Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Generic waiting primitives.
  3 *
  4 * (C) 2004 Nadia Yvette Chambers, Oracle
  5 */
  6#include <linux/init.h>
  7#include <linux/export.h>
  8#include <linux/sched.h>
  9#include <linux/mm.h>
 10#include <linux/wait.h>
 11#include <linux/hash.h>
 12#include <linux/kthread.h>
 13
 14void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
 15{
 16	spin_lock_init(&q->lock);
 17	lockdep_set_class_and_name(&q->lock, key, name);
 18	INIT_LIST_HEAD(&q->task_list);
 19}
 20
 21EXPORT_SYMBOL(__init_waitqueue_head);
 22
 23void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 24{
 25	unsigned long flags;
 26
 27	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 28	spin_lock_irqsave(&q->lock, flags);
 29	__add_wait_queue(q, wait);
 30	spin_unlock_irqrestore(&q->lock, flags);
 31}
 32EXPORT_SYMBOL(add_wait_queue);
 33
 34void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
 35{
 36	unsigned long flags;
 37
 38	wait->flags |= WQ_FLAG_EXCLUSIVE;
 39	spin_lock_irqsave(&q->lock, flags);
 40	__add_wait_queue_tail(q, wait);
 41	spin_unlock_irqrestore(&q->lock, flags);
 42}
 43EXPORT_SYMBOL(add_wait_queue_exclusive);
 44
 45void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 
 
 
 
 
 
 
 
 
 
 
 46{
 47	unsigned long flags;
 48
 49	spin_lock_irqsave(&q->lock, flags);
 50	__remove_wait_queue(q, wait);
 51	spin_unlock_irqrestore(&q->lock, flags);
 52}
 53EXPORT_SYMBOL(remove_wait_queue);
 54
 
 
 
 
 
 
 55
 56/*
 57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 59 * number) then we wake all the non-exclusive tasks and one exclusive task.
 
 
 
 
 60 *
 61 * There are circumstances in which we can try to wake a task which has already
 62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 64 */
 65static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 66			int nr_exclusive, int wake_flags, void *key)
 
 67{
 68	wait_queue_t *curr, *next;
 
 
 
 
 
 
 69
 70	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
 
 
 
 
 
 
 
 
 71		unsigned flags = curr->flags;
 
 
 
 
 
 
 
 
 
 
 72
 73		if (curr->func(curr, mode, wake_flags, key) &&
 74				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 
 
 75			break;
 
 76	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77}
 78
 79/**
 80 * __wake_up - wake up threads blocked on a waitqueue.
 81 * @q: the waitqueue
 82 * @mode: which threads
 83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 84 * @key: is directly passed to the wakeup function
 85 *
 86 * It may be assumed that this function implies a write memory barrier before
 87 * changing the task state if and only if any tasks are woken up.
 88 */
 89void __wake_up(wait_queue_head_t *q, unsigned int mode,
 90			int nr_exclusive, void *key)
 91{
 92	unsigned long flags;
 93
 94	spin_lock_irqsave(&q->lock, flags);
 95	__wake_up_common(q, mode, nr_exclusive, 0, key);
 96	spin_unlock_irqrestore(&q->lock, flags);
 97}
 98EXPORT_SYMBOL(__wake_up);
 99
100/*
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102 */
103void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104{
105	__wake_up_common(q, mode, nr, 0, NULL);
106}
107EXPORT_SYMBOL_GPL(__wake_up_locked);
108
109void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
110{
111	__wake_up_common(q, mode, 1, 0, key);
112}
113EXPORT_SYMBOL_GPL(__wake_up_locked_key);
114
 
 
 
 
 
 
 
115/**
116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
117 * @q: the waitqueue
118 * @mode: which threads
119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
120 * @key: opaque value to be passed to wakeup targets
121 *
122 * The sync wakeup differs that the waker knows that it will schedule
123 * away soon, so while the target thread will be woken up, it will not
124 * be migrated to another CPU - ie. the two threads are 'synchronized'
125 * with each other. This can prevent needless bouncing between CPUs.
126 *
127 * On UP it can prevent extra preemption.
128 *
129 * It may be assumed that this function implies a write memory barrier before
130 * changing the task state if and only if any tasks are woken up.
131 */
132void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
133			int nr_exclusive, void *key)
134{
135	unsigned long flags;
136	int wake_flags = 1; /* XXX WF_SYNC */
137
138	if (unlikely(!q))
139		return;
140
141	if (unlikely(nr_exclusive != 1))
142		wake_flags = 0;
143
144	spin_lock_irqsave(&q->lock, flags);
145	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
146	spin_unlock_irqrestore(&q->lock, flags);
147}
148EXPORT_SYMBOL_GPL(__wake_up_sync_key);
149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150/*
151 * __wake_up_sync - see __wake_up_sync_key()
152 */
153void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
154{
155	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
156}
157EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
158
159/*
160 * Note: we use "set_current_state()" _after_ the wait-queue add,
161 * because we need a memory barrier there on SMP, so that any
162 * wake-function that tests for the wait-queue being active
163 * will be guaranteed to see waitqueue addition _or_ subsequent
164 * tests in this thread will see the wakeup having taken place.
165 *
166 * The spin_unlock() itself is semi-permeable and only protects
167 * one way (it only protects stuff inside the critical region and
168 * stops them from bleeding out - it would still allow subsequent
169 * loads to move into the critical region).
170 */
171void
172prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
173{
174	unsigned long flags;
175
176	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
177	spin_lock_irqsave(&q->lock, flags);
178	if (list_empty(&wait->task_list))
179		__add_wait_queue(q, wait);
180	set_current_state(state);
181	spin_unlock_irqrestore(&q->lock, flags);
182}
183EXPORT_SYMBOL(prepare_to_wait);
184
185void
186prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
 
187{
188	unsigned long flags;
 
189
190	wait->flags |= WQ_FLAG_EXCLUSIVE;
191	spin_lock_irqsave(&q->lock, flags);
192	if (list_empty(&wait->task_list))
193		__add_wait_queue_tail(q, wait);
 
 
194	set_current_state(state);
195	spin_unlock_irqrestore(&q->lock, flags);
 
196}
197EXPORT_SYMBOL(prepare_to_wait_exclusive);
198
199long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
 
 
 
 
 
 
 
 
 
200{
201	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
203	if (signal_pending_state(state, current))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204		return -ERESTARTSYS;
205
206	wait->private = current;
207	wait->func = autoremove_wake_function;
 
208
209	spin_lock_irqsave(&q->lock, flags);
210	if (list_empty(&wait->task_list)) {
211		if (wait->flags & WQ_FLAG_EXCLUSIVE)
212			__add_wait_queue_tail(q, wait);
213		else
214			__add_wait_queue(q, wait);
215	}
216	set_current_state(state);
217	spin_unlock_irqrestore(&q->lock, flags);
 
 
 
 
 
 
 
218
219	return 0;
220}
221EXPORT_SYMBOL(prepare_to_wait_event);
222
223/**
224 * finish_wait - clean up after waiting in a queue
225 * @q: waitqueue waited on
226 * @wait: wait descriptor
227 *
228 * Sets current thread back to running state and removes
229 * the wait descriptor from the given waitqueue if still
230 * queued.
231 */
232void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
233{
234	unsigned long flags;
235
236	__set_current_state(TASK_RUNNING);
237	/*
238	 * We can check for list emptiness outside the lock
239	 * IFF:
240	 *  - we use the "careful" check that verifies both
241	 *    the next and prev pointers, so that there cannot
242	 *    be any half-pending updates in progress on other
243	 *    CPU's that we haven't seen yet (and that might
244	 *    still change the stack area.
245	 * and
246	 *  - all other users take the lock (ie we can only
247	 *    have _one_ other CPU that looks at or modifies
248	 *    the list).
249	 */
250	if (!list_empty_careful(&wait->task_list)) {
251		spin_lock_irqsave(&q->lock, flags);
252		list_del_init(&wait->task_list);
253		spin_unlock_irqrestore(&q->lock, flags);
254	}
255}
256EXPORT_SYMBOL(finish_wait);
257
258/**
259 * abort_exclusive_wait - abort exclusive waiting in a queue
260 * @q: waitqueue waited on
261 * @wait: wait descriptor
262 * @mode: runstate of the waiter to be woken
263 * @key: key to identify a wait bit queue or %NULL
264 *
265 * Sets current thread back to running state and removes
266 * the wait descriptor from the given waitqueue if still
267 * queued.
268 *
269 * Wakes up the next waiter if the caller is concurrently
270 * woken up through the queue.
271 *
272 * This prevents waiter starvation where an exclusive waiter
273 * aborts and is woken up concurrently and no one wakes up
274 * the next waiter.
275 */
276void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
277			unsigned int mode, void *key)
278{
279	unsigned long flags;
280
281	__set_current_state(TASK_RUNNING);
282	spin_lock_irqsave(&q->lock, flags);
283	if (!list_empty(&wait->task_list))
284		list_del_init(&wait->task_list);
285	else if (waitqueue_active(q))
286		__wake_up_locked_key(q, mode, key);
287	spin_unlock_irqrestore(&q->lock, flags);
288}
289EXPORT_SYMBOL(abort_exclusive_wait);
290
291int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
292{
293	int ret = default_wake_function(wait, mode, sync, key);
294
295	if (ret)
296		list_del_init(&wait->task_list);
 
297	return ret;
298}
299EXPORT_SYMBOL(autoremove_wake_function);
300
301static inline bool is_kthread_should_stop(void)
302{
303	return (current->flags & PF_KTHREAD) && kthread_should_stop();
304}
305
306/*
307 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
308 *
309 * add_wait_queue(&wq, &wait);
310 * for (;;) {
311 *     if (condition)
312 *         break;
313 *
314 *     p->state = mode;				condition = true;
315 *     smp_mb(); // A				smp_wmb(); // C
316 *     if (!wait->flags & WQ_FLAG_WOKEN)	wait->flags |= WQ_FLAG_WOKEN;
317 *         schedule()				try_to_wake_up();
318 *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
319 *     wait->flags &= ~WQ_FLAG_WOKEN;		condition = true;
320 *     smp_mb() // B				smp_wmb(); // C
321 *						wait->flags |= WQ_FLAG_WOKEN;
322 * }
323 * remove_wait_queue(&wq, &wait);
324 *
 
 
 
 
 
 
 
 
 
325 */
326long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
327{
328	set_current_state(mode); /* A */
329	/*
330	 * The above implies an smp_mb(), which matches with the smp_wmb() from
331	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
332	 * also observe all state before the wakeup.
 
333	 */
334	if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
 
335		timeout = schedule_timeout(timeout);
336	__set_current_state(TASK_RUNNING);
337
338	/*
339	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
340	 * woken_wake_function() such that we must either observe the wait
341	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
342	 * an event.
343	 */
344	smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
345
346	return timeout;
347}
348EXPORT_SYMBOL(wait_woken);
349
350int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
351{
352	/*
353	 * Although this function is called under waitqueue lock, LOCK
354	 * doesn't imply write barrier and the users expects write
355	 * barrier semantics on wakeup functions.  The following
356	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
357	 * and is paired with smp_store_mb() in wait_woken().
358	 */
359	smp_wmb(); /* C */
360	wait->flags |= WQ_FLAG_WOKEN;
361
362	return default_wake_function(wait, mode, sync, key);
363}
364EXPORT_SYMBOL(woken_wake_function);
365
366int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
367{
368	struct wait_bit_key *key = arg;
369	struct wait_bit_queue *wait_bit
370		= container_of(wait, struct wait_bit_queue, wait);
371
372	if (wait_bit->key.flags != key->flags ||
373			wait_bit->key.bit_nr != key->bit_nr ||
374			test_bit(key->bit_nr, key->flags))
375		return 0;
376	else
377		return autoremove_wake_function(wait, mode, sync, key);
378}
379EXPORT_SYMBOL(wake_bit_function);
380
381/*
382 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
383 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
384 * permitted return codes. Nonzero return codes halt waiting and return.
385 */
386int __sched
387__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
388	      wait_bit_action_f *action, unsigned mode)
389{
390	int ret = 0;
391
392	do {
393		prepare_to_wait(wq, &q->wait, mode);
394		if (test_bit(q->key.bit_nr, q->key.flags))
395			ret = (*action)(&q->key, mode);
396	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
397	finish_wait(wq, &q->wait);
398	return ret;
399}
400EXPORT_SYMBOL(__wait_on_bit);
401
402int __sched out_of_line_wait_on_bit(void *word, int bit,
403				    wait_bit_action_f *action, unsigned mode)
404{
405	wait_queue_head_t *wq = bit_waitqueue(word, bit);
406	DEFINE_WAIT_BIT(wait, word, bit);
407
408	return __wait_on_bit(wq, &wait, action, mode);
409}
410EXPORT_SYMBOL(out_of_line_wait_on_bit);
411
412int __sched out_of_line_wait_on_bit_timeout(
413	void *word, int bit, wait_bit_action_f *action,
414	unsigned mode, unsigned long timeout)
415{
416	wait_queue_head_t *wq = bit_waitqueue(word, bit);
417	DEFINE_WAIT_BIT(wait, word, bit);
418
419	wait.key.timeout = jiffies + timeout;
420	return __wait_on_bit(wq, &wait, action, mode);
421}
422EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
423
424int __sched
425__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
426			wait_bit_action_f *action, unsigned mode)
427{
428	do {
429		int ret;
430
431		prepare_to_wait_exclusive(wq, &q->wait, mode);
432		if (!test_bit(q->key.bit_nr, q->key.flags))
433			continue;
434		ret = action(&q->key, mode);
435		if (!ret)
436			continue;
437		abort_exclusive_wait(wq, &q->wait, mode, &q->key);
438		return ret;
439	} while (test_and_set_bit(q->key.bit_nr, q->key.flags));
440	finish_wait(wq, &q->wait);
441	return 0;
442}
443EXPORT_SYMBOL(__wait_on_bit_lock);
444
445int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
446					 wait_bit_action_f *action, unsigned mode)
447{
448	wait_queue_head_t *wq = bit_waitqueue(word, bit);
449	DEFINE_WAIT_BIT(wait, word, bit);
450
451	return __wait_on_bit_lock(wq, &wait, action, mode);
452}
453EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
454
455void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
456{
457	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
458	if (waitqueue_active(wq))
459		__wake_up(wq, TASK_NORMAL, 1, &key);
460}
461EXPORT_SYMBOL(__wake_up_bit);
462
463/**
464 * wake_up_bit - wake up a waiter on a bit
465 * @word: the word being waited on, a kernel virtual address
466 * @bit: the bit of the word being waited on
467 *
468 * There is a standard hashed waitqueue table for generic use. This
469 * is the part of the hashtable's accessor API that wakes up waiters
470 * on a bit. For instance, if one were to have waiters on a bitflag,
471 * one would call wake_up_bit() after clearing the bit.
472 *
473 * In order for this to function properly, as it uses waitqueue_active()
474 * internally, some kind of memory barrier must be done prior to calling
475 * this. Typically, this will be smp_mb__after_atomic(), but in some
476 * cases where bitflags are manipulated non-atomically under a lock, one
477 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
478 * because spin_unlock() does not guarantee a memory barrier.
479 */
480void wake_up_bit(void *word, int bit)
481{
482	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
483}
484EXPORT_SYMBOL(wake_up_bit);
485
486wait_queue_head_t *bit_waitqueue(void *word, int bit)
487{
488	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
489	const struct zone *zone = page_zone(virt_to_page(word));
490	unsigned long val = (unsigned long)word << shift | bit;
491
492	return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
493}
494EXPORT_SYMBOL(bit_waitqueue);
495
496/*
497 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
498 * index (we're keying off bit -1, but that would produce a horrible hash
499 * value).
500 */
501static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
502{
503	if (BITS_PER_LONG == 64) {
504		unsigned long q = (unsigned long)p;
505		return bit_waitqueue((void *)(q & ~1), q & 1);
506	}
507	return bit_waitqueue(p, 0);
508}
509
510static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
511				  void *arg)
512{
513	struct wait_bit_key *key = arg;
514	struct wait_bit_queue *wait_bit
515		= container_of(wait, struct wait_bit_queue, wait);
516	atomic_t *val = key->flags;
517
518	if (wait_bit->key.flags != key->flags ||
519	    wait_bit->key.bit_nr != key->bit_nr ||
520	    atomic_read(val) != 0)
521		return 0;
522	return autoremove_wake_function(wait, mode, sync, key);
523}
524
525/*
526 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
527 * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
528 * return codes halt waiting and return.
529 */
530static __sched
531int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
532		       int (*action)(atomic_t *), unsigned mode)
533{
534	atomic_t *val;
535	int ret = 0;
536
537	do {
538		prepare_to_wait(wq, &q->wait, mode);
539		val = q->key.flags;
540		if (atomic_read(val) == 0)
541			break;
542		ret = (*action)(val);
543	} while (!ret && atomic_read(val) != 0);
544	finish_wait(wq, &q->wait);
545	return ret;
546}
547
548#define DEFINE_WAIT_ATOMIC_T(name, p)					\
549	struct wait_bit_queue name = {					\
550		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
551		.wait	= {						\
552			.private	= current,			\
553			.func		= wake_atomic_t_function,	\
554			.task_list	=				\
555				LIST_HEAD_INIT((name).wait.task_list),	\
556		},							\
557	}
558
559__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
560					 unsigned mode)
561{
562	wait_queue_head_t *wq = atomic_t_waitqueue(p);
563	DEFINE_WAIT_ATOMIC_T(wait, p);
564
565	return __wait_on_atomic_t(wq, &wait, action, mode);
566}
567EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
568
569/**
570 * wake_up_atomic_t - Wake up a waiter on a atomic_t
571 * @p: The atomic_t being waited on, a kernel virtual address
572 *
573 * Wake up anyone waiting for the atomic_t to go to zero.
574 *
575 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
576 * check is done by the waiter's wake function, not the by the waker itself).
577 */
578void wake_up_atomic_t(atomic_t *p)
579{
580	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
581}
582EXPORT_SYMBOL(wake_up_atomic_t);
583
584__sched int bit_wait(struct wait_bit_key *word, int mode)
585{
586	schedule();
587	if (signal_pending_state(mode, current))
588		return -EINTR;
589	return 0;
590}
591EXPORT_SYMBOL(bit_wait);
592
593__sched int bit_wait_io(struct wait_bit_key *word, int mode)
594{
595	io_schedule();
596	if (signal_pending_state(mode, current))
597		return -EINTR;
598	return 0;
599}
600EXPORT_SYMBOL(bit_wait_io);
601
602__sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
603{
604	unsigned long now = READ_ONCE(jiffies);
605	if (time_after_eq(now, word->timeout))
606		return -EAGAIN;
607	schedule_timeout(word->timeout - now);
608	if (signal_pending_state(mode, current))
609		return -EINTR;
610	return 0;
611}
612EXPORT_SYMBOL_GPL(bit_wait_timeout);
613
614__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
615{
616	unsigned long now = READ_ONCE(jiffies);
617	if (time_after_eq(now, word->timeout))
618		return -EAGAIN;
619	io_schedule_timeout(word->timeout - now);
620	if (signal_pending_state(mode, current))
621		return -EINTR;
622	return 0;
623}
624EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic waiting primitives.
  4 *
  5 * (C) 2004 Nadia Yvette Chambers, Oracle
  6 */
  7#include "sched.h"
  8
  9void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
 10{
 11	spin_lock_init(&wq_head->lock);
 12	lockdep_set_class_and_name(&wq_head->lock, key, name);
 13	INIT_LIST_HEAD(&wq_head->head);
 
 
 
 
 
 
 14}
 15
 16EXPORT_SYMBOL(__init_waitqueue_head);
 17
 18void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 19{
 20	unsigned long flags;
 21
 22	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
 23	spin_lock_irqsave(&wq_head->lock, flags);
 24	__add_wait_queue(wq_head, wq_entry);
 25	spin_unlock_irqrestore(&wq_head->lock, flags);
 26}
 27EXPORT_SYMBOL(add_wait_queue);
 28
 29void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 30{
 31	unsigned long flags;
 32
 33	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
 34	spin_lock_irqsave(&wq_head->lock, flags);
 35	__add_wait_queue_entry_tail(wq_head, wq_entry);
 36	spin_unlock_irqrestore(&wq_head->lock, flags);
 37}
 38EXPORT_SYMBOL(add_wait_queue_exclusive);
 39
 40void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 41{
 42	unsigned long flags;
 43
 44	wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
 45	spin_lock_irqsave(&wq_head->lock, flags);
 46	__add_wait_queue(wq_head, wq_entry);
 47	spin_unlock_irqrestore(&wq_head->lock, flags);
 48}
 49EXPORT_SYMBOL_GPL(add_wait_queue_priority);
 50
 51void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 52{
 53	unsigned long flags;
 54
 55	spin_lock_irqsave(&wq_head->lock, flags);
 56	__remove_wait_queue(wq_head, wq_entry);
 57	spin_unlock_irqrestore(&wq_head->lock, flags);
 58}
 59EXPORT_SYMBOL(remove_wait_queue);
 60
 61/*
 62 * Scan threshold to break wait queue walk.
 63 * This allows a waker to take a break from holding the
 64 * wait queue lock during the wait queue walk.
 65 */
 66#define WAITQUEUE_WALK_BREAK_CNT 64
 67
 68/*
 69 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 70 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 71 * number) then we wake that number of exclusive tasks, and potentially all
 72 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
 73 * the list and any non-exclusive tasks will be woken first. A priority task
 74 * may be at the head of the list, and can consume the event without any other
 75 * tasks being woken.
 76 *
 77 * There are circumstances in which we can try to wake a task which has already
 78 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 79 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 80 */
 81static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
 82			int nr_exclusive, int wake_flags, void *key,
 83			wait_queue_entry_t *bookmark)
 84{
 85	wait_queue_entry_t *curr, *next;
 86	int cnt = 0;
 87
 88	lockdep_assert_held(&wq_head->lock);
 89
 90	if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
 91		curr = list_next_entry(bookmark, entry);
 92
 93		list_del(&bookmark->entry);
 94		bookmark->flags = 0;
 95	} else
 96		curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
 97
 98	if (&curr->entry == &wq_head->head)
 99		return nr_exclusive;
100
101	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
102		unsigned flags = curr->flags;
103		int ret;
104
105		if (flags & WQ_FLAG_BOOKMARK)
106			continue;
107
108		ret = curr->func(curr, mode, wake_flags, key);
109		if (ret < 0)
110			break;
111		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
112			break;
113
114		if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
115				(&next->entry != &wq_head->head)) {
116			bookmark->flags = WQ_FLAG_BOOKMARK;
117			list_add_tail(&bookmark->entry, &next->entry);
118			break;
119		}
120	}
121
122	return nr_exclusive;
123}
124
125static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
126			int nr_exclusive, int wake_flags, void *key)
127{
128	unsigned long flags;
129	wait_queue_entry_t bookmark;
130
131	bookmark.flags = 0;
132	bookmark.private = NULL;
133	bookmark.func = NULL;
134	INIT_LIST_HEAD(&bookmark.entry);
135
136	do {
137		spin_lock_irqsave(&wq_head->lock, flags);
138		nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive,
139						wake_flags, key, &bookmark);
140		spin_unlock_irqrestore(&wq_head->lock, flags);
141	} while (bookmark.flags & WQ_FLAG_BOOKMARK);
142}
143
144/**
145 * __wake_up - wake up threads blocked on a waitqueue.
146 * @wq_head: the waitqueue
147 * @mode: which threads
148 * @nr_exclusive: how many wake-one or wake-many threads to wake up
149 * @key: is directly passed to the wakeup function
150 *
151 * If this function wakes up a task, it executes a full memory barrier before
152 * accessing the task state.
153 */
154void __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
155			int nr_exclusive, void *key)
156{
157	__wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
 
 
 
 
158}
159EXPORT_SYMBOL(__wake_up);
160
161/*
162 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
163 */
164void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
165{
166	__wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
167}
168EXPORT_SYMBOL_GPL(__wake_up_locked);
169
170void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
171{
172	__wake_up_common(wq_head, mode, 1, 0, key, NULL);
173}
174EXPORT_SYMBOL_GPL(__wake_up_locked_key);
175
176void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
177		unsigned int mode, void *key, wait_queue_entry_t *bookmark)
178{
179	__wake_up_common(wq_head, mode, 1, 0, key, bookmark);
180}
181EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
182
183/**
184 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
185 * @wq_head: the waitqueue
186 * @mode: which threads
 
187 * @key: opaque value to be passed to wakeup targets
188 *
189 * The sync wakeup differs that the waker knows that it will schedule
190 * away soon, so while the target thread will be woken up, it will not
191 * be migrated to another CPU - ie. the two threads are 'synchronized'
192 * with each other. This can prevent needless bouncing between CPUs.
193 *
194 * On UP it can prevent extra preemption.
195 *
196 * If this function wakes up a task, it executes a full memory barrier before
197 * accessing the task state.
198 */
199void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
200			void *key)
201{
202	if (unlikely(!wq_head))
 
 
 
203		return;
204
205	__wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key);
 
 
 
 
 
206}
207EXPORT_SYMBOL_GPL(__wake_up_sync_key);
208
209/**
210 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
211 * @wq_head: the waitqueue
212 * @mode: which threads
213 * @key: opaque value to be passed to wakeup targets
214 *
215 * The sync wakeup differs in that the waker knows that it will schedule
216 * away soon, so while the target thread will be woken up, it will not
217 * be migrated to another CPU - ie. the two threads are 'synchronized'
218 * with each other. This can prevent needless bouncing between CPUs.
219 *
220 * On UP it can prevent extra preemption.
221 *
222 * If this function wakes up a task, it executes a full memory barrier before
223 * accessing the task state.
224 */
225void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
226			       unsigned int mode, void *key)
227{
228        __wake_up_common(wq_head, mode, 1, WF_SYNC, key, NULL);
229}
230EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
231
232/*
233 * __wake_up_sync - see __wake_up_sync_key()
234 */
235void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
236{
237	__wake_up_sync_key(wq_head, mode, NULL);
238}
239EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
240
241/*
242 * Note: we use "set_current_state()" _after_ the wait-queue add,
243 * because we need a memory barrier there on SMP, so that any
244 * wake-function that tests for the wait-queue being active
245 * will be guaranteed to see waitqueue addition _or_ subsequent
246 * tests in this thread will see the wakeup having taken place.
247 *
248 * The spin_unlock() itself is semi-permeable and only protects
249 * one way (it only protects stuff inside the critical region and
250 * stops them from bleeding out - it would still allow subsequent
251 * loads to move into the critical region).
252 */
253void
254prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
255{
256	unsigned long flags;
257
258	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
259	spin_lock_irqsave(&wq_head->lock, flags);
260	if (list_empty(&wq_entry->entry))
261		__add_wait_queue(wq_head, wq_entry);
262	set_current_state(state);
263	spin_unlock_irqrestore(&wq_head->lock, flags);
264}
265EXPORT_SYMBOL(prepare_to_wait);
266
267/* Returns true if we are the first waiter in the queue, false otherwise. */
268bool
269prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
270{
271	unsigned long flags;
272	bool was_empty = false;
273
274	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
275	spin_lock_irqsave(&wq_head->lock, flags);
276	if (list_empty(&wq_entry->entry)) {
277		was_empty = list_empty(&wq_head->head);
278		__add_wait_queue_entry_tail(wq_head, wq_entry);
279	}
280	set_current_state(state);
281	spin_unlock_irqrestore(&wq_head->lock, flags);
282	return was_empty;
283}
284EXPORT_SYMBOL(prepare_to_wait_exclusive);
285
286void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
287{
288	wq_entry->flags = flags;
289	wq_entry->private = current;
290	wq_entry->func = autoremove_wake_function;
291	INIT_LIST_HEAD(&wq_entry->entry);
292}
293EXPORT_SYMBOL(init_wait_entry);
294
295long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
296{
297	unsigned long flags;
298	long ret = 0;
299
300	spin_lock_irqsave(&wq_head->lock, flags);
301	if (signal_pending_state(state, current)) {
302		/*
303		 * Exclusive waiter must not fail if it was selected by wakeup,
304		 * it should "consume" the condition we were waiting for.
305		 *
306		 * The caller will recheck the condition and return success if
307		 * we were already woken up, we can not miss the event because
308		 * wakeup locks/unlocks the same wq_head->lock.
309		 *
310		 * But we need to ensure that set-condition + wakeup after that
311		 * can't see us, it should wake up another exclusive waiter if
312		 * we fail.
313		 */
314		list_del_init(&wq_entry->entry);
315		ret = -ERESTARTSYS;
316	} else {
317		if (list_empty(&wq_entry->entry)) {
318			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
319				__add_wait_queue_entry_tail(wq_head, wq_entry);
320			else
321				__add_wait_queue(wq_head, wq_entry);
322		}
323		set_current_state(state);
324	}
325	spin_unlock_irqrestore(&wq_head->lock, flags);
326
327	return ret;
328}
329EXPORT_SYMBOL(prepare_to_wait_event);
330
331/*
332 * Note! These two wait functions are entered with the
333 * wait-queue lock held (and interrupts off in the _irq
334 * case), so there is no race with testing the wakeup
335 * condition in the caller before they add the wait
336 * entry to the wake queue.
337 */
338int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
339{
340	if (likely(list_empty(&wait->entry)))
341		__add_wait_queue_entry_tail(wq, wait);
342
343	set_current_state(TASK_INTERRUPTIBLE);
344	if (signal_pending(current))
345		return -ERESTARTSYS;
346
347	spin_unlock(&wq->lock);
348	schedule();
349	spin_lock(&wq->lock);
350
351	return 0;
352}
353EXPORT_SYMBOL(do_wait_intr);
354
355int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
356{
357	if (likely(list_empty(&wait->entry)))
358		__add_wait_queue_entry_tail(wq, wait);
359
360	set_current_state(TASK_INTERRUPTIBLE);
361	if (signal_pending(current))
362		return -ERESTARTSYS;
363
364	spin_unlock_irq(&wq->lock);
365	schedule();
366	spin_lock_irq(&wq->lock);
367
368	return 0;
369}
370EXPORT_SYMBOL(do_wait_intr_irq);
371
372/**
373 * finish_wait - clean up after waiting in a queue
374 * @wq_head: waitqueue waited on
375 * @wq_entry: wait descriptor
376 *
377 * Sets current thread back to running state and removes
378 * the wait descriptor from the given waitqueue if still
379 * queued.
380 */
381void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
382{
383	unsigned long flags;
384
385	__set_current_state(TASK_RUNNING);
386	/*
387	 * We can check for list emptiness outside the lock
388	 * IFF:
389	 *  - we use the "careful" check that verifies both
390	 *    the next and prev pointers, so that there cannot
391	 *    be any half-pending updates in progress on other
392	 *    CPU's that we haven't seen yet (and that might
393	 *    still change the stack area.
394	 * and
395	 *  - all other users take the lock (ie we can only
396	 *    have _one_ other CPU that looks at or modifies
397	 *    the list).
398	 */
399	if (!list_empty_careful(&wq_entry->entry)) {
400		spin_lock_irqsave(&wq_head->lock, flags);
401		list_del_init(&wq_entry->entry);
402		spin_unlock_irqrestore(&wq_head->lock, flags);
403	}
404}
405EXPORT_SYMBOL(finish_wait);
406
407int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408{
409	int ret = default_wake_function(wq_entry, mode, sync, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410
411	if (ret)
412		list_del_init_careful(&wq_entry->entry);
413
414	return ret;
415}
416EXPORT_SYMBOL(autoremove_wake_function);
417
418static inline bool is_kthread_should_stop(void)
419{
420	return (current->flags & PF_KTHREAD) && kthread_should_stop();
421}
422
423/*
424 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
425 *
426 * add_wait_queue(&wq_head, &wait);
427 * for (;;) {
428 *     if (condition)
429 *         break;
430 *
431 *     // in wait_woken()			// in woken_wake_function()
 
 
 
 
 
 
 
 
 
432 *
433 *     p->state = mode;				wq_entry->flags |= WQ_FLAG_WOKEN;
434 *     smp_mb(); // A				try_to_wake_up():
435 *     if (!(wq_entry->flags & WQ_FLAG_WOKEN))	   <full barrier>
436 *         schedule()				   if (p->state & mode)
437 *     p->state = TASK_RUNNING;			      p->state = TASK_RUNNING;
438 *     wq_entry->flags &= ~WQ_FLAG_WOKEN;	~~~~~~~~~~~~~~~~~~
439 *     smp_mb(); // B				condition = true;
440 * }						smp_mb(); // C
441 * remove_wait_queue(&wq_head, &wait);		wq_entry->flags |= WQ_FLAG_WOKEN;
442 */
443long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
444{
 
445	/*
446	 * The below executes an smp_mb(), which matches with the full barrier
447	 * executed by the try_to_wake_up() in woken_wake_function() such that
448	 * either we see the store to wq_entry->flags in woken_wake_function()
449	 * or woken_wake_function() sees our store to current->state.
450	 */
451	set_current_state(mode); /* A */
452	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
453		timeout = schedule_timeout(timeout);
454	__set_current_state(TASK_RUNNING);
455
456	/*
457	 * The below executes an smp_mb(), which matches with the smp_mb() (C)
458	 * in woken_wake_function() such that either we see the wait condition
459	 * being true or the store to wq_entry->flags in woken_wake_function()
460	 * follows ours in the coherence order.
461	 */
462	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
463
464	return timeout;
465}
466EXPORT_SYMBOL(wait_woken);
467
468int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
469{
470	/* Pairs with the smp_store_mb() in wait_woken(). */
471	smp_mb(); /* C */
472	wq_entry->flags |= WQ_FLAG_WOKEN;
 
 
 
 
 
 
473
474	return default_wake_function(wq_entry, mode, sync, key);
475}
476EXPORT_SYMBOL(woken_wake_function);