Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
  1/*
  2 * Freescale DMA ALSA SoC PCM driver
  3 *
  4 * Author: Timur Tabi <timur@freescale.com>
  5 *
  6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
  7 *
  8 * This file is licensed under the terms of the GNU General Public License
  9 * version 2.  This program is licensed "as is" without any warranty of any
 10 * kind, whether express or implied.
 11 *
 12 * This driver implements ASoC support for the Elo DMA controller, which is
 13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
 14 * the PCM driver is what handles the DMA buffer.
 15 */
 16
 17#include <linux/module.h>
 18#include <linux/init.h>
 19#include <linux/platform_device.h>
 20#include <linux/dma-mapping.h>
 21#include <linux/interrupt.h>
 22#include <linux/delay.h>
 23#include <linux/gfp.h>
 24#include <linux/of_address.h>
 25#include <linux/of_irq.h>
 26#include <linux/of_platform.h>
 27#include <linux/list.h>
 28#include <linux/slab.h>
 29
 30#include <sound/core.h>
 31#include <sound/pcm.h>
 32#include <sound/pcm_params.h>
 33#include <sound/soc.h>
 34
 35#include <asm/io.h>
 36
 37#include "fsl_dma.h"
 38#include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
 39
 40/*
 41 * The formats that the DMA controller supports, which is anything
 42 * that is 8, 16, or 32 bits.
 43 */
 44#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
 45			    SNDRV_PCM_FMTBIT_U8 	| \
 46			    SNDRV_PCM_FMTBIT_S16_LE     | \
 47			    SNDRV_PCM_FMTBIT_S16_BE     | \
 48			    SNDRV_PCM_FMTBIT_U16_LE     | \
 49			    SNDRV_PCM_FMTBIT_U16_BE     | \
 50			    SNDRV_PCM_FMTBIT_S24_LE     | \
 51			    SNDRV_PCM_FMTBIT_S24_BE     | \
 52			    SNDRV_PCM_FMTBIT_U24_LE     | \
 53			    SNDRV_PCM_FMTBIT_U24_BE     | \
 54			    SNDRV_PCM_FMTBIT_S32_LE     | \
 55			    SNDRV_PCM_FMTBIT_S32_BE     | \
 56			    SNDRV_PCM_FMTBIT_U32_LE     | \
 57			    SNDRV_PCM_FMTBIT_U32_BE)
 58struct dma_object {
 59	struct snd_soc_platform_driver dai;
 60	dma_addr_t ssi_stx_phys;
 61	dma_addr_t ssi_srx_phys;
 62	unsigned int ssi_fifo_depth;
 63	struct ccsr_dma_channel __iomem *channel;
 64	unsigned int irq;
 65	bool assigned;
 66	char path[1];
 67};
 68
 69/*
 70 * The number of DMA links to use.  Two is the bare minimum, but if you
 71 * have really small links you might need more.
 72 */
 73#define NUM_DMA_LINKS   2
 74
 75/** fsl_dma_private: p-substream DMA data
 76 *
 77 * Each substream has a 1-to-1 association with a DMA channel.
 78 *
 79 * The link[] array is first because it needs to be aligned on a 32-byte
 80 * boundary, so putting it first will ensure alignment without padding the
 81 * structure.
 82 *
 83 * @link[]: array of link descriptors
 84 * @dma_channel: pointer to the DMA channel's registers
 85 * @irq: IRQ for this DMA channel
 86 * @substream: pointer to the substream object, needed by the ISR
 87 * @ssi_sxx_phys: bus address of the STX or SRX register to use
 88 * @ld_buf_phys: physical address of the LD buffer
 89 * @current_link: index into link[] of the link currently being processed
 90 * @dma_buf_phys: physical address of the DMA buffer
 91 * @dma_buf_next: physical address of the next period to process
 92 * @dma_buf_end: physical address of the byte after the end of the DMA
 93 * @buffer period_size: the size of a single period
 94 * @num_periods: the number of periods in the DMA buffer
 95 */
 96struct fsl_dma_private {
 97	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
 98	struct ccsr_dma_channel __iomem *dma_channel;
 99	unsigned int irq;
100	struct snd_pcm_substream *substream;
101	dma_addr_t ssi_sxx_phys;
102	unsigned int ssi_fifo_depth;
103	dma_addr_t ld_buf_phys;
104	unsigned int current_link;
105	dma_addr_t dma_buf_phys;
106	dma_addr_t dma_buf_next;
107	dma_addr_t dma_buf_end;
108	size_t period_size;
109	unsigned int num_periods;
110};
111
112/**
113 * fsl_dma_hardare: define characteristics of the PCM hardware.
114 *
115 * The PCM hardware is the Freescale DMA controller.  This structure defines
116 * the capabilities of that hardware.
117 *
118 * Since the sampling rate and data format are not controlled by the DMA
119 * controller, we specify no limits for those values.  The only exception is
120 * period_bytes_min, which is set to a reasonably low value to prevent the
121 * DMA controller from generating too many interrupts per second.
122 *
123 * Since each link descriptor has a 32-bit byte count field, we set
124 * period_bytes_max to the largest 32-bit number.  We also have no maximum
125 * number of periods.
126 *
127 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
128 * limitation in the SSI driver requires the sample rates for playback and
129 * capture to be the same.
130 */
131static const struct snd_pcm_hardware fsl_dma_hardware = {
132
133	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
134				  SNDRV_PCM_INFO_MMAP |
135				  SNDRV_PCM_INFO_MMAP_VALID |
136				  SNDRV_PCM_INFO_JOINT_DUPLEX |
137				  SNDRV_PCM_INFO_PAUSE,
138	.formats		= FSLDMA_PCM_FORMATS,
139	.period_bytes_min       = 512,  	/* A reasonable limit */
140	.period_bytes_max       = (u32) -1,
141	.periods_min    	= NUM_DMA_LINKS,
142	.periods_max    	= (unsigned int) -1,
143	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
144};
145
146/**
147 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
148 *
149 * This function should be called by the ISR whenever the DMA controller
150 * halts data transfer.
151 */
152static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
153{
154	snd_pcm_stop_xrun(substream);
155}
156
157/**
158 * fsl_dma_update_pointers - update LD pointers to point to the next period
159 *
160 * As each period is completed, this function changes the the link
161 * descriptor pointers for that period to point to the next period.
162 */
163static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
164{
165	struct fsl_dma_link_descriptor *link =
166		&dma_private->link[dma_private->current_link];
167
168	/* Update our link descriptors to point to the next period. On a 36-bit
169	 * system, we also need to update the ESAD bits.  We also set (keep) the
170	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
171	 */
172	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
173		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
174#ifdef CONFIG_PHYS_64BIT
175		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
176			upper_32_bits(dma_private->dma_buf_next));
177#endif
178	} else {
179		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
180#ifdef CONFIG_PHYS_64BIT
181		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
182			upper_32_bits(dma_private->dma_buf_next));
183#endif
184	}
185
186	/* Update our variables for next time */
187	dma_private->dma_buf_next += dma_private->period_size;
188
189	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
190		dma_private->dma_buf_next = dma_private->dma_buf_phys;
191
192	if (++dma_private->current_link >= NUM_DMA_LINKS)
193		dma_private->current_link = 0;
194}
195
196/**
197 * fsl_dma_isr: interrupt handler for the DMA controller
198 *
199 * @irq: IRQ of the DMA channel
200 * @dev_id: pointer to the dma_private structure for this DMA channel
201 */
202static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
203{
204	struct fsl_dma_private *dma_private = dev_id;
205	struct snd_pcm_substream *substream = dma_private->substream;
206	struct snd_soc_pcm_runtime *rtd = substream->private_data;
207	struct device *dev = rtd->platform->dev;
208	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
209	irqreturn_t ret = IRQ_NONE;
210	u32 sr, sr2 = 0;
211
212	/* We got an interrupt, so read the status register to see what we
213	   were interrupted for.
214	 */
215	sr = in_be32(&dma_channel->sr);
216
217	if (sr & CCSR_DMA_SR_TE) {
218		dev_err(dev, "dma transmit error\n");
219		fsl_dma_abort_stream(substream);
220		sr2 |= CCSR_DMA_SR_TE;
221		ret = IRQ_HANDLED;
222	}
223
224	if (sr & CCSR_DMA_SR_CH)
225		ret = IRQ_HANDLED;
226
227	if (sr & CCSR_DMA_SR_PE) {
228		dev_err(dev, "dma programming error\n");
229		fsl_dma_abort_stream(substream);
230		sr2 |= CCSR_DMA_SR_PE;
231		ret = IRQ_HANDLED;
232	}
233
234	if (sr & CCSR_DMA_SR_EOLNI) {
235		sr2 |= CCSR_DMA_SR_EOLNI;
236		ret = IRQ_HANDLED;
237	}
238
239	if (sr & CCSR_DMA_SR_CB)
240		ret = IRQ_HANDLED;
241
242	if (sr & CCSR_DMA_SR_EOSI) {
243		/* Tell ALSA we completed a period. */
244		snd_pcm_period_elapsed(substream);
245
246		/*
247		 * Update our link descriptors to point to the next period. We
248		 * only need to do this if the number of periods is not equal to
249		 * the number of links.
250		 */
251		if (dma_private->num_periods != NUM_DMA_LINKS)
252			fsl_dma_update_pointers(dma_private);
253
254		sr2 |= CCSR_DMA_SR_EOSI;
255		ret = IRQ_HANDLED;
256	}
257
258	if (sr & CCSR_DMA_SR_EOLSI) {
259		sr2 |= CCSR_DMA_SR_EOLSI;
260		ret = IRQ_HANDLED;
261	}
262
263	/* Clear the bits that we set */
264	if (sr2)
265		out_be32(&dma_channel->sr, sr2);
266
267	return ret;
268}
269
270/**
271 * fsl_dma_new: initialize this PCM driver.
272 *
273 * This function is called when the codec driver calls snd_soc_new_pcms(),
274 * once for each .dai_link in the machine driver's snd_soc_card
275 * structure.
276 *
277 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
278 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
279 * is specified. Therefore, any DMA buffers we allocate will always be in low
280 * memory, but we support for 36-bit physical addresses anyway.
281 *
282 * Regardless of where the memory is actually allocated, since the device can
283 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
284 */
285static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
286{
287	struct snd_card *card = rtd->card->snd_card;
288	struct snd_pcm *pcm = rtd->pcm;
289	int ret;
290
291	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
292	if (ret)
293		return ret;
294
295	/* Some codecs have separate DAIs for playback and capture, so we
296	 * should allocate a DMA buffer only for the streams that are valid.
297	 */
298
299	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
300		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
301			fsl_dma_hardware.buffer_bytes_max,
302			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
303		if (ret) {
304			dev_err(card->dev, "can't alloc playback dma buffer\n");
305			return ret;
306		}
307	}
308
309	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
310		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
311			fsl_dma_hardware.buffer_bytes_max,
312			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
313		if (ret) {
314			dev_err(card->dev, "can't alloc capture dma buffer\n");
315			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
316			return ret;
317		}
318	}
319
320	return 0;
321}
322
323/**
324 * fsl_dma_open: open a new substream.
325 *
326 * Each substream has its own DMA buffer.
327 *
328 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
329 * descriptors that ping-pong from one period to the next.  For example, if
330 * there are six periods and two link descriptors, this is how they look
331 * before playback starts:
332 *
333 *      	   The last link descriptor
334 *   ____________  points back to the first
335 *  |   	 |
336 *  V   	 |
337 *  ___    ___   |
338 * |   |->|   |->|
339 * |___|  |___|
340 *   |      |
341 *   |      |
342 *   V      V
343 *  _________________________________________
344 * |      |      |      |      |      |      |  The DMA buffer is
345 * |      |      |      |      |      |      |    divided into 6 parts
346 * |______|______|______|______|______|______|
347 *
348 * and here's how they look after the first period is finished playing:
349 *
350 *   ____________
351 *  |   	 |
352 *  V   	 |
353 *  ___    ___   |
354 * |   |->|   |->|
355 * |___|  |___|
356 *   |      |
357 *   |______________
358 *          |       |
359 *          V       V
360 *  _________________________________________
361 * |      |      |      |      |      |      |
362 * |      |      |      |      |      |      |
363 * |______|______|______|______|______|______|
364 *
365 * The first link descriptor now points to the third period.  The DMA
366 * controller is currently playing the second period.  When it finishes, it
367 * will jump back to the first descriptor and play the third period.
368 *
369 * There are four reasons we do this:
370 *
371 * 1. The only way to get the DMA controller to automatically restart the
372 *    transfer when it gets to the end of the buffer is to use chaining
373 *    mode.  Basic direct mode doesn't offer that feature.
374 * 2. We need to receive an interrupt at the end of every period.  The DMA
375 *    controller can generate an interrupt at the end of every link transfer
376 *    (aka segment).  Making each period into a DMA segment will give us the
377 *    interrupts we need.
378 * 3. By creating only two link descriptors, regardless of the number of
379 *    periods, we do not need to reallocate the link descriptors if the
380 *    number of periods changes.
381 * 4. All of the audio data is still stored in a single, contiguous DMA
382 *    buffer, which is what ALSA expects.  We're just dividing it into
383 *    contiguous parts, and creating a link descriptor for each one.
384 */
385static int fsl_dma_open(struct snd_pcm_substream *substream)
386{
387	struct snd_pcm_runtime *runtime = substream->runtime;
388	struct snd_soc_pcm_runtime *rtd = substream->private_data;
389	struct device *dev = rtd->platform->dev;
390	struct dma_object *dma =
391		container_of(rtd->platform->driver, struct dma_object, dai);
392	struct fsl_dma_private *dma_private;
393	struct ccsr_dma_channel __iomem *dma_channel;
394	dma_addr_t ld_buf_phys;
395	u64 temp_link;  	/* Pointer to next link descriptor */
396	u32 mr;
397	unsigned int channel;
398	int ret = 0;
399	unsigned int i;
400
401	/*
402	 * Reject any DMA buffer whose size is not a multiple of the period
403	 * size.  We need to make sure that the DMA buffer can be evenly divided
404	 * into periods.
405	 */
406	ret = snd_pcm_hw_constraint_integer(runtime,
407		SNDRV_PCM_HW_PARAM_PERIODS);
408	if (ret < 0) {
409		dev_err(dev, "invalid buffer size\n");
410		return ret;
411	}
412
413	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
414
415	if (dma->assigned) {
416		dev_err(dev, "dma channel already assigned\n");
417		return -EBUSY;
418	}
419
420	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
421					 &ld_buf_phys, GFP_KERNEL);
422	if (!dma_private) {
423		dev_err(dev, "can't allocate dma private data\n");
424		return -ENOMEM;
425	}
426	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
427		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
428	else
429		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
430
431	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
432	dma_private->dma_channel = dma->channel;
433	dma_private->irq = dma->irq;
434	dma_private->substream = substream;
435	dma_private->ld_buf_phys = ld_buf_phys;
436	dma_private->dma_buf_phys = substream->dma_buffer.addr;
437
438	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
439			  dma_private);
440	if (ret) {
441		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
442			dma_private->irq, ret);
443		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
444			dma_private, dma_private->ld_buf_phys);
445		return ret;
446	}
447
448	dma->assigned = true;
449
450	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
451	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
452	runtime->private_data = dma_private;
453
454	/* Program the fixed DMA controller parameters */
455
456	dma_channel = dma_private->dma_channel;
457
458	temp_link = dma_private->ld_buf_phys +
459		sizeof(struct fsl_dma_link_descriptor);
460
461	for (i = 0; i < NUM_DMA_LINKS; i++) {
462		dma_private->link[i].next = cpu_to_be64(temp_link);
463
464		temp_link += sizeof(struct fsl_dma_link_descriptor);
465	}
466	/* The last link descriptor points to the first */
467	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
468
469	/* Tell the DMA controller where the first link descriptor is */
470	out_be32(&dma_channel->clndar,
471		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
472	out_be32(&dma_channel->eclndar,
473		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
474
475	/* The manual says the BCR must be clear before enabling EMP */
476	out_be32(&dma_channel->bcr, 0);
477
478	/*
479	 * Program the mode register for interrupts, external master control,
480	 * and source/destination hold.  Also clear the Channel Abort bit.
481	 */
482	mr = in_be32(&dma_channel->mr) &
483		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
484
485	/*
486	 * We want External Master Start and External Master Pause enabled,
487	 * because the SSI is controlling the DMA controller.  We want the DMA
488	 * controller to be set up in advance, and then we signal only the SSI
489	 * to start transferring.
490	 *
491	 * We want End-Of-Segment Interrupts enabled, because this will generate
492	 * an interrupt at the end of each segment (each link descriptor
493	 * represents one segment).  Each DMA segment is the same thing as an
494	 * ALSA period, so this is how we get an interrupt at the end of every
495	 * period.
496	 *
497	 * We want Error Interrupt enabled, so that we can get an error if
498	 * the DMA controller is mis-programmed somehow.
499	 */
500	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
501		CCSR_DMA_MR_EMS_EN;
502
503	/* For playback, we want the destination address to be held.  For
504	   capture, set the source address to be held. */
505	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
506		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
507
508	out_be32(&dma_channel->mr, mr);
509
510	return 0;
511}
512
513/**
514 * fsl_dma_hw_params: continue initializing the DMA links
515 *
516 * This function obtains hardware parameters about the opened stream and
517 * programs the DMA controller accordingly.
518 *
519 * One drawback of big-endian is that when copying integers of different
520 * sizes to a fixed-sized register, the address to which the integer must be
521 * copied is dependent on the size of the integer.
522 *
523 * For example, if P is the address of a 32-bit register, and X is a 32-bit
524 * integer, then X should be copied to address P.  However, if X is a 16-bit
525 * integer, then it should be copied to P+2.  If X is an 8-bit register,
526 * then it should be copied to P+3.
527 *
528 * So for playback of 8-bit samples, the DMA controller must transfer single
529 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
530 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
531 *
532 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
533 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
534 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
535 * 24-bit data must be padded to 32 bits.
536 */
537static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
538	struct snd_pcm_hw_params *hw_params)
539{
540	struct snd_pcm_runtime *runtime = substream->runtime;
541	struct fsl_dma_private *dma_private = runtime->private_data;
542	struct snd_soc_pcm_runtime *rtd = substream->private_data;
543	struct device *dev = rtd->platform->dev;
544
545	/* Number of bits per sample */
546	unsigned int sample_bits =
547		snd_pcm_format_physical_width(params_format(hw_params));
548
549	/* Number of bytes per frame */
550	unsigned int sample_bytes = sample_bits / 8;
551
552	/* Bus address of SSI STX register */
553	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
554
555	/* Size of the DMA buffer, in bytes */
556	size_t buffer_size = params_buffer_bytes(hw_params);
557
558	/* Number of bytes per period */
559	size_t period_size = params_period_bytes(hw_params);
560
561	/* Pointer to next period */
562	dma_addr_t temp_addr = substream->dma_buffer.addr;
563
564	/* Pointer to DMA controller */
565	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
566
567	u32 mr; /* DMA Mode Register */
568
569	unsigned int i;
570
571	/* Initialize our DMA tracking variables */
572	dma_private->period_size = period_size;
573	dma_private->num_periods = params_periods(hw_params);
574	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
575	dma_private->dma_buf_next = dma_private->dma_buf_phys +
576		(NUM_DMA_LINKS * period_size);
577
578	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
579		/* This happens if the number of periods == NUM_DMA_LINKS */
580		dma_private->dma_buf_next = dma_private->dma_buf_phys;
581
582	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
583		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
584
585	/* Due to a quirk of the SSI's STX register, the target address
586	 * for the DMA operations depends on the sample size.  So we calculate
587	 * that offset here.  While we're at it, also tell the DMA controller
588	 * how much data to transfer per sample.
589	 */
590	switch (sample_bits) {
591	case 8:
592		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
593		ssi_sxx_phys += 3;
594		break;
595	case 16:
596		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
597		ssi_sxx_phys += 2;
598		break;
599	case 32:
600		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
601		break;
602	default:
603		/* We should never get here */
604		dev_err(dev, "unsupported sample size %u\n", sample_bits);
605		return -EINVAL;
606	}
607
608	/*
609	 * BWC determines how many bytes are sent/received before the DMA
610	 * controller checks the SSI to see if it needs to stop. BWC should
611	 * always be a multiple of the frame size, so that we always transmit
612	 * whole frames.  Each frame occupies two slots in the FIFO.  The
613	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
614	 * (MR[BWC] can only represent even powers of two).
615	 *
616	 * To simplify the process, we set BWC to the largest value that is
617	 * less than or equal to the FIFO watermark.  For playback, this ensures
618	 * that we transfer the maximum amount without overrunning the FIFO.
619	 * For capture, this ensures that we transfer the maximum amount without
620	 * underrunning the FIFO.
621	 *
622	 * f = SSI FIFO depth
623	 * w = SSI watermark value (which equals f - 2)
624	 * b = DMA bandwidth count (in bytes)
625	 * s = sample size (in bytes, which equals frame_size * 2)
626	 *
627	 * For playback, we never transmit more than the transmit FIFO
628	 * watermark, otherwise we might write more data than the FIFO can hold.
629	 * The watermark is equal to the FIFO depth minus two.
630	 *
631	 * For capture, two equations must hold:
632	 *	w > f - (b / s)
633	 *	w >= b / s
634	 *
635	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
636	 * b = s * w, which is equal to
637	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
638	 */
639	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
640
641	out_be32(&dma_channel->mr, mr);
642
643	for (i = 0; i < NUM_DMA_LINKS; i++) {
644		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
645
646		link->count = cpu_to_be32(period_size);
647
648		/* The snoop bit tells the DMA controller whether it should tell
649		 * the ECM to snoop during a read or write to an address. For
650		 * audio, we use DMA to transfer data between memory and an I/O
651		 * device (the SSI's STX0 or SRX0 register). Snooping is only
652		 * needed if there is a cache, so we need to snoop memory
653		 * addresses only.  For playback, that means we snoop the source
654		 * but not the destination.  For capture, we snoop the
655		 * destination but not the source.
656		 *
657		 * Note that failing to snoop properly is unlikely to cause
658		 * cache incoherency if the period size is larger than the
659		 * size of L1 cache.  This is because filling in one period will
660		 * flush out the data for the previous period.  So if you
661		 * increased period_bytes_min to a large enough size, you might
662		 * get more performance by not snooping, and you'll still be
663		 * okay.  You'll need to update fsl_dma_update_pointers() also.
664		 */
665		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
666			link->source_addr = cpu_to_be32(temp_addr);
667			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
668				upper_32_bits(temp_addr));
669
670			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
671			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
672				upper_32_bits(ssi_sxx_phys));
673		} else {
674			link->source_addr = cpu_to_be32(ssi_sxx_phys);
675			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
676				upper_32_bits(ssi_sxx_phys));
677
678			link->dest_addr = cpu_to_be32(temp_addr);
679			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
680				upper_32_bits(temp_addr));
681		}
682
683		temp_addr += period_size;
684	}
685
686	return 0;
687}
688
689/**
690 * fsl_dma_pointer: determine the current position of the DMA transfer
691 *
692 * This function is called by ALSA when ALSA wants to know where in the
693 * stream buffer the hardware currently is.
694 *
695 * For playback, the SAR register contains the physical address of the most
696 * recent DMA transfer.  For capture, the value is in the DAR register.
697 *
698 * The base address of the buffer is stored in the source_addr field of the
699 * first link descriptor.
700 */
701static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
702{
703	struct snd_pcm_runtime *runtime = substream->runtime;
704	struct fsl_dma_private *dma_private = runtime->private_data;
705	struct snd_soc_pcm_runtime *rtd = substream->private_data;
706	struct device *dev = rtd->platform->dev;
707	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
708	dma_addr_t position;
709	snd_pcm_uframes_t frames;
710
711	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
712	 * only have 32-bit DMA addresses.  This function is typically called
713	 * in interrupt context, so we need to optimize it.
714	 */
715	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
716		position = in_be32(&dma_channel->sar);
717#ifdef CONFIG_PHYS_64BIT
718		position |= (u64)(in_be32(&dma_channel->satr) &
719				  CCSR_DMA_ATR_ESAD_MASK) << 32;
720#endif
721	} else {
722		position = in_be32(&dma_channel->dar);
723#ifdef CONFIG_PHYS_64BIT
724		position |= (u64)(in_be32(&dma_channel->datr) &
725				  CCSR_DMA_ATR_ESAD_MASK) << 32;
726#endif
727	}
728
729	/*
730	 * When capture is started, the SSI immediately starts to fill its FIFO.
731	 * This means that the DMA controller is not started until the FIFO is
732	 * full.  However, ALSA calls this function before that happens, when
733	 * MR.DAR is still zero.  In this case, just return zero to indicate
734	 * that nothing has been received yet.
735	 */
736	if (!position)
737		return 0;
738
739	if ((position < dma_private->dma_buf_phys) ||
740	    (position > dma_private->dma_buf_end)) {
741		dev_err(dev, "dma pointer is out of range, halting stream\n");
742		return SNDRV_PCM_POS_XRUN;
743	}
744
745	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
746
747	/*
748	 * If the current address is just past the end of the buffer, wrap it
749	 * around.
750	 */
751	if (frames == runtime->buffer_size)
752		frames = 0;
753
754	return frames;
755}
756
757/**
758 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
759 *
760 * Release the resources allocated in fsl_dma_hw_params() and de-program the
761 * registers.
762 *
763 * This function can be called multiple times.
764 */
765static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
766{
767	struct snd_pcm_runtime *runtime = substream->runtime;
768	struct fsl_dma_private *dma_private = runtime->private_data;
769
770	if (dma_private) {
771		struct ccsr_dma_channel __iomem *dma_channel;
772
773		dma_channel = dma_private->dma_channel;
774
775		/* Stop the DMA */
776		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
777		out_be32(&dma_channel->mr, 0);
778
779		/* Reset all the other registers */
780		out_be32(&dma_channel->sr, -1);
781		out_be32(&dma_channel->clndar, 0);
782		out_be32(&dma_channel->eclndar, 0);
783		out_be32(&dma_channel->satr, 0);
784		out_be32(&dma_channel->sar, 0);
785		out_be32(&dma_channel->datr, 0);
786		out_be32(&dma_channel->dar, 0);
787		out_be32(&dma_channel->bcr, 0);
788		out_be32(&dma_channel->nlndar, 0);
789		out_be32(&dma_channel->enlndar, 0);
790	}
791
792	return 0;
793}
794
795/**
796 * fsl_dma_close: close the stream.
797 */
798static int fsl_dma_close(struct snd_pcm_substream *substream)
799{
800	struct snd_pcm_runtime *runtime = substream->runtime;
801	struct fsl_dma_private *dma_private = runtime->private_data;
802	struct snd_soc_pcm_runtime *rtd = substream->private_data;
803	struct device *dev = rtd->platform->dev;
804	struct dma_object *dma =
805		container_of(rtd->platform->driver, struct dma_object, dai);
806
807	if (dma_private) {
808		if (dma_private->irq)
809			free_irq(dma_private->irq, dma_private);
810
811		/* Deallocate the fsl_dma_private structure */
812		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
813				  dma_private, dma_private->ld_buf_phys);
814		substream->runtime->private_data = NULL;
815	}
816
817	dma->assigned = false;
818
819	return 0;
820}
821
822/*
823 * Remove this PCM driver.
824 */
825static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
826{
827	struct snd_pcm_substream *substream;
828	unsigned int i;
829
830	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
831		substream = pcm->streams[i].substream;
832		if (substream) {
833			snd_dma_free_pages(&substream->dma_buffer);
834			substream->dma_buffer.area = NULL;
835			substream->dma_buffer.addr = 0;
836		}
837	}
838}
839
840/**
841 * find_ssi_node -- returns the SSI node that points to its DMA channel node
842 *
843 * Although this DMA driver attempts to operate independently of the other
844 * devices, it still needs to determine some information about the SSI device
845 * that it's working with.  Unfortunately, the device tree does not contain
846 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
847 * other way.  So we need to scan the device tree for SSI nodes until we find
848 * the one that points to the given DMA channel node.  It's ugly, but at least
849 * it's contained in this one function.
850 */
851static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
852{
853	struct device_node *ssi_np, *np;
854
855	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
856		/* Check each DMA phandle to see if it points to us.  We
857		 * assume that device_node pointers are a valid comparison.
858		 */
859		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
860		of_node_put(np);
861		if (np == dma_channel_np)
862			return ssi_np;
863
864		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
865		of_node_put(np);
866		if (np == dma_channel_np)
867			return ssi_np;
868	}
869
870	return NULL;
871}
872
873static struct snd_pcm_ops fsl_dma_ops = {
874	.open   	= fsl_dma_open,
875	.close  	= fsl_dma_close,
876	.ioctl  	= snd_pcm_lib_ioctl,
877	.hw_params      = fsl_dma_hw_params,
878	.hw_free	= fsl_dma_hw_free,
879	.pointer	= fsl_dma_pointer,
880};
881
882static int fsl_soc_dma_probe(struct platform_device *pdev)
883 {
884	struct dma_object *dma;
885	struct device_node *np = pdev->dev.of_node;
886	struct device_node *ssi_np;
887	struct resource res;
888	const uint32_t *iprop;
889	int ret;
890
891	/* Find the SSI node that points to us. */
892	ssi_np = find_ssi_node(np);
893	if (!ssi_np) {
894		dev_err(&pdev->dev, "cannot find parent SSI node\n");
895		return -ENODEV;
896	}
897
898	ret = of_address_to_resource(ssi_np, 0, &res);
899	if (ret) {
900		dev_err(&pdev->dev, "could not determine resources for %s\n",
901			ssi_np->full_name);
902		of_node_put(ssi_np);
903		return ret;
904	}
905
906	dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
907	if (!dma) {
908		dev_err(&pdev->dev, "could not allocate dma object\n");
909		of_node_put(ssi_np);
910		return -ENOMEM;
911	}
912
913	strcpy(dma->path, np->full_name);
914	dma->dai.ops = &fsl_dma_ops;
915	dma->dai.pcm_new = fsl_dma_new;
916	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
917
918	/* Store the SSI-specific information that we need */
919	dma->ssi_stx_phys = res.start + CCSR_SSI_STX0;
920	dma->ssi_srx_phys = res.start + CCSR_SSI_SRX0;
921
922	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
923	if (iprop)
924		dma->ssi_fifo_depth = be32_to_cpup(iprop);
925	else
926                /* Older 8610 DTs didn't have the fifo-depth property */
927		dma->ssi_fifo_depth = 8;
928
929	of_node_put(ssi_np);
930
931	ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
932	if (ret) {
933		dev_err(&pdev->dev, "could not register platform\n");
934		kfree(dma);
935		return ret;
936	}
937
938	dma->channel = of_iomap(np, 0);
939	dma->irq = irq_of_parse_and_map(np, 0);
940
941	dev_set_drvdata(&pdev->dev, dma);
942
943	return 0;
944}
945
946static int fsl_soc_dma_remove(struct platform_device *pdev)
947{
948	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
949
950	snd_soc_unregister_platform(&pdev->dev);
951	iounmap(dma->channel);
952	irq_dispose_mapping(dma->irq);
953	kfree(dma);
954
955	return 0;
956}
957
958static const struct of_device_id fsl_soc_dma_ids[] = {
959	{ .compatible = "fsl,ssi-dma-channel", },
960	{}
961};
962MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
963
964static struct platform_driver fsl_soc_dma_driver = {
965	.driver = {
966		.name = "fsl-pcm-audio",
967		.of_match_table = fsl_soc_dma_ids,
968	},
969	.probe = fsl_soc_dma_probe,
970	.remove = fsl_soc_dma_remove,
971};
972
973module_platform_driver(fsl_soc_dma_driver);
974
975MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
976MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
977MODULE_LICENSE("GPL v2");
  1// SPDX-License-Identifier: GPL-2.0
  2//
  3// Freescale DMA ALSA SoC PCM driver
  4//
  5// Author: Timur Tabi <timur@freescale.com>
  6//
  7// Copyright 2007-2010 Freescale Semiconductor, Inc.
  8//
  9// This driver implements ASoC support for the Elo DMA controller, which is
 10// the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
 11// the PCM driver is what handles the DMA buffer.
 12
 13#include <linux/module.h>
 14#include <linux/init.h>
 15#include <linux/platform_device.h>
 16#include <linux/dma-mapping.h>
 17#include <linux/interrupt.h>
 18#include <linux/delay.h>
 19#include <linux/gfp.h>
 20#include <linux/of_address.h>
 21#include <linux/of_irq.h>
 22#include <linux/of_platform.h>
 23#include <linux/list.h>
 24#include <linux/slab.h>
 25
 26#include <sound/core.h>
 27#include <sound/pcm.h>
 28#include <sound/pcm_params.h>
 29#include <sound/soc.h>
 30
 31#include <asm/io.h>
 32
 33#include "fsl_dma.h"
 34#include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
 35
 36#define DRV_NAME "fsl_dma"
 37
 38/*
 39 * The formats that the DMA controller supports, which is anything
 40 * that is 8, 16, or 32 bits.
 41 */
 42#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
 43			    SNDRV_PCM_FMTBIT_U8 	| \
 44			    SNDRV_PCM_FMTBIT_S16_LE     | \
 45			    SNDRV_PCM_FMTBIT_S16_BE     | \
 46			    SNDRV_PCM_FMTBIT_U16_LE     | \
 47			    SNDRV_PCM_FMTBIT_U16_BE     | \
 48			    SNDRV_PCM_FMTBIT_S24_LE     | \
 49			    SNDRV_PCM_FMTBIT_S24_BE     | \
 50			    SNDRV_PCM_FMTBIT_U24_LE     | \
 51			    SNDRV_PCM_FMTBIT_U24_BE     | \
 52			    SNDRV_PCM_FMTBIT_S32_LE     | \
 53			    SNDRV_PCM_FMTBIT_S32_BE     | \
 54			    SNDRV_PCM_FMTBIT_U32_LE     | \
 55			    SNDRV_PCM_FMTBIT_U32_BE)
 56struct dma_object {
 57	struct snd_soc_component_driver dai;
 58	dma_addr_t ssi_stx_phys;
 59	dma_addr_t ssi_srx_phys;
 60	unsigned int ssi_fifo_depth;
 61	struct ccsr_dma_channel __iomem *channel;
 62	unsigned int irq;
 63	bool assigned;
 64};
 65
 66/*
 67 * The number of DMA links to use.  Two is the bare minimum, but if you
 68 * have really small links you might need more.
 69 */
 70#define NUM_DMA_LINKS   2
 71
 72/** fsl_dma_private: p-substream DMA data
 73 *
 74 * Each substream has a 1-to-1 association with a DMA channel.
 75 *
 76 * The link[] array is first because it needs to be aligned on a 32-byte
 77 * boundary, so putting it first will ensure alignment without padding the
 78 * structure.
 79 *
 80 * @link[]: array of link descriptors
 81 * @dma_channel: pointer to the DMA channel's registers
 82 * @irq: IRQ for this DMA channel
 83 * @substream: pointer to the substream object, needed by the ISR
 84 * @ssi_sxx_phys: bus address of the STX or SRX register to use
 85 * @ld_buf_phys: physical address of the LD buffer
 86 * @current_link: index into link[] of the link currently being processed
 87 * @dma_buf_phys: physical address of the DMA buffer
 88 * @dma_buf_next: physical address of the next period to process
 89 * @dma_buf_end: physical address of the byte after the end of the DMA
 90 * @buffer period_size: the size of a single period
 91 * @num_periods: the number of periods in the DMA buffer
 92 */
 93struct fsl_dma_private {
 94	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
 95	struct ccsr_dma_channel __iomem *dma_channel;
 96	unsigned int irq;
 97	struct snd_pcm_substream *substream;
 98	dma_addr_t ssi_sxx_phys;
 99	unsigned int ssi_fifo_depth;
100	dma_addr_t ld_buf_phys;
101	unsigned int current_link;
102	dma_addr_t dma_buf_phys;
103	dma_addr_t dma_buf_next;
104	dma_addr_t dma_buf_end;
105	size_t period_size;
106	unsigned int num_periods;
107};
108
109/**
110 * fsl_dma_hardare: define characteristics of the PCM hardware.
111 *
112 * The PCM hardware is the Freescale DMA controller.  This structure defines
113 * the capabilities of that hardware.
114 *
115 * Since the sampling rate and data format are not controlled by the DMA
116 * controller, we specify no limits for those values.  The only exception is
117 * period_bytes_min, which is set to a reasonably low value to prevent the
118 * DMA controller from generating too many interrupts per second.
119 *
120 * Since each link descriptor has a 32-bit byte count field, we set
121 * period_bytes_max to the largest 32-bit number.  We also have no maximum
122 * number of periods.
123 *
124 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
125 * limitation in the SSI driver requires the sample rates for playback and
126 * capture to be the same.
127 */
128static const struct snd_pcm_hardware fsl_dma_hardware = {
129
130	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
131				  SNDRV_PCM_INFO_MMAP |
132				  SNDRV_PCM_INFO_MMAP_VALID |
133				  SNDRV_PCM_INFO_JOINT_DUPLEX |
134				  SNDRV_PCM_INFO_PAUSE,
135	.formats		= FSLDMA_PCM_FORMATS,
136	.period_bytes_min       = 512,  	/* A reasonable limit */
137	.period_bytes_max       = (u32) -1,
138	.periods_min    	= NUM_DMA_LINKS,
139	.periods_max    	= (unsigned int) -1,
140	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
141};
142
143/**
144 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
145 *
146 * This function should be called by the ISR whenever the DMA controller
147 * halts data transfer.
148 */
149static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
150{
151	snd_pcm_stop_xrun(substream);
152}
153
154/**
155 * fsl_dma_update_pointers - update LD pointers to point to the next period
156 *
157 * As each period is completed, this function changes the link
158 * descriptor pointers for that period to point to the next period.
159 */
160static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
161{
162	struct fsl_dma_link_descriptor *link =
163		&dma_private->link[dma_private->current_link];
164
165	/* Update our link descriptors to point to the next period. On a 36-bit
166	 * system, we also need to update the ESAD bits.  We also set (keep) the
167	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
168	 */
169	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
170		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
171#ifdef CONFIG_PHYS_64BIT
172		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
173			upper_32_bits(dma_private->dma_buf_next));
174#endif
175	} else {
176		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
177#ifdef CONFIG_PHYS_64BIT
178		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
179			upper_32_bits(dma_private->dma_buf_next));
180#endif
181	}
182
183	/* Update our variables for next time */
184	dma_private->dma_buf_next += dma_private->period_size;
185
186	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
187		dma_private->dma_buf_next = dma_private->dma_buf_phys;
188
189	if (++dma_private->current_link >= NUM_DMA_LINKS)
190		dma_private->current_link = 0;
191}
192
193/**
194 * fsl_dma_isr: interrupt handler for the DMA controller
195 *
196 * @irq: IRQ of the DMA channel
197 * @dev_id: pointer to the dma_private structure for this DMA channel
198 */
199static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
200{
201	struct fsl_dma_private *dma_private = dev_id;
202	struct snd_pcm_substream *substream = dma_private->substream;
203	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
204	struct device *dev = rtd->dev;
205	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
206	irqreturn_t ret = IRQ_NONE;
207	u32 sr, sr2 = 0;
208
209	/* We got an interrupt, so read the status register to see what we
210	   were interrupted for.
211	 */
212	sr = in_be32(&dma_channel->sr);
213
214	if (sr & CCSR_DMA_SR_TE) {
215		dev_err(dev, "dma transmit error\n");
216		fsl_dma_abort_stream(substream);
217		sr2 |= CCSR_DMA_SR_TE;
218		ret = IRQ_HANDLED;
219	}
220
221	if (sr & CCSR_DMA_SR_CH)
222		ret = IRQ_HANDLED;
223
224	if (sr & CCSR_DMA_SR_PE) {
225		dev_err(dev, "dma programming error\n");
226		fsl_dma_abort_stream(substream);
227		sr2 |= CCSR_DMA_SR_PE;
228		ret = IRQ_HANDLED;
229	}
230
231	if (sr & CCSR_DMA_SR_EOLNI) {
232		sr2 |= CCSR_DMA_SR_EOLNI;
233		ret = IRQ_HANDLED;
234	}
235
236	if (sr & CCSR_DMA_SR_CB)
237		ret = IRQ_HANDLED;
238
239	if (sr & CCSR_DMA_SR_EOSI) {
240		/* Tell ALSA we completed a period. */
241		snd_pcm_period_elapsed(substream);
242
243		/*
244		 * Update our link descriptors to point to the next period. We
245		 * only need to do this if the number of periods is not equal to
246		 * the number of links.
247		 */
248		if (dma_private->num_periods != NUM_DMA_LINKS)
249			fsl_dma_update_pointers(dma_private);
250
251		sr2 |= CCSR_DMA_SR_EOSI;
252		ret = IRQ_HANDLED;
253	}
254
255	if (sr & CCSR_DMA_SR_EOLSI) {
256		sr2 |= CCSR_DMA_SR_EOLSI;
257		ret = IRQ_HANDLED;
258	}
259
260	/* Clear the bits that we set */
261	if (sr2)
262		out_be32(&dma_channel->sr, sr2);
263
264	return ret;
265}
266
267/**
268 * fsl_dma_new: initialize this PCM driver.
269 *
270 * This function is called when the codec driver calls snd_soc_new_pcms(),
271 * once for each .dai_link in the machine driver's snd_soc_card
272 * structure.
273 *
274 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
275 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
276 * is specified. Therefore, any DMA buffers we allocate will always be in low
277 * memory, but we support for 36-bit physical addresses anyway.
278 *
279 * Regardless of where the memory is actually allocated, since the device can
280 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
281 */
282static int fsl_dma_new(struct snd_soc_component *component,
283		       struct snd_soc_pcm_runtime *rtd)
284{
285	struct snd_card *card = rtd->card->snd_card;
286	struct snd_pcm *pcm = rtd->pcm;
287	int ret;
288
289	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
290	if (ret)
291		return ret;
292
293	/* Some codecs have separate DAIs for playback and capture, so we
294	 * should allocate a DMA buffer only for the streams that are valid.
295	 */
296
297	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
298		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
299			fsl_dma_hardware.buffer_bytes_max,
300			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
301		if (ret) {
302			dev_err(card->dev, "can't alloc playback dma buffer\n");
303			return ret;
304		}
305	}
306
307	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
308		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
309			fsl_dma_hardware.buffer_bytes_max,
310			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
311		if (ret) {
312			dev_err(card->dev, "can't alloc capture dma buffer\n");
313			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
314			return ret;
315		}
316	}
317
318	return 0;
319}
320
321/**
322 * fsl_dma_open: open a new substream.
323 *
324 * Each substream has its own DMA buffer.
325 *
326 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
327 * descriptors that ping-pong from one period to the next.  For example, if
328 * there are six periods and two link descriptors, this is how they look
329 * before playback starts:
330 *
331 *      	   The last link descriptor
332 *   ____________  points back to the first
333 *  |   	 |
334 *  V   	 |
335 *  ___    ___   |
336 * |   |->|   |->|
337 * |___|  |___|
338 *   |      |
339 *   |      |
340 *   V      V
341 *  _________________________________________
342 * |      |      |      |      |      |      |  The DMA buffer is
343 * |      |      |      |      |      |      |    divided into 6 parts
344 * |______|______|______|______|______|______|
345 *
346 * and here's how they look after the first period is finished playing:
347 *
348 *   ____________
349 *  |   	 |
350 *  V   	 |
351 *  ___    ___   |
352 * |   |->|   |->|
353 * |___|  |___|
354 *   |      |
355 *   |______________
356 *          |       |
357 *          V       V
358 *  _________________________________________
359 * |      |      |      |      |      |      |
360 * |      |      |      |      |      |      |
361 * |______|______|______|______|______|______|
362 *
363 * The first link descriptor now points to the third period.  The DMA
364 * controller is currently playing the second period.  When it finishes, it
365 * will jump back to the first descriptor and play the third period.
366 *
367 * There are four reasons we do this:
368 *
369 * 1. The only way to get the DMA controller to automatically restart the
370 *    transfer when it gets to the end of the buffer is to use chaining
371 *    mode.  Basic direct mode doesn't offer that feature.
372 * 2. We need to receive an interrupt at the end of every period.  The DMA
373 *    controller can generate an interrupt at the end of every link transfer
374 *    (aka segment).  Making each period into a DMA segment will give us the
375 *    interrupts we need.
376 * 3. By creating only two link descriptors, regardless of the number of
377 *    periods, we do not need to reallocate the link descriptors if the
378 *    number of periods changes.
379 * 4. All of the audio data is still stored in a single, contiguous DMA
380 *    buffer, which is what ALSA expects.  We're just dividing it into
381 *    contiguous parts, and creating a link descriptor for each one.
382 */
383static int fsl_dma_open(struct snd_soc_component *component,
384			struct snd_pcm_substream *substream)
385{
386	struct snd_pcm_runtime *runtime = substream->runtime;
387	struct device *dev = component->dev;
388	struct dma_object *dma =
389		container_of(component->driver, struct dma_object, dai);
390	struct fsl_dma_private *dma_private;
391	struct ccsr_dma_channel __iomem *dma_channel;
392	dma_addr_t ld_buf_phys;
393	u64 temp_link;  	/* Pointer to next link descriptor */
394	u32 mr;
395	int ret = 0;
396	unsigned int i;
397
398	/*
399	 * Reject any DMA buffer whose size is not a multiple of the period
400	 * size.  We need to make sure that the DMA buffer can be evenly divided
401	 * into periods.
402	 */
403	ret = snd_pcm_hw_constraint_integer(runtime,
404		SNDRV_PCM_HW_PARAM_PERIODS);
405	if (ret < 0) {
406		dev_err(dev, "invalid buffer size\n");
407		return ret;
408	}
409
410	if (dma->assigned) {
411		dev_err(dev, "dma channel already assigned\n");
412		return -EBUSY;
413	}
414
415	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
416					 &ld_buf_phys, GFP_KERNEL);
417	if (!dma_private) {
418		dev_err(dev, "can't allocate dma private data\n");
419		return -ENOMEM;
420	}
421	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
422		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
423	else
424		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
425
426	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
427	dma_private->dma_channel = dma->channel;
428	dma_private->irq = dma->irq;
429	dma_private->substream = substream;
430	dma_private->ld_buf_phys = ld_buf_phys;
431	dma_private->dma_buf_phys = substream->dma_buffer.addr;
432
433	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
434			  dma_private);
435	if (ret) {
436		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
437			dma_private->irq, ret);
438		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
439			dma_private, dma_private->ld_buf_phys);
440		return ret;
441	}
442
443	dma->assigned = true;
444
445	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
446	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
447	runtime->private_data = dma_private;
448
449	/* Program the fixed DMA controller parameters */
450
451	dma_channel = dma_private->dma_channel;
452
453	temp_link = dma_private->ld_buf_phys +
454		sizeof(struct fsl_dma_link_descriptor);
455
456	for (i = 0; i < NUM_DMA_LINKS; i++) {
457		dma_private->link[i].next = cpu_to_be64(temp_link);
458
459		temp_link += sizeof(struct fsl_dma_link_descriptor);
460	}
461	/* The last link descriptor points to the first */
462	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
463
464	/* Tell the DMA controller where the first link descriptor is */
465	out_be32(&dma_channel->clndar,
466		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
467	out_be32(&dma_channel->eclndar,
468		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
469
470	/* The manual says the BCR must be clear before enabling EMP */
471	out_be32(&dma_channel->bcr, 0);
472
473	/*
474	 * Program the mode register for interrupts, external master control,
475	 * and source/destination hold.  Also clear the Channel Abort bit.
476	 */
477	mr = in_be32(&dma_channel->mr) &
478		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
479
480	/*
481	 * We want External Master Start and External Master Pause enabled,
482	 * because the SSI is controlling the DMA controller.  We want the DMA
483	 * controller to be set up in advance, and then we signal only the SSI
484	 * to start transferring.
485	 *
486	 * We want End-Of-Segment Interrupts enabled, because this will generate
487	 * an interrupt at the end of each segment (each link descriptor
488	 * represents one segment).  Each DMA segment is the same thing as an
489	 * ALSA period, so this is how we get an interrupt at the end of every
490	 * period.
491	 *
492	 * We want Error Interrupt enabled, so that we can get an error if
493	 * the DMA controller is mis-programmed somehow.
494	 */
495	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
496		CCSR_DMA_MR_EMS_EN;
497
498	/* For playback, we want the destination address to be held.  For
499	   capture, set the source address to be held. */
500	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
501		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
502
503	out_be32(&dma_channel->mr, mr);
504
505	return 0;
506}
507
508/**
509 * fsl_dma_hw_params: continue initializing the DMA links
510 *
511 * This function obtains hardware parameters about the opened stream and
512 * programs the DMA controller accordingly.
513 *
514 * One drawback of big-endian is that when copying integers of different
515 * sizes to a fixed-sized register, the address to which the integer must be
516 * copied is dependent on the size of the integer.
517 *
518 * For example, if P is the address of a 32-bit register, and X is a 32-bit
519 * integer, then X should be copied to address P.  However, if X is a 16-bit
520 * integer, then it should be copied to P+2.  If X is an 8-bit register,
521 * then it should be copied to P+3.
522 *
523 * So for playback of 8-bit samples, the DMA controller must transfer single
524 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
525 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
526 *
527 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
528 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
529 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
530 * 24-bit data must be padded to 32 bits.
531 */
532static int fsl_dma_hw_params(struct snd_soc_component *component,
533			     struct snd_pcm_substream *substream,
534			     struct snd_pcm_hw_params *hw_params)
535{
536	struct snd_pcm_runtime *runtime = substream->runtime;
537	struct fsl_dma_private *dma_private = runtime->private_data;
538	struct device *dev = component->dev;
539
540	/* Number of bits per sample */
541	unsigned int sample_bits =
542		snd_pcm_format_physical_width(params_format(hw_params));
543
544	/* Number of bytes per frame */
545	unsigned int sample_bytes = sample_bits / 8;
546
547	/* Bus address of SSI STX register */
548	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
549
550	/* Size of the DMA buffer, in bytes */
551	size_t buffer_size = params_buffer_bytes(hw_params);
552
553	/* Number of bytes per period */
554	size_t period_size = params_period_bytes(hw_params);
555
556	/* Pointer to next period */
557	dma_addr_t temp_addr = substream->dma_buffer.addr;
558
559	/* Pointer to DMA controller */
560	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
561
562	u32 mr; /* DMA Mode Register */
563
564	unsigned int i;
565
566	/* Initialize our DMA tracking variables */
567	dma_private->period_size = period_size;
568	dma_private->num_periods = params_periods(hw_params);
569	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
570	dma_private->dma_buf_next = dma_private->dma_buf_phys +
571		(NUM_DMA_LINKS * period_size);
572
573	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
574		/* This happens if the number of periods == NUM_DMA_LINKS */
575		dma_private->dma_buf_next = dma_private->dma_buf_phys;
576
577	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
578		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
579
580	/* Due to a quirk of the SSI's STX register, the target address
581	 * for the DMA operations depends on the sample size.  So we calculate
582	 * that offset here.  While we're at it, also tell the DMA controller
583	 * how much data to transfer per sample.
584	 */
585	switch (sample_bits) {
586	case 8:
587		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
588		ssi_sxx_phys += 3;
589		break;
590	case 16:
591		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
592		ssi_sxx_phys += 2;
593		break;
594	case 32:
595		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
596		break;
597	default:
598		/* We should never get here */
599		dev_err(dev, "unsupported sample size %u\n", sample_bits);
600		return -EINVAL;
601	}
602
603	/*
604	 * BWC determines how many bytes are sent/received before the DMA
605	 * controller checks the SSI to see if it needs to stop. BWC should
606	 * always be a multiple of the frame size, so that we always transmit
607	 * whole frames.  Each frame occupies two slots in the FIFO.  The
608	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
609	 * (MR[BWC] can only represent even powers of two).
610	 *
611	 * To simplify the process, we set BWC to the largest value that is
612	 * less than or equal to the FIFO watermark.  For playback, this ensures
613	 * that we transfer the maximum amount without overrunning the FIFO.
614	 * For capture, this ensures that we transfer the maximum amount without
615	 * underrunning the FIFO.
616	 *
617	 * f = SSI FIFO depth
618	 * w = SSI watermark value (which equals f - 2)
619	 * b = DMA bandwidth count (in bytes)
620	 * s = sample size (in bytes, which equals frame_size * 2)
621	 *
622	 * For playback, we never transmit more than the transmit FIFO
623	 * watermark, otherwise we might write more data than the FIFO can hold.
624	 * The watermark is equal to the FIFO depth minus two.
625	 *
626	 * For capture, two equations must hold:
627	 *	w > f - (b / s)
628	 *	w >= b / s
629	 *
630	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
631	 * b = s * w, which is equal to
632	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
633	 */
634	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
635
636	out_be32(&dma_channel->mr, mr);
637
638	for (i = 0; i < NUM_DMA_LINKS; i++) {
639		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
640
641		link->count = cpu_to_be32(period_size);
642
643		/* The snoop bit tells the DMA controller whether it should tell
644		 * the ECM to snoop during a read or write to an address. For
645		 * audio, we use DMA to transfer data between memory and an I/O
646		 * device (the SSI's STX0 or SRX0 register). Snooping is only
647		 * needed if there is a cache, so we need to snoop memory
648		 * addresses only.  For playback, that means we snoop the source
649		 * but not the destination.  For capture, we snoop the
650		 * destination but not the source.
651		 *
652		 * Note that failing to snoop properly is unlikely to cause
653		 * cache incoherency if the period size is larger than the
654		 * size of L1 cache.  This is because filling in one period will
655		 * flush out the data for the previous period.  So if you
656		 * increased period_bytes_min to a large enough size, you might
657		 * get more performance by not snooping, and you'll still be
658		 * okay.  You'll need to update fsl_dma_update_pointers() also.
659		 */
660		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
661			link->source_addr = cpu_to_be32(temp_addr);
662			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
663				upper_32_bits(temp_addr));
664
665			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
666			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
667				upper_32_bits(ssi_sxx_phys));
668		} else {
669			link->source_addr = cpu_to_be32(ssi_sxx_phys);
670			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
671				upper_32_bits(ssi_sxx_phys));
672
673			link->dest_addr = cpu_to_be32(temp_addr);
674			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
675				upper_32_bits(temp_addr));
676		}
677
678		temp_addr += period_size;
679	}
680
681	return 0;
682}
683
684/**
685 * fsl_dma_pointer: determine the current position of the DMA transfer
686 *
687 * This function is called by ALSA when ALSA wants to know where in the
688 * stream buffer the hardware currently is.
689 *
690 * For playback, the SAR register contains the physical address of the most
691 * recent DMA transfer.  For capture, the value is in the DAR register.
692 *
693 * The base address of the buffer is stored in the source_addr field of the
694 * first link descriptor.
695 */
696static snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
697					 struct snd_pcm_substream *substream)
698{
699	struct snd_pcm_runtime *runtime = substream->runtime;
700	struct fsl_dma_private *dma_private = runtime->private_data;
701	struct device *dev = component->dev;
702	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
703	dma_addr_t position;
704	snd_pcm_uframes_t frames;
705
706	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
707	 * only have 32-bit DMA addresses.  This function is typically called
708	 * in interrupt context, so we need to optimize it.
709	 */
710	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
711		position = in_be32(&dma_channel->sar);
712#ifdef CONFIG_PHYS_64BIT
713		position |= (u64)(in_be32(&dma_channel->satr) &
714				  CCSR_DMA_ATR_ESAD_MASK) << 32;
715#endif
716	} else {
717		position = in_be32(&dma_channel->dar);
718#ifdef CONFIG_PHYS_64BIT
719		position |= (u64)(in_be32(&dma_channel->datr) &
720				  CCSR_DMA_ATR_ESAD_MASK) << 32;
721#endif
722	}
723
724	/*
725	 * When capture is started, the SSI immediately starts to fill its FIFO.
726	 * This means that the DMA controller is not started until the FIFO is
727	 * full.  However, ALSA calls this function before that happens, when
728	 * MR.DAR is still zero.  In this case, just return zero to indicate
729	 * that nothing has been received yet.
730	 */
731	if (!position)
732		return 0;
733
734	if ((position < dma_private->dma_buf_phys) ||
735	    (position > dma_private->dma_buf_end)) {
736		dev_err(dev, "dma pointer is out of range, halting stream\n");
737		return SNDRV_PCM_POS_XRUN;
738	}
739
740	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
741
742	/*
743	 * If the current address is just past the end of the buffer, wrap it
744	 * around.
745	 */
746	if (frames == runtime->buffer_size)
747		frames = 0;
748
749	return frames;
750}
751
752/**
753 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
754 *
755 * Release the resources allocated in fsl_dma_hw_params() and de-program the
756 * registers.
757 *
758 * This function can be called multiple times.
759 */
760static int fsl_dma_hw_free(struct snd_soc_component *component,
761			   struct snd_pcm_substream *substream)
762{
763	struct snd_pcm_runtime *runtime = substream->runtime;
764	struct fsl_dma_private *dma_private = runtime->private_data;
765
766	if (dma_private) {
767		struct ccsr_dma_channel __iomem *dma_channel;
768
769		dma_channel = dma_private->dma_channel;
770
771		/* Stop the DMA */
772		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
773		out_be32(&dma_channel->mr, 0);
774
775		/* Reset all the other registers */
776		out_be32(&dma_channel->sr, -1);
777		out_be32(&dma_channel->clndar, 0);
778		out_be32(&dma_channel->eclndar, 0);
779		out_be32(&dma_channel->satr, 0);
780		out_be32(&dma_channel->sar, 0);
781		out_be32(&dma_channel->datr, 0);
782		out_be32(&dma_channel->dar, 0);
783		out_be32(&dma_channel->bcr, 0);
784		out_be32(&dma_channel->nlndar, 0);
785		out_be32(&dma_channel->enlndar, 0);
786	}
787
788	return 0;
789}
790
791/**
792 * fsl_dma_close: close the stream.
793 */
794static int fsl_dma_close(struct snd_soc_component *component,
795			 struct snd_pcm_substream *substream)
796{
797	struct snd_pcm_runtime *runtime = substream->runtime;
798	struct fsl_dma_private *dma_private = runtime->private_data;
799	struct device *dev = component->dev;
800	struct dma_object *dma =
801		container_of(component->driver, struct dma_object, dai);
802
803	if (dma_private) {
804		if (dma_private->irq)
805			free_irq(dma_private->irq, dma_private);
806
807		/* Deallocate the fsl_dma_private structure */
808		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
809				  dma_private, dma_private->ld_buf_phys);
810		substream->runtime->private_data = NULL;
811	}
812
813	dma->assigned = false;
814
815	return 0;
816}
817
818/*
819 * Remove this PCM driver.
820 */
821static void fsl_dma_free_dma_buffers(struct snd_soc_component *component,
822				     struct snd_pcm *pcm)
823{
824	struct snd_pcm_substream *substream;
825	unsigned int i;
826
827	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
828		substream = pcm->streams[i].substream;
829		if (substream) {
830			snd_dma_free_pages(&substream->dma_buffer);
831			substream->dma_buffer.area = NULL;
832			substream->dma_buffer.addr = 0;
833		}
834	}
835}
836
837/**
838 * find_ssi_node -- returns the SSI node that points to its DMA channel node
839 *
840 * Although this DMA driver attempts to operate independently of the other
841 * devices, it still needs to determine some information about the SSI device
842 * that it's working with.  Unfortunately, the device tree does not contain
843 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
844 * other way.  So we need to scan the device tree for SSI nodes until we find
845 * the one that points to the given DMA channel node.  It's ugly, but at least
846 * it's contained in this one function.
847 */
848static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
849{
850	struct device_node *ssi_np, *np;
851
852	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
853		/* Check each DMA phandle to see if it points to us.  We
854		 * assume that device_node pointers are a valid comparison.
855		 */
856		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
857		of_node_put(np);
858		if (np == dma_channel_np)
859			return ssi_np;
860
861		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
862		of_node_put(np);
863		if (np == dma_channel_np)
864			return ssi_np;
865	}
866
867	return NULL;
868}
869
870static int fsl_soc_dma_probe(struct platform_device *pdev)
871{
872	struct dma_object *dma;
873	struct device_node *np = pdev->dev.of_node;
874	struct device_node *ssi_np;
875	struct resource res;
876	const uint32_t *iprop;
877	int ret;
878
879	/* Find the SSI node that points to us. */
880	ssi_np = find_ssi_node(np);
881	if (!ssi_np) {
882		dev_err(&pdev->dev, "cannot find parent SSI node\n");
883		return -ENODEV;
884	}
885
886	ret = of_address_to_resource(ssi_np, 0, &res);
887	if (ret) {
888		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
889			ssi_np);
890		of_node_put(ssi_np);
891		return ret;
892	}
893
894	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
895	if (!dma) {
896		of_node_put(ssi_np);
897		return -ENOMEM;
898	}
899
900	dma->dai.name = DRV_NAME;
901	dma->dai.open = fsl_dma_open;
902	dma->dai.close = fsl_dma_close;
903	dma->dai.hw_params = fsl_dma_hw_params;
904	dma->dai.hw_free = fsl_dma_hw_free;
905	dma->dai.pointer = fsl_dma_pointer;
906	dma->dai.pcm_construct = fsl_dma_new;
907	dma->dai.pcm_destruct = fsl_dma_free_dma_buffers;
908
909	/* Store the SSI-specific information that we need */
910	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
911	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
912
913	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
914	if (iprop)
915		dma->ssi_fifo_depth = be32_to_cpup(iprop);
916	else
917                /* Older 8610 DTs didn't have the fifo-depth property */
918		dma->ssi_fifo_depth = 8;
919
920	of_node_put(ssi_np);
921
922	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
923	if (ret) {
924		dev_err(&pdev->dev, "could not register platform\n");
925		kfree(dma);
926		return ret;
927	}
928
929	dma->channel = of_iomap(np, 0);
930	dma->irq = irq_of_parse_and_map(np, 0);
931
932	dev_set_drvdata(&pdev->dev, dma);
933
934	return 0;
935}
936
937static int fsl_soc_dma_remove(struct platform_device *pdev)
938{
939	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
940
941	iounmap(dma->channel);
942	irq_dispose_mapping(dma->irq);
943	kfree(dma);
944
945	return 0;
946}
947
948static const struct of_device_id fsl_soc_dma_ids[] = {
949	{ .compatible = "fsl,ssi-dma-channel", },
950	{}
951};
952MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
953
954static struct platform_driver fsl_soc_dma_driver = {
955	.driver = {
956		.name = "fsl-pcm-audio",
957		.of_match_table = fsl_soc_dma_ids,
958	},
959	.probe = fsl_soc_dma_probe,
960	.remove = fsl_soc_dma_remove,
961};
962
963module_platform_driver(fsl_soc_dma_driver);
964
965MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
966MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
967MODULE_LICENSE("GPL v2");