Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * transition.c - Kernel Live Patching transition functions
  4 *
  5 * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/cpu.h>
 11#include <linux/stacktrace.h>
 12#include <linux/tracehook.h>
 13#include "core.h"
 14#include "patch.h"
 15#include "transition.h"
 16#include "../sched/sched.h"
 17
 18#define MAX_STACK_ENTRIES  100
 19#define STACK_ERR_BUF_SIZE 128
 20
 21#define SIGNALS_TIMEOUT 15
 22
 23struct klp_patch *klp_transition_patch;
 24
 25static int klp_target_state = KLP_UNDEFINED;
 26
 27static unsigned int klp_signals_cnt;
 28
 29/*
 30 * This work can be performed periodically to finish patching or unpatching any
 31 * "straggler" tasks which failed to transition in the first attempt.
 32 */
 33static void klp_transition_work_fn(struct work_struct *work)
 34{
 35	mutex_lock(&klp_mutex);
 36
 37	if (klp_transition_patch)
 38		klp_try_complete_transition();
 39
 40	mutex_unlock(&klp_mutex);
 41}
 42static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
 43
 44/*
 45 * This function is just a stub to implement a hard force
 46 * of synchronize_rcu(). This requires synchronizing
 47 * tasks even in userspace and idle.
 48 */
 49static void klp_sync(struct work_struct *work)
 50{
 51}
 52
 53/*
 54 * We allow to patch also functions where RCU is not watching,
 55 * e.g. before user_exit(). We can not rely on the RCU infrastructure
 56 * to do the synchronization. Instead hard force the sched synchronization.
 57 *
 58 * This approach allows to use RCU functions for manipulating func_stack
 59 * safely.
 60 */
 61static void klp_synchronize_transition(void)
 62{
 63	schedule_on_each_cpu(klp_sync);
 64}
 65
 66/*
 67 * The transition to the target patch state is complete.  Clean up the data
 68 * structures.
 69 */
 70static void klp_complete_transition(void)
 71{
 72	struct klp_object *obj;
 73	struct klp_func *func;
 74	struct task_struct *g, *task;
 75	unsigned int cpu;
 76
 77	pr_debug("'%s': completing %s transition\n",
 78		 klp_transition_patch->mod->name,
 79		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
 80
 81	if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
 82		klp_unpatch_replaced_patches(klp_transition_patch);
 83		klp_discard_nops(klp_transition_patch);
 84	}
 85
 86	if (klp_target_state == KLP_UNPATCHED) {
 87		/*
 88		 * All tasks have transitioned to KLP_UNPATCHED so we can now
 89		 * remove the new functions from the func_stack.
 90		 */
 91		klp_unpatch_objects(klp_transition_patch);
 92
 93		/*
 94		 * Make sure klp_ftrace_handler() can no longer see functions
 95		 * from this patch on the ops->func_stack.  Otherwise, after
 96		 * func->transition gets cleared, the handler may choose a
 97		 * removed function.
 98		 */
 99		klp_synchronize_transition();
100	}
101
102	klp_for_each_object(klp_transition_patch, obj)
103		klp_for_each_func(obj, func)
104			func->transition = false;
105
106	/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
107	if (klp_target_state == KLP_PATCHED)
108		klp_synchronize_transition();
109
110	read_lock(&tasklist_lock);
111	for_each_process_thread(g, task) {
112		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
113		task->patch_state = KLP_UNDEFINED;
114	}
115	read_unlock(&tasklist_lock);
116
117	for_each_possible_cpu(cpu) {
118		task = idle_task(cpu);
119		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
120		task->patch_state = KLP_UNDEFINED;
121	}
122
123	klp_for_each_object(klp_transition_patch, obj) {
124		if (!klp_is_object_loaded(obj))
125			continue;
126		if (klp_target_state == KLP_PATCHED)
127			klp_post_patch_callback(obj);
128		else if (klp_target_state == KLP_UNPATCHED)
129			klp_post_unpatch_callback(obj);
130	}
131
132	pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
133		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
134
135	klp_target_state = KLP_UNDEFINED;
136	klp_transition_patch = NULL;
137}
138
139/*
140 * This is called in the error path, to cancel a transition before it has
141 * started, i.e. klp_init_transition() has been called but
142 * klp_start_transition() hasn't.  If the transition *has* been started,
143 * klp_reverse_transition() should be used instead.
144 */
145void klp_cancel_transition(void)
146{
147	if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
148		return;
149
150	pr_debug("'%s': canceling patching transition, going to unpatch\n",
151		 klp_transition_patch->mod->name);
152
153	klp_target_state = KLP_UNPATCHED;
154	klp_complete_transition();
155}
156
157/*
158 * Switch the patched state of the task to the set of functions in the target
159 * patch state.
160 *
161 * NOTE: If task is not 'current', the caller must ensure the task is inactive.
162 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
163 */
164void klp_update_patch_state(struct task_struct *task)
165{
166	/*
167	 * A variant of synchronize_rcu() is used to allow patching functions
168	 * where RCU is not watching, see klp_synchronize_transition().
169	 */
170	preempt_disable_notrace();
171
172	/*
173	 * This test_and_clear_tsk_thread_flag() call also serves as a read
174	 * barrier (smp_rmb) for two cases:
175	 *
176	 * 1) Enforce the order of the TIF_PATCH_PENDING read and the
177	 *    klp_target_state read.  The corresponding write barrier is in
178	 *    klp_init_transition().
179	 *
180	 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
181	 *    of func->transition, if klp_ftrace_handler() is called later on
182	 *    the same CPU.  See __klp_disable_patch().
183	 */
184	if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
185		task->patch_state = READ_ONCE(klp_target_state);
186
187	preempt_enable_notrace();
188}
189
190/*
191 * Determine whether the given stack trace includes any references to a
192 * to-be-patched or to-be-unpatched function.
193 */
194static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
195				unsigned int nr_entries)
196{
197	unsigned long func_addr, func_size, address;
198	struct klp_ops *ops;
199	int i;
200
201	for (i = 0; i < nr_entries; i++) {
202		address = entries[i];
203
204		if (klp_target_state == KLP_UNPATCHED) {
205			 /*
206			  * Check for the to-be-unpatched function
207			  * (the func itself).
208			  */
209			func_addr = (unsigned long)func->new_func;
210			func_size = func->new_size;
211		} else {
212			/*
213			 * Check for the to-be-patched function
214			 * (the previous func).
215			 */
216			ops = klp_find_ops(func->old_func);
217
218			if (list_is_singular(&ops->func_stack)) {
219				/* original function */
220				func_addr = (unsigned long)func->old_func;
221				func_size = func->old_size;
222			} else {
223				/* previously patched function */
224				struct klp_func *prev;
225
226				prev = list_next_entry(func, stack_node);
227				func_addr = (unsigned long)prev->new_func;
228				func_size = prev->new_size;
229			}
230		}
231
232		if (address >= func_addr && address < func_addr + func_size)
233			return -EAGAIN;
234	}
235
236	return 0;
237}
238
239/*
240 * Determine whether it's safe to transition the task to the target patch state
241 * by looking for any to-be-patched or to-be-unpatched functions on its stack.
242 */
243static int klp_check_stack(struct task_struct *task, char *err_buf)
244{
245	static unsigned long entries[MAX_STACK_ENTRIES];
246	struct klp_object *obj;
247	struct klp_func *func;
248	int ret, nr_entries;
249
250	ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
251	if (ret < 0) {
252		snprintf(err_buf, STACK_ERR_BUF_SIZE,
253			 "%s: %s:%d has an unreliable stack\n",
254			 __func__, task->comm, task->pid);
255		return ret;
256	}
257	nr_entries = ret;
258
259	klp_for_each_object(klp_transition_patch, obj) {
260		if (!obj->patched)
261			continue;
262		klp_for_each_func(obj, func) {
263			ret = klp_check_stack_func(func, entries, nr_entries);
264			if (ret) {
265				snprintf(err_buf, STACK_ERR_BUF_SIZE,
266					 "%s: %s:%d is sleeping on function %s\n",
267					 __func__, task->comm, task->pid,
268					 func->old_name);
269				return ret;
270			}
271		}
272	}
273
274	return 0;
275}
276
277/*
278 * Try to safely switch a task to the target patch state.  If it's currently
279 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
280 * if the stack is unreliable, return false.
281 */
282static bool klp_try_switch_task(struct task_struct *task)
283{
284	static char err_buf[STACK_ERR_BUF_SIZE];
285	struct rq *rq;
286	struct rq_flags flags;
287	int ret;
288	bool success = false;
289
290	err_buf[0] = '\0';
291
292	/* check if this task has already switched over */
293	if (task->patch_state == klp_target_state)
294		return true;
295
296	/*
297	 * For arches which don't have reliable stack traces, we have to rely
298	 * on other methods (e.g., switching tasks at kernel exit).
299	 */
300	if (!klp_have_reliable_stack())
301		return false;
302
303	/*
304	 * Now try to check the stack for any to-be-patched or to-be-unpatched
305	 * functions.  If all goes well, switch the task to the target patch
306	 * state.
307	 */
308	rq = task_rq_lock(task, &flags);
309
310	if (task_running(rq, task) && task != current) {
311		snprintf(err_buf, STACK_ERR_BUF_SIZE,
312			 "%s: %s:%d is running\n", __func__, task->comm,
313			 task->pid);
314		goto done;
315	}
316
317	ret = klp_check_stack(task, err_buf);
318	if (ret)
319		goto done;
320
321	success = true;
322
323	clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
324	task->patch_state = klp_target_state;
325
326done:
327	task_rq_unlock(rq, task, &flags);
328
329	/*
330	 * Due to console deadlock issues, pr_debug() can't be used while
331	 * holding the task rq lock.  Instead we have to use a temporary buffer
332	 * and print the debug message after releasing the lock.
333	 */
334	if (err_buf[0] != '\0')
335		pr_debug("%s", err_buf);
336
337	return success;
338}
339
340/*
341 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
342 * Kthreads with TIF_PATCH_PENDING set are woken up.
343 */
344static void klp_send_signals(void)
345{
346	struct task_struct *g, *task;
347
348	if (klp_signals_cnt == SIGNALS_TIMEOUT)
349		pr_notice("signaling remaining tasks\n");
350
351	read_lock(&tasklist_lock);
352	for_each_process_thread(g, task) {
353		if (!klp_patch_pending(task))
354			continue;
355
356		/*
357		 * There is a small race here. We could see TIF_PATCH_PENDING
358		 * set and decide to wake up a kthread or send a fake signal.
359		 * Meanwhile the task could migrate itself and the action
360		 * would be meaningless. It is not serious though.
361		 */
362		if (task->flags & PF_KTHREAD) {
363			/*
364			 * Wake up a kthread which sleeps interruptedly and
365			 * still has not been migrated.
366			 */
367			wake_up_state(task, TASK_INTERRUPTIBLE);
368		} else {
369			/*
370			 * Send fake signal to all non-kthread tasks which are
371			 * still not migrated.
372			 */
373			set_notify_signal(task);
374		}
375	}
376	read_unlock(&tasklist_lock);
377}
378
379/*
380 * Try to switch all remaining tasks to the target patch state by walking the
381 * stacks of sleeping tasks and looking for any to-be-patched or
382 * to-be-unpatched functions.  If such functions are found, the task can't be
383 * switched yet.
384 *
385 * If any tasks are still stuck in the initial patch state, schedule a retry.
386 */
387void klp_try_complete_transition(void)
388{
389	unsigned int cpu;
390	struct task_struct *g, *task;
391	struct klp_patch *patch;
392	bool complete = true;
393
394	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
395
396	/*
397	 * Try to switch the tasks to the target patch state by walking their
398	 * stacks and looking for any to-be-patched or to-be-unpatched
399	 * functions.  If such functions are found on a stack, or if the stack
400	 * is deemed unreliable, the task can't be switched yet.
401	 *
402	 * Usually this will transition most (or all) of the tasks on a system
403	 * unless the patch includes changes to a very common function.
404	 */
405	read_lock(&tasklist_lock);
406	for_each_process_thread(g, task)
407		if (!klp_try_switch_task(task))
408			complete = false;
409	read_unlock(&tasklist_lock);
410
411	/*
412	 * Ditto for the idle "swapper" tasks.
413	 */
414	get_online_cpus();
415	for_each_possible_cpu(cpu) {
416		task = idle_task(cpu);
417		if (cpu_online(cpu)) {
418			if (!klp_try_switch_task(task))
419				complete = false;
420		} else if (task->patch_state != klp_target_state) {
421			/* offline idle tasks can be switched immediately */
422			clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
423			task->patch_state = klp_target_state;
424		}
425	}
426	put_online_cpus();
427
428	if (!complete) {
429		if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
430			klp_send_signals();
431		klp_signals_cnt++;
432
433		/*
434		 * Some tasks weren't able to be switched over.  Try again
435		 * later and/or wait for other methods like kernel exit
436		 * switching.
437		 */
438		schedule_delayed_work(&klp_transition_work,
439				      round_jiffies_relative(HZ));
440		return;
441	}
442
443	/* we're done, now cleanup the data structures */
444	patch = klp_transition_patch;
445	klp_complete_transition();
446
447	/*
448	 * It would make more sense to free the unused patches in
449	 * klp_complete_transition() but it is called also
450	 * from klp_cancel_transition().
451	 */
452	if (!patch->enabled)
453		klp_free_patch_async(patch);
454	else if (patch->replace)
455		klp_free_replaced_patches_async(patch);
456}
457
458/*
459 * Start the transition to the specified target patch state so tasks can begin
460 * switching to it.
461 */
462void klp_start_transition(void)
463{
464	struct task_struct *g, *task;
465	unsigned int cpu;
466
467	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
468
469	pr_notice("'%s': starting %s transition\n",
470		  klp_transition_patch->mod->name,
471		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
472
473	/*
474	 * Mark all normal tasks as needing a patch state update.  They'll
475	 * switch either in klp_try_complete_transition() or as they exit the
476	 * kernel.
477	 */
478	read_lock(&tasklist_lock);
479	for_each_process_thread(g, task)
480		if (task->patch_state != klp_target_state)
481			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
482	read_unlock(&tasklist_lock);
483
484	/*
485	 * Mark all idle tasks as needing a patch state update.  They'll switch
486	 * either in klp_try_complete_transition() or at the idle loop switch
487	 * point.
488	 */
489	for_each_possible_cpu(cpu) {
490		task = idle_task(cpu);
491		if (task->patch_state != klp_target_state)
492			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
493	}
494
495	klp_signals_cnt = 0;
496}
497
498/*
499 * Initialize the global target patch state and all tasks to the initial patch
500 * state, and initialize all function transition states to true in preparation
501 * for patching or unpatching.
502 */
503void klp_init_transition(struct klp_patch *patch, int state)
504{
505	struct task_struct *g, *task;
506	unsigned int cpu;
507	struct klp_object *obj;
508	struct klp_func *func;
509	int initial_state = !state;
510
511	WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
512
513	klp_transition_patch = patch;
514
515	/*
516	 * Set the global target patch state which tasks will switch to.  This
517	 * has no effect until the TIF_PATCH_PENDING flags get set later.
518	 */
519	klp_target_state = state;
520
521	pr_debug("'%s': initializing %s transition\n", patch->mod->name,
522		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
523
524	/*
525	 * Initialize all tasks to the initial patch state to prepare them for
526	 * switching to the target state.
527	 */
528	read_lock(&tasklist_lock);
529	for_each_process_thread(g, task) {
530		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
531		task->patch_state = initial_state;
532	}
533	read_unlock(&tasklist_lock);
534
535	/*
536	 * Ditto for the idle "swapper" tasks.
537	 */
538	for_each_possible_cpu(cpu) {
539		task = idle_task(cpu);
540		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
541		task->patch_state = initial_state;
542	}
543
544	/*
545	 * Enforce the order of the task->patch_state initializations and the
546	 * func->transition updates to ensure that klp_ftrace_handler() doesn't
547	 * see a func in transition with a task->patch_state of KLP_UNDEFINED.
548	 *
549	 * Also enforce the order of the klp_target_state write and future
550	 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
551	 * set a task->patch_state to KLP_UNDEFINED.
552	 */
553	smp_wmb();
554
555	/*
556	 * Set the func transition states so klp_ftrace_handler() will know to
557	 * switch to the transition logic.
558	 *
559	 * When patching, the funcs aren't yet in the func_stack and will be
560	 * made visible to the ftrace handler shortly by the calls to
561	 * klp_patch_object().
562	 *
563	 * When unpatching, the funcs are already in the func_stack and so are
564	 * already visible to the ftrace handler.
565	 */
566	klp_for_each_object(patch, obj)
567		klp_for_each_func(obj, func)
568			func->transition = true;
569}
570
571/*
572 * This function can be called in the middle of an existing transition to
573 * reverse the direction of the target patch state.  This can be done to
574 * effectively cancel an existing enable or disable operation if there are any
575 * tasks which are stuck in the initial patch state.
576 */
577void klp_reverse_transition(void)
578{
579	unsigned int cpu;
580	struct task_struct *g, *task;
581
582	pr_debug("'%s': reversing transition from %s\n",
583		 klp_transition_patch->mod->name,
584		 klp_target_state == KLP_PATCHED ? "patching to unpatching" :
585						   "unpatching to patching");
586
587	klp_transition_patch->enabled = !klp_transition_patch->enabled;
588
589	klp_target_state = !klp_target_state;
590
591	/*
592	 * Clear all TIF_PATCH_PENDING flags to prevent races caused by
593	 * klp_update_patch_state() running in parallel with
594	 * klp_start_transition().
595	 */
596	read_lock(&tasklist_lock);
597	for_each_process_thread(g, task)
598		clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
599	read_unlock(&tasklist_lock);
600
601	for_each_possible_cpu(cpu)
602		clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
603
604	/* Let any remaining calls to klp_update_patch_state() complete */
605	klp_synchronize_transition();
606
607	klp_start_transition();
608}
609
610/* Called from copy_process() during fork */
611void klp_copy_process(struct task_struct *child)
612{
613	child->patch_state = current->patch_state;
614
615	/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
616}
617
618/*
619 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
620 * existing transition to finish.
621 *
622 * NOTE: klp_update_patch_state(task) requires the task to be inactive or
623 * 'current'. This is not the case here and the consistency model could be
624 * broken. Administrator, who is the only one to execute the
625 * klp_force_transitions(), has to be aware of this.
626 */
627void klp_force_transition(void)
628{
629	struct klp_patch *patch;
630	struct task_struct *g, *task;
631	unsigned int cpu;
632
633	pr_warn("forcing remaining tasks to the patched state\n");
634
635	read_lock(&tasklist_lock);
636	for_each_process_thread(g, task)
637		klp_update_patch_state(task);
638	read_unlock(&tasklist_lock);
639
640	for_each_possible_cpu(cpu)
641		klp_update_patch_state(idle_task(cpu));
642
643	klp_for_each_patch(patch)
644		patch->forced = true;
645}