,",
1679 "mem", "-p", "1", "-t", "1", "-P", "1024",
1680 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1681 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1682 "-C" , "0", "-M", "1", OPT_BW_RAM },
1683
1684 /* 2-stream NUMA bandwidth measurements: */
1685 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1686 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1687 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1688 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1689
1690 /* Cross-stream NUMA bandwidth measurement: */
1691 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1692 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1693
1694 /* Convergence latency measurements: */
1695 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1696 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1697 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1698 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1699 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1700 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1701 { " 4x4-convergence-NOTHP,",
1702 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1703 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1704 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1705 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1706 { " 8x4-convergence-NOTHP,",
1707 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1708 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1709 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1710 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1711 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1712 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1713
1714 /* Various NUMA process/thread layout bandwidth measurements: */
1715 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1716 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1717 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1718 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1719 { " 8x1-bw-process-NOTHP,",
1720 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1721 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1722
1723 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1724 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1725 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1726 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1727
1728 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1729 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1730 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1731 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1732 { " 4x8-bw-thread-NOTHP,",
1733 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1734 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1735 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1736
1737 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1738 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1739
1740 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1741 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1742 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1743 { "numa01-bw-thread-NOTHP,",
1744 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1745};
1746
1747static int bench_all(void)
1748{
1749 int nr = ARRAY_SIZE(tests);
1750 int ret;
1751 int i;
1752
1753 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1754 BUG_ON(ret < 0);
1755
1756 for (i = 0; i < nr; i++) {
1757 run_bench_numa(tests[i][0], tests[i] + 1);
1758 }
1759
1760 printf("\n");
1761
1762 return 0;
1763}
1764
1765int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused)
1766{
1767 init_params(&p0, "main,", argc, argv);
1768 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1769 if (argc)
1770 goto err;
1771
1772 if (p0.run_all)
1773 return bench_all();
1774
1775 if (__bench_numa(NULL))
1776 goto err;
1777
1778 return 0;
1779
1780err:
1781 usage_with_options(numa_usage, options);
1782 return -1;
1783}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8#include <inttypes.h>
9/* For the CLR_() macros */
10#include <pthread.h>
11
12#include <subcmd/parse-options.h>
13#include "../util/cloexec.h"
14
15#include "bench.h"
16
17#include <errno.h>
18#include <sched.h>
19#include <stdio.h>
20#include <assert.h>
21#include <malloc.h>
22#include <signal.h>
23#include <stdlib.h>
24#include <string.h>
25#include <unistd.h>
26#include <sys/mman.h>
27#include <sys/time.h>
28#include <sys/resource.h>
29#include <sys/wait.h>
30#include <sys/prctl.h>
31#include <sys/types.h>
32#include <linux/kernel.h>
33#include <linux/time64.h>
34#include <linux/numa.h>
35#include <linux/zalloc.h>
36
37#include <numa.h>
38#include <numaif.h>
39
40#ifndef RUSAGE_THREAD
41# define RUSAGE_THREAD 1
42#endif
43
44/*
45 * Regular printout to the terminal, suppressed if -q is specified:
46 */
47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48
49/*
50 * Debug printf:
51 */
52#undef dprintf
53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54
55struct thread_data {
56 int curr_cpu;
57 cpu_set_t bind_cpumask;
58 int bind_node;
59 u8 *process_data;
60 int process_nr;
61 int thread_nr;
62 int task_nr;
63 unsigned int loops_done;
64 u64 val;
65 u64 runtime_ns;
66 u64 system_time_ns;
67 u64 user_time_ns;
68 double speed_gbs;
69 pthread_mutex_t *process_lock;
70};
71
72/* Parameters set by options: */
73
74struct params {
75 /* Startup synchronization: */
76 bool serialize_startup;
77
78 /* Task hierarchy: */
79 int nr_proc;
80 int nr_threads;
81
82 /* Working set sizes: */
83 const char *mb_global_str;
84 const char *mb_proc_str;
85 const char *mb_proc_locked_str;
86 const char *mb_thread_str;
87
88 double mb_global;
89 double mb_proc;
90 double mb_proc_locked;
91 double mb_thread;
92
93 /* Access patterns to the working set: */
94 bool data_reads;
95 bool data_writes;
96 bool data_backwards;
97 bool data_zero_memset;
98 bool data_rand_walk;
99 u32 nr_loops;
100 u32 nr_secs;
101 u32 sleep_usecs;
102
103 /* Working set initialization: */
104 bool init_zero;
105 bool init_random;
106 bool init_cpu0;
107
108 /* Misc options: */
109 int show_details;
110 int run_all;
111 int thp;
112
113 long bytes_global;
114 long bytes_process;
115 long bytes_process_locked;
116 long bytes_thread;
117
118 int nr_tasks;
119 bool show_quiet;
120
121 bool show_convergence;
122 bool measure_convergence;
123
124 int perturb_secs;
125 int nr_cpus;
126 int nr_nodes;
127
128 /* Affinity options -C and -N: */
129 char *cpu_list_str;
130 char *node_list_str;
131};
132
133
134/* Global, read-writable area, accessible to all processes and threads: */
135
136struct global_info {
137 u8 *data;
138
139 pthread_mutex_t startup_mutex;
140 pthread_cond_t startup_cond;
141 int nr_tasks_started;
142
143 pthread_mutex_t start_work_mutex;
144 pthread_cond_t start_work_cond;
145 int nr_tasks_working;
146 bool start_work;
147
148 pthread_mutex_t stop_work_mutex;
149 u64 bytes_done;
150
151 struct thread_data *threads;
152
153 /* Convergence latency measurement: */
154 bool all_converged;
155 bool stop_work;
156
157 int print_once;
158
159 struct params p;
160};
161
162static struct global_info *g = NULL;
163
164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166
167struct params p0;
168
169static const struct option options[] = {
170 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
171 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
172
173 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
174 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
175 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
177
178 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
179 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
180 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
181
182 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
183 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
184 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
185 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
187
188
189 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
190 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
191 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
192 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
193
194 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
195 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
196 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
200 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
201 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
202
203 /* Special option string parsing callbacks: */
204 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
205 "bind the first N tasks to these specific cpus (the rest is unbound)",
206 parse_cpus_opt),
207 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
208 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
209 parse_nodes_opt),
210 OPT_END()
211};
212
213static const char * const bench_numa_usage[] = {
214 "perf bench numa <options>",
215 NULL
216};
217
218static const char * const numa_usage[] = {
219 "perf bench numa mem [<options>]",
220 NULL
221};
222
223/*
224 * To get number of numa nodes present.
225 */
226static int nr_numa_nodes(void)
227{
228 int i, nr_nodes = 0;
229
230 for (i = 0; i < g->p.nr_nodes; i++) {
231 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
232 nr_nodes++;
233 }
234
235 return nr_nodes;
236}
237
238/*
239 * To check if given numa node is present.
240 */
241static int is_node_present(int node)
242{
243 return numa_bitmask_isbitset(numa_nodes_ptr, node);
244}
245
246/*
247 * To check given numa node has cpus.
248 */
249static bool node_has_cpus(int node)
250{
251 struct bitmask *cpumask = numa_allocate_cpumask();
252 bool ret = false; /* fall back to nocpus */
253 int cpu;
254
255 BUG_ON(!cpumask);
256 if (!numa_node_to_cpus(node, cpumask)) {
257 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
258 if (numa_bitmask_isbitset(cpumask, cpu)) {
259 ret = true;
260 break;
261 }
262 }
263 }
264 numa_free_cpumask(cpumask);
265
266 return ret;
267}
268
269static cpu_set_t bind_to_cpu(int target_cpu)
270{
271 cpu_set_t orig_mask, mask;
272 int ret;
273
274 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
275 BUG_ON(ret);
276
277 CPU_ZERO(&mask);
278
279 if (target_cpu == -1) {
280 int cpu;
281
282 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
283 CPU_SET(cpu, &mask);
284 } else {
285 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
286 CPU_SET(target_cpu, &mask);
287 }
288
289 ret = sched_setaffinity(0, sizeof(mask), &mask);
290 BUG_ON(ret);
291
292 return orig_mask;
293}
294
295static cpu_set_t bind_to_node(int target_node)
296{
297 cpu_set_t orig_mask, mask;
298 int cpu;
299 int ret;
300
301 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
302 BUG_ON(ret);
303
304 CPU_ZERO(&mask);
305
306 if (target_node == NUMA_NO_NODE) {
307 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
308 CPU_SET(cpu, &mask);
309 } else {
310 struct bitmask *cpumask = numa_allocate_cpumask();
311
312 BUG_ON(!cpumask);
313 if (!numa_node_to_cpus(target_node, cpumask)) {
314 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
315 if (numa_bitmask_isbitset(cpumask, cpu))
316 CPU_SET(cpu, &mask);
317 }
318 }
319 numa_free_cpumask(cpumask);
320 }
321
322 ret = sched_setaffinity(0, sizeof(mask), &mask);
323 BUG_ON(ret);
324
325 return orig_mask;
326}
327
328static void bind_to_cpumask(cpu_set_t mask)
329{
330 int ret;
331
332 ret = sched_setaffinity(0, sizeof(mask), &mask);
333 BUG_ON(ret);
334}
335
336static void mempol_restore(void)
337{
338 int ret;
339
340 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
341
342 BUG_ON(ret);
343}
344
345static void bind_to_memnode(int node)
346{
347 struct bitmask *node_mask;
348 int ret;
349
350 if (node == NUMA_NO_NODE)
351 return;
352
353 node_mask = numa_allocate_nodemask();
354 BUG_ON(!node_mask);
355
356 numa_bitmask_clearall(node_mask);
357 numa_bitmask_setbit(node_mask, node);
358
359 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
360 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
361
362 numa_bitmask_free(node_mask);
363 BUG_ON(ret);
364}
365
366#define HPSIZE (2*1024*1024)
367
368#define set_taskname(fmt...) \
369do { \
370 char name[20]; \
371 \
372 snprintf(name, 20, fmt); \
373 prctl(PR_SET_NAME, name); \
374} while (0)
375
376static u8 *alloc_data(ssize_t bytes0, int map_flags,
377 int init_zero, int init_cpu0, int thp, int init_random)
378{
379 cpu_set_t orig_mask;
380 ssize_t bytes;
381 u8 *buf;
382 int ret;
383
384 if (!bytes0)
385 return NULL;
386
387 /* Allocate and initialize all memory on CPU#0: */
388 if (init_cpu0) {
389 int node = numa_node_of_cpu(0);
390
391 orig_mask = bind_to_node(node);
392 bind_to_memnode(node);
393 }
394
395 bytes = bytes0 + HPSIZE;
396
397 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
398 BUG_ON(buf == (void *)-1);
399
400 if (map_flags == MAP_PRIVATE) {
401 if (thp > 0) {
402 ret = madvise(buf, bytes, MADV_HUGEPAGE);
403 if (ret && !g->print_once) {
404 g->print_once = 1;
405 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
406 }
407 }
408 if (thp < 0) {
409 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
410 if (ret && !g->print_once) {
411 g->print_once = 1;
412 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
413 }
414 }
415 }
416
417 if (init_zero) {
418 bzero(buf, bytes);
419 } else {
420 /* Initialize random contents, different in each word: */
421 if (init_random) {
422 u64 *wbuf = (void *)buf;
423 long off = rand();
424 long i;
425
426 for (i = 0; i < bytes/8; i++)
427 wbuf[i] = i + off;
428 }
429 }
430
431 /* Align to 2MB boundary: */
432 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
433
434 /* Restore affinity: */
435 if (init_cpu0) {
436 bind_to_cpumask(orig_mask);
437 mempol_restore();
438 }
439
440 return buf;
441}
442
443static void free_data(void *data, ssize_t bytes)
444{
445 int ret;
446
447 if (!data)
448 return;
449
450 ret = munmap(data, bytes);
451 BUG_ON(ret);
452}
453
454/*
455 * Create a shared memory buffer that can be shared between processes, zeroed:
456 */
457static void * zalloc_shared_data(ssize_t bytes)
458{
459 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
460}
461
462/*
463 * Create a shared memory buffer that can be shared between processes:
464 */
465static void * setup_shared_data(ssize_t bytes)
466{
467 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
468}
469
470/*
471 * Allocate process-local memory - this will either be shared between
472 * threads of this process, or only be accessed by this thread:
473 */
474static void * setup_private_data(ssize_t bytes)
475{
476 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
477}
478
479/*
480 * Return a process-shared (global) mutex:
481 */
482static void init_global_mutex(pthread_mutex_t *mutex)
483{
484 pthread_mutexattr_t attr;
485
486 pthread_mutexattr_init(&attr);
487 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
488 pthread_mutex_init(mutex, &attr);
489}
490
491/*
492 * Return a process-shared (global) condition variable:
493 */
494static void init_global_cond(pthread_cond_t *cond)
495{
496 pthread_condattr_t attr;
497
498 pthread_condattr_init(&attr);
499 pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
500 pthread_cond_init(cond, &attr);
501}
502
503static int parse_cpu_list(const char *arg)
504{
505 p0.cpu_list_str = strdup(arg);
506
507 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
508
509 return 0;
510}
511
512static int parse_setup_cpu_list(void)
513{
514 struct thread_data *td;
515 char *str0, *str;
516 int t;
517
518 if (!g->p.cpu_list_str)
519 return 0;
520
521 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
522
523 str0 = str = strdup(g->p.cpu_list_str);
524 t = 0;
525
526 BUG_ON(!str);
527
528 tprintf("# binding tasks to CPUs:\n");
529 tprintf("# ");
530
531 while (true) {
532 int bind_cpu, bind_cpu_0, bind_cpu_1;
533 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
534 int bind_len;
535 int step;
536 int mul;
537
538 tok = strsep(&str, ",");
539 if (!tok)
540 break;
541
542 tok_end = strstr(tok, "-");
543
544 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
545 if (!tok_end) {
546 /* Single CPU specified: */
547 bind_cpu_0 = bind_cpu_1 = atol(tok);
548 } else {
549 /* CPU range specified (for example: "5-11"): */
550 bind_cpu_0 = atol(tok);
551 bind_cpu_1 = atol(tok_end + 1);
552 }
553
554 step = 1;
555 tok_step = strstr(tok, "#");
556 if (tok_step) {
557 step = atol(tok_step + 1);
558 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
559 }
560
561 /*
562 * Mask length.
563 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
564 * where the _4 means the next 4 CPUs are allowed.
565 */
566 bind_len = 1;
567 tok_len = strstr(tok, "_");
568 if (tok_len) {
569 bind_len = atol(tok_len + 1);
570 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
571 }
572
573 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
574 mul = 1;
575 tok_mul = strstr(tok, "x");
576 if (tok_mul) {
577 mul = atol(tok_mul + 1);
578 BUG_ON(mul <= 0);
579 }
580
581 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
582
583 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
584 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
585 return -1;
586 }
587
588 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
589 BUG_ON(bind_cpu_0 > bind_cpu_1);
590
591 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
592 int i;
593
594 for (i = 0; i < mul; i++) {
595 int cpu;
596
597 if (t >= g->p.nr_tasks) {
598 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
599 goto out;
600 }
601 td = g->threads + t;
602
603 if (t)
604 tprintf(",");
605 if (bind_len > 1) {
606 tprintf("%2d/%d", bind_cpu, bind_len);
607 } else {
608 tprintf("%2d", bind_cpu);
609 }
610
611 CPU_ZERO(&td->bind_cpumask);
612 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
613 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
614 CPU_SET(cpu, &td->bind_cpumask);
615 }
616 t++;
617 }
618 }
619 }
620out:
621
622 tprintf("\n");
623
624 if (t < g->p.nr_tasks)
625 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
626
627 free(str0);
628 return 0;
629}
630
631static int parse_cpus_opt(const struct option *opt __maybe_unused,
632 const char *arg, int unset __maybe_unused)
633{
634 if (!arg)
635 return -1;
636
637 return parse_cpu_list(arg);
638}
639
640static int parse_node_list(const char *arg)
641{
642 p0.node_list_str = strdup(arg);
643
644 dprintf("got NODE list: {%s}\n", p0.node_list_str);
645
646 return 0;
647}
648
649static int parse_setup_node_list(void)
650{
651 struct thread_data *td;
652 char *str0, *str;
653 int t;
654
655 if (!g->p.node_list_str)
656 return 0;
657
658 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
659
660 str0 = str = strdup(g->p.node_list_str);
661 t = 0;
662
663 BUG_ON(!str);
664
665 tprintf("# binding tasks to NODEs:\n");
666 tprintf("# ");
667
668 while (true) {
669 int bind_node, bind_node_0, bind_node_1;
670 char *tok, *tok_end, *tok_step, *tok_mul;
671 int step;
672 int mul;
673
674 tok = strsep(&str, ",");
675 if (!tok)
676 break;
677
678 tok_end = strstr(tok, "-");
679
680 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
681 if (!tok_end) {
682 /* Single NODE specified: */
683 bind_node_0 = bind_node_1 = atol(tok);
684 } else {
685 /* NODE range specified (for example: "5-11"): */
686 bind_node_0 = atol(tok);
687 bind_node_1 = atol(tok_end + 1);
688 }
689
690 step = 1;
691 tok_step = strstr(tok, "#");
692 if (tok_step) {
693 step = atol(tok_step + 1);
694 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
695 }
696
697 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
698 mul = 1;
699 tok_mul = strstr(tok, "x");
700 if (tok_mul) {
701 mul = atol(tok_mul + 1);
702 BUG_ON(mul <= 0);
703 }
704
705 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
706
707 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
708 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
709 return -1;
710 }
711
712 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
713 BUG_ON(bind_node_0 > bind_node_1);
714
715 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
716 int i;
717
718 for (i = 0; i < mul; i++) {
719 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
720 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
721 goto out;
722 }
723 td = g->threads + t;
724
725 if (!t)
726 tprintf(" %2d", bind_node);
727 else
728 tprintf(",%2d", bind_node);
729
730 td->bind_node = bind_node;
731 t++;
732 }
733 }
734 }
735out:
736
737 tprintf("\n");
738
739 if (t < g->p.nr_tasks)
740 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
741
742 free(str0);
743 return 0;
744}
745
746static int parse_nodes_opt(const struct option *opt __maybe_unused,
747 const char *arg, int unset __maybe_unused)
748{
749 if (!arg)
750 return -1;
751
752 return parse_node_list(arg);
753}
754
755#define BIT(x) (1ul << x)
756
757static inline uint32_t lfsr_32(uint32_t lfsr)
758{
759 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
760 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
761}
762
763/*
764 * Make sure there's real data dependency to RAM (when read
765 * accesses are enabled), so the compiler, the CPU and the
766 * kernel (KSM, zero page, etc.) cannot optimize away RAM
767 * accesses:
768 */
769static inline u64 access_data(u64 *data, u64 val)
770{
771 if (g->p.data_reads)
772 val += *data;
773 if (g->p.data_writes)
774 *data = val + 1;
775 return val;
776}
777
778/*
779 * The worker process does two types of work, a forwards going
780 * loop and a backwards going loop.
781 *
782 * We do this so that on multiprocessor systems we do not create
783 * a 'train' of processing, with highly synchronized processes,
784 * skewing the whole benchmark.
785 */
786static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
787{
788 long words = bytes/sizeof(u64);
789 u64 *data = (void *)__data;
790 long chunk_0, chunk_1;
791 u64 *d0, *d, *d1;
792 long off;
793 long i;
794
795 BUG_ON(!data && words);
796 BUG_ON(data && !words);
797
798 if (!data)
799 return val;
800
801 /* Very simple memset() work variant: */
802 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
803 bzero(data, bytes);
804 return val;
805 }
806
807 /* Spread out by PID/TID nr and by loop nr: */
808 chunk_0 = words/nr_max;
809 chunk_1 = words/g->p.nr_loops;
810 off = nr*chunk_0 + loop*chunk_1;
811
812 while (off >= words)
813 off -= words;
814
815 if (g->p.data_rand_walk) {
816 u32 lfsr = nr + loop + val;
817 int j;
818
819 for (i = 0; i < words/1024; i++) {
820 long start, end;
821
822 lfsr = lfsr_32(lfsr);
823
824 start = lfsr % words;
825 end = min(start + 1024, words-1);
826
827 if (g->p.data_zero_memset) {
828 bzero(data + start, (end-start) * sizeof(u64));
829 } else {
830 for (j = start; j < end; j++)
831 val = access_data(data + j, val);
832 }
833 }
834 } else if (!g->p.data_backwards || (nr + loop) & 1) {
835 /* Process data forwards: */
836
837 d0 = data + off;
838 d = data + off + 1;
839 d1 = data + words;
840
841 for (;;) {
842 if (unlikely(d >= d1))
843 d = data;
844 if (unlikely(d == d0))
845 break;
846
847 val = access_data(d, val);
848
849 d++;
850 }
851 } else {
852 /* Process data backwards: */
853
854 d0 = data + off;
855 d = data + off - 1;
856 d1 = data + words;
857
858 for (;;) {
859 if (unlikely(d < data))
860 d = data + words-1;
861 if (unlikely(d == d0))
862 break;
863
864 val = access_data(d, val);
865
866 d--;
867 }
868 }
869
870 return val;
871}
872
873static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
874{
875 unsigned int cpu;
876
877 cpu = sched_getcpu();
878
879 g->threads[task_nr].curr_cpu = cpu;
880 prctl(0, bytes_worked);
881}
882
883/*
884 * Count the number of nodes a process's threads
885 * are spread out on.
886 *
887 * A count of 1 means that the process is compressed
888 * to a single node. A count of g->p.nr_nodes means it's
889 * spread out on the whole system.
890 */
891static int count_process_nodes(int process_nr)
892{
893 char *node_present;
894 int nodes;
895 int n, t;
896
897 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
898 BUG_ON(!node_present);
899 for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
900 node_present[nodes] = 0;
901
902 for (t = 0; t < g->p.nr_threads; t++) {
903 struct thread_data *td;
904 int task_nr;
905 int node;
906
907 task_nr = process_nr*g->p.nr_threads + t;
908 td = g->threads + task_nr;
909
910 node = numa_node_of_cpu(td->curr_cpu);
911 if (node < 0) /* curr_cpu was likely still -1 */ {
912 free(node_present);
913 return 0;
914 }
915
916 node_present[node] = 1;
917 }
918
919 nodes = 0;
920
921 for (n = 0; n < g->p.nr_nodes; n++)
922 nodes += node_present[n];
923
924 free(node_present);
925 return nodes;
926}
927
928/*
929 * Count the number of distinct process-threads a node contains.
930 *
931 * A count of 1 means that the node contains only a single
932 * process. If all nodes on the system contain at most one
933 * process then we are well-converged.
934 */
935static int count_node_processes(int node)
936{
937 int processes = 0;
938 int t, p;
939
940 for (p = 0; p < g->p.nr_proc; p++) {
941 for (t = 0; t < g->p.nr_threads; t++) {
942 struct thread_data *td;
943 int task_nr;
944 int n;
945
946 task_nr = p*g->p.nr_threads + t;
947 td = g->threads + task_nr;
948
949 n = numa_node_of_cpu(td->curr_cpu);
950 if (n == node) {
951 processes++;
952 break;
953 }
954 }
955 }
956
957 return processes;
958}
959
960static void calc_convergence_compression(int *strong)
961{
962 unsigned int nodes_min, nodes_max;
963 int p;
964
965 nodes_min = -1;
966 nodes_max = 0;
967
968 for (p = 0; p < g->p.nr_proc; p++) {
969 unsigned int nodes = count_process_nodes(p);
970
971 if (!nodes) {
972 *strong = 0;
973 return;
974 }
975
976 nodes_min = min(nodes, nodes_min);
977 nodes_max = max(nodes, nodes_max);
978 }
979
980 /* Strong convergence: all threads compress on a single node: */
981 if (nodes_min == 1 && nodes_max == 1) {
982 *strong = 1;
983 } else {
984 *strong = 0;
985 tprintf(" {%d-%d}", nodes_min, nodes_max);
986 }
987}
988
989static void calc_convergence(double runtime_ns_max, double *convergence)
990{
991 unsigned int loops_done_min, loops_done_max;
992 int process_groups;
993 int *nodes;
994 int distance;
995 int nr_min;
996 int nr_max;
997 int strong;
998 int sum;
999 int nr;
1000 int node;
1001 int cpu;
1002 int t;
1003
1004 if (!g->p.show_convergence && !g->p.measure_convergence)
1005 return;
1006
1007 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1008 BUG_ON(!nodes);
1009 for (node = 0; node < g->p.nr_nodes; node++)
1010 nodes[node] = 0;
1011
1012 loops_done_min = -1;
1013 loops_done_max = 0;
1014
1015 for (t = 0; t < g->p.nr_tasks; t++) {
1016 struct thread_data *td = g->threads + t;
1017 unsigned int loops_done;
1018
1019 cpu = td->curr_cpu;
1020
1021 /* Not all threads have written it yet: */
1022 if (cpu < 0)
1023 continue;
1024
1025 node = numa_node_of_cpu(cpu);
1026
1027 nodes[node]++;
1028
1029 loops_done = td->loops_done;
1030 loops_done_min = min(loops_done, loops_done_min);
1031 loops_done_max = max(loops_done, loops_done_max);
1032 }
1033
1034 nr_max = 0;
1035 nr_min = g->p.nr_tasks;
1036 sum = 0;
1037
1038 for (node = 0; node < g->p.nr_nodes; node++) {
1039 if (!is_node_present(node))
1040 continue;
1041 nr = nodes[node];
1042 nr_min = min(nr, nr_min);
1043 nr_max = max(nr, nr_max);
1044 sum += nr;
1045 }
1046 BUG_ON(nr_min > nr_max);
1047
1048 BUG_ON(sum > g->p.nr_tasks);
1049
1050 if (0 && (sum < g->p.nr_tasks)) {
1051 free(nodes);
1052 return;
1053 }
1054
1055 /*
1056 * Count the number of distinct process groups present
1057 * on nodes - when we are converged this will decrease
1058 * to g->p.nr_proc:
1059 */
1060 process_groups = 0;
1061
1062 for (node = 0; node < g->p.nr_nodes; node++) {
1063 int processes;
1064
1065 if (!is_node_present(node))
1066 continue;
1067 processes = count_node_processes(node);
1068 nr = nodes[node];
1069 tprintf(" %2d/%-2d", nr, processes);
1070
1071 process_groups += processes;
1072 }
1073
1074 distance = nr_max - nr_min;
1075
1076 tprintf(" [%2d/%-2d]", distance, process_groups);
1077
1078 tprintf(" l:%3d-%-3d (%3d)",
1079 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1080
1081 if (loops_done_min && loops_done_max) {
1082 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1083
1084 tprintf(" [%4.1f%%]", skew * 100.0);
1085 }
1086
1087 calc_convergence_compression(&strong);
1088
1089 if (strong && process_groups == g->p.nr_proc) {
1090 if (!*convergence) {
1091 *convergence = runtime_ns_max;
1092 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1093 if (g->p.measure_convergence) {
1094 g->all_converged = true;
1095 g->stop_work = true;
1096 }
1097 }
1098 } else {
1099 if (*convergence) {
1100 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1101 *convergence = 0;
1102 }
1103 tprintf("\n");
1104 }
1105
1106 free(nodes);
1107}
1108
1109static void show_summary(double runtime_ns_max, int l, double *convergence)
1110{
1111 tprintf("\r # %5.1f%% [%.1f mins]",
1112 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1113
1114 calc_convergence(runtime_ns_max, convergence);
1115
1116 if (g->p.show_details >= 0)
1117 fflush(stdout);
1118}
1119
1120static void *worker_thread(void *__tdata)
1121{
1122 struct thread_data *td = __tdata;
1123 struct timeval start0, start, stop, diff;
1124 int process_nr = td->process_nr;
1125 int thread_nr = td->thread_nr;
1126 unsigned long last_perturbance;
1127 int task_nr = td->task_nr;
1128 int details = g->p.show_details;
1129 int first_task, last_task;
1130 double convergence = 0;
1131 u64 val = td->val;
1132 double runtime_ns_max;
1133 u8 *global_data;
1134 u8 *process_data;
1135 u8 *thread_data;
1136 u64 bytes_done, secs;
1137 long work_done;
1138 u32 l;
1139 struct rusage rusage;
1140
1141 bind_to_cpumask(td->bind_cpumask);
1142 bind_to_memnode(td->bind_node);
1143
1144 set_taskname("thread %d/%d", process_nr, thread_nr);
1145
1146 global_data = g->data;
1147 process_data = td->process_data;
1148 thread_data = setup_private_data(g->p.bytes_thread);
1149
1150 bytes_done = 0;
1151
1152 last_task = 0;
1153 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1154 last_task = 1;
1155
1156 first_task = 0;
1157 if (process_nr == 0 && thread_nr == 0)
1158 first_task = 1;
1159
1160 if (details >= 2) {
1161 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1162 process_nr, thread_nr, global_data, process_data, thread_data);
1163 }
1164
1165 if (g->p.serialize_startup) {
1166 pthread_mutex_lock(&g->startup_mutex);
1167 g->nr_tasks_started++;
1168 /* The last thread wakes the main process. */
1169 if (g->nr_tasks_started == g->p.nr_tasks)
1170 pthread_cond_signal(&g->startup_cond);
1171
1172 pthread_mutex_unlock(&g->startup_mutex);
1173
1174 /* Here we will wait for the main process to start us all at once: */
1175 pthread_mutex_lock(&g->start_work_mutex);
1176 g->start_work = false;
1177 g->nr_tasks_working++;
1178 while (!g->start_work)
1179 pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1180
1181 pthread_mutex_unlock(&g->start_work_mutex);
1182 }
1183
1184 gettimeofday(&start0, NULL);
1185
1186 start = stop = start0;
1187 last_perturbance = start.tv_sec;
1188
1189 for (l = 0; l < g->p.nr_loops; l++) {
1190 start = stop;
1191
1192 if (g->stop_work)
1193 break;
1194
1195 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1196 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1197 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1198
1199 if (g->p.sleep_usecs) {
1200 pthread_mutex_lock(td->process_lock);
1201 usleep(g->p.sleep_usecs);
1202 pthread_mutex_unlock(td->process_lock);
1203 }
1204 /*
1205 * Amount of work to be done under a process-global lock:
1206 */
1207 if (g->p.bytes_process_locked) {
1208 pthread_mutex_lock(td->process_lock);
1209 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1210 pthread_mutex_unlock(td->process_lock);
1211 }
1212
1213 work_done = g->p.bytes_global + g->p.bytes_process +
1214 g->p.bytes_process_locked + g->p.bytes_thread;
1215
1216 update_curr_cpu(task_nr, work_done);
1217 bytes_done += work_done;
1218
1219 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1220 continue;
1221
1222 td->loops_done = l;
1223
1224 gettimeofday(&stop, NULL);
1225
1226 /* Check whether our max runtime timed out: */
1227 if (g->p.nr_secs) {
1228 timersub(&stop, &start0, &diff);
1229 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1230 g->stop_work = true;
1231 break;
1232 }
1233 }
1234
1235 /* Update the summary at most once per second: */
1236 if (start.tv_sec == stop.tv_sec)
1237 continue;
1238
1239 /*
1240 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1241 * by migrating to CPU#0:
1242 */
1243 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1244 cpu_set_t orig_mask;
1245 int target_cpu;
1246 int this_cpu;
1247
1248 last_perturbance = stop.tv_sec;
1249
1250 /*
1251 * Depending on where we are running, move into
1252 * the other half of the system, to create some
1253 * real disturbance:
1254 */
1255 this_cpu = g->threads[task_nr].curr_cpu;
1256 if (this_cpu < g->p.nr_cpus/2)
1257 target_cpu = g->p.nr_cpus-1;
1258 else
1259 target_cpu = 0;
1260
1261 orig_mask = bind_to_cpu(target_cpu);
1262
1263 /* Here we are running on the target CPU already */
1264 if (details >= 1)
1265 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1266
1267 bind_to_cpumask(orig_mask);
1268 }
1269
1270 if (details >= 3) {
1271 timersub(&stop, &start, &diff);
1272 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1273 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1274
1275 if (details >= 0) {
1276 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1277 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1278 }
1279 fflush(stdout);
1280 }
1281 if (!last_task)
1282 continue;
1283
1284 timersub(&stop, &start0, &diff);
1285 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1286 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1287
1288 show_summary(runtime_ns_max, l, &convergence);
1289 }
1290
1291 gettimeofday(&stop, NULL);
1292 timersub(&stop, &start0, &diff);
1293 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1294 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1295 secs = td->runtime_ns / NSEC_PER_SEC;
1296 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1297
1298 getrusage(RUSAGE_THREAD, &rusage);
1299 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1300 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1301 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1302 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1303
1304 free_data(thread_data, g->p.bytes_thread);
1305
1306 pthread_mutex_lock(&g->stop_work_mutex);
1307 g->bytes_done += bytes_done;
1308 pthread_mutex_unlock(&g->stop_work_mutex);
1309
1310 return NULL;
1311}
1312
1313/*
1314 * A worker process starts a couple of threads:
1315 */
1316static void worker_process(int process_nr)
1317{
1318 pthread_mutex_t process_lock;
1319 struct thread_data *td;
1320 pthread_t *pthreads;
1321 u8 *process_data;
1322 int task_nr;
1323 int ret;
1324 int t;
1325
1326 pthread_mutex_init(&process_lock, NULL);
1327 set_taskname("process %d", process_nr);
1328
1329 /*
1330 * Pick up the memory policy and the CPU binding of our first thread,
1331 * so that we initialize memory accordingly:
1332 */
1333 task_nr = process_nr*g->p.nr_threads;
1334 td = g->threads + task_nr;
1335
1336 bind_to_memnode(td->bind_node);
1337 bind_to_cpumask(td->bind_cpumask);
1338
1339 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1340 process_data = setup_private_data(g->p.bytes_process);
1341
1342 if (g->p.show_details >= 3) {
1343 printf(" # process %2d global mem: %p, process mem: %p\n",
1344 process_nr, g->data, process_data);
1345 }
1346
1347 for (t = 0; t < g->p.nr_threads; t++) {
1348 task_nr = process_nr*g->p.nr_threads + t;
1349 td = g->threads + task_nr;
1350
1351 td->process_data = process_data;
1352 td->process_nr = process_nr;
1353 td->thread_nr = t;
1354 td->task_nr = task_nr;
1355 td->val = rand();
1356 td->curr_cpu = -1;
1357 td->process_lock = &process_lock;
1358
1359 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1360 BUG_ON(ret);
1361 }
1362
1363 for (t = 0; t < g->p.nr_threads; t++) {
1364 ret = pthread_join(pthreads[t], NULL);
1365 BUG_ON(ret);
1366 }
1367
1368 free_data(process_data, g->p.bytes_process);
1369 free(pthreads);
1370}
1371
1372static void print_summary(void)
1373{
1374 if (g->p.show_details < 0)
1375 return;
1376
1377 printf("\n ###\n");
1378 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1379 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1380 printf(" # %5dx %5ldMB global shared mem operations\n",
1381 g->p.nr_loops, g->p.bytes_global/1024/1024);
1382 printf(" # %5dx %5ldMB process shared mem operations\n",
1383 g->p.nr_loops, g->p.bytes_process/1024/1024);
1384 printf(" # %5dx %5ldMB thread local mem operations\n",
1385 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1386
1387 printf(" ###\n");
1388
1389 printf("\n ###\n"); fflush(stdout);
1390}
1391
1392static void init_thread_data(void)
1393{
1394 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1395 int t;
1396
1397 g->threads = zalloc_shared_data(size);
1398
1399 for (t = 0; t < g->p.nr_tasks; t++) {
1400 struct thread_data *td = g->threads + t;
1401 int cpu;
1402
1403 /* Allow all nodes by default: */
1404 td->bind_node = NUMA_NO_NODE;
1405
1406 /* Allow all CPUs by default: */
1407 CPU_ZERO(&td->bind_cpumask);
1408 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1409 CPU_SET(cpu, &td->bind_cpumask);
1410 }
1411}
1412
1413static void deinit_thread_data(void)
1414{
1415 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1416
1417 free_data(g->threads, size);
1418}
1419
1420static int init(void)
1421{
1422 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1423
1424 /* Copy over options: */
1425 g->p = p0;
1426
1427 g->p.nr_cpus = numa_num_configured_cpus();
1428
1429 g->p.nr_nodes = numa_max_node() + 1;
1430
1431 /* char array in count_process_nodes(): */
1432 BUG_ON(g->p.nr_nodes < 0);
1433
1434 if (g->p.show_quiet && !g->p.show_details)
1435 g->p.show_details = -1;
1436
1437 /* Some memory should be specified: */
1438 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1439 return -1;
1440
1441 if (g->p.mb_global_str) {
1442 g->p.mb_global = atof(g->p.mb_global_str);
1443 BUG_ON(g->p.mb_global < 0);
1444 }
1445
1446 if (g->p.mb_proc_str) {
1447 g->p.mb_proc = atof(g->p.mb_proc_str);
1448 BUG_ON(g->p.mb_proc < 0);
1449 }
1450
1451 if (g->p.mb_proc_locked_str) {
1452 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1453 BUG_ON(g->p.mb_proc_locked < 0);
1454 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1455 }
1456
1457 if (g->p.mb_thread_str) {
1458 g->p.mb_thread = atof(g->p.mb_thread_str);
1459 BUG_ON(g->p.mb_thread < 0);
1460 }
1461
1462 BUG_ON(g->p.nr_threads <= 0);
1463 BUG_ON(g->p.nr_proc <= 0);
1464
1465 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1466
1467 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1468 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1469 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1470 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1471
1472 g->data = setup_shared_data(g->p.bytes_global);
1473
1474 /* Startup serialization: */
1475 init_global_mutex(&g->start_work_mutex);
1476 init_global_cond(&g->start_work_cond);
1477 init_global_mutex(&g->startup_mutex);
1478 init_global_cond(&g->startup_cond);
1479 init_global_mutex(&g->stop_work_mutex);
1480
1481 init_thread_data();
1482
1483 tprintf("#\n");
1484 if (parse_setup_cpu_list() || parse_setup_node_list())
1485 return -1;
1486 tprintf("#\n");
1487
1488 print_summary();
1489
1490 return 0;
1491}
1492
1493static void deinit(void)
1494{
1495 free_data(g->data, g->p.bytes_global);
1496 g->data = NULL;
1497
1498 deinit_thread_data();
1499
1500 free_data(g, sizeof(*g));
1501 g = NULL;
1502}
1503
1504/*
1505 * Print a short or long result, depending on the verbosity setting:
1506 */
1507static void print_res(const char *name, double val,
1508 const char *txt_unit, const char *txt_short, const char *txt_long)
1509{
1510 if (!name)
1511 name = "main,";
1512
1513 if (!g->p.show_quiet)
1514 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1515 else
1516 printf(" %14.3f %s\n", val, txt_long);
1517}
1518
1519static int __bench_numa(const char *name)
1520{
1521 struct timeval start, stop, diff;
1522 u64 runtime_ns_min, runtime_ns_sum;
1523 pid_t *pids, pid, wpid;
1524 double delta_runtime;
1525 double runtime_avg;
1526 double runtime_sec_max;
1527 double runtime_sec_min;
1528 int wait_stat;
1529 double bytes;
1530 int i, t, p;
1531
1532 if (init())
1533 return -1;
1534
1535 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1536 pid = -1;
1537
1538 if (g->p.serialize_startup) {
1539 tprintf(" #\n");
1540 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1541 }
1542
1543 gettimeofday(&start, NULL);
1544
1545 for (i = 0; i < g->p.nr_proc; i++) {
1546 pid = fork();
1547 dprintf(" # process %2d: PID %d\n", i, pid);
1548
1549 BUG_ON(pid < 0);
1550 if (!pid) {
1551 /* Child process: */
1552 worker_process(i);
1553
1554 exit(0);
1555 }
1556 pids[i] = pid;
1557
1558 }
1559
1560 if (g->p.serialize_startup) {
1561 bool threads_ready = false;
1562 double startup_sec;
1563
1564 /*
1565 * Wait for all the threads to start up. The last thread will
1566 * signal this process.
1567 */
1568 pthread_mutex_lock(&g->startup_mutex);
1569 while (g->nr_tasks_started != g->p.nr_tasks)
1570 pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1571
1572 pthread_mutex_unlock(&g->startup_mutex);
1573
1574 /* Wait for all threads to be at the start_work_cond. */
1575 while (!threads_ready) {
1576 pthread_mutex_lock(&g->start_work_mutex);
1577 threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1578 pthread_mutex_unlock(&g->start_work_mutex);
1579 if (!threads_ready)
1580 usleep(1);
1581 }
1582
1583 gettimeofday(&stop, NULL);
1584
1585 timersub(&stop, &start, &diff);
1586
1587 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1588 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1589 startup_sec /= NSEC_PER_SEC;
1590
1591 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1592 tprintf(" #\n");
1593
1594 start = stop;
1595 /* Start all threads running. */
1596 pthread_mutex_lock(&g->start_work_mutex);
1597 g->start_work = true;
1598 pthread_mutex_unlock(&g->start_work_mutex);
1599 pthread_cond_broadcast(&g->start_work_cond);
1600 } else {
1601 gettimeofday(&start, NULL);
1602 }
1603
1604 /* Parent process: */
1605
1606
1607 for (i = 0; i < g->p.nr_proc; i++) {
1608 wpid = waitpid(pids[i], &wait_stat, 0);
1609 BUG_ON(wpid < 0);
1610 BUG_ON(!WIFEXITED(wait_stat));
1611
1612 }
1613
1614 runtime_ns_sum = 0;
1615 runtime_ns_min = -1LL;
1616
1617 for (t = 0; t < g->p.nr_tasks; t++) {
1618 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1619
1620 runtime_ns_sum += thread_runtime_ns;
1621 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1622 }
1623
1624 gettimeofday(&stop, NULL);
1625 timersub(&stop, &start, &diff);
1626
1627 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1628
1629 tprintf("\n ###\n");
1630 tprintf("\n");
1631
1632 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1633 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1634 runtime_sec_max /= NSEC_PER_SEC;
1635
1636 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1637
1638 bytes = g->bytes_done;
1639 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1640
1641 if (g->p.measure_convergence) {
1642 print_res(name, runtime_sec_max,
1643 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1644 }
1645
1646 print_res(name, runtime_sec_max,
1647 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1648
1649 print_res(name, runtime_sec_min,
1650 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1651
1652 print_res(name, runtime_avg,
1653 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1654
1655 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1656 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1657 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1658
1659 print_res(name, bytes / g->p.nr_tasks / 1e9,
1660 "GB,", "data/thread", "GB data processed, per thread");
1661
1662 print_res(name, bytes / 1e9,
1663 "GB,", "data-total", "GB data processed, total");
1664
1665 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1666 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1667
1668 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1669 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1670
1671 print_res(name, bytes / runtime_sec_max / 1e9,
1672 "GB/sec,", "total-speed", "GB/sec total speed");
1673
1674 if (g->p.show_details >= 2) {
1675 char tname[14 + 2 * 10 + 1];
1676 struct thread_data *td;
1677 for (p = 0; p < g->p.nr_proc; p++) {
1678 for (t = 0; t < g->p.nr_threads; t++) {
1679 memset(tname, 0, sizeof(tname));
1680 td = g->threads + p*g->p.nr_threads + t;
1681 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1682 print_res(tname, td->speed_gbs,
1683 "GB/sec", "thread-speed", "GB/sec/thread speed");
1684 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1685 "secs", "thread-system-time", "system CPU time/thread");
1686 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1687 "secs", "thread-user-time", "user CPU time/thread");
1688 }
1689 }
1690 }
1691
1692 free(pids);
1693
1694 deinit();
1695
1696 return 0;
1697}
1698
1699#define MAX_ARGS 50
1700
1701static int command_size(const char **argv)
1702{
1703 int size = 0;
1704
1705 while (*argv) {
1706 size++;
1707 argv++;
1708 }
1709
1710 BUG_ON(size >= MAX_ARGS);
1711
1712 return size;
1713}
1714
1715static void init_params(struct params *p, const char *name, int argc, const char **argv)
1716{
1717 int i;
1718
1719 printf("\n # Running %s \"perf bench numa", name);
1720
1721 for (i = 0; i < argc; i++)
1722 printf(" %s", argv[i]);
1723
1724 printf("\"\n");
1725
1726 memset(p, 0, sizeof(*p));
1727
1728 /* Initialize nonzero defaults: */
1729
1730 p->serialize_startup = 1;
1731 p->data_reads = true;
1732 p->data_writes = true;
1733 p->data_backwards = true;
1734 p->data_rand_walk = true;
1735 p->nr_loops = -1;
1736 p->init_random = true;
1737 p->mb_global_str = "1";
1738 p->nr_proc = 1;
1739 p->nr_threads = 1;
1740 p->nr_secs = 5;
1741 p->run_all = argc == 1;
1742}
1743
1744static int run_bench_numa(const char *name, const char **argv)
1745{
1746 int argc = command_size(argv);
1747
1748 init_params(&p0, name, argc, argv);
1749 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1750 if (argc)
1751 goto err;
1752
1753 if (__bench_numa(name))
1754 goto err;
1755
1756 return 0;
1757
1758err:
1759 return -1;
1760}
1761
1762#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1763#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1764
1765#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1766#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1767
1768#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1769#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1770
1771/*
1772 * The built-in test-suite executed by "perf bench numa -a".
1773 *
1774 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1775 */
1776static const char *tests[][MAX_ARGS] = {
1777 /* Basic single-stream NUMA bandwidth measurements: */
1778 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1779 "-C" , "0", "-M", "0", OPT_BW_RAM },
1780 { "RAM-bw-local-NOTHP,",
1781 "mem", "-p", "1", "-t", "1", "-P", "1024",
1782 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1783 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1784 "-C" , "0", "-M", "1", OPT_BW_RAM },
1785
1786 /* 2-stream NUMA bandwidth measurements: */
1787 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1788 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1789 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1790 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1791
1792 /* Cross-stream NUMA bandwidth measurement: */
1793 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1794 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1795
1796 /* Convergence latency measurements: */
1797 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1798 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1799 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1800 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1801 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1802 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1803 { " 4x4-convergence-NOTHP,",
1804 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1805 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1806 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1807 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1808 { " 8x4-convergence-NOTHP,",
1809 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1810 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1811 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1812 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1813 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1814 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1815
1816 /* Various NUMA process/thread layout bandwidth measurements: */
1817 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1818 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1819 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1820 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1821 { " 8x1-bw-process-NOTHP,",
1822 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1823 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1824
1825 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1826 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1827 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1828 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1829
1830 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1831 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1832 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1833 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1834 { " 4x8-bw-process-NOTHP,",
1835 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1836 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1837 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1838
1839 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1840 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1841
1842 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1843 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1844 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1845 { "numa01-bw-thread-NOTHP,",
1846 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1847};
1848
1849static int bench_all(void)
1850{
1851 int nr = ARRAY_SIZE(tests);
1852 int ret;
1853 int i;
1854
1855 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1856 BUG_ON(ret < 0);
1857
1858 for (i = 0; i < nr; i++) {
1859 run_bench_numa(tests[i][0], tests[i] + 1);
1860 }
1861
1862 printf("\n");
1863
1864 return 0;
1865}
1866
1867int bench_numa(int argc, const char **argv)
1868{
1869 init_params(&p0, "main,", argc, argv);
1870 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1871 if (argc)
1872 goto err;
1873
1874 if (p0.run_all)
1875 return bench_all();
1876
1877 if (__bench_numa(NULL))
1878 goto err;
1879
1880 return 0;
1881
1882err:
1883 usage_with_options(numa_usage, options);
1884 return -1;
1885}