Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
   5 * Copyright (c) 2001,2002 Richard Russon
   6 *
   7 * This program/include file is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as published
   9 * by the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program/include file is distributed in the hope that it will be
  13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program (in the main directory of the Linux-NTFS
  19 * distribution in the file COPYING); if not, write to the Free Software
  20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 */
  22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  23
  24#include <linux/stddef.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/string.h>
  28#include <linux/spinlock.h>
  29#include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
  30#include <linux/backing-dev.h>
  31#include <linux/buffer_head.h>
  32#include <linux/vfs.h>
  33#include <linux/moduleparam.h>
  34#include <linux/bitmap.h>
  35
  36#include "sysctl.h"
  37#include "logfile.h"
  38#include "quota.h"
  39#include "usnjrnl.h"
  40#include "dir.h"
  41#include "debug.h"
  42#include "index.h"
  43#include "inode.h"
  44#include "aops.h"
  45#include "layout.h"
  46#include "malloc.h"
  47#include "ntfs.h"
  48
  49/* Number of mounted filesystems which have compression enabled. */
  50static unsigned long ntfs_nr_compression_users;
  51
  52/* A global default upcase table and a corresponding reference count. */
  53static ntfschar *default_upcase;
  54static unsigned long ntfs_nr_upcase_users;
  55
  56/* Error constants/strings used in inode.c::ntfs_show_options(). */
  57typedef enum {
  58	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
  59	ON_ERRORS_PANIC			= 0x01,
  60	ON_ERRORS_REMOUNT_RO		= 0x02,
  61	ON_ERRORS_CONTINUE		= 0x04,
  62	/* Optional, can be combined with any of the above. */
  63	ON_ERRORS_RECOVER		= 0x10,
  64} ON_ERRORS_ACTIONS;
  65
  66const option_t on_errors_arr[] = {
  67	{ ON_ERRORS_PANIC,	"panic" },
  68	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
  69	{ ON_ERRORS_CONTINUE,	"continue", },
  70	{ ON_ERRORS_RECOVER,	"recover" },
  71	{ 0,			NULL }
  72};
  73
  74/**
  75 * simple_getbool -
  76 *
  77 * Copied from old ntfs driver (which copied from vfat driver).
  78 */
  79static int simple_getbool(char *s, bool *setval)
  80{
  81	if (s) {
  82		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
  83			*setval = true;
  84		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
  85							!strcmp(s, "false"))
  86			*setval = false;
  87		else
  88			return 0;
  89	} else
  90		*setval = true;
  91	return 1;
  92}
  93
  94/**
  95 * parse_options - parse the (re)mount options
  96 * @vol:	ntfs volume
  97 * @opt:	string containing the (re)mount options
  98 *
  99 * Parse the recognized options in @opt for the ntfs volume described by @vol.
 100 */
 101static bool parse_options(ntfs_volume *vol, char *opt)
 102{
 103	char *p, *v, *ov;
 104	static char *utf8 = "utf8";
 105	int errors = 0, sloppy = 0;
 106	kuid_t uid = INVALID_UID;
 107	kgid_t gid = INVALID_GID;
 108	umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
 109	int mft_zone_multiplier = -1, on_errors = -1;
 110	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
 111	struct nls_table *nls_map = NULL, *old_nls;
 112
 113	/* I am lazy... (-8 */
 114#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
 115	if (!strcmp(p, option)) {					\
 116		if (!v || !*v)						\
 117			variable = default_value;			\
 118		else {							\
 119			variable = simple_strtoul(ov = v, &v, 0);	\
 120			if (*v)						\
 121				goto needs_val;				\
 122		}							\
 123	}
 124#define NTFS_GETOPT(option, variable)					\
 125	if (!strcmp(p, option)) {					\
 126		if (!v || !*v)						\
 127			goto needs_arg;					\
 128		variable = simple_strtoul(ov = v, &v, 0);		\
 129		if (*v)							\
 130			goto needs_val;					\
 131	}
 132#define NTFS_GETOPT_UID(option, variable)				\
 133	if (!strcmp(p, option)) {					\
 134		uid_t uid_value;					\
 135		if (!v || !*v)						\
 136			goto needs_arg;					\
 137		uid_value = simple_strtoul(ov = v, &v, 0);		\
 138		if (*v)							\
 139			goto needs_val;					\
 140		variable = make_kuid(current_user_ns(), uid_value);	\
 141		if (!uid_valid(variable))				\
 142			goto needs_val;					\
 143	}
 144#define NTFS_GETOPT_GID(option, variable)				\
 145	if (!strcmp(p, option)) {					\
 146		gid_t gid_value;					\
 147		if (!v || !*v)						\
 148			goto needs_arg;					\
 149		gid_value = simple_strtoul(ov = v, &v, 0);		\
 150		if (*v)							\
 151			goto needs_val;					\
 152		variable = make_kgid(current_user_ns(), gid_value);	\
 153		if (!gid_valid(variable))				\
 154			goto needs_val;					\
 155	}
 156#define NTFS_GETOPT_OCTAL(option, variable)				\
 157	if (!strcmp(p, option)) {					\
 158		if (!v || !*v)						\
 159			goto needs_arg;					\
 160		variable = simple_strtoul(ov = v, &v, 8);		\
 161		if (*v)							\
 162			goto needs_val;					\
 163	}
 164#define NTFS_GETOPT_BOOL(option, variable)				\
 165	if (!strcmp(p, option)) {					\
 166		bool val;						\
 167		if (!simple_getbool(v, &val))				\
 168			goto needs_bool;				\
 169		variable = val;						\
 170	}
 171#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
 172	if (!strcmp(p, option)) {					\
 173		int _i;							\
 174		if (!v || !*v)						\
 175			goto needs_arg;					\
 176		ov = v;							\
 177		if (variable == -1)					\
 178			variable = 0;					\
 179		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
 180			if (!strcmp(opt_array[_i].str, v)) {		\
 181				variable |= opt_array[_i].val;		\
 182				break;					\
 183			}						\
 184		if (!opt_array[_i].str || !*opt_array[_i].str)		\
 185			goto needs_val;					\
 186	}
 187	if (!opt || !*opt)
 188		goto no_mount_options;
 189	ntfs_debug("Entering with mount options string: %s", opt);
 190	while ((p = strsep(&opt, ","))) {
 191		if ((v = strchr(p, '=')))
 192			*v++ = 0;
 193		NTFS_GETOPT_UID("uid", uid)
 194		else NTFS_GETOPT_GID("gid", gid)
 195		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
 196		else NTFS_GETOPT_OCTAL("fmask", fmask)
 197		else NTFS_GETOPT_OCTAL("dmask", dmask)
 198		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
 199		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
 200		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
 201		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
 202		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
 203		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
 204				on_errors_arr)
 205		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
 206			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
 207					p);
 208		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
 209			if (!strcmp(p, "iocharset"))
 210				ntfs_warning(vol->sb, "Option iocharset is "
 211						"deprecated. Please use "
 212						"option nls=<charsetname> in "
 213						"the future.");
 214			if (!v || !*v)
 215				goto needs_arg;
 216use_utf8:
 217			old_nls = nls_map;
 218			nls_map = load_nls(v);
 219			if (!nls_map) {
 220				if (!old_nls) {
 221					ntfs_error(vol->sb, "NLS character set "
 222							"%s not found.", v);
 223					return false;
 224				}
 225				ntfs_error(vol->sb, "NLS character set %s not "
 226						"found. Using previous one %s.",
 227						v, old_nls->charset);
 228				nls_map = old_nls;
 229			} else /* nls_map */ {
 230				unload_nls(old_nls);
 231			}
 232		} else if (!strcmp(p, "utf8")) {
 233			bool val = false;
 234			ntfs_warning(vol->sb, "Option utf8 is no longer "
 235				   "supported, using option nls=utf8. Please "
 236				   "use option nls=utf8 in the future and "
 237				   "make sure utf8 is compiled either as a "
 238				   "module or into the kernel.");
 239			if (!v || !*v)
 240				val = true;
 241			else if (!simple_getbool(v, &val))
 242				goto needs_bool;
 243			if (val) {
 244				v = utf8;
 245				goto use_utf8;
 246			}
 247		} else {
 248			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
 249			if (errors < INT_MAX)
 250				errors++;
 251		}
 252#undef NTFS_GETOPT_OPTIONS_ARRAY
 253#undef NTFS_GETOPT_BOOL
 254#undef NTFS_GETOPT
 255#undef NTFS_GETOPT_WITH_DEFAULT
 256	}
 257no_mount_options:
 258	if (errors && !sloppy)
 259		return false;
 260	if (sloppy)
 261		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
 262				"unrecognized mount option(s) and continuing.");
 263	/* Keep this first! */
 264	if (on_errors != -1) {
 265		if (!on_errors) {
 266			ntfs_error(vol->sb, "Invalid errors option argument "
 267					"or bug in options parser.");
 268			return false;
 269		}
 270	}
 271	if (nls_map) {
 272		if (vol->nls_map && vol->nls_map != nls_map) {
 273			ntfs_error(vol->sb, "Cannot change NLS character set "
 274					"on remount.");
 275			return false;
 276		} /* else (!vol->nls_map) */
 277		ntfs_debug("Using NLS character set %s.", nls_map->charset);
 278		vol->nls_map = nls_map;
 279	} else /* (!nls_map) */ {
 280		if (!vol->nls_map) {
 281			vol->nls_map = load_nls_default();
 282			if (!vol->nls_map) {
 283				ntfs_error(vol->sb, "Failed to load default "
 284						"NLS character set.");
 285				return false;
 286			}
 287			ntfs_debug("Using default NLS character set (%s).",
 288					vol->nls_map->charset);
 289		}
 290	}
 291	if (mft_zone_multiplier != -1) {
 292		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
 293				mft_zone_multiplier) {
 294			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
 295					"on remount.");
 296			return false;
 297		}
 298		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
 299			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
 300					"Using default value, i.e. 1.");
 301			mft_zone_multiplier = 1;
 302		}
 303		vol->mft_zone_multiplier = mft_zone_multiplier;
 304	}
 305	if (!vol->mft_zone_multiplier)
 306		vol->mft_zone_multiplier = 1;
 307	if (on_errors != -1)
 308		vol->on_errors = on_errors;
 309	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
 310		vol->on_errors |= ON_ERRORS_CONTINUE;
 311	if (uid_valid(uid))
 312		vol->uid = uid;
 313	if (gid_valid(gid))
 314		vol->gid = gid;
 315	if (fmask != (umode_t)-1)
 316		vol->fmask = fmask;
 317	if (dmask != (umode_t)-1)
 318		vol->dmask = dmask;
 319	if (show_sys_files != -1) {
 320		if (show_sys_files)
 321			NVolSetShowSystemFiles(vol);
 322		else
 323			NVolClearShowSystemFiles(vol);
 324	}
 325	if (case_sensitive != -1) {
 326		if (case_sensitive)
 327			NVolSetCaseSensitive(vol);
 328		else
 329			NVolClearCaseSensitive(vol);
 330	}
 331	if (disable_sparse != -1) {
 332		if (disable_sparse)
 333			NVolClearSparseEnabled(vol);
 334		else {
 335			if (!NVolSparseEnabled(vol) &&
 336					vol->major_ver && vol->major_ver < 3)
 337				ntfs_warning(vol->sb, "Not enabling sparse "
 338						"support due to NTFS volume "
 339						"version %i.%i (need at least "
 340						"version 3.0).", vol->major_ver,
 341						vol->minor_ver);
 342			else
 343				NVolSetSparseEnabled(vol);
 344		}
 345	}
 346	return true;
 347needs_arg:
 348	ntfs_error(vol->sb, "The %s option requires an argument.", p);
 349	return false;
 350needs_bool:
 351	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
 352	return false;
 353needs_val:
 354	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
 355	return false;
 356}
 357
 358#ifdef NTFS_RW
 359
 360/**
 361 * ntfs_write_volume_flags - write new flags to the volume information flags
 362 * @vol:	ntfs volume on which to modify the flags
 363 * @flags:	new flags value for the volume information flags
 364 *
 365 * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
 366 * instead (see below).
 367 *
 368 * Replace the volume information flags on the volume @vol with the value
 369 * supplied in @flags.  Note, this overwrites the volume information flags, so
 370 * make sure to combine the flags you want to modify with the old flags and use
 371 * the result when calling ntfs_write_volume_flags().
 372 *
 373 * Return 0 on success and -errno on error.
 374 */
 375static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
 376{
 377	ntfs_inode *ni = NTFS_I(vol->vol_ino);
 378	MFT_RECORD *m;
 379	VOLUME_INFORMATION *vi;
 380	ntfs_attr_search_ctx *ctx;
 381	int err;
 382
 383	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
 384			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
 385	if (vol->vol_flags == flags)
 386		goto done;
 387	BUG_ON(!ni);
 388	m = map_mft_record(ni);
 389	if (IS_ERR(m)) {
 390		err = PTR_ERR(m);
 391		goto err_out;
 392	}
 393	ctx = ntfs_attr_get_search_ctx(ni, m);
 394	if (!ctx) {
 395		err = -ENOMEM;
 396		goto put_unm_err_out;
 397	}
 398	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
 399			ctx);
 400	if (err)
 401		goto put_unm_err_out;
 402	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
 403			le16_to_cpu(ctx->attr->data.resident.value_offset));
 404	vol->vol_flags = vi->flags = flags;
 405	flush_dcache_mft_record_page(ctx->ntfs_ino);
 406	mark_mft_record_dirty(ctx->ntfs_ino);
 407	ntfs_attr_put_search_ctx(ctx);
 408	unmap_mft_record(ni);
 409done:
 410	ntfs_debug("Done.");
 411	return 0;
 412put_unm_err_out:
 413	if (ctx)
 414		ntfs_attr_put_search_ctx(ctx);
 415	unmap_mft_record(ni);
 416err_out:
 417	ntfs_error(vol->sb, "Failed with error code %i.", -err);
 418	return err;
 419}
 420
 421/**
 422 * ntfs_set_volume_flags - set bits in the volume information flags
 423 * @vol:	ntfs volume on which to modify the flags
 424 * @flags:	flags to set on the volume
 425 *
 426 * Set the bits in @flags in the volume information flags on the volume @vol.
 427 *
 428 * Return 0 on success and -errno on error.
 429 */
 430static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
 431{
 432	flags &= VOLUME_FLAGS_MASK;
 433	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
 434}
 435
 436/**
 437 * ntfs_clear_volume_flags - clear bits in the volume information flags
 438 * @vol:	ntfs volume on which to modify the flags
 439 * @flags:	flags to clear on the volume
 440 *
 441 * Clear the bits in @flags in the volume information flags on the volume @vol.
 442 *
 443 * Return 0 on success and -errno on error.
 444 */
 445static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
 446{
 447	flags &= VOLUME_FLAGS_MASK;
 448	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
 449	return ntfs_write_volume_flags(vol, flags);
 450}
 451
 452#endif /* NTFS_RW */
 453
 454/**
 455 * ntfs_remount - change the mount options of a mounted ntfs filesystem
 456 * @sb:		superblock of mounted ntfs filesystem
 457 * @flags:	remount flags
 458 * @opt:	remount options string
 459 *
 460 * Change the mount options of an already mounted ntfs filesystem.
 461 *
 462 * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
 463 * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
 464 * @sb->s_flags are not changed.
 465 */
 466static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
 467{
 468	ntfs_volume *vol = NTFS_SB(sb);
 469
 470	ntfs_debug("Entering with remount options string: %s", opt);
 471
 472	sync_filesystem(sb);
 473
 474#ifndef NTFS_RW
 475	/* For read-only compiled driver, enforce read-only flag. */
 476	*flags |= MS_RDONLY;
 477#else /* NTFS_RW */
 478	/*
 479	 * For the read-write compiled driver, if we are remounting read-write,
 480	 * make sure there are no volume errors and that no unsupported volume
 481	 * flags are set.  Also, empty the logfile journal as it would become
 482	 * stale as soon as something is written to the volume and mark the
 483	 * volume dirty so that chkdsk is run if the volume is not umounted
 484	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
 485	 * the volume on boot and updates them.
 486	 *
 487	 * When remounting read-only, mark the volume clean if no volume errors
 488	 * have occurred.
 489	 */
 490	if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
 491		static const char *es = ".  Cannot remount read-write.";
 492
 493		/* Remounting read-write. */
 494		if (NVolErrors(vol)) {
 495			ntfs_error(sb, "Volume has errors and is read-only%s",
 496					es);
 497			return -EROFS;
 498		}
 499		if (vol->vol_flags & VOLUME_IS_DIRTY) {
 500			ntfs_error(sb, "Volume is dirty and read-only%s", es);
 501			return -EROFS;
 502		}
 503		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
 504			ntfs_error(sb, "Volume has been modified by chkdsk "
 505					"and is read-only%s", es);
 506			return -EROFS;
 507		}
 508		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
 509			ntfs_error(sb, "Volume has unsupported flags set "
 510					"(0x%x) and is read-only%s",
 511					(unsigned)le16_to_cpu(vol->vol_flags),
 512					es);
 513			return -EROFS;
 514		}
 515		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
 516			ntfs_error(sb, "Failed to set dirty bit in volume "
 517					"information flags%s", es);
 518			return -EROFS;
 519		}
 520#if 0
 521		// TODO: Enable this code once we start modifying anything that
 522		//	 is different between NTFS 1.2 and 3.x...
 523		/* Set NT4 compatibility flag on newer NTFS version volumes. */
 524		if ((vol->major_ver > 1)) {
 525			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
 526				ntfs_error(sb, "Failed to set NT4 "
 527						"compatibility flag%s", es);
 528				NVolSetErrors(vol);
 529				return -EROFS;
 530			}
 531		}
 532#endif
 533		if (!ntfs_empty_logfile(vol->logfile_ino)) {
 534			ntfs_error(sb, "Failed to empty journal $LogFile%s",
 535					es);
 536			NVolSetErrors(vol);
 537			return -EROFS;
 538		}
 539		if (!ntfs_mark_quotas_out_of_date(vol)) {
 540			ntfs_error(sb, "Failed to mark quotas out of date%s",
 541					es);
 542			NVolSetErrors(vol);
 543			return -EROFS;
 544		}
 545		if (!ntfs_stamp_usnjrnl(vol)) {
 546			ntfs_error(sb, "Failed to stamp transaction log "
 547					"($UsnJrnl)%s", es);
 548			NVolSetErrors(vol);
 549			return -EROFS;
 550		}
 551	} else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
 552		/* Remounting read-only. */
 553		if (!NVolErrors(vol)) {
 554			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
 555				ntfs_warning(sb, "Failed to clear dirty bit "
 556						"in volume information "
 557						"flags.  Run chkdsk.");
 558		}
 559	}
 560#endif /* NTFS_RW */
 561
 562	// TODO: Deal with *flags.
 563
 564	if (!parse_options(vol, opt))
 565		return -EINVAL;
 566
 567	ntfs_debug("Done.");
 568	return 0;
 569}
 570
 571/**
 572 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
 573 * @sb:		Super block of the device to which @b belongs.
 574 * @b:		Boot sector of device @sb to check.
 575 * @silent:	If 'true', all output will be silenced.
 576 *
 577 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
 578 * sector. Returns 'true' if it is valid and 'false' if not.
 579 *
 580 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
 581 * is 'true'.
 582 */
 583static bool is_boot_sector_ntfs(const struct super_block *sb,
 584		const NTFS_BOOT_SECTOR *b, const bool silent)
 585{
 586	/*
 587	 * Check that checksum == sum of u32 values from b to the checksum
 588	 * field.  If checksum is zero, no checking is done.  We will work when
 589	 * the checksum test fails, since some utilities update the boot sector
 590	 * ignoring the checksum which leaves the checksum out-of-date.  We
 591	 * report a warning if this is the case.
 592	 */
 593	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
 594		le32 *u;
 595		u32 i;
 596
 597		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
 598			i += le32_to_cpup(u);
 599		if (le32_to_cpu(b->checksum) != i)
 600			ntfs_warning(sb, "Invalid boot sector checksum.");
 601	}
 602	/* Check OEMidentifier is "NTFS    " */
 603	if (b->oem_id != magicNTFS)
 604		goto not_ntfs;
 605	/* Check bytes per sector value is between 256 and 4096. */
 606	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
 607			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
 608		goto not_ntfs;
 609	/* Check sectors per cluster value is valid. */
 610	switch (b->bpb.sectors_per_cluster) {
 611	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
 612		break;
 613	default:
 614		goto not_ntfs;
 615	}
 616	/* Check the cluster size is not above the maximum (64kiB). */
 617	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
 618			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
 619		goto not_ntfs;
 620	/* Check reserved/unused fields are really zero. */
 621	if (le16_to_cpu(b->bpb.reserved_sectors) ||
 622			le16_to_cpu(b->bpb.root_entries) ||
 623			le16_to_cpu(b->bpb.sectors) ||
 624			le16_to_cpu(b->bpb.sectors_per_fat) ||
 625			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
 626		goto not_ntfs;
 627	/* Check clusters per file mft record value is valid. */
 628	if ((u8)b->clusters_per_mft_record < 0xe1 ||
 629			(u8)b->clusters_per_mft_record > 0xf7)
 630		switch (b->clusters_per_mft_record) {
 631		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
 632			break;
 633		default:
 634			goto not_ntfs;
 635		}
 636	/* Check clusters per index block value is valid. */
 637	if ((u8)b->clusters_per_index_record < 0xe1 ||
 638			(u8)b->clusters_per_index_record > 0xf7)
 639		switch (b->clusters_per_index_record) {
 640		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
 641			break;
 642		default:
 643			goto not_ntfs;
 644		}
 645	/*
 646	 * Check for valid end of sector marker. We will work without it, but
 647	 * many BIOSes will refuse to boot from a bootsector if the magic is
 648	 * incorrect, so we emit a warning.
 649	 */
 650	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
 651		ntfs_warning(sb, "Invalid end of sector marker.");
 652	return true;
 653not_ntfs:
 654	return false;
 655}
 656
 657/**
 658 * read_ntfs_boot_sector - read the NTFS boot sector of a device
 659 * @sb:		super block of device to read the boot sector from
 660 * @silent:	if true, suppress all output
 661 *
 662 * Reads the boot sector from the device and validates it. If that fails, tries
 663 * to read the backup boot sector, first from the end of the device a-la NT4 and
 664 * later and then from the middle of the device a-la NT3.51 and before.
 665 *
 666 * If a valid boot sector is found but it is not the primary boot sector, we
 667 * repair the primary boot sector silently (unless the device is read-only or
 668 * the primary boot sector is not accessible).
 669 *
 670 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
 671 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
 672 * to their respective values.
 673 *
 674 * Return the unlocked buffer head containing the boot sector or NULL on error.
 675 */
 676static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
 677		const int silent)
 678{
 679	const char *read_err_str = "Unable to read %s boot sector.";
 680	struct buffer_head *bh_primary, *bh_backup;
 681	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
 682
 683	/* Try to read primary boot sector. */
 684	if ((bh_primary = sb_bread(sb, 0))) {
 685		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 686				bh_primary->b_data, silent))
 687			return bh_primary;
 688		if (!silent)
 689			ntfs_error(sb, "Primary boot sector is invalid.");
 690	} else if (!silent)
 691		ntfs_error(sb, read_err_str, "primary");
 692	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
 693		if (bh_primary)
 694			brelse(bh_primary);
 695		if (!silent)
 696			ntfs_error(sb, "Mount option errors=recover not used. "
 697					"Aborting without trying to recover.");
 698		return NULL;
 699	}
 700	/* Try to read NT4+ backup boot sector. */
 701	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
 702		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 703				bh_backup->b_data, silent))
 704			goto hotfix_primary_boot_sector;
 705		brelse(bh_backup);
 706	} else if (!silent)
 707		ntfs_error(sb, read_err_str, "backup");
 708	/* Try to read NT3.51- backup boot sector. */
 709	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
 710		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 711				bh_backup->b_data, silent))
 712			goto hotfix_primary_boot_sector;
 713		if (!silent)
 714			ntfs_error(sb, "Could not find a valid backup boot "
 715					"sector.");
 716		brelse(bh_backup);
 717	} else if (!silent)
 718		ntfs_error(sb, read_err_str, "backup");
 719	/* We failed. Cleanup and return. */
 720	if (bh_primary)
 721		brelse(bh_primary);
 722	return NULL;
 723hotfix_primary_boot_sector:
 724	if (bh_primary) {
 725		/*
 726		 * If we managed to read sector zero and the volume is not
 727		 * read-only, copy the found, valid backup boot sector to the
 728		 * primary boot sector.  Note we only copy the actual boot
 729		 * sector structure, not the actual whole device sector as that
 730		 * may be bigger and would potentially damage the $Boot system
 731		 * file (FIXME: Would be nice to know if the backup boot sector
 732		 * on a large sector device contains the whole boot loader or
 733		 * just the first 512 bytes).
 734		 */
 735		if (!(sb->s_flags & MS_RDONLY)) {
 736			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
 737					"boot sector from backup copy.");
 738			memcpy(bh_primary->b_data, bh_backup->b_data,
 739					NTFS_BLOCK_SIZE);
 740			mark_buffer_dirty(bh_primary);
 741			sync_dirty_buffer(bh_primary);
 742			if (buffer_uptodate(bh_primary)) {
 743				brelse(bh_backup);
 744				return bh_primary;
 745			}
 746			ntfs_error(sb, "Hot-fix: Device write error while "
 747					"recovering primary boot sector.");
 748		} else {
 749			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
 750					"sector failed: Read-only mount.");
 751		}
 752		brelse(bh_primary);
 753	}
 754	ntfs_warning(sb, "Using backup boot sector.");
 755	return bh_backup;
 756}
 757
 758/**
 759 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
 760 * @vol:	volume structure to initialise with data from boot sector
 761 * @b:		boot sector to parse
 762 *
 763 * Parse the ntfs boot sector @b and store all imporant information therein in
 764 * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
 765 */
 766static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
 767{
 768	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
 769	int clusters_per_mft_record, clusters_per_index_record;
 770	s64 ll;
 771
 772	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
 773	vol->sector_size_bits = ffs(vol->sector_size) - 1;
 774	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
 775			vol->sector_size);
 776	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
 777			vol->sector_size_bits);
 778	if (vol->sector_size < vol->sb->s_blocksize) {
 779		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
 780				"device block size (%lu).  This is not "
 781				"supported.  Sorry.", vol->sector_size,
 782				vol->sb->s_blocksize);
 783		return false;
 784	}
 785	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
 786	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
 787	ntfs_debug("sectors_per_cluster_bits = 0x%x",
 788			sectors_per_cluster_bits);
 789	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
 790	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
 791	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
 792	vol->cluster_size_mask = vol->cluster_size - 1;
 793	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
 794	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
 795			vol->cluster_size);
 796	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
 797	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
 798	if (vol->cluster_size < vol->sector_size) {
 799		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
 800				"sector size (%i).  This is not supported.  "
 801				"Sorry.", vol->cluster_size, vol->sector_size);
 802		return false;
 803	}
 804	clusters_per_mft_record = b->clusters_per_mft_record;
 805	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
 806			clusters_per_mft_record, clusters_per_mft_record);
 807	if (clusters_per_mft_record > 0)
 808		vol->mft_record_size = vol->cluster_size <<
 809				(ffs(clusters_per_mft_record) - 1);
 810	else
 811		/*
 812		 * When mft_record_size < cluster_size, clusters_per_mft_record
 813		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
 814		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
 815		 */
 816		vol->mft_record_size = 1 << -clusters_per_mft_record;
 817	vol->mft_record_size_mask = vol->mft_record_size - 1;
 818	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
 819	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
 820			vol->mft_record_size);
 821	ntfs_debug("vol->mft_record_size_mask = 0x%x",
 822			vol->mft_record_size_mask);
 823	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
 824			vol->mft_record_size_bits, vol->mft_record_size_bits);
 825	/*
 826	 * We cannot support mft record sizes above the PAGE_SIZE since
 827	 * we store $MFT/$DATA, the table of mft records in the page cache.
 828	 */
 829	if (vol->mft_record_size > PAGE_SIZE) {
 830		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
 831				"PAGE_SIZE on your system (%lu).  "
 832				"This is not supported.  Sorry.",
 833				vol->mft_record_size, PAGE_SIZE);
 834		return false;
 835	}
 836	/* We cannot support mft record sizes below the sector size. */
 837	if (vol->mft_record_size < vol->sector_size) {
 838		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
 839				"sector size (%i).  This is not supported.  "
 840				"Sorry.", vol->mft_record_size,
 841				vol->sector_size);
 842		return false;
 843	}
 844	clusters_per_index_record = b->clusters_per_index_record;
 845	ntfs_debug("clusters_per_index_record = %i (0x%x)",
 846			clusters_per_index_record, clusters_per_index_record);
 847	if (clusters_per_index_record > 0)
 848		vol->index_record_size = vol->cluster_size <<
 849				(ffs(clusters_per_index_record) - 1);
 850	else
 851		/*
 852		 * When index_record_size < cluster_size,
 853		 * clusters_per_index_record = -log2(index_record_size) bytes.
 854		 * index_record_size normaly equals 4096 bytes, which is
 855		 * encoded as 0xF4 (-12 in decimal).
 856		 */
 857		vol->index_record_size = 1 << -clusters_per_index_record;
 858	vol->index_record_size_mask = vol->index_record_size - 1;
 859	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
 860	ntfs_debug("vol->index_record_size = %i (0x%x)",
 861			vol->index_record_size, vol->index_record_size);
 862	ntfs_debug("vol->index_record_size_mask = 0x%x",
 863			vol->index_record_size_mask);
 864	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
 865			vol->index_record_size_bits,
 866			vol->index_record_size_bits);
 867	/* We cannot support index record sizes below the sector size. */
 868	if (vol->index_record_size < vol->sector_size) {
 869		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
 870				"the sector size (%i).  This is not "
 871				"supported.  Sorry.", vol->index_record_size,
 872				vol->sector_size);
 873		return false;
 874	}
 875	/*
 876	 * Get the size of the volume in clusters and check for 64-bit-ness.
 877	 * Windows currently only uses 32 bits to save the clusters so we do
 878	 * the same as it is much faster on 32-bit CPUs.
 879	 */
 880	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
 881	if ((u64)ll >= 1ULL << 32) {
 882		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
 883		return false;
 884	}
 885	vol->nr_clusters = ll;
 886	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
 887	/*
 888	 * On an architecture where unsigned long is 32-bits, we restrict the
 889	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
 890	 * will hopefully optimize the whole check away.
 891	 */
 892	if (sizeof(unsigned long) < 8) {
 893		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
 894			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
 895					"large for this architecture.  "
 896					"Maximum supported is 2TiB.  Sorry.",
 897					(unsigned long long)ll >> (40 -
 898					vol->cluster_size_bits));
 899			return false;
 900		}
 901	}
 902	ll = sle64_to_cpu(b->mft_lcn);
 903	if (ll >= vol->nr_clusters) {
 904		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
 905				"volume.  Weird.", (unsigned long long)ll,
 906				(unsigned long long)ll);
 907		return false;
 908	}
 909	vol->mft_lcn = ll;
 910	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
 911	ll = sle64_to_cpu(b->mftmirr_lcn);
 912	if (ll >= vol->nr_clusters) {
 913		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
 914				"of volume.  Weird.", (unsigned long long)ll,
 915				(unsigned long long)ll);
 916		return false;
 917	}
 918	vol->mftmirr_lcn = ll;
 919	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
 920#ifdef NTFS_RW
 921	/*
 922	 * Work out the size of the mft mirror in number of mft records. If the
 923	 * cluster size is less than or equal to the size taken by four mft
 924	 * records, the mft mirror stores the first four mft records. If the
 925	 * cluster size is bigger than the size taken by four mft records, the
 926	 * mft mirror contains as many mft records as will fit into one
 927	 * cluster.
 928	 */
 929	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
 930		vol->mftmirr_size = 4;
 931	else
 932		vol->mftmirr_size = vol->cluster_size >>
 933				vol->mft_record_size_bits;
 934	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
 935#endif /* NTFS_RW */
 936	vol->serial_no = le64_to_cpu(b->volume_serial_number);
 937	ntfs_debug("vol->serial_no = 0x%llx",
 938			(unsigned long long)vol->serial_no);
 939	return true;
 940}
 941
 942/**
 943 * ntfs_setup_allocators - initialize the cluster and mft allocators
 944 * @vol:	volume structure for which to setup the allocators
 945 *
 946 * Setup the cluster (lcn) and mft allocators to the starting values.
 947 */
 948static void ntfs_setup_allocators(ntfs_volume *vol)
 949{
 950#ifdef NTFS_RW
 951	LCN mft_zone_size, mft_lcn;
 952#endif /* NTFS_RW */
 953
 954	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
 955			vol->mft_zone_multiplier);
 956#ifdef NTFS_RW
 957	/* Determine the size of the MFT zone. */
 958	mft_zone_size = vol->nr_clusters;
 959	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
 960	case 4:
 961		mft_zone_size >>= 1;			/* 50%   */
 962		break;
 963	case 3:
 964		mft_zone_size = (mft_zone_size +
 965				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
 966		break;
 967	case 2:
 968		mft_zone_size >>= 2;			/* 25%   */
 969		break;
 970	/* case 1: */
 971	default:
 972		mft_zone_size >>= 3;			/* 12.5% */
 973		break;
 974	}
 975	/* Setup the mft zone. */
 976	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
 977	ntfs_debug("vol->mft_zone_pos = 0x%llx",
 978			(unsigned long long)vol->mft_zone_pos);
 979	/*
 980	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
 981	 * source) and if the actual mft_lcn is in the expected place or even
 982	 * further to the front of the volume, extend the mft_zone to cover the
 983	 * beginning of the volume as well.  This is in order to protect the
 984	 * area reserved for the mft bitmap as well within the mft_zone itself.
 985	 * On non-standard volumes we do not protect it as the overhead would
 986	 * be higher than the speed increase we would get by doing it.
 987	 */
 988	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
 989	if (mft_lcn * vol->cluster_size < 16 * 1024)
 990		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
 991				vol->cluster_size;
 992	if (vol->mft_zone_start <= mft_lcn)
 993		vol->mft_zone_start = 0;
 994	ntfs_debug("vol->mft_zone_start = 0x%llx",
 995			(unsigned long long)vol->mft_zone_start);
 996	/*
 997	 * Need to cap the mft zone on non-standard volumes so that it does
 998	 * not point outside the boundaries of the volume.  We do this by
 999	 * halving the zone size until we are inside the volume.
1000	 */
1001	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1002	while (vol->mft_zone_end >= vol->nr_clusters) {
1003		mft_zone_size >>= 1;
1004		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1005	}
1006	ntfs_debug("vol->mft_zone_end = 0x%llx",
1007			(unsigned long long)vol->mft_zone_end);
1008	/*
1009	 * Set the current position within each data zone to the start of the
1010	 * respective zone.
1011	 */
1012	vol->data1_zone_pos = vol->mft_zone_end;
1013	ntfs_debug("vol->data1_zone_pos = 0x%llx",
1014			(unsigned long long)vol->data1_zone_pos);
1015	vol->data2_zone_pos = 0;
1016	ntfs_debug("vol->data2_zone_pos = 0x%llx",
1017			(unsigned long long)vol->data2_zone_pos);
1018
1019	/* Set the mft data allocation position to mft record 24. */
1020	vol->mft_data_pos = 24;
1021	ntfs_debug("vol->mft_data_pos = 0x%llx",
1022			(unsigned long long)vol->mft_data_pos);
1023#endif /* NTFS_RW */
1024}
1025
1026#ifdef NTFS_RW
1027
1028/**
1029 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1030 * @vol:	ntfs super block describing device whose mft mirror to load
1031 *
1032 * Return 'true' on success or 'false' on error.
1033 */
1034static bool load_and_init_mft_mirror(ntfs_volume *vol)
1035{
1036	struct inode *tmp_ino;
1037	ntfs_inode *tmp_ni;
1038
1039	ntfs_debug("Entering.");
1040	/* Get mft mirror inode. */
1041	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1042	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1043		if (!IS_ERR(tmp_ino))
1044			iput(tmp_ino);
1045		/* Caller will display error message. */
1046		return false;
1047	}
1048	/*
1049	 * Re-initialize some specifics about $MFTMirr's inode as
1050	 * ntfs_read_inode() will have set up the default ones.
1051	 */
1052	/* Set uid and gid to root. */
1053	tmp_ino->i_uid = GLOBAL_ROOT_UID;
1054	tmp_ino->i_gid = GLOBAL_ROOT_GID;
1055	/* Regular file.  No access for anyone. */
1056	tmp_ino->i_mode = S_IFREG;
1057	/* No VFS initiated operations allowed for $MFTMirr. */
1058	tmp_ino->i_op = &ntfs_empty_inode_ops;
1059	tmp_ino->i_fop = &ntfs_empty_file_ops;
1060	/* Put in our special address space operations. */
1061	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1062	tmp_ni = NTFS_I(tmp_ino);
1063	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1064	NInoSetMstProtected(tmp_ni);
1065	NInoSetSparseDisabled(tmp_ni);
1066	/*
1067	 * Set up our little cheat allowing us to reuse the async read io
1068	 * completion handler for directories.
1069	 */
1070	tmp_ni->itype.index.block_size = vol->mft_record_size;
1071	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1072	vol->mftmirr_ino = tmp_ino;
1073	ntfs_debug("Done.");
1074	return true;
1075}
1076
1077/**
1078 * check_mft_mirror - compare contents of the mft mirror with the mft
1079 * @vol:	ntfs super block describing device whose mft mirror to check
1080 *
1081 * Return 'true' on success or 'false' on error.
1082 *
1083 * Note, this function also results in the mft mirror runlist being completely
1084 * mapped into memory.  The mft mirror write code requires this and will BUG()
1085 * should it find an unmapped runlist element.
1086 */
1087static bool check_mft_mirror(ntfs_volume *vol)
1088{
1089	struct super_block *sb = vol->sb;
1090	ntfs_inode *mirr_ni;
1091	struct page *mft_page, *mirr_page;
1092	u8 *kmft, *kmirr;
1093	runlist_element *rl, rl2[2];
1094	pgoff_t index;
1095	int mrecs_per_page, i;
1096
1097	ntfs_debug("Entering.");
1098	/* Compare contents of $MFT and $MFTMirr. */
1099	mrecs_per_page = PAGE_SIZE / vol->mft_record_size;
1100	BUG_ON(!mrecs_per_page);
1101	BUG_ON(!vol->mftmirr_size);
1102	mft_page = mirr_page = NULL;
1103	kmft = kmirr = NULL;
1104	index = i = 0;
1105	do {
1106		u32 bytes;
1107
1108		/* Switch pages if necessary. */
1109		if (!(i % mrecs_per_page)) {
1110			if (index) {
1111				ntfs_unmap_page(mft_page);
1112				ntfs_unmap_page(mirr_page);
1113			}
1114			/* Get the $MFT page. */
1115			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1116					index);
1117			if (IS_ERR(mft_page)) {
1118				ntfs_error(sb, "Failed to read $MFT.");
1119				return false;
1120			}
1121			kmft = page_address(mft_page);
1122			/* Get the $MFTMirr page. */
1123			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1124					index);
1125			if (IS_ERR(mirr_page)) {
1126				ntfs_error(sb, "Failed to read $MFTMirr.");
1127				goto mft_unmap_out;
1128			}
1129			kmirr = page_address(mirr_page);
1130			++index;
1131		}
1132		/* Do not check the record if it is not in use. */
1133		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1134			/* Make sure the record is ok. */
1135			if (ntfs_is_baad_recordp((le32*)kmft)) {
1136				ntfs_error(sb, "Incomplete multi sector "
1137						"transfer detected in mft "
1138						"record %i.", i);
1139mm_unmap_out:
1140				ntfs_unmap_page(mirr_page);
1141mft_unmap_out:
1142				ntfs_unmap_page(mft_page);
1143				return false;
1144			}
1145		}
1146		/* Do not check the mirror record if it is not in use. */
1147		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1148			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1149				ntfs_error(sb, "Incomplete multi sector "
1150						"transfer detected in mft "
1151						"mirror record %i.", i);
1152				goto mm_unmap_out;
1153			}
1154		}
1155		/* Get the amount of data in the current record. */
1156		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1157		if (bytes < sizeof(MFT_RECORD_OLD) ||
1158				bytes > vol->mft_record_size ||
1159				ntfs_is_baad_recordp((le32*)kmft)) {
1160			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1161			if (bytes < sizeof(MFT_RECORD_OLD) ||
1162					bytes > vol->mft_record_size ||
1163					ntfs_is_baad_recordp((le32*)kmirr))
1164				bytes = vol->mft_record_size;
1165		}
1166		/* Compare the two records. */
1167		if (memcmp(kmft, kmirr, bytes)) {
1168			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1169					"match.  Run ntfsfix or chkdsk.", i);
1170			goto mm_unmap_out;
1171		}
1172		kmft += vol->mft_record_size;
1173		kmirr += vol->mft_record_size;
1174	} while (++i < vol->mftmirr_size);
1175	/* Release the last pages. */
1176	ntfs_unmap_page(mft_page);
1177	ntfs_unmap_page(mirr_page);
1178
1179	/* Construct the mft mirror runlist by hand. */
1180	rl2[0].vcn = 0;
1181	rl2[0].lcn = vol->mftmirr_lcn;
1182	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1183			vol->cluster_size - 1) / vol->cluster_size;
1184	rl2[1].vcn = rl2[0].length;
1185	rl2[1].lcn = LCN_ENOENT;
1186	rl2[1].length = 0;
1187	/*
1188	 * Because we have just read all of the mft mirror, we know we have
1189	 * mapped the full runlist for it.
1190	 */
1191	mirr_ni = NTFS_I(vol->mftmirr_ino);
1192	down_read(&mirr_ni->runlist.lock);
1193	rl = mirr_ni->runlist.rl;
1194	/* Compare the two runlists.  They must be identical. */
1195	i = 0;
1196	do {
1197		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1198				rl2[i].length != rl[i].length) {
1199			ntfs_error(sb, "$MFTMirr location mismatch.  "
1200					"Run chkdsk.");
1201			up_read(&mirr_ni->runlist.lock);
1202			return false;
1203		}
1204	} while (rl2[i++].length);
1205	up_read(&mirr_ni->runlist.lock);
1206	ntfs_debug("Done.");
1207	return true;
1208}
1209
1210/**
1211 * load_and_check_logfile - load and check the logfile inode for a volume
1212 * @vol:	ntfs super block describing device whose logfile to load
1213 *
1214 * Return 'true' on success or 'false' on error.
1215 */
1216static bool load_and_check_logfile(ntfs_volume *vol,
1217		RESTART_PAGE_HEADER **rp)
1218{
1219	struct inode *tmp_ino;
1220
1221	ntfs_debug("Entering.");
1222	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1223	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1224		if (!IS_ERR(tmp_ino))
1225			iput(tmp_ino);
1226		/* Caller will display error message. */
1227		return false;
1228	}
1229	if (!ntfs_check_logfile(tmp_ino, rp)) {
1230		iput(tmp_ino);
1231		/* ntfs_check_logfile() will have displayed error output. */
1232		return false;
1233	}
1234	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1235	vol->logfile_ino = tmp_ino;
1236	ntfs_debug("Done.");
1237	return true;
1238}
1239
1240#define NTFS_HIBERFIL_HEADER_SIZE	4096
1241
1242/**
1243 * check_windows_hibernation_status - check if Windows is suspended on a volume
1244 * @vol:	ntfs super block of device to check
1245 *
1246 * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1247 * looking for the file hiberfil.sys in the root directory of the volume.  If
1248 * the file is not present Windows is definitely not suspended.
1249 *
1250 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1251 * definitely suspended (this volume is not the system volume).  Caveat:  on a
1252 * system with many volumes it is possible that the < 4kiB check is bogus but
1253 * for now this should do fine.
1254 *
1255 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1256 * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1257 * Windows is definitely suspended.  If it is completely full of zeroes,
1258 * Windows is definitely not hibernated.  Any other case is treated as if
1259 * Windows is suspended.  This caters for the above mentioned caveat of a
1260 * system with many volumes where no "hibr" magic would be present and there is
1261 * no zero header.
1262 *
1263 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1264 * hibernated on the volume, and -errno on error.
1265 */
1266static int check_windows_hibernation_status(ntfs_volume *vol)
1267{
1268	MFT_REF mref;
1269	struct inode *vi;
1270	struct page *page;
1271	u32 *kaddr, *kend;
1272	ntfs_name *name = NULL;
1273	int ret = 1;
1274	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1275			cpu_to_le16('i'), cpu_to_le16('b'),
1276			cpu_to_le16('e'), cpu_to_le16('r'),
1277			cpu_to_le16('f'), cpu_to_le16('i'),
1278			cpu_to_le16('l'), cpu_to_le16('.'),
1279			cpu_to_le16('s'), cpu_to_le16('y'),
1280			cpu_to_le16('s'), 0 };
1281
1282	ntfs_debug("Entering.");
1283	/*
1284	 * Find the inode number for the hibernation file by looking up the
1285	 * filename hiberfil.sys in the root directory.
1286	 */
1287	inode_lock(vol->root_ino);
1288	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1289			&name);
1290	inode_unlock(vol->root_ino);
1291	if (IS_ERR_MREF(mref)) {
1292		ret = MREF_ERR(mref);
1293		/* If the file does not exist, Windows is not hibernated. */
1294		if (ret == -ENOENT) {
1295			ntfs_debug("hiberfil.sys not present.  Windows is not "
1296					"hibernated on the volume.");
1297			return 0;
1298		}
1299		/* A real error occurred. */
1300		ntfs_error(vol->sb, "Failed to find inode number for "
1301				"hiberfil.sys.");
1302		return ret;
1303	}
1304	/* We do not care for the type of match that was found. */
1305	kfree(name);
1306	/* Get the inode. */
1307	vi = ntfs_iget(vol->sb, MREF(mref));
1308	if (IS_ERR(vi) || is_bad_inode(vi)) {
1309		if (!IS_ERR(vi))
1310			iput(vi);
1311		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1312		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1313	}
1314	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1315		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1316				"Windows is hibernated on the volume.  This "
1317				"is not the system volume.", i_size_read(vi));
1318		goto iput_out;
1319	}
1320	page = ntfs_map_page(vi->i_mapping, 0);
1321	if (IS_ERR(page)) {
1322		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1323		ret = PTR_ERR(page);
1324		goto iput_out;
1325	}
1326	kaddr = (u32*)page_address(page);
1327	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1328		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1329				"hibernated on the volume.  This is the "
1330				"system volume.");
1331		goto unm_iput_out;
1332	}
1333	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1334	do {
1335		if (unlikely(*kaddr)) {
1336			ntfs_debug("hiberfil.sys is larger than 4kiB "
1337					"(0x%llx), does not contain the "
1338					"\"hibr\" magic, and does not have a "
1339					"zero header.  Windows is hibernated "
1340					"on the volume.  This is not the "
1341					"system volume.", i_size_read(vi));
1342			goto unm_iput_out;
1343		}
1344	} while (++kaddr < kend);
1345	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1346			"hibernated on the volume.  This is the system "
1347			"volume.");
1348	ret = 0;
1349unm_iput_out:
1350	ntfs_unmap_page(page);
1351iput_out:
1352	iput(vi);
1353	return ret;
1354}
1355
1356/**
1357 * load_and_init_quota - load and setup the quota file for a volume if present
1358 * @vol:	ntfs super block describing device whose quota file to load
1359 *
1360 * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1361 * leave vol->quota_ino as NULL and return success.
1362 */
1363static bool load_and_init_quota(ntfs_volume *vol)
1364{
1365	MFT_REF mref;
1366	struct inode *tmp_ino;
1367	ntfs_name *name = NULL;
1368	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1369			cpu_to_le16('Q'), cpu_to_le16('u'),
1370			cpu_to_le16('o'), cpu_to_le16('t'),
1371			cpu_to_le16('a'), 0 };
1372	static ntfschar Q[3] = { cpu_to_le16('$'),
1373			cpu_to_le16('Q'), 0 };
1374
1375	ntfs_debug("Entering.");
1376	/*
1377	 * Find the inode number for the quota file by looking up the filename
1378	 * $Quota in the extended system files directory $Extend.
1379	 */
1380	inode_lock(vol->extend_ino);
1381	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1382			&name);
1383	inode_unlock(vol->extend_ino);
1384	if (IS_ERR_MREF(mref)) {
1385		/*
1386		 * If the file does not exist, quotas are disabled and have
1387		 * never been enabled on this volume, just return success.
1388		 */
1389		if (MREF_ERR(mref) == -ENOENT) {
1390			ntfs_debug("$Quota not present.  Volume does not have "
1391					"quotas enabled.");
1392			/*
1393			 * No need to try to set quotas out of date if they are
1394			 * not enabled.
1395			 */
1396			NVolSetQuotaOutOfDate(vol);
1397			return true;
1398		}
1399		/* A real error occurred. */
1400		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1401		return false;
1402	}
1403	/* We do not care for the type of match that was found. */
1404	kfree(name);
1405	/* Get the inode. */
1406	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1407	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1408		if (!IS_ERR(tmp_ino))
1409			iput(tmp_ino);
1410		ntfs_error(vol->sb, "Failed to load $Quota.");
1411		return false;
1412	}
1413	vol->quota_ino = tmp_ino;
1414	/* Get the $Q index allocation attribute. */
1415	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1416	if (IS_ERR(tmp_ino)) {
1417		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1418		return false;
1419	}
1420	vol->quota_q_ino = tmp_ino;
1421	ntfs_debug("Done.");
1422	return true;
1423}
1424
1425/**
1426 * load_and_init_usnjrnl - load and setup the transaction log if present
1427 * @vol:	ntfs super block describing device whose usnjrnl file to load
1428 *
1429 * Return 'true' on success or 'false' on error.
1430 *
1431 * If $UsnJrnl is not present or in the process of being disabled, we set
1432 * NVolUsnJrnlStamped() and return success.
1433 *
1434 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1435 * i.e. transaction logging has only just been enabled or the journal has been
1436 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1437 * and return success.
1438 */
1439static bool load_and_init_usnjrnl(ntfs_volume *vol)
1440{
1441	MFT_REF mref;
1442	struct inode *tmp_ino;
1443	ntfs_inode *tmp_ni;
1444	struct page *page;
1445	ntfs_name *name = NULL;
1446	USN_HEADER *uh;
1447	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1448			cpu_to_le16('U'), cpu_to_le16('s'),
1449			cpu_to_le16('n'), cpu_to_le16('J'),
1450			cpu_to_le16('r'), cpu_to_le16('n'),
1451			cpu_to_le16('l'), 0 };
1452	static ntfschar Max[5] = { cpu_to_le16('$'),
1453			cpu_to_le16('M'), cpu_to_le16('a'),
1454			cpu_to_le16('x'), 0 };
1455	static ntfschar J[3] = { cpu_to_le16('$'),
1456			cpu_to_le16('J'), 0 };
1457
1458	ntfs_debug("Entering.");
1459	/*
1460	 * Find the inode number for the transaction log file by looking up the
1461	 * filename $UsnJrnl in the extended system files directory $Extend.
1462	 */
1463	inode_lock(vol->extend_ino);
1464	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1465			&name);
1466	inode_unlock(vol->extend_ino);
1467	if (IS_ERR_MREF(mref)) {
1468		/*
1469		 * If the file does not exist, transaction logging is disabled,
1470		 * just return success.
1471		 */
1472		if (MREF_ERR(mref) == -ENOENT) {
1473			ntfs_debug("$UsnJrnl not present.  Volume does not "
1474					"have transaction logging enabled.");
1475not_enabled:
1476			/*
1477			 * No need to try to stamp the transaction log if
1478			 * transaction logging is not enabled.
1479			 */
1480			NVolSetUsnJrnlStamped(vol);
1481			return true;
1482		}
1483		/* A real error occurred. */
1484		ntfs_error(vol->sb, "Failed to find inode number for "
1485				"$UsnJrnl.");
1486		return false;
1487	}
1488	/* We do not care for the type of match that was found. */
1489	kfree(name);
1490	/* Get the inode. */
1491	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1492	if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1493		if (!IS_ERR(tmp_ino))
1494			iput(tmp_ino);
1495		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1496		return false;
1497	}
1498	vol->usnjrnl_ino = tmp_ino;
1499	/*
1500	 * If the transaction log is in the process of being deleted, we can
1501	 * ignore it.
1502	 */
1503	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1504		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1505				"Volume does not have transaction logging "
1506				"enabled.");
1507		goto not_enabled;
1508	}
1509	/* Get the $DATA/$Max attribute. */
1510	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1511	if (IS_ERR(tmp_ino)) {
1512		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1513				"attribute.");
1514		return false;
1515	}
1516	vol->usnjrnl_max_ino = tmp_ino;
1517	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1518		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1519				"attribute (size is 0x%llx but should be at "
1520				"least 0x%zx bytes).", i_size_read(tmp_ino),
1521				sizeof(USN_HEADER));
1522		return false;
1523	}
1524	/* Get the $DATA/$J attribute. */
1525	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1526	if (IS_ERR(tmp_ino)) {
1527		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1528				"attribute.");
1529		return false;
1530	}
1531	vol->usnjrnl_j_ino = tmp_ino;
1532	/* Verify $J is non-resident and sparse. */
1533	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1534	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1535		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1536				"and/or not sparse.");
1537		return false;
1538	}
1539	/* Read the USN_HEADER from $DATA/$Max. */
1540	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1541	if (IS_ERR(page)) {
1542		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1543				"attribute.");
1544		return false;
1545	}
1546	uh = (USN_HEADER*)page_address(page);
1547	/* Sanity check the $Max. */
1548	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1549			sle64_to_cpu(uh->maximum_size))) {
1550		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1551				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1552				(long long)sle64_to_cpu(uh->allocation_delta),
1553				(long long)sle64_to_cpu(uh->maximum_size));
1554		ntfs_unmap_page(page);
1555		return false;
1556	}
1557	/*
1558	 * If the transaction log has been stamped and nothing has been written
1559	 * to it since, we do not need to stamp it.
1560	 */
1561	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1562			i_size_read(vol->usnjrnl_j_ino))) {
1563		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1564				i_size_read(vol->usnjrnl_j_ino))) {
1565			ntfs_unmap_page(page);
1566			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1567					"logged since it was last stamped.  "
1568					"Treating this as if the volume does "
1569					"not have transaction logging "
1570					"enabled.");
1571			goto not_enabled;
1572		}
1573		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1574				"which is out of bounds (0x%llx).  $UsnJrnl "
1575				"is corrupt.",
1576				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1577				i_size_read(vol->usnjrnl_j_ino));
1578		ntfs_unmap_page(page);
1579		return false;
1580	}
1581	ntfs_unmap_page(page);
1582	ntfs_debug("Done.");
1583	return true;
1584}
1585
1586/**
1587 * load_and_init_attrdef - load the attribute definitions table for a volume
1588 * @vol:	ntfs super block describing device whose attrdef to load
1589 *
1590 * Return 'true' on success or 'false' on error.
1591 */
1592static bool load_and_init_attrdef(ntfs_volume *vol)
1593{
1594	loff_t i_size;
1595	struct super_block *sb = vol->sb;
1596	struct inode *ino;
1597	struct page *page;
1598	pgoff_t index, max_index;
1599	unsigned int size;
1600
1601	ntfs_debug("Entering.");
1602	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1603	ino = ntfs_iget(sb, FILE_AttrDef);
1604	if (IS_ERR(ino) || is_bad_inode(ino)) {
1605		if (!IS_ERR(ino))
1606			iput(ino);
1607		goto failed;
1608	}
1609	NInoSetSparseDisabled(NTFS_I(ino));
1610	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1611	i_size = i_size_read(ino);
1612	if (i_size <= 0 || i_size > 0x7fffffff)
1613		goto iput_failed;
1614	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1615	if (!vol->attrdef)
1616		goto iput_failed;
1617	index = 0;
1618	max_index = i_size >> PAGE_SHIFT;
1619	size = PAGE_SIZE;
1620	while (index < max_index) {
1621		/* Read the attrdef table and copy it into the linear buffer. */
1622read_partial_attrdef_page:
1623		page = ntfs_map_page(ino->i_mapping, index);
1624		if (IS_ERR(page))
1625			goto free_iput_failed;
1626		memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT),
1627				page_address(page), size);
1628		ntfs_unmap_page(page);
1629	};
1630	if (size == PAGE_SIZE) {
1631		size = i_size & ~PAGE_MASK;
1632		if (size)
1633			goto read_partial_attrdef_page;
1634	}
1635	vol->attrdef_size = i_size;
1636	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1637	iput(ino);
1638	return true;
1639free_iput_failed:
1640	ntfs_free(vol->attrdef);
1641	vol->attrdef = NULL;
1642iput_failed:
1643	iput(ino);
1644failed:
1645	ntfs_error(sb, "Failed to initialize attribute definition table.");
1646	return false;
1647}
1648
1649#endif /* NTFS_RW */
1650
1651/**
1652 * load_and_init_upcase - load the upcase table for an ntfs volume
1653 * @vol:	ntfs super block describing device whose upcase to load
1654 *
1655 * Return 'true' on success or 'false' on error.
1656 */
1657static bool load_and_init_upcase(ntfs_volume *vol)
1658{
1659	loff_t i_size;
1660	struct super_block *sb = vol->sb;
1661	struct inode *ino;
1662	struct page *page;
1663	pgoff_t index, max_index;
1664	unsigned int size;
1665	int i, max;
1666
1667	ntfs_debug("Entering.");
1668	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1669	ino = ntfs_iget(sb, FILE_UpCase);
1670	if (IS_ERR(ino) || is_bad_inode(ino)) {
1671		if (!IS_ERR(ino))
1672			iput(ino);
1673		goto upcase_failed;
1674	}
1675	/*
1676	 * The upcase size must not be above 64k Unicode characters, must not
1677	 * be zero and must be a multiple of sizeof(ntfschar).
1678	 */
1679	i_size = i_size_read(ino);
1680	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1681			i_size > 64ULL * 1024 * sizeof(ntfschar))
1682		goto iput_upcase_failed;
1683	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1684	if (!vol->upcase)
1685		goto iput_upcase_failed;
1686	index = 0;
1687	max_index = i_size >> PAGE_SHIFT;
1688	size = PAGE_SIZE;
1689	while (index < max_index) {
1690		/* Read the upcase table and copy it into the linear buffer. */
1691read_partial_upcase_page:
1692		page = ntfs_map_page(ino->i_mapping, index);
1693		if (IS_ERR(page))
1694			goto iput_upcase_failed;
1695		memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT),
1696				page_address(page), size);
1697		ntfs_unmap_page(page);
1698	};
1699	if (size == PAGE_SIZE) {
1700		size = i_size & ~PAGE_MASK;
1701		if (size)
1702			goto read_partial_upcase_page;
1703	}
1704	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1705	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1706			i_size, 64 * 1024 * sizeof(ntfschar));
1707	iput(ino);
1708	mutex_lock(&ntfs_lock);
1709	if (!default_upcase) {
1710		ntfs_debug("Using volume specified $UpCase since default is "
1711				"not present.");
1712		mutex_unlock(&ntfs_lock);
1713		return true;
1714	}
1715	max = default_upcase_len;
1716	if (max > vol->upcase_len)
1717		max = vol->upcase_len;
1718	for (i = 0; i < max; i++)
1719		if (vol->upcase[i] != default_upcase[i])
1720			break;
1721	if (i == max) {
1722		ntfs_free(vol->upcase);
1723		vol->upcase = default_upcase;
1724		vol->upcase_len = max;
1725		ntfs_nr_upcase_users++;
1726		mutex_unlock(&ntfs_lock);
1727		ntfs_debug("Volume specified $UpCase matches default. Using "
1728				"default.");
1729		return true;
1730	}
1731	mutex_unlock(&ntfs_lock);
1732	ntfs_debug("Using volume specified $UpCase since it does not match "
1733			"the default.");
1734	return true;
1735iput_upcase_failed:
1736	iput(ino);
1737	ntfs_free(vol->upcase);
1738	vol->upcase = NULL;
1739upcase_failed:
1740	mutex_lock(&ntfs_lock);
1741	if (default_upcase) {
1742		vol->upcase = default_upcase;
1743		vol->upcase_len = default_upcase_len;
1744		ntfs_nr_upcase_users++;
1745		mutex_unlock(&ntfs_lock);
1746		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1747				"default.");
1748		return true;
1749	}
1750	mutex_unlock(&ntfs_lock);
1751	ntfs_error(sb, "Failed to initialize upcase table.");
1752	return false;
1753}
1754
1755/*
1756 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1757 * their own special locking rules:
1758 */
1759static struct lock_class_key
1760	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1761	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1762
1763/**
1764 * load_system_files - open the system files using normal functions
1765 * @vol:	ntfs super block describing device whose system files to load
1766 *
1767 * Open the system files with normal access functions and complete setting up
1768 * the ntfs super block @vol.
1769 *
1770 * Return 'true' on success or 'false' on error.
1771 */
1772static bool load_system_files(ntfs_volume *vol)
1773{
1774	struct super_block *sb = vol->sb;
1775	MFT_RECORD *m;
1776	VOLUME_INFORMATION *vi;
1777	ntfs_attr_search_ctx *ctx;
1778#ifdef NTFS_RW
1779	RESTART_PAGE_HEADER *rp;
1780	int err;
1781#endif /* NTFS_RW */
1782
1783	ntfs_debug("Entering.");
1784#ifdef NTFS_RW
1785	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1786	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1787		static const char *es1 = "Failed to load $MFTMirr";
1788		static const char *es2 = "$MFTMirr does not match $MFT";
1789		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1790
1791		/* If a read-write mount, convert it to a read-only mount. */
1792		if (!(sb->s_flags & MS_RDONLY)) {
1793			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1794					ON_ERRORS_CONTINUE))) {
1795				ntfs_error(sb, "%s and neither on_errors="
1796						"continue nor on_errors="
1797						"remount-ro was specified%s",
1798						!vol->mftmirr_ino ? es1 : es2,
1799						es3);
1800				goto iput_mirr_err_out;
1801			}
1802			sb->s_flags |= MS_RDONLY;
1803			ntfs_error(sb, "%s.  Mounting read-only%s",
1804					!vol->mftmirr_ino ? es1 : es2, es3);
1805		} else
1806			ntfs_warning(sb, "%s.  Will not be able to remount "
1807					"read-write%s",
1808					!vol->mftmirr_ino ? es1 : es2, es3);
1809		/* This will prevent a read-write remount. */
1810		NVolSetErrors(vol);
1811	}
1812#endif /* NTFS_RW */
1813	/* Get mft bitmap attribute inode. */
1814	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1815	if (IS_ERR(vol->mftbmp_ino)) {
1816		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1817		goto iput_mirr_err_out;
1818	}
1819	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1820			   &mftbmp_runlist_lock_key);
1821	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1822			   &mftbmp_mrec_lock_key);
1823	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1824	if (!load_and_init_upcase(vol))
1825		goto iput_mftbmp_err_out;
1826#ifdef NTFS_RW
1827	/*
1828	 * Read attribute definitions table and setup @vol->attrdef and
1829	 * @vol->attrdef_size.
1830	 */
1831	if (!load_and_init_attrdef(vol))
1832		goto iput_upcase_err_out;
1833#endif /* NTFS_RW */
1834	/*
1835	 * Get the cluster allocation bitmap inode and verify the size, no
1836	 * need for any locking at this stage as we are already running
1837	 * exclusively as we are mount in progress task.
1838	 */
1839	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1840	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1841		if (!IS_ERR(vol->lcnbmp_ino))
1842			iput(vol->lcnbmp_ino);
1843		goto bitmap_failed;
1844	}
1845	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1846			   &lcnbmp_runlist_lock_key);
1847	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1848			   &lcnbmp_mrec_lock_key);
1849
1850	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1851	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1852		iput(vol->lcnbmp_ino);
1853bitmap_failed:
1854		ntfs_error(sb, "Failed to load $Bitmap.");
1855		goto iput_attrdef_err_out;
1856	}
1857	/*
1858	 * Get the volume inode and setup our cache of the volume flags and
1859	 * version.
1860	 */
1861	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1862	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1863		if (!IS_ERR(vol->vol_ino))
1864			iput(vol->vol_ino);
1865volume_failed:
1866		ntfs_error(sb, "Failed to load $Volume.");
1867		goto iput_lcnbmp_err_out;
1868	}
1869	m = map_mft_record(NTFS_I(vol->vol_ino));
1870	if (IS_ERR(m)) {
1871iput_volume_failed:
1872		iput(vol->vol_ino);
1873		goto volume_failed;
1874	}
1875	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1876		ntfs_error(sb, "Failed to get attribute search context.");
1877		goto get_ctx_vol_failed;
1878	}
1879	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1880			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1881err_put_vol:
1882		ntfs_attr_put_search_ctx(ctx);
1883get_ctx_vol_failed:
1884		unmap_mft_record(NTFS_I(vol->vol_ino));
1885		goto iput_volume_failed;
1886	}
1887	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1888			le16_to_cpu(ctx->attr->data.resident.value_offset));
1889	/* Some bounds checks. */
1890	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1891			le32_to_cpu(ctx->attr->data.resident.value_length) >
1892			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1893		goto err_put_vol;
1894	/* Copy the volume flags and version to the ntfs_volume structure. */
1895	vol->vol_flags = vi->flags;
1896	vol->major_ver = vi->major_ver;
1897	vol->minor_ver = vi->minor_ver;
1898	ntfs_attr_put_search_ctx(ctx);
1899	unmap_mft_record(NTFS_I(vol->vol_ino));
1900	pr_info("volume version %i.%i.\n", vol->major_ver,
1901			vol->minor_ver);
1902	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1903		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1904				"volume version %i.%i (need at least version "
1905				"3.0).", vol->major_ver, vol->minor_ver);
1906		NVolClearSparseEnabled(vol);
1907	}
1908#ifdef NTFS_RW
1909	/* Make sure that no unsupported volume flags are set. */
1910	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1911		static const char *es1a = "Volume is dirty";
1912		static const char *es1b = "Volume has been modified by chkdsk";
1913		static const char *es1c = "Volume has unsupported flags set";
1914		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1915		static const char *es2b = ".  Mount in Windows.";
1916		const char *es1, *es2;
1917
1918		es2 = es2a;
1919		if (vol->vol_flags & VOLUME_IS_DIRTY)
1920			es1 = es1a;
1921		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1922			es1 = es1b;
1923			es2 = es2b;
1924		} else {
1925			es1 = es1c;
1926			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1927					"encountered.",
1928					(unsigned)le16_to_cpu(vol->vol_flags));
1929		}
1930		/* If a read-write mount, convert it to a read-only mount. */
1931		if (!(sb->s_flags & MS_RDONLY)) {
1932			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1933					ON_ERRORS_CONTINUE))) {
1934				ntfs_error(sb, "%s and neither on_errors="
1935						"continue nor on_errors="
1936						"remount-ro was specified%s",
1937						es1, es2);
1938				goto iput_vol_err_out;
1939			}
1940			sb->s_flags |= MS_RDONLY;
1941			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1942		} else
1943			ntfs_warning(sb, "%s.  Will not be able to remount "
1944					"read-write%s", es1, es2);
1945		/*
1946		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1947		 * flags which we need to do in case any flags have changed.
1948		 */
1949	}
1950	/*
1951	 * Get the inode for the logfile, check it and determine if the volume
1952	 * was shutdown cleanly.
1953	 */
1954	rp = NULL;
1955	if (!load_and_check_logfile(vol, &rp) ||
1956			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1957		static const char *es1a = "Failed to load $LogFile";
1958		static const char *es1b = "$LogFile is not clean";
1959		static const char *es2 = ".  Mount in Windows.";
1960		const char *es1;
1961
1962		es1 = !vol->logfile_ino ? es1a : es1b;
1963		/* If a read-write mount, convert it to a read-only mount. */
1964		if (!(sb->s_flags & MS_RDONLY)) {
1965			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1966					ON_ERRORS_CONTINUE))) {
1967				ntfs_error(sb, "%s and neither on_errors="
1968						"continue nor on_errors="
1969						"remount-ro was specified%s",
1970						es1, es2);
1971				if (vol->logfile_ino) {
1972					BUG_ON(!rp);
1973					ntfs_free(rp);
1974				}
1975				goto iput_logfile_err_out;
1976			}
1977			sb->s_flags |= MS_RDONLY;
1978			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1979		} else
1980			ntfs_warning(sb, "%s.  Will not be able to remount "
1981					"read-write%s", es1, es2);
1982		/* This will prevent a read-write remount. */
1983		NVolSetErrors(vol);
1984	}
1985	ntfs_free(rp);
1986#endif /* NTFS_RW */
1987	/* Get the root directory inode so we can do path lookups. */
1988	vol->root_ino = ntfs_iget(sb, FILE_root);
1989	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1990		if (!IS_ERR(vol->root_ino))
1991			iput(vol->root_ino);
1992		ntfs_error(sb, "Failed to load root directory.");
1993		goto iput_logfile_err_out;
1994	}
1995#ifdef NTFS_RW
1996	/*
1997	 * Check if Windows is suspended to disk on the target volume.  If it
1998	 * is hibernated, we must not write *anything* to the disk so set
1999	 * NVolErrors() without setting the dirty volume flag and mount
2000	 * read-only.  This will prevent read-write remounting and it will also
2001	 * prevent all writes.
2002	 */
2003	err = check_windows_hibernation_status(vol);
2004	if (unlikely(err)) {
2005		static const char *es1a = "Failed to determine if Windows is "
2006				"hibernated";
2007		static const char *es1b = "Windows is hibernated";
2008		static const char *es2 = ".  Run chkdsk.";
2009		const char *es1;
2010
2011		es1 = err < 0 ? es1a : es1b;
2012		/* If a read-write mount, convert it to a read-only mount. */
2013		if (!(sb->s_flags & MS_RDONLY)) {
2014			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2015					ON_ERRORS_CONTINUE))) {
2016				ntfs_error(sb, "%s and neither on_errors="
2017						"continue nor on_errors="
2018						"remount-ro was specified%s",
2019						es1, es2);
2020				goto iput_root_err_out;
2021			}
2022			sb->s_flags |= MS_RDONLY;
2023			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2024		} else
2025			ntfs_warning(sb, "%s.  Will not be able to remount "
2026					"read-write%s", es1, es2);
2027		/* This will prevent a read-write remount. */
2028		NVolSetErrors(vol);
2029	}
2030	/* If (still) a read-write mount, mark the volume dirty. */
2031	if (!(sb->s_flags & MS_RDONLY) &&
2032			ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2033		static const char *es1 = "Failed to set dirty bit in volume "
2034				"information flags";
2035		static const char *es2 = ".  Run chkdsk.";
2036
2037		/* Convert to a read-only mount. */
2038		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2039				ON_ERRORS_CONTINUE))) {
2040			ntfs_error(sb, "%s and neither on_errors=continue nor "
2041					"on_errors=remount-ro was specified%s",
2042					es1, es2);
2043			goto iput_root_err_out;
2044		}
2045		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2046		sb->s_flags |= MS_RDONLY;
2047		/*
2048		 * Do not set NVolErrors() because ntfs_remount() might manage
2049		 * to set the dirty flag in which case all would be well.
2050		 */
2051	}
2052#if 0
2053	// TODO: Enable this code once we start modifying anything that is
2054	//	 different between NTFS 1.2 and 3.x...
2055	/*
2056	 * If (still) a read-write mount, set the NT4 compatibility flag on
2057	 * newer NTFS version volumes.
2058	 */
2059	if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2060			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2061		static const char *es1 = "Failed to set NT4 compatibility flag";
2062		static const char *es2 = ".  Run chkdsk.";
2063
2064		/* Convert to a read-only mount. */
2065		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2066				ON_ERRORS_CONTINUE))) {
2067			ntfs_error(sb, "%s and neither on_errors=continue nor "
2068					"on_errors=remount-ro was specified%s",
2069					es1, es2);
2070			goto iput_root_err_out;
2071		}
2072		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2073		sb->s_flags |= MS_RDONLY;
2074		NVolSetErrors(vol);
2075	}
2076#endif
2077	/* If (still) a read-write mount, empty the logfile. */
2078	if (!(sb->s_flags & MS_RDONLY) &&
2079			!ntfs_empty_logfile(vol->logfile_ino)) {
2080		static const char *es1 = "Failed to empty $LogFile";
2081		static const char *es2 = ".  Mount in Windows.";
2082
2083		/* Convert to a read-only mount. */
2084		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2085				ON_ERRORS_CONTINUE))) {
2086			ntfs_error(sb, "%s and neither on_errors=continue nor "
2087					"on_errors=remount-ro was specified%s",
2088					es1, es2);
2089			goto iput_root_err_out;
2090		}
2091		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2092		sb->s_flags |= MS_RDONLY;
2093		NVolSetErrors(vol);
2094	}
2095#endif /* NTFS_RW */
2096	/* If on NTFS versions before 3.0, we are done. */
2097	if (unlikely(vol->major_ver < 3))
2098		return true;
2099	/* NTFS 3.0+ specific initialization. */
2100	/* Get the security descriptors inode. */
2101	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2102	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2103		if (!IS_ERR(vol->secure_ino))
2104			iput(vol->secure_ino);
2105		ntfs_error(sb, "Failed to load $Secure.");
2106		goto iput_root_err_out;
2107	}
2108	// TODO: Initialize security.
2109	/* Get the extended system files' directory inode. */
2110	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2111	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2112		if (!IS_ERR(vol->extend_ino))
2113			iput(vol->extend_ino);
2114		ntfs_error(sb, "Failed to load $Extend.");
2115		goto iput_sec_err_out;
2116	}
2117#ifdef NTFS_RW
2118	/* Find the quota file, load it if present, and set it up. */
2119	if (!load_and_init_quota(vol)) {
2120		static const char *es1 = "Failed to load $Quota";
2121		static const char *es2 = ".  Run chkdsk.";
2122
2123		/* If a read-write mount, convert it to a read-only mount. */
2124		if (!(sb->s_flags & MS_RDONLY)) {
2125			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2126					ON_ERRORS_CONTINUE))) {
2127				ntfs_error(sb, "%s and neither on_errors="
2128						"continue nor on_errors="
2129						"remount-ro was specified%s",
2130						es1, es2);
2131				goto iput_quota_err_out;
2132			}
2133			sb->s_flags |= MS_RDONLY;
2134			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2135		} else
2136			ntfs_warning(sb, "%s.  Will not be able to remount "
2137					"read-write%s", es1, es2);
2138		/* This will prevent a read-write remount. */
2139		NVolSetErrors(vol);
2140	}
2141	/* If (still) a read-write mount, mark the quotas out of date. */
2142	if (!(sb->s_flags & MS_RDONLY) &&
2143			!ntfs_mark_quotas_out_of_date(vol)) {
2144		static const char *es1 = "Failed to mark quotas out of date";
2145		static const char *es2 = ".  Run chkdsk.";
2146
2147		/* Convert to a read-only mount. */
2148		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2149				ON_ERRORS_CONTINUE))) {
2150			ntfs_error(sb, "%s and neither on_errors=continue nor "
2151					"on_errors=remount-ro was specified%s",
2152					es1, es2);
2153			goto iput_quota_err_out;
2154		}
2155		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2156		sb->s_flags |= MS_RDONLY;
2157		NVolSetErrors(vol);
2158	}
2159	/*
2160	 * Find the transaction log file ($UsnJrnl), load it if present, check
2161	 * it, and set it up.
2162	 */
2163	if (!load_and_init_usnjrnl(vol)) {
2164		static const char *es1 = "Failed to load $UsnJrnl";
2165		static const char *es2 = ".  Run chkdsk.";
2166
2167		/* If a read-write mount, convert it to a read-only mount. */
2168		if (!(sb->s_flags & MS_RDONLY)) {
2169			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2170					ON_ERRORS_CONTINUE))) {
2171				ntfs_error(sb, "%s and neither on_errors="
2172						"continue nor on_errors="
2173						"remount-ro was specified%s",
2174						es1, es2);
2175				goto iput_usnjrnl_err_out;
2176			}
2177			sb->s_flags |= MS_RDONLY;
2178			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2179		} else
2180			ntfs_warning(sb, "%s.  Will not be able to remount "
2181					"read-write%s", es1, es2);
2182		/* This will prevent a read-write remount. */
2183		NVolSetErrors(vol);
2184	}
2185	/* If (still) a read-write mount, stamp the transaction log. */
2186	if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2187		static const char *es1 = "Failed to stamp transaction log "
2188				"($UsnJrnl)";
2189		static const char *es2 = ".  Run chkdsk.";
2190
2191		/* Convert to a read-only mount. */
2192		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2193				ON_ERRORS_CONTINUE))) {
2194			ntfs_error(sb, "%s and neither on_errors=continue nor "
2195					"on_errors=remount-ro was specified%s",
2196					es1, es2);
2197			goto iput_usnjrnl_err_out;
2198		}
2199		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2200		sb->s_flags |= MS_RDONLY;
2201		NVolSetErrors(vol);
2202	}
2203#endif /* NTFS_RW */
2204	return true;
2205#ifdef NTFS_RW
2206iput_usnjrnl_err_out:
2207	iput(vol->usnjrnl_j_ino);
2208	iput(vol->usnjrnl_max_ino);
2209	iput(vol->usnjrnl_ino);
2210iput_quota_err_out:
2211	iput(vol->quota_q_ino);
2212	iput(vol->quota_ino);
2213	iput(vol->extend_ino);
2214#endif /* NTFS_RW */
2215iput_sec_err_out:
2216	iput(vol->secure_ino);
2217iput_root_err_out:
2218	iput(vol->root_ino);
2219iput_logfile_err_out:
2220#ifdef NTFS_RW
2221	iput(vol->logfile_ino);
2222iput_vol_err_out:
2223#endif /* NTFS_RW */
2224	iput(vol->vol_ino);
2225iput_lcnbmp_err_out:
2226	iput(vol->lcnbmp_ino);
2227iput_attrdef_err_out:
2228	vol->attrdef_size = 0;
2229	if (vol->attrdef) {
2230		ntfs_free(vol->attrdef);
2231		vol->attrdef = NULL;
2232	}
2233#ifdef NTFS_RW
2234iput_upcase_err_out:
2235#endif /* NTFS_RW */
2236	vol->upcase_len = 0;
2237	mutex_lock(&ntfs_lock);
2238	if (vol->upcase == default_upcase) {
2239		ntfs_nr_upcase_users--;
2240		vol->upcase = NULL;
2241	}
2242	mutex_unlock(&ntfs_lock);
2243	if (vol->upcase) {
2244		ntfs_free(vol->upcase);
2245		vol->upcase = NULL;
2246	}
2247iput_mftbmp_err_out:
2248	iput(vol->mftbmp_ino);
2249iput_mirr_err_out:
2250#ifdef NTFS_RW
2251	iput(vol->mftmirr_ino);
2252#endif /* NTFS_RW */
2253	return false;
2254}
2255
2256/**
2257 * ntfs_put_super - called by the vfs to unmount a volume
2258 * @sb:		vfs superblock of volume to unmount
2259 *
2260 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2261 * the volume is being unmounted (umount system call has been invoked) and it
2262 * releases all inodes and memory belonging to the NTFS specific part of the
2263 * super block.
2264 */
2265static void ntfs_put_super(struct super_block *sb)
2266{
2267	ntfs_volume *vol = NTFS_SB(sb);
2268
2269	ntfs_debug("Entering.");
2270
2271#ifdef NTFS_RW
2272	/*
2273	 * Commit all inodes while they are still open in case some of them
2274	 * cause others to be dirtied.
2275	 */
2276	ntfs_commit_inode(vol->vol_ino);
2277
2278	/* NTFS 3.0+ specific. */
2279	if (vol->major_ver >= 3) {
2280		if (vol->usnjrnl_j_ino)
2281			ntfs_commit_inode(vol->usnjrnl_j_ino);
2282		if (vol->usnjrnl_max_ino)
2283			ntfs_commit_inode(vol->usnjrnl_max_ino);
2284		if (vol->usnjrnl_ino)
2285			ntfs_commit_inode(vol->usnjrnl_ino);
2286		if (vol->quota_q_ino)
2287			ntfs_commit_inode(vol->quota_q_ino);
2288		if (vol->quota_ino)
2289			ntfs_commit_inode(vol->quota_ino);
2290		if (vol->extend_ino)
2291			ntfs_commit_inode(vol->extend_ino);
2292		if (vol->secure_ino)
2293			ntfs_commit_inode(vol->secure_ino);
2294	}
2295
2296	ntfs_commit_inode(vol->root_ino);
2297
2298	down_write(&vol->lcnbmp_lock);
2299	ntfs_commit_inode(vol->lcnbmp_ino);
2300	up_write(&vol->lcnbmp_lock);
2301
2302	down_write(&vol->mftbmp_lock);
2303	ntfs_commit_inode(vol->mftbmp_ino);
2304	up_write(&vol->mftbmp_lock);
2305
2306	if (vol->logfile_ino)
2307		ntfs_commit_inode(vol->logfile_ino);
2308
2309	if (vol->mftmirr_ino)
2310		ntfs_commit_inode(vol->mftmirr_ino);
2311	ntfs_commit_inode(vol->mft_ino);
2312
2313	/*
2314	 * If a read-write mount and no volume errors have occurred, mark the
2315	 * volume clean.  Also, re-commit all affected inodes.
2316	 */
2317	if (!(sb->s_flags & MS_RDONLY)) {
2318		if (!NVolErrors(vol)) {
2319			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2320				ntfs_warning(sb, "Failed to clear dirty bit "
2321						"in volume information "
2322						"flags.  Run chkdsk.");
2323			ntfs_commit_inode(vol->vol_ino);
2324			ntfs_commit_inode(vol->root_ino);
2325			if (vol->mftmirr_ino)
2326				ntfs_commit_inode(vol->mftmirr_ino);
2327			ntfs_commit_inode(vol->mft_ino);
2328		} else {
2329			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2330					"marked dirty.  Run chkdsk.");
2331		}
2332	}
2333#endif /* NTFS_RW */
2334
2335	iput(vol->vol_ino);
2336	vol->vol_ino = NULL;
2337
2338	/* NTFS 3.0+ specific clean up. */
2339	if (vol->major_ver >= 3) {
2340#ifdef NTFS_RW
2341		if (vol->usnjrnl_j_ino) {
2342			iput(vol->usnjrnl_j_ino);
2343			vol->usnjrnl_j_ino = NULL;
2344		}
2345		if (vol->usnjrnl_max_ino) {
2346			iput(vol->usnjrnl_max_ino);
2347			vol->usnjrnl_max_ino = NULL;
2348		}
2349		if (vol->usnjrnl_ino) {
2350			iput(vol->usnjrnl_ino);
2351			vol->usnjrnl_ino = NULL;
2352		}
2353		if (vol->quota_q_ino) {
2354			iput(vol->quota_q_ino);
2355			vol->quota_q_ino = NULL;
2356		}
2357		if (vol->quota_ino) {
2358			iput(vol->quota_ino);
2359			vol->quota_ino = NULL;
2360		}
2361#endif /* NTFS_RW */
2362		if (vol->extend_ino) {
2363			iput(vol->extend_ino);
2364			vol->extend_ino = NULL;
2365		}
2366		if (vol->secure_ino) {
2367			iput(vol->secure_ino);
2368			vol->secure_ino = NULL;
2369		}
2370	}
2371
2372	iput(vol->root_ino);
2373	vol->root_ino = NULL;
2374
2375	down_write(&vol->lcnbmp_lock);
2376	iput(vol->lcnbmp_ino);
2377	vol->lcnbmp_ino = NULL;
2378	up_write(&vol->lcnbmp_lock);
2379
2380	down_write(&vol->mftbmp_lock);
2381	iput(vol->mftbmp_ino);
2382	vol->mftbmp_ino = NULL;
2383	up_write(&vol->mftbmp_lock);
2384
2385#ifdef NTFS_RW
2386	if (vol->logfile_ino) {
2387		iput(vol->logfile_ino);
2388		vol->logfile_ino = NULL;
2389	}
2390	if (vol->mftmirr_ino) {
2391		/* Re-commit the mft mirror and mft just in case. */
2392		ntfs_commit_inode(vol->mftmirr_ino);
2393		ntfs_commit_inode(vol->mft_ino);
2394		iput(vol->mftmirr_ino);
2395		vol->mftmirr_ino = NULL;
2396	}
2397	/*
2398	 * We should have no dirty inodes left, due to
2399	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2400	 * the underlying mft records are written out and cleaned.
2401	 */
2402	ntfs_commit_inode(vol->mft_ino);
2403	write_inode_now(vol->mft_ino, 1);
2404#endif /* NTFS_RW */
2405
2406	iput(vol->mft_ino);
2407	vol->mft_ino = NULL;
2408
2409	/* Throw away the table of attribute definitions. */
2410	vol->attrdef_size = 0;
2411	if (vol->attrdef) {
2412		ntfs_free(vol->attrdef);
2413		vol->attrdef = NULL;
2414	}
2415	vol->upcase_len = 0;
2416	/*
2417	 * Destroy the global default upcase table if necessary.  Also decrease
2418	 * the number of upcase users if we are a user.
2419	 */
2420	mutex_lock(&ntfs_lock);
2421	if (vol->upcase == default_upcase) {
2422		ntfs_nr_upcase_users--;
2423		vol->upcase = NULL;
2424	}
2425	if (!ntfs_nr_upcase_users && default_upcase) {
2426		ntfs_free(default_upcase);
2427		default_upcase = NULL;
2428	}
2429	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2430		free_compression_buffers();
2431	mutex_unlock(&ntfs_lock);
2432	if (vol->upcase) {
2433		ntfs_free(vol->upcase);
2434		vol->upcase = NULL;
2435	}
2436
2437	unload_nls(vol->nls_map);
2438
2439	sb->s_fs_info = NULL;
2440	kfree(vol);
2441}
2442
2443/**
2444 * get_nr_free_clusters - return the number of free clusters on a volume
2445 * @vol:	ntfs volume for which to obtain free cluster count
2446 *
2447 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2448 * actually calculate the number of clusters in use instead because this
2449 * allows us to not care about partial pages as these will be just zero filled
2450 * and hence not be counted as allocated clusters.
2451 *
2452 * The only particularity is that clusters beyond the end of the logical ntfs
2453 * volume will be marked as allocated to prevent errors which means we have to
2454 * discount those at the end. This is important as the cluster bitmap always
2455 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2456 * the logical volume and marked in use when they are not as they do not exist.
2457 *
2458 * If any pages cannot be read we assume all clusters in the erroring pages are
2459 * in use. This means we return an underestimate on errors which is better than
2460 * an overestimate.
2461 */
2462static s64 get_nr_free_clusters(ntfs_volume *vol)
2463{
2464	s64 nr_free = vol->nr_clusters;
2465	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2466	struct page *page;
2467	pgoff_t index, max_index;
2468
2469	ntfs_debug("Entering.");
2470	/* Serialize accesses to the cluster bitmap. */
2471	down_read(&vol->lcnbmp_lock);
2472	/*
2473	 * Convert the number of bits into bytes rounded up, then convert into
2474	 * multiples of PAGE_SIZE, rounding up so that if we have one
2475	 * full and one partial page max_index = 2.
2476	 */
2477	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >>
2478			PAGE_SHIFT;
2479	/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2480	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2481			max_index, PAGE_SIZE / 4);
2482	for (index = 0; index < max_index; index++) {
2483		unsigned long *kaddr;
2484
2485		/*
2486		 * Read the page from page cache, getting it from backing store
2487		 * if necessary, and increment the use count.
2488		 */
2489		page = read_mapping_page(mapping, index, NULL);
2490		/* Ignore pages which errored synchronously. */
2491		if (IS_ERR(page)) {
2492			ntfs_debug("read_mapping_page() error. Skipping "
2493					"page (index 0x%lx).", index);
2494			nr_free -= PAGE_SIZE * 8;
2495			continue;
2496		}
2497		kaddr = kmap_atomic(page);
2498		/*
2499		 * Subtract the number of set bits. If this
2500		 * is the last page and it is partial we don't really care as
2501		 * it just means we do a little extra work but it won't affect
2502		 * the result as all out of range bytes are set to zero by
2503		 * ntfs_readpage().
2504		 */
2505		nr_free -= bitmap_weight(kaddr,
2506					PAGE_SIZE * BITS_PER_BYTE);
2507		kunmap_atomic(kaddr);
2508		put_page(page);
2509	}
2510	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2511	/*
2512	 * Fixup for eventual bits outside logical ntfs volume (see function
2513	 * description above).
2514	 */
2515	if (vol->nr_clusters & 63)
2516		nr_free += 64 - (vol->nr_clusters & 63);
2517	up_read(&vol->lcnbmp_lock);
2518	/* If errors occurred we may well have gone below zero, fix this. */
2519	if (nr_free < 0)
2520		nr_free = 0;
2521	ntfs_debug("Exiting.");
2522	return nr_free;
2523}
2524
2525/**
2526 * __get_nr_free_mft_records - return the number of free inodes on a volume
2527 * @vol:	ntfs volume for which to obtain free inode count
2528 * @nr_free:	number of mft records in filesystem
2529 * @max_index:	maximum number of pages containing set bits
2530 *
2531 * Calculate the number of free mft records (inodes) on the mounted NTFS
2532 * volume @vol. We actually calculate the number of mft records in use instead
2533 * because this allows us to not care about partial pages as these will be just
2534 * zero filled and hence not be counted as allocated mft record.
2535 *
2536 * If any pages cannot be read we assume all mft records in the erroring pages
2537 * are in use. This means we return an underestimate on errors which is better
2538 * than an overestimate.
2539 *
2540 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2541 */
2542static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2543		s64 nr_free, const pgoff_t max_index)
2544{
2545	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2546	struct page *page;
2547	pgoff_t index;
2548
2549	ntfs_debug("Entering.");
2550	/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2551	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2552			"0x%lx.", max_index, PAGE_SIZE / 4);
2553	for (index = 0; index < max_index; index++) {
2554		unsigned long *kaddr;
2555
2556		/*
2557		 * Read the page from page cache, getting it from backing store
2558		 * if necessary, and increment the use count.
2559		 */
2560		page = read_mapping_page(mapping, index, NULL);
2561		/* Ignore pages which errored synchronously. */
2562		if (IS_ERR(page)) {
2563			ntfs_debug("read_mapping_page() error. Skipping "
2564					"page (index 0x%lx).", index);
2565			nr_free -= PAGE_SIZE * 8;
2566			continue;
2567		}
2568		kaddr = kmap_atomic(page);
2569		/*
2570		 * Subtract the number of set bits. If this
2571		 * is the last page and it is partial we don't really care as
2572		 * it just means we do a little extra work but it won't affect
2573		 * the result as all out of range bytes are set to zero by
2574		 * ntfs_readpage().
2575		 */
2576		nr_free -= bitmap_weight(kaddr,
2577					PAGE_SIZE * BITS_PER_BYTE);
2578		kunmap_atomic(kaddr);
2579		put_page(page);
2580	}
2581	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2582			index - 1);
2583	/* If errors occurred we may well have gone below zero, fix this. */
2584	if (nr_free < 0)
2585		nr_free = 0;
2586	ntfs_debug("Exiting.");
2587	return nr_free;
2588}
2589
2590/**
2591 * ntfs_statfs - return information about mounted NTFS volume
2592 * @dentry:	dentry from mounted volume
2593 * @sfs:	statfs structure in which to return the information
2594 *
2595 * Return information about the mounted NTFS volume @dentry in the statfs structure
2596 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2597 * called). We interpret the values to be correct of the moment in time at
2598 * which we are called. Most values are variable otherwise and this isn't just
2599 * the free values but the totals as well. For example we can increase the
2600 * total number of file nodes if we run out and we can keep doing this until
2601 * there is no more space on the volume left at all.
2602 *
2603 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2604 * ustat system calls.
2605 *
2606 * Return 0 on success or -errno on error.
2607 */
2608static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2609{
2610	struct super_block *sb = dentry->d_sb;
2611	s64 size;
2612	ntfs_volume *vol = NTFS_SB(sb);
2613	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2614	pgoff_t max_index;
2615	unsigned long flags;
2616
2617	ntfs_debug("Entering.");
2618	/* Type of filesystem. */
2619	sfs->f_type   = NTFS_SB_MAGIC;
2620	/* Optimal transfer block size. */
2621	sfs->f_bsize  = PAGE_SIZE;
2622	/*
2623	 * Total data blocks in filesystem in units of f_bsize and since
2624	 * inodes are also stored in data blocs ($MFT is a file) this is just
2625	 * the total clusters.
2626	 */
2627	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2628				PAGE_SHIFT;
2629	/* Free data blocks in filesystem in units of f_bsize. */
2630	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2631				PAGE_SHIFT;
2632	if (size < 0LL)
2633		size = 0LL;
2634	/* Free blocks avail to non-superuser, same as above on NTFS. */
2635	sfs->f_bavail = sfs->f_bfree = size;
2636	/* Serialize accesses to the inode bitmap. */
2637	down_read(&vol->mftbmp_lock);
2638	read_lock_irqsave(&mft_ni->size_lock, flags);
2639	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2640	/*
2641	 * Convert the maximum number of set bits into bytes rounded up, then
2642	 * convert into multiples of PAGE_SIZE, rounding up so that if we
2643	 * have one full and one partial page max_index = 2.
2644	 */
2645	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2646			+ 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT;
2647	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2648	/* Number of inodes in filesystem (at this point in time). */
2649	sfs->f_files = size;
2650	/* Free inodes in fs (based on current total count). */
2651	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2652	up_read(&vol->mftbmp_lock);
2653	/*
2654	 * File system id. This is extremely *nix flavour dependent and even
2655	 * within Linux itself all fs do their own thing. I interpret this to
2656	 * mean a unique id associated with the mounted fs and not the id
2657	 * associated with the filesystem driver, the latter is already given
2658	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2659	 * volume serial number splitting it into two 32-bit parts. We enter
2660	 * the least significant 32-bits in f_fsid[0] and the most significant
2661	 * 32-bits in f_fsid[1].
2662	 */
2663	sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2664	sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2665	/* Maximum length of filenames. */
2666	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2667	return 0;
2668}
2669
2670#ifdef NTFS_RW
2671static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2672{
2673	return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2674}
2675#endif
2676
2677/**
2678 * The complete super operations.
2679 */
2680static const struct super_operations ntfs_sops = {
2681	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2682	.destroy_inode	= ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2683#ifdef NTFS_RW
2684	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2685						   disk. */
2686#endif /* NTFS_RW */
2687	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2688	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2689	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2690	.evict_inode	= ntfs_evict_big_inode,	/* VFS: Called when an inode is
2691						   removed from memory. */
2692	.show_options	= ntfs_show_options,	/* Show mount options in
2693						   proc. */
2694};
2695
2696/**
2697 * ntfs_fill_super - mount an ntfs filesystem
2698 * @sb:		super block of ntfs filesystem to mount
2699 * @opt:	string containing the mount options
2700 * @silent:	silence error output
2701 *
2702 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2703 * with the mount otions in @data with the NTFS filesystem.
2704 *
2705 * If @silent is true, remain silent even if errors are detected. This is used
2706 * during bootup, when the kernel tries to mount the root filesystem with all
2707 * registered filesystems one after the other until one succeeds. This implies
2708 * that all filesystems except the correct one will quite correctly and
2709 * expectedly return an error, but nobody wants to see error messages when in
2710 * fact this is what is supposed to happen.
2711 *
2712 * NOTE: @sb->s_flags contains the mount options flags.
2713 */
2714static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2715{
2716	ntfs_volume *vol;
2717	struct buffer_head *bh;
2718	struct inode *tmp_ino;
2719	int blocksize, result;
2720
2721	/*
2722	 * We do a pretty difficult piece of bootstrap by reading the
2723	 * MFT (and other metadata) from disk into memory. We'll only
2724	 * release this metadata during umount, so the locking patterns
2725	 * observed during bootstrap do not count. So turn off the
2726	 * observation of locking patterns (strictly for this context
2727	 * only) while mounting NTFS. [The validator is still active
2728	 * otherwise, even for this context: it will for example record
2729	 * lock class registrations.]
2730	 */
2731	lockdep_off();
2732	ntfs_debug("Entering.");
2733#ifndef NTFS_RW
2734	sb->s_flags |= MS_RDONLY;
2735#endif /* ! NTFS_RW */
2736	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2737	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2738	vol = NTFS_SB(sb);
2739	if (!vol) {
2740		if (!silent)
2741			ntfs_error(sb, "Allocation of NTFS volume structure "
2742					"failed. Aborting mount...");
2743		lockdep_on();
2744		return -ENOMEM;
2745	}
2746	/* Initialize ntfs_volume structure. */
2747	*vol = (ntfs_volume) {
2748		.sb = sb,
2749		/*
2750		 * Default is group and other don't have any access to files or
2751		 * directories while owner has full access. Further, files by
2752		 * default are not executable but directories are of course
2753		 * browseable.
2754		 */
2755		.fmask = 0177,
2756		.dmask = 0077,
2757	};
2758	init_rwsem(&vol->mftbmp_lock);
2759	init_rwsem(&vol->lcnbmp_lock);
2760
2761	/* By default, enable sparse support. */
2762	NVolSetSparseEnabled(vol);
2763
2764	/* Important to get the mount options dealt with now. */
2765	if (!parse_options(vol, (char*)opt))
2766		goto err_out_now;
2767
2768	/* We support sector sizes up to the PAGE_SIZE. */
2769	if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) {
2770		if (!silent)
2771			ntfs_error(sb, "Device has unsupported sector size "
2772					"(%i).  The maximum supported sector "
2773					"size on this architecture is %lu "
2774					"bytes.",
2775					bdev_logical_block_size(sb->s_bdev),
2776					PAGE_SIZE);
2777		goto err_out_now;
2778	}
2779	/*
2780	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2781	 * sector size, whichever is bigger.
2782	 */
2783	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2784	if (blocksize < NTFS_BLOCK_SIZE) {
2785		if (!silent)
2786			ntfs_error(sb, "Unable to set device block size.");
2787		goto err_out_now;
2788	}
2789	BUG_ON(blocksize != sb->s_blocksize);
2790	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2791			blocksize, sb->s_blocksize_bits);
2792	/* Determine the size of the device in units of block_size bytes. */
2793	if (!i_size_read(sb->s_bdev->bd_inode)) {
2794		if (!silent)
2795			ntfs_error(sb, "Unable to determine device size.");
2796		goto err_out_now;
2797	}
2798	vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2799			sb->s_blocksize_bits;
2800	/* Read the boot sector and return unlocked buffer head to it. */
2801	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2802		if (!silent)
2803			ntfs_error(sb, "Not an NTFS volume.");
2804		goto err_out_now;
2805	}
2806	/*
2807	 * Extract the data from the boot sector and setup the ntfs volume
2808	 * using it.
2809	 */
2810	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2811	brelse(bh);
2812	if (!result) {
2813		if (!silent)
2814			ntfs_error(sb, "Unsupported NTFS filesystem.");
2815		goto err_out_now;
2816	}
2817	/*
2818	 * If the boot sector indicates a sector size bigger than the current
2819	 * device block size, switch the device block size to the sector size.
2820	 * TODO: It may be possible to support this case even when the set
2821	 * below fails, we would just be breaking up the i/o for each sector
2822	 * into multiple blocks for i/o purposes but otherwise it should just
2823	 * work.  However it is safer to leave disabled until someone hits this
2824	 * error message and then we can get them to try it without the setting
2825	 * so we know for sure that it works.
2826	 */
2827	if (vol->sector_size > blocksize) {
2828		blocksize = sb_set_blocksize(sb, vol->sector_size);
2829		if (blocksize != vol->sector_size) {
2830			if (!silent)
2831				ntfs_error(sb, "Unable to set device block "
2832						"size to sector size (%i).",
2833						vol->sector_size);
2834			goto err_out_now;
2835		}
2836		BUG_ON(blocksize != sb->s_blocksize);
2837		vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2838				sb->s_blocksize_bits;
2839		ntfs_debug("Changed device block size to %i bytes (block size "
2840				"bits %i) to match volume sector size.",
2841				blocksize, sb->s_blocksize_bits);
2842	}
2843	/* Initialize the cluster and mft allocators. */
2844	ntfs_setup_allocators(vol);
2845	/* Setup remaining fields in the super block. */
2846	sb->s_magic = NTFS_SB_MAGIC;
2847	/*
2848	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2849	 *	sb->s_maxbytes = ~0ULL >> 1;
2850	 * But the kernel uses a long as the page cache page index which on
2851	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2852	 * defined to the maximum the page cache page index can cope with
2853	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2854	 */
2855	sb->s_maxbytes = MAX_LFS_FILESIZE;
2856	/* Ntfs measures time in 100ns intervals. */
2857	sb->s_time_gran = 100;
2858	/*
2859	 * Now load the metadata required for the page cache and our address
2860	 * space operations to function. We do this by setting up a specialised
2861	 * read_inode method and then just calling the normal iget() to obtain
2862	 * the inode for $MFT which is sufficient to allow our normal inode
2863	 * operations and associated address space operations to function.
2864	 */
2865	sb->s_op = &ntfs_sops;
2866	tmp_ino = new_inode(sb);
2867	if (!tmp_ino) {
2868		if (!silent)
2869			ntfs_error(sb, "Failed to load essential metadata.");
2870		goto err_out_now;
2871	}
2872	tmp_ino->i_ino = FILE_MFT;
2873	insert_inode_hash(tmp_ino);
2874	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2875		if (!silent)
2876			ntfs_error(sb, "Failed to load essential metadata.");
2877		goto iput_tmp_ino_err_out_now;
2878	}
2879	mutex_lock(&ntfs_lock);
2880	/*
2881	 * The current mount is a compression user if the cluster size is
2882	 * less than or equal 4kiB.
2883	 */
2884	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2885		result = allocate_compression_buffers();
2886		if (result) {
2887			ntfs_error(NULL, "Failed to allocate buffers "
2888					"for compression engine.");
2889			ntfs_nr_compression_users--;
2890			mutex_unlock(&ntfs_lock);
2891			goto iput_tmp_ino_err_out_now;
2892		}
2893	}
2894	/*
2895	 * Generate the global default upcase table if necessary.  Also
2896	 * temporarily increment the number of upcase users to avoid race
2897	 * conditions with concurrent (u)mounts.
2898	 */
2899	if (!default_upcase)
2900		default_upcase = generate_default_upcase();
2901	ntfs_nr_upcase_users++;
2902	mutex_unlock(&ntfs_lock);
2903	/*
2904	 * From now on, ignore @silent parameter. If we fail below this line,
2905	 * it will be due to a corrupt fs or a system error, so we report it.
2906	 */
2907	/*
2908	 * Open the system files with normal access functions and complete
2909	 * setting up the ntfs super block.
2910	 */
2911	if (!load_system_files(vol)) {
2912		ntfs_error(sb, "Failed to load system files.");
2913		goto unl_upcase_iput_tmp_ino_err_out_now;
2914	}
2915
2916	/* We grab a reference, simulating an ntfs_iget(). */
2917	ihold(vol->root_ino);
2918	if ((sb->s_root = d_make_root(vol->root_ino))) {
2919		ntfs_debug("Exiting, status successful.");
2920		/* Release the default upcase if it has no users. */
2921		mutex_lock(&ntfs_lock);
2922		if (!--ntfs_nr_upcase_users && default_upcase) {
2923			ntfs_free(default_upcase);
2924			default_upcase = NULL;
2925		}
2926		mutex_unlock(&ntfs_lock);
2927		sb->s_export_op = &ntfs_export_ops;
2928		lockdep_on();
2929		return 0;
2930	}
2931	ntfs_error(sb, "Failed to allocate root directory.");
2932	/* Clean up after the successful load_system_files() call from above. */
2933	// TODO: Use ntfs_put_super() instead of repeating all this code...
2934	// FIXME: Should mark the volume clean as the error is most likely
2935	// 	  -ENOMEM.
2936	iput(vol->vol_ino);
2937	vol->vol_ino = NULL;
2938	/* NTFS 3.0+ specific clean up. */
2939	if (vol->major_ver >= 3) {
2940#ifdef NTFS_RW
2941		if (vol->usnjrnl_j_ino) {
2942			iput(vol->usnjrnl_j_ino);
2943			vol->usnjrnl_j_ino = NULL;
2944		}
2945		if (vol->usnjrnl_max_ino) {
2946			iput(vol->usnjrnl_max_ino);
2947			vol->usnjrnl_max_ino = NULL;
2948		}
2949		if (vol->usnjrnl_ino) {
2950			iput(vol->usnjrnl_ino);
2951			vol->usnjrnl_ino = NULL;
2952		}
2953		if (vol->quota_q_ino) {
2954			iput(vol->quota_q_ino);
2955			vol->quota_q_ino = NULL;
2956		}
2957		if (vol->quota_ino) {
2958			iput(vol->quota_ino);
2959			vol->quota_ino = NULL;
2960		}
2961#endif /* NTFS_RW */
2962		if (vol->extend_ino) {
2963			iput(vol->extend_ino);
2964			vol->extend_ino = NULL;
2965		}
2966		if (vol->secure_ino) {
2967			iput(vol->secure_ino);
2968			vol->secure_ino = NULL;
2969		}
2970	}
2971	iput(vol->root_ino);
2972	vol->root_ino = NULL;
2973	iput(vol->lcnbmp_ino);
2974	vol->lcnbmp_ino = NULL;
2975	iput(vol->mftbmp_ino);
2976	vol->mftbmp_ino = NULL;
2977#ifdef NTFS_RW
2978	if (vol->logfile_ino) {
2979		iput(vol->logfile_ino);
2980		vol->logfile_ino = NULL;
2981	}
2982	if (vol->mftmirr_ino) {
2983		iput(vol->mftmirr_ino);
2984		vol->mftmirr_ino = NULL;
2985	}
2986#endif /* NTFS_RW */
2987	/* Throw away the table of attribute definitions. */
2988	vol->attrdef_size = 0;
2989	if (vol->attrdef) {
2990		ntfs_free(vol->attrdef);
2991		vol->attrdef = NULL;
2992	}
2993	vol->upcase_len = 0;
2994	mutex_lock(&ntfs_lock);
2995	if (vol->upcase == default_upcase) {
2996		ntfs_nr_upcase_users--;
2997		vol->upcase = NULL;
2998	}
2999	mutex_unlock(&ntfs_lock);
3000	if (vol->upcase) {
3001		ntfs_free(vol->upcase);
3002		vol->upcase = NULL;
3003	}
3004	if (vol->nls_map) {
3005		unload_nls(vol->nls_map);
3006		vol->nls_map = NULL;
3007	}
3008	/* Error exit code path. */
3009unl_upcase_iput_tmp_ino_err_out_now:
3010	/*
3011	 * Decrease the number of upcase users and destroy the global default
3012	 * upcase table if necessary.
3013	 */
3014	mutex_lock(&ntfs_lock);
3015	if (!--ntfs_nr_upcase_users && default_upcase) {
3016		ntfs_free(default_upcase);
3017		default_upcase = NULL;
3018	}
3019	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3020		free_compression_buffers();
3021	mutex_unlock(&ntfs_lock);
3022iput_tmp_ino_err_out_now:
3023	iput(tmp_ino);
3024	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3025		iput(vol->mft_ino);
3026	vol->mft_ino = NULL;
3027	/* Errors at this stage are irrelevant. */
3028err_out_now:
3029	sb->s_fs_info = NULL;
3030	kfree(vol);
3031	ntfs_debug("Failed, returning -EINVAL.");
3032	lockdep_on();
3033	return -EINVAL;
3034}
3035
3036/*
3037 * This is a slab cache to optimize allocations and deallocations of Unicode
3038 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3039 * (255) Unicode characters + a terminating NULL Unicode character.
3040 */
3041struct kmem_cache *ntfs_name_cache;
3042
3043/* Slab caches for efficient allocation/deallocation of inodes. */
3044struct kmem_cache *ntfs_inode_cache;
3045struct kmem_cache *ntfs_big_inode_cache;
3046
3047/* Init once constructor for the inode slab cache. */
3048static void ntfs_big_inode_init_once(void *foo)
3049{
3050	ntfs_inode *ni = (ntfs_inode *)foo;
3051
3052	inode_init_once(VFS_I(ni));
3053}
3054
3055/*
3056 * Slab caches to optimize allocations and deallocations of attribute search
3057 * contexts and index contexts, respectively.
3058 */
3059struct kmem_cache *ntfs_attr_ctx_cache;
3060struct kmem_cache *ntfs_index_ctx_cache;
3061
3062/* Driver wide mutex. */
3063DEFINE_MUTEX(ntfs_lock);
3064
3065static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3066	int flags, const char *dev_name, void *data)
3067{
3068	return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3069}
3070
3071static struct file_system_type ntfs_fs_type = {
3072	.owner		= THIS_MODULE,
3073	.name		= "ntfs",
3074	.mount		= ntfs_mount,
3075	.kill_sb	= kill_block_super,
3076	.fs_flags	= FS_REQUIRES_DEV,
3077};
3078MODULE_ALIAS_FS("ntfs");
3079
3080/* Stable names for the slab caches. */
3081static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3082static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3083static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3084static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3085static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3086
3087static int __init init_ntfs_fs(void)
3088{
3089	int err = 0;
3090
3091	/* This may be ugly but it results in pretty output so who cares. (-8 */
3092	pr_info("driver " NTFS_VERSION " [Flags: R/"
3093#ifdef NTFS_RW
3094			"W"
3095#else
3096			"O"
3097#endif
3098#ifdef DEBUG
3099			" DEBUG"
3100#endif
3101#ifdef MODULE
3102			" MODULE"
3103#endif
3104			"].\n");
3105
3106	ntfs_debug("Debug messages are enabled.");
3107
3108	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3109			sizeof(ntfs_index_context), 0 /* offset */,
3110			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3111	if (!ntfs_index_ctx_cache) {
3112		pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
3113		goto ictx_err_out;
3114	}
3115	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3116			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3117			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3118	if (!ntfs_attr_ctx_cache) {
3119		pr_crit("NTFS: Failed to create %s!\n",
3120			ntfs_attr_ctx_cache_name);
3121		goto actx_err_out;
3122	}
3123
3124	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3125			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3126			SLAB_HWCACHE_ALIGN, NULL);
3127	if (!ntfs_name_cache) {
3128		pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
3129		goto name_err_out;
3130	}
3131
3132	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3133			sizeof(ntfs_inode), 0,
3134			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3135	if (!ntfs_inode_cache) {
3136		pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
3137		goto inode_err_out;
3138	}
3139
3140	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3141			sizeof(big_ntfs_inode), 0,
3142			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
3143			SLAB_ACCOUNT, ntfs_big_inode_init_once);
3144	if (!ntfs_big_inode_cache) {
3145		pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
3146		goto big_inode_err_out;
3147	}
3148
3149	/* Register the ntfs sysctls. */
3150	err = ntfs_sysctl(1);
3151	if (err) {
3152		pr_crit("Failed to register NTFS sysctls!\n");
3153		goto sysctl_err_out;
3154	}
3155
3156	err = register_filesystem(&ntfs_fs_type);
3157	if (!err) {
3158		ntfs_debug("NTFS driver registered successfully.");
3159		return 0; /* Success! */
3160	}
3161	pr_crit("Failed to register NTFS filesystem driver!\n");
3162
3163	/* Unregister the ntfs sysctls. */
3164	ntfs_sysctl(0);
3165sysctl_err_out:
3166	kmem_cache_destroy(ntfs_big_inode_cache);
3167big_inode_err_out:
3168	kmem_cache_destroy(ntfs_inode_cache);
3169inode_err_out:
3170	kmem_cache_destroy(ntfs_name_cache);
3171name_err_out:
3172	kmem_cache_destroy(ntfs_attr_ctx_cache);
3173actx_err_out:
3174	kmem_cache_destroy(ntfs_index_ctx_cache);
3175ictx_err_out:
3176	if (!err) {
3177		pr_crit("Aborting NTFS filesystem driver registration...\n");
3178		err = -ENOMEM;
3179	}
3180	return err;
3181}
3182
3183static void __exit exit_ntfs_fs(void)
3184{
3185	ntfs_debug("Unregistering NTFS driver.");
3186
3187	unregister_filesystem(&ntfs_fs_type);
3188
3189	/*
3190	 * Make sure all delayed rcu free inodes are flushed before we
3191	 * destroy cache.
3192	 */
3193	rcu_barrier();
3194	kmem_cache_destroy(ntfs_big_inode_cache);
3195	kmem_cache_destroy(ntfs_inode_cache);
3196	kmem_cache_destroy(ntfs_name_cache);
3197	kmem_cache_destroy(ntfs_attr_ctx_cache);
3198	kmem_cache_destroy(ntfs_index_ctx_cache);
3199	/* Unregister the ntfs sysctls. */
3200	ntfs_sysctl(0);
3201}
3202
3203MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3204MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
3205MODULE_VERSION(NTFS_VERSION);
3206MODULE_LICENSE("GPL");
3207#ifdef DEBUG
3208module_param(debug_msgs, bint, 0);
3209MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3210#endif
3211
3212module_init(init_ntfs_fs)
3213module_exit(exit_ntfs_fs)
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
   4 *
   5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
   6 * Copyright (c) 2001,2002 Richard Russon
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/stddef.h>
  11#include <linux/init.h>
  12#include <linux/slab.h>
  13#include <linux/string.h>
  14#include <linux/spinlock.h>
  15#include <linux/blkdev.h>	/* For bdev_logical_block_size(). */
  16#include <linux/backing-dev.h>
  17#include <linux/buffer_head.h>
  18#include <linux/vfs.h>
  19#include <linux/moduleparam.h>
  20#include <linux/bitmap.h>
  21
  22#include "sysctl.h"
  23#include "logfile.h"
  24#include "quota.h"
  25#include "usnjrnl.h"
  26#include "dir.h"
  27#include "debug.h"
  28#include "index.h"
  29#include "inode.h"
  30#include "aops.h"
  31#include "layout.h"
  32#include "malloc.h"
  33#include "ntfs.h"
  34
  35/* Number of mounted filesystems which have compression enabled. */
  36static unsigned long ntfs_nr_compression_users;
  37
  38/* A global default upcase table and a corresponding reference count. */
  39static ntfschar *default_upcase;
  40static unsigned long ntfs_nr_upcase_users;
  41
  42/* Error constants/strings used in inode.c::ntfs_show_options(). */
  43typedef enum {
  44	/* One of these must be present, default is ON_ERRORS_CONTINUE. */
  45	ON_ERRORS_PANIC			= 0x01,
  46	ON_ERRORS_REMOUNT_RO		= 0x02,
  47	ON_ERRORS_CONTINUE		= 0x04,
  48	/* Optional, can be combined with any of the above. */
  49	ON_ERRORS_RECOVER		= 0x10,
  50} ON_ERRORS_ACTIONS;
  51
  52const option_t on_errors_arr[] = {
  53	{ ON_ERRORS_PANIC,	"panic" },
  54	{ ON_ERRORS_REMOUNT_RO,	"remount-ro", },
  55	{ ON_ERRORS_CONTINUE,	"continue", },
  56	{ ON_ERRORS_RECOVER,	"recover" },
  57	{ 0,			NULL }
  58};
  59
  60/**
  61 * simple_getbool -
  62 *
  63 * Copied from old ntfs driver (which copied from vfat driver).
  64 */
  65static int simple_getbool(char *s, bool *setval)
  66{
  67	if (s) {
  68		if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
  69			*setval = true;
  70		else if (!strcmp(s, "0") || !strcmp(s, "no") ||
  71							!strcmp(s, "false"))
  72			*setval = false;
  73		else
  74			return 0;
  75	} else
  76		*setval = true;
  77	return 1;
  78}
  79
  80/**
  81 * parse_options - parse the (re)mount options
  82 * @vol:	ntfs volume
  83 * @opt:	string containing the (re)mount options
  84 *
  85 * Parse the recognized options in @opt for the ntfs volume described by @vol.
  86 */
  87static bool parse_options(ntfs_volume *vol, char *opt)
  88{
  89	char *p, *v, *ov;
  90	static char *utf8 = "utf8";
  91	int errors = 0, sloppy = 0;
  92	kuid_t uid = INVALID_UID;
  93	kgid_t gid = INVALID_GID;
  94	umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
  95	int mft_zone_multiplier = -1, on_errors = -1;
  96	int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
  97	struct nls_table *nls_map = NULL, *old_nls;
  98
  99	/* I am lazy... (-8 */
 100#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value)	\
 101	if (!strcmp(p, option)) {					\
 102		if (!v || !*v)						\
 103			variable = default_value;			\
 104		else {							\
 105			variable = simple_strtoul(ov = v, &v, 0);	\
 106			if (*v)						\
 107				goto needs_val;				\
 108		}							\
 109	}
 110#define NTFS_GETOPT(option, variable)					\
 111	if (!strcmp(p, option)) {					\
 112		if (!v || !*v)						\
 113			goto needs_arg;					\
 114		variable = simple_strtoul(ov = v, &v, 0);		\
 115		if (*v)							\
 116			goto needs_val;					\
 117	}
 118#define NTFS_GETOPT_UID(option, variable)				\
 119	if (!strcmp(p, option)) {					\
 120		uid_t uid_value;					\
 121		if (!v || !*v)						\
 122			goto needs_arg;					\
 123		uid_value = simple_strtoul(ov = v, &v, 0);		\
 124		if (*v)							\
 125			goto needs_val;					\
 126		variable = make_kuid(current_user_ns(), uid_value);	\
 127		if (!uid_valid(variable))				\
 128			goto needs_val;					\
 129	}
 130#define NTFS_GETOPT_GID(option, variable)				\
 131	if (!strcmp(p, option)) {					\
 132		gid_t gid_value;					\
 133		if (!v || !*v)						\
 134			goto needs_arg;					\
 135		gid_value = simple_strtoul(ov = v, &v, 0);		\
 136		if (*v)							\
 137			goto needs_val;					\
 138		variable = make_kgid(current_user_ns(), gid_value);	\
 139		if (!gid_valid(variable))				\
 140			goto needs_val;					\
 141	}
 142#define NTFS_GETOPT_OCTAL(option, variable)				\
 143	if (!strcmp(p, option)) {					\
 144		if (!v || !*v)						\
 145			goto needs_arg;					\
 146		variable = simple_strtoul(ov = v, &v, 8);		\
 147		if (*v)							\
 148			goto needs_val;					\
 149	}
 150#define NTFS_GETOPT_BOOL(option, variable)				\
 151	if (!strcmp(p, option)) {					\
 152		bool val;						\
 153		if (!simple_getbool(v, &val))				\
 154			goto needs_bool;				\
 155		variable = val;						\
 156	}
 157#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array)		\
 158	if (!strcmp(p, option)) {					\
 159		int _i;							\
 160		if (!v || !*v)						\
 161			goto needs_arg;					\
 162		ov = v;							\
 163		if (variable == -1)					\
 164			variable = 0;					\
 165		for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
 166			if (!strcmp(opt_array[_i].str, v)) {		\
 167				variable |= opt_array[_i].val;		\
 168				break;					\
 169			}						\
 170		if (!opt_array[_i].str || !*opt_array[_i].str)		\
 171			goto needs_val;					\
 172	}
 173	if (!opt || !*opt)
 174		goto no_mount_options;
 175	ntfs_debug("Entering with mount options string: %s", opt);
 176	while ((p = strsep(&opt, ","))) {
 177		if ((v = strchr(p, '=')))
 178			*v++ = 0;
 179		NTFS_GETOPT_UID("uid", uid)
 180		else NTFS_GETOPT_GID("gid", gid)
 181		else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
 182		else NTFS_GETOPT_OCTAL("fmask", fmask)
 183		else NTFS_GETOPT_OCTAL("dmask", dmask)
 184		else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
 185		else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
 186		else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
 187		else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
 188		else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
 189		else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
 190				on_errors_arr)
 191		else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
 192			ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
 193					p);
 194		else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
 195			if (!strcmp(p, "iocharset"))
 196				ntfs_warning(vol->sb, "Option iocharset is "
 197						"deprecated. Please use "
 198						"option nls=<charsetname> in "
 199						"the future.");
 200			if (!v || !*v)
 201				goto needs_arg;
 202use_utf8:
 203			old_nls = nls_map;
 204			nls_map = load_nls(v);
 205			if (!nls_map) {
 206				if (!old_nls) {
 207					ntfs_error(vol->sb, "NLS character set "
 208							"%s not found.", v);
 209					return false;
 210				}
 211				ntfs_error(vol->sb, "NLS character set %s not "
 212						"found. Using previous one %s.",
 213						v, old_nls->charset);
 214				nls_map = old_nls;
 215			} else /* nls_map */ {
 216				unload_nls(old_nls);
 217			}
 218		} else if (!strcmp(p, "utf8")) {
 219			bool val = false;
 220			ntfs_warning(vol->sb, "Option utf8 is no longer "
 221				   "supported, using option nls=utf8. Please "
 222				   "use option nls=utf8 in the future and "
 223				   "make sure utf8 is compiled either as a "
 224				   "module or into the kernel.");
 225			if (!v || !*v)
 226				val = true;
 227			else if (!simple_getbool(v, &val))
 228				goto needs_bool;
 229			if (val) {
 230				v = utf8;
 231				goto use_utf8;
 232			}
 233		} else {
 234			ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
 235			if (errors < INT_MAX)
 236				errors++;
 237		}
 238#undef NTFS_GETOPT_OPTIONS_ARRAY
 239#undef NTFS_GETOPT_BOOL
 240#undef NTFS_GETOPT
 241#undef NTFS_GETOPT_WITH_DEFAULT
 242	}
 243no_mount_options:
 244	if (errors && !sloppy)
 245		return false;
 246	if (sloppy)
 247		ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
 248				"unrecognized mount option(s) and continuing.");
 249	/* Keep this first! */
 250	if (on_errors != -1) {
 251		if (!on_errors) {
 252			ntfs_error(vol->sb, "Invalid errors option argument "
 253					"or bug in options parser.");
 254			return false;
 255		}
 256	}
 257	if (nls_map) {
 258		if (vol->nls_map && vol->nls_map != nls_map) {
 259			ntfs_error(vol->sb, "Cannot change NLS character set "
 260					"on remount.");
 261			return false;
 262		} /* else (!vol->nls_map) */
 263		ntfs_debug("Using NLS character set %s.", nls_map->charset);
 264		vol->nls_map = nls_map;
 265	} else /* (!nls_map) */ {
 266		if (!vol->nls_map) {
 267			vol->nls_map = load_nls_default();
 268			if (!vol->nls_map) {
 269				ntfs_error(vol->sb, "Failed to load default "
 270						"NLS character set.");
 271				return false;
 272			}
 273			ntfs_debug("Using default NLS character set (%s).",
 274					vol->nls_map->charset);
 275		}
 276	}
 277	if (mft_zone_multiplier != -1) {
 278		if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
 279				mft_zone_multiplier) {
 280			ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
 281					"on remount.");
 282			return false;
 283		}
 284		if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
 285			ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
 286					"Using default value, i.e. 1.");
 287			mft_zone_multiplier = 1;
 288		}
 289		vol->mft_zone_multiplier = mft_zone_multiplier;
 290	}
 291	if (!vol->mft_zone_multiplier)
 292		vol->mft_zone_multiplier = 1;
 293	if (on_errors != -1)
 294		vol->on_errors = on_errors;
 295	if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
 296		vol->on_errors |= ON_ERRORS_CONTINUE;
 297	if (uid_valid(uid))
 298		vol->uid = uid;
 299	if (gid_valid(gid))
 300		vol->gid = gid;
 301	if (fmask != (umode_t)-1)
 302		vol->fmask = fmask;
 303	if (dmask != (umode_t)-1)
 304		vol->dmask = dmask;
 305	if (show_sys_files != -1) {
 306		if (show_sys_files)
 307			NVolSetShowSystemFiles(vol);
 308		else
 309			NVolClearShowSystemFiles(vol);
 310	}
 311	if (case_sensitive != -1) {
 312		if (case_sensitive)
 313			NVolSetCaseSensitive(vol);
 314		else
 315			NVolClearCaseSensitive(vol);
 316	}
 317	if (disable_sparse != -1) {
 318		if (disable_sparse)
 319			NVolClearSparseEnabled(vol);
 320		else {
 321			if (!NVolSparseEnabled(vol) &&
 322					vol->major_ver && vol->major_ver < 3)
 323				ntfs_warning(vol->sb, "Not enabling sparse "
 324						"support due to NTFS volume "
 325						"version %i.%i (need at least "
 326						"version 3.0).", vol->major_ver,
 327						vol->minor_ver);
 328			else
 329				NVolSetSparseEnabled(vol);
 330		}
 331	}
 332	return true;
 333needs_arg:
 334	ntfs_error(vol->sb, "The %s option requires an argument.", p);
 335	return false;
 336needs_bool:
 337	ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
 338	return false;
 339needs_val:
 340	ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
 341	return false;
 342}
 343
 344#ifdef NTFS_RW
 345
 346/**
 347 * ntfs_write_volume_flags - write new flags to the volume information flags
 348 * @vol:	ntfs volume on which to modify the flags
 349 * @flags:	new flags value for the volume information flags
 350 *
 351 * Internal function.  You probably want to use ntfs_{set,clear}_volume_flags()
 352 * instead (see below).
 353 *
 354 * Replace the volume information flags on the volume @vol with the value
 355 * supplied in @flags.  Note, this overwrites the volume information flags, so
 356 * make sure to combine the flags you want to modify with the old flags and use
 357 * the result when calling ntfs_write_volume_flags().
 358 *
 359 * Return 0 on success and -errno on error.
 360 */
 361static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
 362{
 363	ntfs_inode *ni = NTFS_I(vol->vol_ino);
 364	MFT_RECORD *m;
 365	VOLUME_INFORMATION *vi;
 366	ntfs_attr_search_ctx *ctx;
 367	int err;
 368
 369	ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
 370			le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
 371	if (vol->vol_flags == flags)
 372		goto done;
 373	BUG_ON(!ni);
 374	m = map_mft_record(ni);
 375	if (IS_ERR(m)) {
 376		err = PTR_ERR(m);
 377		goto err_out;
 378	}
 379	ctx = ntfs_attr_get_search_ctx(ni, m);
 380	if (!ctx) {
 381		err = -ENOMEM;
 382		goto put_unm_err_out;
 383	}
 384	err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
 385			ctx);
 386	if (err)
 387		goto put_unm_err_out;
 388	vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
 389			le16_to_cpu(ctx->attr->data.resident.value_offset));
 390	vol->vol_flags = vi->flags = flags;
 391	flush_dcache_mft_record_page(ctx->ntfs_ino);
 392	mark_mft_record_dirty(ctx->ntfs_ino);
 393	ntfs_attr_put_search_ctx(ctx);
 394	unmap_mft_record(ni);
 395done:
 396	ntfs_debug("Done.");
 397	return 0;
 398put_unm_err_out:
 399	if (ctx)
 400		ntfs_attr_put_search_ctx(ctx);
 401	unmap_mft_record(ni);
 402err_out:
 403	ntfs_error(vol->sb, "Failed with error code %i.", -err);
 404	return err;
 405}
 406
 407/**
 408 * ntfs_set_volume_flags - set bits in the volume information flags
 409 * @vol:	ntfs volume on which to modify the flags
 410 * @flags:	flags to set on the volume
 411 *
 412 * Set the bits in @flags in the volume information flags on the volume @vol.
 413 *
 414 * Return 0 on success and -errno on error.
 415 */
 416static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
 417{
 418	flags &= VOLUME_FLAGS_MASK;
 419	return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
 420}
 421
 422/**
 423 * ntfs_clear_volume_flags - clear bits in the volume information flags
 424 * @vol:	ntfs volume on which to modify the flags
 425 * @flags:	flags to clear on the volume
 426 *
 427 * Clear the bits in @flags in the volume information flags on the volume @vol.
 428 *
 429 * Return 0 on success and -errno on error.
 430 */
 431static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
 432{
 433	flags &= VOLUME_FLAGS_MASK;
 434	flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
 435	return ntfs_write_volume_flags(vol, flags);
 436}
 437
 438#endif /* NTFS_RW */
 439
 440/**
 441 * ntfs_remount - change the mount options of a mounted ntfs filesystem
 442 * @sb:		superblock of mounted ntfs filesystem
 443 * @flags:	remount flags
 444 * @opt:	remount options string
 445 *
 446 * Change the mount options of an already mounted ntfs filesystem.
 447 *
 448 * NOTE:  The VFS sets the @sb->s_flags remount flags to @flags after
 449 * ntfs_remount() returns successfully (i.e. returns 0).  Otherwise,
 450 * @sb->s_flags are not changed.
 451 */
 452static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
 453{
 454	ntfs_volume *vol = NTFS_SB(sb);
 455
 456	ntfs_debug("Entering with remount options string: %s", opt);
 457
 458	sync_filesystem(sb);
 459
 460#ifndef NTFS_RW
 461	/* For read-only compiled driver, enforce read-only flag. */
 462	*flags |= SB_RDONLY;
 463#else /* NTFS_RW */
 464	/*
 465	 * For the read-write compiled driver, if we are remounting read-write,
 466	 * make sure there are no volume errors and that no unsupported volume
 467	 * flags are set.  Also, empty the logfile journal as it would become
 468	 * stale as soon as something is written to the volume and mark the
 469	 * volume dirty so that chkdsk is run if the volume is not umounted
 470	 * cleanly.  Finally, mark the quotas out of date so Windows rescans
 471	 * the volume on boot and updates them.
 472	 *
 473	 * When remounting read-only, mark the volume clean if no volume errors
 474	 * have occurred.
 475	 */
 476	if (sb_rdonly(sb) && !(*flags & SB_RDONLY)) {
 477		static const char *es = ".  Cannot remount read-write.";
 478
 479		/* Remounting read-write. */
 480		if (NVolErrors(vol)) {
 481			ntfs_error(sb, "Volume has errors and is read-only%s",
 482					es);
 483			return -EROFS;
 484		}
 485		if (vol->vol_flags & VOLUME_IS_DIRTY) {
 486			ntfs_error(sb, "Volume is dirty and read-only%s", es);
 487			return -EROFS;
 488		}
 489		if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
 490			ntfs_error(sb, "Volume has been modified by chkdsk "
 491					"and is read-only%s", es);
 492			return -EROFS;
 493		}
 494		if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
 495			ntfs_error(sb, "Volume has unsupported flags set "
 496					"(0x%x) and is read-only%s",
 497					(unsigned)le16_to_cpu(vol->vol_flags),
 498					es);
 499			return -EROFS;
 500		}
 501		if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
 502			ntfs_error(sb, "Failed to set dirty bit in volume "
 503					"information flags%s", es);
 504			return -EROFS;
 505		}
 506#if 0
 507		// TODO: Enable this code once we start modifying anything that
 508		//	 is different between NTFS 1.2 and 3.x...
 509		/* Set NT4 compatibility flag on newer NTFS version volumes. */
 510		if ((vol->major_ver > 1)) {
 511			if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
 512				ntfs_error(sb, "Failed to set NT4 "
 513						"compatibility flag%s", es);
 514				NVolSetErrors(vol);
 515				return -EROFS;
 516			}
 517		}
 518#endif
 519		if (!ntfs_empty_logfile(vol->logfile_ino)) {
 520			ntfs_error(sb, "Failed to empty journal $LogFile%s",
 521					es);
 522			NVolSetErrors(vol);
 523			return -EROFS;
 524		}
 525		if (!ntfs_mark_quotas_out_of_date(vol)) {
 526			ntfs_error(sb, "Failed to mark quotas out of date%s",
 527					es);
 528			NVolSetErrors(vol);
 529			return -EROFS;
 530		}
 531		if (!ntfs_stamp_usnjrnl(vol)) {
 532			ntfs_error(sb, "Failed to stamp transaction log "
 533					"($UsnJrnl)%s", es);
 534			NVolSetErrors(vol);
 535			return -EROFS;
 536		}
 537	} else if (!sb_rdonly(sb) && (*flags & SB_RDONLY)) {
 538		/* Remounting read-only. */
 539		if (!NVolErrors(vol)) {
 540			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
 541				ntfs_warning(sb, "Failed to clear dirty bit "
 542						"in volume information "
 543						"flags.  Run chkdsk.");
 544		}
 545	}
 546#endif /* NTFS_RW */
 547
 548	// TODO: Deal with *flags.
 549
 550	if (!parse_options(vol, opt))
 551		return -EINVAL;
 552
 553	ntfs_debug("Done.");
 554	return 0;
 555}
 556
 557/**
 558 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
 559 * @sb:		Super block of the device to which @b belongs.
 560 * @b:		Boot sector of device @sb to check.
 561 * @silent:	If 'true', all output will be silenced.
 562 *
 563 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
 564 * sector. Returns 'true' if it is valid and 'false' if not.
 565 *
 566 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
 567 * is 'true'.
 568 */
 569static bool is_boot_sector_ntfs(const struct super_block *sb,
 570		const NTFS_BOOT_SECTOR *b, const bool silent)
 571{
 572	/*
 573	 * Check that checksum == sum of u32 values from b to the checksum
 574	 * field.  If checksum is zero, no checking is done.  We will work when
 575	 * the checksum test fails, since some utilities update the boot sector
 576	 * ignoring the checksum which leaves the checksum out-of-date.  We
 577	 * report a warning if this is the case.
 578	 */
 579	if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
 580		le32 *u;
 581		u32 i;
 582
 583		for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
 584			i += le32_to_cpup(u);
 585		if (le32_to_cpu(b->checksum) != i)
 586			ntfs_warning(sb, "Invalid boot sector checksum.");
 587	}
 588	/* Check OEMidentifier is "NTFS    " */
 589	if (b->oem_id != magicNTFS)
 590		goto not_ntfs;
 591	/* Check bytes per sector value is between 256 and 4096. */
 592	if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
 593			le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
 594		goto not_ntfs;
 595	/* Check sectors per cluster value is valid. */
 596	switch (b->bpb.sectors_per_cluster) {
 597	case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
 598		break;
 599	default:
 600		goto not_ntfs;
 601	}
 602	/* Check the cluster size is not above the maximum (64kiB). */
 603	if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
 604			b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
 605		goto not_ntfs;
 606	/* Check reserved/unused fields are really zero. */
 607	if (le16_to_cpu(b->bpb.reserved_sectors) ||
 608			le16_to_cpu(b->bpb.root_entries) ||
 609			le16_to_cpu(b->bpb.sectors) ||
 610			le16_to_cpu(b->bpb.sectors_per_fat) ||
 611			le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
 612		goto not_ntfs;
 613	/* Check clusters per file mft record value is valid. */
 614	if ((u8)b->clusters_per_mft_record < 0xe1 ||
 615			(u8)b->clusters_per_mft_record > 0xf7)
 616		switch (b->clusters_per_mft_record) {
 617		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
 618			break;
 619		default:
 620			goto not_ntfs;
 621		}
 622	/* Check clusters per index block value is valid. */
 623	if ((u8)b->clusters_per_index_record < 0xe1 ||
 624			(u8)b->clusters_per_index_record > 0xf7)
 625		switch (b->clusters_per_index_record) {
 626		case 1: case 2: case 4: case 8: case 16: case 32: case 64:
 627			break;
 628		default:
 629			goto not_ntfs;
 630		}
 631	/*
 632	 * Check for valid end of sector marker. We will work without it, but
 633	 * many BIOSes will refuse to boot from a bootsector if the magic is
 634	 * incorrect, so we emit a warning.
 635	 */
 636	if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
 637		ntfs_warning(sb, "Invalid end of sector marker.");
 638	return true;
 639not_ntfs:
 640	return false;
 641}
 642
 643/**
 644 * read_ntfs_boot_sector - read the NTFS boot sector of a device
 645 * @sb:		super block of device to read the boot sector from
 646 * @silent:	if true, suppress all output
 647 *
 648 * Reads the boot sector from the device and validates it. If that fails, tries
 649 * to read the backup boot sector, first from the end of the device a-la NT4 and
 650 * later and then from the middle of the device a-la NT3.51 and before.
 651 *
 652 * If a valid boot sector is found but it is not the primary boot sector, we
 653 * repair the primary boot sector silently (unless the device is read-only or
 654 * the primary boot sector is not accessible).
 655 *
 656 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
 657 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
 658 * to their respective values.
 659 *
 660 * Return the unlocked buffer head containing the boot sector or NULL on error.
 661 */
 662static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
 663		const int silent)
 664{
 665	const char *read_err_str = "Unable to read %s boot sector.";
 666	struct buffer_head *bh_primary, *bh_backup;
 667	sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
 668
 669	/* Try to read primary boot sector. */
 670	if ((bh_primary = sb_bread(sb, 0))) {
 671		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 672				bh_primary->b_data, silent))
 673			return bh_primary;
 674		if (!silent)
 675			ntfs_error(sb, "Primary boot sector is invalid.");
 676	} else if (!silent)
 677		ntfs_error(sb, read_err_str, "primary");
 678	if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
 679		if (bh_primary)
 680			brelse(bh_primary);
 681		if (!silent)
 682			ntfs_error(sb, "Mount option errors=recover not used. "
 683					"Aborting without trying to recover.");
 684		return NULL;
 685	}
 686	/* Try to read NT4+ backup boot sector. */
 687	if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
 688		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 689				bh_backup->b_data, silent))
 690			goto hotfix_primary_boot_sector;
 691		brelse(bh_backup);
 692	} else if (!silent)
 693		ntfs_error(sb, read_err_str, "backup");
 694	/* Try to read NT3.51- backup boot sector. */
 695	if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
 696		if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
 697				bh_backup->b_data, silent))
 698			goto hotfix_primary_boot_sector;
 699		if (!silent)
 700			ntfs_error(sb, "Could not find a valid backup boot "
 701					"sector.");
 702		brelse(bh_backup);
 703	} else if (!silent)
 704		ntfs_error(sb, read_err_str, "backup");
 705	/* We failed. Cleanup and return. */
 706	if (bh_primary)
 707		brelse(bh_primary);
 708	return NULL;
 709hotfix_primary_boot_sector:
 710	if (bh_primary) {
 711		/*
 712		 * If we managed to read sector zero and the volume is not
 713		 * read-only, copy the found, valid backup boot sector to the
 714		 * primary boot sector.  Note we only copy the actual boot
 715		 * sector structure, not the actual whole device sector as that
 716		 * may be bigger and would potentially damage the $Boot system
 717		 * file (FIXME: Would be nice to know if the backup boot sector
 718		 * on a large sector device contains the whole boot loader or
 719		 * just the first 512 bytes).
 720		 */
 721		if (!sb_rdonly(sb)) {
 722			ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
 723					"boot sector from backup copy.");
 724			memcpy(bh_primary->b_data, bh_backup->b_data,
 725					NTFS_BLOCK_SIZE);
 726			mark_buffer_dirty(bh_primary);
 727			sync_dirty_buffer(bh_primary);
 728			if (buffer_uptodate(bh_primary)) {
 729				brelse(bh_backup);
 730				return bh_primary;
 731			}
 732			ntfs_error(sb, "Hot-fix: Device write error while "
 733					"recovering primary boot sector.");
 734		} else {
 735			ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
 736					"sector failed: Read-only mount.");
 737		}
 738		brelse(bh_primary);
 739	}
 740	ntfs_warning(sb, "Using backup boot sector.");
 741	return bh_backup;
 742}
 743
 744/**
 745 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
 746 * @vol:	volume structure to initialise with data from boot sector
 747 * @b:		boot sector to parse
 748 *
 749 * Parse the ntfs boot sector @b and store all imporant information therein in
 750 * the ntfs super block @vol.  Return 'true' on success and 'false' on error.
 751 */
 752static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
 753{
 754	unsigned int sectors_per_cluster_bits, nr_hidden_sects;
 755	int clusters_per_mft_record, clusters_per_index_record;
 756	s64 ll;
 757
 758	vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
 759	vol->sector_size_bits = ffs(vol->sector_size) - 1;
 760	ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
 761			vol->sector_size);
 762	ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
 763			vol->sector_size_bits);
 764	if (vol->sector_size < vol->sb->s_blocksize) {
 765		ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
 766				"device block size (%lu).  This is not "
 767				"supported.  Sorry.", vol->sector_size,
 768				vol->sb->s_blocksize);
 769		return false;
 770	}
 771	ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
 772	sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
 773	ntfs_debug("sectors_per_cluster_bits = 0x%x",
 774			sectors_per_cluster_bits);
 775	nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
 776	ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
 777	vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
 778	vol->cluster_size_mask = vol->cluster_size - 1;
 779	vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
 780	ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
 781			vol->cluster_size);
 782	ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
 783	ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
 784	if (vol->cluster_size < vol->sector_size) {
 785		ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
 786				"sector size (%i).  This is not supported.  "
 787				"Sorry.", vol->cluster_size, vol->sector_size);
 788		return false;
 789	}
 790	clusters_per_mft_record = b->clusters_per_mft_record;
 791	ntfs_debug("clusters_per_mft_record = %i (0x%x)",
 792			clusters_per_mft_record, clusters_per_mft_record);
 793	if (clusters_per_mft_record > 0)
 794		vol->mft_record_size = vol->cluster_size <<
 795				(ffs(clusters_per_mft_record) - 1);
 796	else
 797		/*
 798		 * When mft_record_size < cluster_size, clusters_per_mft_record
 799		 * = -log2(mft_record_size) bytes. mft_record_size normaly is
 800		 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
 801		 */
 802		vol->mft_record_size = 1 << -clusters_per_mft_record;
 803	vol->mft_record_size_mask = vol->mft_record_size - 1;
 804	vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
 805	ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
 806			vol->mft_record_size);
 807	ntfs_debug("vol->mft_record_size_mask = 0x%x",
 808			vol->mft_record_size_mask);
 809	ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
 810			vol->mft_record_size_bits, vol->mft_record_size_bits);
 811	/*
 812	 * We cannot support mft record sizes above the PAGE_SIZE since
 813	 * we store $MFT/$DATA, the table of mft records in the page cache.
 814	 */
 815	if (vol->mft_record_size > PAGE_SIZE) {
 816		ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
 817				"PAGE_SIZE on your system (%lu).  "
 818				"This is not supported.  Sorry.",
 819				vol->mft_record_size, PAGE_SIZE);
 820		return false;
 821	}
 822	/* We cannot support mft record sizes below the sector size. */
 823	if (vol->mft_record_size < vol->sector_size) {
 824		ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
 825				"sector size (%i).  This is not supported.  "
 826				"Sorry.", vol->mft_record_size,
 827				vol->sector_size);
 828		return false;
 829	}
 830	clusters_per_index_record = b->clusters_per_index_record;
 831	ntfs_debug("clusters_per_index_record = %i (0x%x)",
 832			clusters_per_index_record, clusters_per_index_record);
 833	if (clusters_per_index_record > 0)
 834		vol->index_record_size = vol->cluster_size <<
 835				(ffs(clusters_per_index_record) - 1);
 836	else
 837		/*
 838		 * When index_record_size < cluster_size,
 839		 * clusters_per_index_record = -log2(index_record_size) bytes.
 840		 * index_record_size normaly equals 4096 bytes, which is
 841		 * encoded as 0xF4 (-12 in decimal).
 842		 */
 843		vol->index_record_size = 1 << -clusters_per_index_record;
 844	vol->index_record_size_mask = vol->index_record_size - 1;
 845	vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
 846	ntfs_debug("vol->index_record_size = %i (0x%x)",
 847			vol->index_record_size, vol->index_record_size);
 848	ntfs_debug("vol->index_record_size_mask = 0x%x",
 849			vol->index_record_size_mask);
 850	ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
 851			vol->index_record_size_bits,
 852			vol->index_record_size_bits);
 853	/* We cannot support index record sizes below the sector size. */
 854	if (vol->index_record_size < vol->sector_size) {
 855		ntfs_error(vol->sb, "Index record size (%i) is smaller than "
 856				"the sector size (%i).  This is not "
 857				"supported.  Sorry.", vol->index_record_size,
 858				vol->sector_size);
 859		return false;
 860	}
 861	/*
 862	 * Get the size of the volume in clusters and check for 64-bit-ness.
 863	 * Windows currently only uses 32 bits to save the clusters so we do
 864	 * the same as it is much faster on 32-bit CPUs.
 865	 */
 866	ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
 867	if ((u64)ll >= 1ULL << 32) {
 868		ntfs_error(vol->sb, "Cannot handle 64-bit clusters.  Sorry.");
 869		return false;
 870	}
 871	vol->nr_clusters = ll;
 872	ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
 873	/*
 874	 * On an architecture where unsigned long is 32-bits, we restrict the
 875	 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
 876	 * will hopefully optimize the whole check away.
 877	 */
 878	if (sizeof(unsigned long) < 8) {
 879		if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
 880			ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
 881					"large for this architecture.  "
 882					"Maximum supported is 2TiB.  Sorry.",
 883					(unsigned long long)ll >> (40 -
 884					vol->cluster_size_bits));
 885			return false;
 886		}
 887	}
 888	ll = sle64_to_cpu(b->mft_lcn);
 889	if (ll >= vol->nr_clusters) {
 890		ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
 891				"volume.  Weird.", (unsigned long long)ll,
 892				(unsigned long long)ll);
 893		return false;
 894	}
 895	vol->mft_lcn = ll;
 896	ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
 897	ll = sle64_to_cpu(b->mftmirr_lcn);
 898	if (ll >= vol->nr_clusters) {
 899		ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
 900				"of volume.  Weird.", (unsigned long long)ll,
 901				(unsigned long long)ll);
 902		return false;
 903	}
 904	vol->mftmirr_lcn = ll;
 905	ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
 906#ifdef NTFS_RW
 907	/*
 908	 * Work out the size of the mft mirror in number of mft records. If the
 909	 * cluster size is less than or equal to the size taken by four mft
 910	 * records, the mft mirror stores the first four mft records. If the
 911	 * cluster size is bigger than the size taken by four mft records, the
 912	 * mft mirror contains as many mft records as will fit into one
 913	 * cluster.
 914	 */
 915	if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
 916		vol->mftmirr_size = 4;
 917	else
 918		vol->mftmirr_size = vol->cluster_size >>
 919				vol->mft_record_size_bits;
 920	ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
 921#endif /* NTFS_RW */
 922	vol->serial_no = le64_to_cpu(b->volume_serial_number);
 923	ntfs_debug("vol->serial_no = 0x%llx",
 924			(unsigned long long)vol->serial_no);
 925	return true;
 926}
 927
 928/**
 929 * ntfs_setup_allocators - initialize the cluster and mft allocators
 930 * @vol:	volume structure for which to setup the allocators
 931 *
 932 * Setup the cluster (lcn) and mft allocators to the starting values.
 933 */
 934static void ntfs_setup_allocators(ntfs_volume *vol)
 935{
 936#ifdef NTFS_RW
 937	LCN mft_zone_size, mft_lcn;
 938#endif /* NTFS_RW */
 939
 940	ntfs_debug("vol->mft_zone_multiplier = 0x%x",
 941			vol->mft_zone_multiplier);
 942#ifdef NTFS_RW
 943	/* Determine the size of the MFT zone. */
 944	mft_zone_size = vol->nr_clusters;
 945	switch (vol->mft_zone_multiplier) {  /* % of volume size in clusters */
 946	case 4:
 947		mft_zone_size >>= 1;			/* 50%   */
 948		break;
 949	case 3:
 950		mft_zone_size = (mft_zone_size +
 951				(mft_zone_size >> 1)) >> 2;	/* 37.5% */
 952		break;
 953	case 2:
 954		mft_zone_size >>= 2;			/* 25%   */
 955		break;
 956	/* case 1: */
 957	default:
 958		mft_zone_size >>= 3;			/* 12.5% */
 959		break;
 960	}
 961	/* Setup the mft zone. */
 962	vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
 963	ntfs_debug("vol->mft_zone_pos = 0x%llx",
 964			(unsigned long long)vol->mft_zone_pos);
 965	/*
 966	 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
 967	 * source) and if the actual mft_lcn is in the expected place or even
 968	 * further to the front of the volume, extend the mft_zone to cover the
 969	 * beginning of the volume as well.  This is in order to protect the
 970	 * area reserved for the mft bitmap as well within the mft_zone itself.
 971	 * On non-standard volumes we do not protect it as the overhead would
 972	 * be higher than the speed increase we would get by doing it.
 973	 */
 974	mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
 975	if (mft_lcn * vol->cluster_size < 16 * 1024)
 976		mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
 977				vol->cluster_size;
 978	if (vol->mft_zone_start <= mft_lcn)
 979		vol->mft_zone_start = 0;
 980	ntfs_debug("vol->mft_zone_start = 0x%llx",
 981			(unsigned long long)vol->mft_zone_start);
 982	/*
 983	 * Need to cap the mft zone on non-standard volumes so that it does
 984	 * not point outside the boundaries of the volume.  We do this by
 985	 * halving the zone size until we are inside the volume.
 986	 */
 987	vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
 988	while (vol->mft_zone_end >= vol->nr_clusters) {
 989		mft_zone_size >>= 1;
 990		vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
 991	}
 992	ntfs_debug("vol->mft_zone_end = 0x%llx",
 993			(unsigned long long)vol->mft_zone_end);
 994	/*
 995	 * Set the current position within each data zone to the start of the
 996	 * respective zone.
 997	 */
 998	vol->data1_zone_pos = vol->mft_zone_end;
 999	ntfs_debug("vol->data1_zone_pos = 0x%llx",
1000			(unsigned long long)vol->data1_zone_pos);
1001	vol->data2_zone_pos = 0;
1002	ntfs_debug("vol->data2_zone_pos = 0x%llx",
1003			(unsigned long long)vol->data2_zone_pos);
1004
1005	/* Set the mft data allocation position to mft record 24. */
1006	vol->mft_data_pos = 24;
1007	ntfs_debug("vol->mft_data_pos = 0x%llx",
1008			(unsigned long long)vol->mft_data_pos);
1009#endif /* NTFS_RW */
1010}
1011
1012#ifdef NTFS_RW
1013
1014/**
1015 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1016 * @vol:	ntfs super block describing device whose mft mirror to load
1017 *
1018 * Return 'true' on success or 'false' on error.
1019 */
1020static bool load_and_init_mft_mirror(ntfs_volume *vol)
1021{
1022	struct inode *tmp_ino;
1023	ntfs_inode *tmp_ni;
1024
1025	ntfs_debug("Entering.");
1026	/* Get mft mirror inode. */
1027	tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1028	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1029		if (!IS_ERR(tmp_ino))
1030			iput(tmp_ino);
1031		/* Caller will display error message. */
1032		return false;
1033	}
1034	/*
1035	 * Re-initialize some specifics about $MFTMirr's inode as
1036	 * ntfs_read_inode() will have set up the default ones.
1037	 */
1038	/* Set uid and gid to root. */
1039	tmp_ino->i_uid = GLOBAL_ROOT_UID;
1040	tmp_ino->i_gid = GLOBAL_ROOT_GID;
1041	/* Regular file.  No access for anyone. */
1042	tmp_ino->i_mode = S_IFREG;
1043	/* No VFS initiated operations allowed for $MFTMirr. */
1044	tmp_ino->i_op = &ntfs_empty_inode_ops;
1045	tmp_ino->i_fop = &ntfs_empty_file_ops;
1046	/* Put in our special address space operations. */
1047	tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1048	tmp_ni = NTFS_I(tmp_ino);
1049	/* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1050	NInoSetMstProtected(tmp_ni);
1051	NInoSetSparseDisabled(tmp_ni);
1052	/*
1053	 * Set up our little cheat allowing us to reuse the async read io
1054	 * completion handler for directories.
1055	 */
1056	tmp_ni->itype.index.block_size = vol->mft_record_size;
1057	tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1058	vol->mftmirr_ino = tmp_ino;
1059	ntfs_debug("Done.");
1060	return true;
1061}
1062
1063/**
1064 * check_mft_mirror - compare contents of the mft mirror with the mft
1065 * @vol:	ntfs super block describing device whose mft mirror to check
1066 *
1067 * Return 'true' on success or 'false' on error.
1068 *
1069 * Note, this function also results in the mft mirror runlist being completely
1070 * mapped into memory.  The mft mirror write code requires this and will BUG()
1071 * should it find an unmapped runlist element.
1072 */
1073static bool check_mft_mirror(ntfs_volume *vol)
1074{
1075	struct super_block *sb = vol->sb;
1076	ntfs_inode *mirr_ni;
1077	struct page *mft_page, *mirr_page;
1078	u8 *kmft, *kmirr;
1079	runlist_element *rl, rl2[2];
1080	pgoff_t index;
1081	int mrecs_per_page, i;
1082
1083	ntfs_debug("Entering.");
1084	/* Compare contents of $MFT and $MFTMirr. */
1085	mrecs_per_page = PAGE_SIZE / vol->mft_record_size;
1086	BUG_ON(!mrecs_per_page);
1087	BUG_ON(!vol->mftmirr_size);
1088	mft_page = mirr_page = NULL;
1089	kmft = kmirr = NULL;
1090	index = i = 0;
1091	do {
1092		u32 bytes;
1093
1094		/* Switch pages if necessary. */
1095		if (!(i % mrecs_per_page)) {
1096			if (index) {
1097				ntfs_unmap_page(mft_page);
1098				ntfs_unmap_page(mirr_page);
1099			}
1100			/* Get the $MFT page. */
1101			mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1102					index);
1103			if (IS_ERR(mft_page)) {
1104				ntfs_error(sb, "Failed to read $MFT.");
1105				return false;
1106			}
1107			kmft = page_address(mft_page);
1108			/* Get the $MFTMirr page. */
1109			mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1110					index);
1111			if (IS_ERR(mirr_page)) {
1112				ntfs_error(sb, "Failed to read $MFTMirr.");
1113				goto mft_unmap_out;
1114			}
1115			kmirr = page_address(mirr_page);
1116			++index;
1117		}
1118		/* Do not check the record if it is not in use. */
1119		if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1120			/* Make sure the record is ok. */
1121			if (ntfs_is_baad_recordp((le32*)kmft)) {
1122				ntfs_error(sb, "Incomplete multi sector "
1123						"transfer detected in mft "
1124						"record %i.", i);
1125mm_unmap_out:
1126				ntfs_unmap_page(mirr_page);
1127mft_unmap_out:
1128				ntfs_unmap_page(mft_page);
1129				return false;
1130			}
1131		}
1132		/* Do not check the mirror record if it is not in use. */
1133		if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1134			if (ntfs_is_baad_recordp((le32*)kmirr)) {
1135				ntfs_error(sb, "Incomplete multi sector "
1136						"transfer detected in mft "
1137						"mirror record %i.", i);
1138				goto mm_unmap_out;
1139			}
1140		}
1141		/* Get the amount of data in the current record. */
1142		bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1143		if (bytes < sizeof(MFT_RECORD_OLD) ||
1144				bytes > vol->mft_record_size ||
1145				ntfs_is_baad_recordp((le32*)kmft)) {
1146			bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1147			if (bytes < sizeof(MFT_RECORD_OLD) ||
1148					bytes > vol->mft_record_size ||
1149					ntfs_is_baad_recordp((le32*)kmirr))
1150				bytes = vol->mft_record_size;
1151		}
1152		/* Compare the two records. */
1153		if (memcmp(kmft, kmirr, bytes)) {
1154			ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1155					"match.  Run ntfsfix or chkdsk.", i);
1156			goto mm_unmap_out;
1157		}
1158		kmft += vol->mft_record_size;
1159		kmirr += vol->mft_record_size;
1160	} while (++i < vol->mftmirr_size);
1161	/* Release the last pages. */
1162	ntfs_unmap_page(mft_page);
1163	ntfs_unmap_page(mirr_page);
1164
1165	/* Construct the mft mirror runlist by hand. */
1166	rl2[0].vcn = 0;
1167	rl2[0].lcn = vol->mftmirr_lcn;
1168	rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1169			vol->cluster_size - 1) / vol->cluster_size;
1170	rl2[1].vcn = rl2[0].length;
1171	rl2[1].lcn = LCN_ENOENT;
1172	rl2[1].length = 0;
1173	/*
1174	 * Because we have just read all of the mft mirror, we know we have
1175	 * mapped the full runlist for it.
1176	 */
1177	mirr_ni = NTFS_I(vol->mftmirr_ino);
1178	down_read(&mirr_ni->runlist.lock);
1179	rl = mirr_ni->runlist.rl;
1180	/* Compare the two runlists.  They must be identical. */
1181	i = 0;
1182	do {
1183		if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1184				rl2[i].length != rl[i].length) {
1185			ntfs_error(sb, "$MFTMirr location mismatch.  "
1186					"Run chkdsk.");
1187			up_read(&mirr_ni->runlist.lock);
1188			return false;
1189		}
1190	} while (rl2[i++].length);
1191	up_read(&mirr_ni->runlist.lock);
1192	ntfs_debug("Done.");
1193	return true;
1194}
1195
1196/**
1197 * load_and_check_logfile - load and check the logfile inode for a volume
1198 * @vol:	ntfs super block describing device whose logfile to load
1199 *
1200 * Return 'true' on success or 'false' on error.
1201 */
1202static bool load_and_check_logfile(ntfs_volume *vol,
1203		RESTART_PAGE_HEADER **rp)
1204{
1205	struct inode *tmp_ino;
1206
1207	ntfs_debug("Entering.");
1208	tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1209	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1210		if (!IS_ERR(tmp_ino))
1211			iput(tmp_ino);
1212		/* Caller will display error message. */
1213		return false;
1214	}
1215	if (!ntfs_check_logfile(tmp_ino, rp)) {
1216		iput(tmp_ino);
1217		/* ntfs_check_logfile() will have displayed error output. */
1218		return false;
1219	}
1220	NInoSetSparseDisabled(NTFS_I(tmp_ino));
1221	vol->logfile_ino = tmp_ino;
1222	ntfs_debug("Done.");
1223	return true;
1224}
1225
1226#define NTFS_HIBERFIL_HEADER_SIZE	4096
1227
1228/**
1229 * check_windows_hibernation_status - check if Windows is suspended on a volume
1230 * @vol:	ntfs super block of device to check
1231 *
1232 * Check if Windows is hibernated on the ntfs volume @vol.  This is done by
1233 * looking for the file hiberfil.sys in the root directory of the volume.  If
1234 * the file is not present Windows is definitely not suspended.
1235 *
1236 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1237 * definitely suspended (this volume is not the system volume).  Caveat:  on a
1238 * system with many volumes it is possible that the < 4kiB check is bogus but
1239 * for now this should do fine.
1240 *
1241 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1242 * hiberfil header (which is the first 4kiB).  If this begins with "hibr",
1243 * Windows is definitely suspended.  If it is completely full of zeroes,
1244 * Windows is definitely not hibernated.  Any other case is treated as if
1245 * Windows is suspended.  This caters for the above mentioned caveat of a
1246 * system with many volumes where no "hibr" magic would be present and there is
1247 * no zero header.
1248 *
1249 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1250 * hibernated on the volume, and -errno on error.
1251 */
1252static int check_windows_hibernation_status(ntfs_volume *vol)
1253{
1254	MFT_REF mref;
1255	struct inode *vi;
1256	struct page *page;
1257	u32 *kaddr, *kend;
1258	ntfs_name *name = NULL;
1259	int ret = 1;
1260	static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1261			cpu_to_le16('i'), cpu_to_le16('b'),
1262			cpu_to_le16('e'), cpu_to_le16('r'),
1263			cpu_to_le16('f'), cpu_to_le16('i'),
1264			cpu_to_le16('l'), cpu_to_le16('.'),
1265			cpu_to_le16('s'), cpu_to_le16('y'),
1266			cpu_to_le16('s'), 0 };
1267
1268	ntfs_debug("Entering.");
1269	/*
1270	 * Find the inode number for the hibernation file by looking up the
1271	 * filename hiberfil.sys in the root directory.
1272	 */
1273	inode_lock(vol->root_ino);
1274	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1275			&name);
1276	inode_unlock(vol->root_ino);
1277	if (IS_ERR_MREF(mref)) {
1278		ret = MREF_ERR(mref);
1279		/* If the file does not exist, Windows is not hibernated. */
1280		if (ret == -ENOENT) {
1281			ntfs_debug("hiberfil.sys not present.  Windows is not "
1282					"hibernated on the volume.");
1283			return 0;
1284		}
1285		/* A real error occurred. */
1286		ntfs_error(vol->sb, "Failed to find inode number for "
1287				"hiberfil.sys.");
1288		return ret;
1289	}
1290	/* We do not care for the type of match that was found. */
1291	kfree(name);
1292	/* Get the inode. */
1293	vi = ntfs_iget(vol->sb, MREF(mref));
1294	if (IS_ERR(vi) || is_bad_inode(vi)) {
1295		if (!IS_ERR(vi))
1296			iput(vi);
1297		ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1298		return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1299	}
1300	if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1301		ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx).  "
1302				"Windows is hibernated on the volume.  This "
1303				"is not the system volume.", i_size_read(vi));
1304		goto iput_out;
1305	}
1306	page = ntfs_map_page(vi->i_mapping, 0);
1307	if (IS_ERR(page)) {
1308		ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1309		ret = PTR_ERR(page);
1310		goto iput_out;
1311	}
1312	kaddr = (u32*)page_address(page);
1313	if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1314		ntfs_debug("Magic \"hibr\" found in hiberfil.sys.  Windows is "
1315				"hibernated on the volume.  This is the "
1316				"system volume.");
1317		goto unm_iput_out;
1318	}
1319	kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1320	do {
1321		if (unlikely(*kaddr)) {
1322			ntfs_debug("hiberfil.sys is larger than 4kiB "
1323					"(0x%llx), does not contain the "
1324					"\"hibr\" magic, and does not have a "
1325					"zero header.  Windows is hibernated "
1326					"on the volume.  This is not the "
1327					"system volume.", i_size_read(vi));
1328			goto unm_iput_out;
1329		}
1330	} while (++kaddr < kend);
1331	ntfs_debug("hiberfil.sys contains a zero header.  Windows is not "
1332			"hibernated on the volume.  This is the system "
1333			"volume.");
1334	ret = 0;
1335unm_iput_out:
1336	ntfs_unmap_page(page);
1337iput_out:
1338	iput(vi);
1339	return ret;
1340}
1341
1342/**
1343 * load_and_init_quota - load and setup the quota file for a volume if present
1344 * @vol:	ntfs super block describing device whose quota file to load
1345 *
1346 * Return 'true' on success or 'false' on error.  If $Quota is not present, we
1347 * leave vol->quota_ino as NULL and return success.
1348 */
1349static bool load_and_init_quota(ntfs_volume *vol)
1350{
1351	MFT_REF mref;
1352	struct inode *tmp_ino;
1353	ntfs_name *name = NULL;
1354	static const ntfschar Quota[7] = { cpu_to_le16('$'),
1355			cpu_to_le16('Q'), cpu_to_le16('u'),
1356			cpu_to_le16('o'), cpu_to_le16('t'),
1357			cpu_to_le16('a'), 0 };
1358	static ntfschar Q[3] = { cpu_to_le16('$'),
1359			cpu_to_le16('Q'), 0 };
1360
1361	ntfs_debug("Entering.");
1362	/*
1363	 * Find the inode number for the quota file by looking up the filename
1364	 * $Quota in the extended system files directory $Extend.
1365	 */
1366	inode_lock(vol->extend_ino);
1367	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1368			&name);
1369	inode_unlock(vol->extend_ino);
1370	if (IS_ERR_MREF(mref)) {
1371		/*
1372		 * If the file does not exist, quotas are disabled and have
1373		 * never been enabled on this volume, just return success.
1374		 */
1375		if (MREF_ERR(mref) == -ENOENT) {
1376			ntfs_debug("$Quota not present.  Volume does not have "
1377					"quotas enabled.");
1378			/*
1379			 * No need to try to set quotas out of date if they are
1380			 * not enabled.
1381			 */
1382			NVolSetQuotaOutOfDate(vol);
1383			return true;
1384		}
1385		/* A real error occurred. */
1386		ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1387		return false;
1388	}
1389	/* We do not care for the type of match that was found. */
1390	kfree(name);
1391	/* Get the inode. */
1392	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1393	if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1394		if (!IS_ERR(tmp_ino))
1395			iput(tmp_ino);
1396		ntfs_error(vol->sb, "Failed to load $Quota.");
1397		return false;
1398	}
1399	vol->quota_ino = tmp_ino;
1400	/* Get the $Q index allocation attribute. */
1401	tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1402	if (IS_ERR(tmp_ino)) {
1403		ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1404		return false;
1405	}
1406	vol->quota_q_ino = tmp_ino;
1407	ntfs_debug("Done.");
1408	return true;
1409}
1410
1411/**
1412 * load_and_init_usnjrnl - load and setup the transaction log if present
1413 * @vol:	ntfs super block describing device whose usnjrnl file to load
1414 *
1415 * Return 'true' on success or 'false' on error.
1416 *
1417 * If $UsnJrnl is not present or in the process of being disabled, we set
1418 * NVolUsnJrnlStamped() and return success.
1419 *
1420 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1421 * i.e. transaction logging has only just been enabled or the journal has been
1422 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1423 * and return success.
1424 */
1425static bool load_and_init_usnjrnl(ntfs_volume *vol)
1426{
1427	MFT_REF mref;
1428	struct inode *tmp_ino;
1429	ntfs_inode *tmp_ni;
1430	struct page *page;
1431	ntfs_name *name = NULL;
1432	USN_HEADER *uh;
1433	static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1434			cpu_to_le16('U'), cpu_to_le16('s'),
1435			cpu_to_le16('n'), cpu_to_le16('J'),
1436			cpu_to_le16('r'), cpu_to_le16('n'),
1437			cpu_to_le16('l'), 0 };
1438	static ntfschar Max[5] = { cpu_to_le16('$'),
1439			cpu_to_le16('M'), cpu_to_le16('a'),
1440			cpu_to_le16('x'), 0 };
1441	static ntfschar J[3] = { cpu_to_le16('$'),
1442			cpu_to_le16('J'), 0 };
1443
1444	ntfs_debug("Entering.");
1445	/*
1446	 * Find the inode number for the transaction log file by looking up the
1447	 * filename $UsnJrnl in the extended system files directory $Extend.
1448	 */
1449	inode_lock(vol->extend_ino);
1450	mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1451			&name);
1452	inode_unlock(vol->extend_ino);
1453	if (IS_ERR_MREF(mref)) {
1454		/*
1455		 * If the file does not exist, transaction logging is disabled,
1456		 * just return success.
1457		 */
1458		if (MREF_ERR(mref) == -ENOENT) {
1459			ntfs_debug("$UsnJrnl not present.  Volume does not "
1460					"have transaction logging enabled.");
1461not_enabled:
1462			/*
1463			 * No need to try to stamp the transaction log if
1464			 * transaction logging is not enabled.
1465			 */
1466			NVolSetUsnJrnlStamped(vol);
1467			return true;
1468		}
1469		/* A real error occurred. */
1470		ntfs_error(vol->sb, "Failed to find inode number for "
1471				"$UsnJrnl.");
1472		return false;
1473	}
1474	/* We do not care for the type of match that was found. */
1475	kfree(name);
1476	/* Get the inode. */
1477	tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1478	if (IS_ERR(tmp_ino) || unlikely(is_bad_inode(tmp_ino))) {
1479		if (!IS_ERR(tmp_ino))
1480			iput(tmp_ino);
1481		ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1482		return false;
1483	}
1484	vol->usnjrnl_ino = tmp_ino;
1485	/*
1486	 * If the transaction log is in the process of being deleted, we can
1487	 * ignore it.
1488	 */
1489	if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1490		ntfs_debug("$UsnJrnl in the process of being disabled.  "
1491				"Volume does not have transaction logging "
1492				"enabled.");
1493		goto not_enabled;
1494	}
1495	/* Get the $DATA/$Max attribute. */
1496	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1497	if (IS_ERR(tmp_ino)) {
1498		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1499				"attribute.");
1500		return false;
1501	}
1502	vol->usnjrnl_max_ino = tmp_ino;
1503	if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1504		ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1505				"attribute (size is 0x%llx but should be at "
1506				"least 0x%zx bytes).", i_size_read(tmp_ino),
1507				sizeof(USN_HEADER));
1508		return false;
1509	}
1510	/* Get the $DATA/$J attribute. */
1511	tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1512	if (IS_ERR(tmp_ino)) {
1513		ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1514				"attribute.");
1515		return false;
1516	}
1517	vol->usnjrnl_j_ino = tmp_ino;
1518	/* Verify $J is non-resident and sparse. */
1519	tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1520	if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1521		ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1522				"and/or not sparse.");
1523		return false;
1524	}
1525	/* Read the USN_HEADER from $DATA/$Max. */
1526	page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1527	if (IS_ERR(page)) {
1528		ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1529				"attribute.");
1530		return false;
1531	}
1532	uh = (USN_HEADER*)page_address(page);
1533	/* Sanity check the $Max. */
1534	if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1535			sle64_to_cpu(uh->maximum_size))) {
1536		ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1537				"maximum size (0x%llx).  $UsnJrnl is corrupt.",
1538				(long long)sle64_to_cpu(uh->allocation_delta),
1539				(long long)sle64_to_cpu(uh->maximum_size));
1540		ntfs_unmap_page(page);
1541		return false;
1542	}
1543	/*
1544	 * If the transaction log has been stamped and nothing has been written
1545	 * to it since, we do not need to stamp it.
1546	 */
1547	if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1548			i_size_read(vol->usnjrnl_j_ino))) {
1549		if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1550				i_size_read(vol->usnjrnl_j_ino))) {
1551			ntfs_unmap_page(page);
1552			ntfs_debug("$UsnJrnl is enabled but nothing has been "
1553					"logged since it was last stamped.  "
1554					"Treating this as if the volume does "
1555					"not have transaction logging "
1556					"enabled.");
1557			goto not_enabled;
1558		}
1559		ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1560				"which is out of bounds (0x%llx).  $UsnJrnl "
1561				"is corrupt.",
1562				(long long)sle64_to_cpu(uh->lowest_valid_usn),
1563				i_size_read(vol->usnjrnl_j_ino));
1564		ntfs_unmap_page(page);
1565		return false;
1566	}
1567	ntfs_unmap_page(page);
1568	ntfs_debug("Done.");
1569	return true;
1570}
1571
1572/**
1573 * load_and_init_attrdef - load the attribute definitions table for a volume
1574 * @vol:	ntfs super block describing device whose attrdef to load
1575 *
1576 * Return 'true' on success or 'false' on error.
1577 */
1578static bool load_and_init_attrdef(ntfs_volume *vol)
1579{
1580	loff_t i_size;
1581	struct super_block *sb = vol->sb;
1582	struct inode *ino;
1583	struct page *page;
1584	pgoff_t index, max_index;
1585	unsigned int size;
1586
1587	ntfs_debug("Entering.");
1588	/* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1589	ino = ntfs_iget(sb, FILE_AttrDef);
1590	if (IS_ERR(ino) || is_bad_inode(ino)) {
1591		if (!IS_ERR(ino))
1592			iput(ino);
1593		goto failed;
1594	}
1595	NInoSetSparseDisabled(NTFS_I(ino));
1596	/* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1597	i_size = i_size_read(ino);
1598	if (i_size <= 0 || i_size > 0x7fffffff)
1599		goto iput_failed;
1600	vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1601	if (!vol->attrdef)
1602		goto iput_failed;
1603	index = 0;
1604	max_index = i_size >> PAGE_SHIFT;
1605	size = PAGE_SIZE;
1606	while (index < max_index) {
1607		/* Read the attrdef table and copy it into the linear buffer. */
1608read_partial_attrdef_page:
1609		page = ntfs_map_page(ino->i_mapping, index);
1610		if (IS_ERR(page))
1611			goto free_iput_failed;
1612		memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT),
1613				page_address(page), size);
1614		ntfs_unmap_page(page);
1615	};
1616	if (size == PAGE_SIZE) {
1617		size = i_size & ~PAGE_MASK;
1618		if (size)
1619			goto read_partial_attrdef_page;
1620	}
1621	vol->attrdef_size = i_size;
1622	ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1623	iput(ino);
1624	return true;
1625free_iput_failed:
1626	ntfs_free(vol->attrdef);
1627	vol->attrdef = NULL;
1628iput_failed:
1629	iput(ino);
1630failed:
1631	ntfs_error(sb, "Failed to initialize attribute definition table.");
1632	return false;
1633}
1634
1635#endif /* NTFS_RW */
1636
1637/**
1638 * load_and_init_upcase - load the upcase table for an ntfs volume
1639 * @vol:	ntfs super block describing device whose upcase to load
1640 *
1641 * Return 'true' on success or 'false' on error.
1642 */
1643static bool load_and_init_upcase(ntfs_volume *vol)
1644{
1645	loff_t i_size;
1646	struct super_block *sb = vol->sb;
1647	struct inode *ino;
1648	struct page *page;
1649	pgoff_t index, max_index;
1650	unsigned int size;
1651	int i, max;
1652
1653	ntfs_debug("Entering.");
1654	/* Read upcase table and setup vol->upcase and vol->upcase_len. */
1655	ino = ntfs_iget(sb, FILE_UpCase);
1656	if (IS_ERR(ino) || is_bad_inode(ino)) {
1657		if (!IS_ERR(ino))
1658			iput(ino);
1659		goto upcase_failed;
1660	}
1661	/*
1662	 * The upcase size must not be above 64k Unicode characters, must not
1663	 * be zero and must be a multiple of sizeof(ntfschar).
1664	 */
1665	i_size = i_size_read(ino);
1666	if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1667			i_size > 64ULL * 1024 * sizeof(ntfschar))
1668		goto iput_upcase_failed;
1669	vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1670	if (!vol->upcase)
1671		goto iput_upcase_failed;
1672	index = 0;
1673	max_index = i_size >> PAGE_SHIFT;
1674	size = PAGE_SIZE;
1675	while (index < max_index) {
1676		/* Read the upcase table and copy it into the linear buffer. */
1677read_partial_upcase_page:
1678		page = ntfs_map_page(ino->i_mapping, index);
1679		if (IS_ERR(page))
1680			goto iput_upcase_failed;
1681		memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT),
1682				page_address(page), size);
1683		ntfs_unmap_page(page);
1684	};
1685	if (size == PAGE_SIZE) {
1686		size = i_size & ~PAGE_MASK;
1687		if (size)
1688			goto read_partial_upcase_page;
1689	}
1690	vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1691	ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1692			i_size, 64 * 1024 * sizeof(ntfschar));
1693	iput(ino);
1694	mutex_lock(&ntfs_lock);
1695	if (!default_upcase) {
1696		ntfs_debug("Using volume specified $UpCase since default is "
1697				"not present.");
1698		mutex_unlock(&ntfs_lock);
1699		return true;
1700	}
1701	max = default_upcase_len;
1702	if (max > vol->upcase_len)
1703		max = vol->upcase_len;
1704	for (i = 0; i < max; i++)
1705		if (vol->upcase[i] != default_upcase[i])
1706			break;
1707	if (i == max) {
1708		ntfs_free(vol->upcase);
1709		vol->upcase = default_upcase;
1710		vol->upcase_len = max;
1711		ntfs_nr_upcase_users++;
1712		mutex_unlock(&ntfs_lock);
1713		ntfs_debug("Volume specified $UpCase matches default. Using "
1714				"default.");
1715		return true;
1716	}
1717	mutex_unlock(&ntfs_lock);
1718	ntfs_debug("Using volume specified $UpCase since it does not match "
1719			"the default.");
1720	return true;
1721iput_upcase_failed:
1722	iput(ino);
1723	ntfs_free(vol->upcase);
1724	vol->upcase = NULL;
1725upcase_failed:
1726	mutex_lock(&ntfs_lock);
1727	if (default_upcase) {
1728		vol->upcase = default_upcase;
1729		vol->upcase_len = default_upcase_len;
1730		ntfs_nr_upcase_users++;
1731		mutex_unlock(&ntfs_lock);
1732		ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1733				"default.");
1734		return true;
1735	}
1736	mutex_unlock(&ntfs_lock);
1737	ntfs_error(sb, "Failed to initialize upcase table.");
1738	return false;
1739}
1740
1741/*
1742 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1743 * their own special locking rules:
1744 */
1745static struct lock_class_key
1746	lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1747	mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1748
1749/**
1750 * load_system_files - open the system files using normal functions
1751 * @vol:	ntfs super block describing device whose system files to load
1752 *
1753 * Open the system files with normal access functions and complete setting up
1754 * the ntfs super block @vol.
1755 *
1756 * Return 'true' on success or 'false' on error.
1757 */
1758static bool load_system_files(ntfs_volume *vol)
1759{
1760	struct super_block *sb = vol->sb;
1761	MFT_RECORD *m;
1762	VOLUME_INFORMATION *vi;
1763	ntfs_attr_search_ctx *ctx;
1764#ifdef NTFS_RW
1765	RESTART_PAGE_HEADER *rp;
1766	int err;
1767#endif /* NTFS_RW */
1768
1769	ntfs_debug("Entering.");
1770#ifdef NTFS_RW
1771	/* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1772	if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1773		static const char *es1 = "Failed to load $MFTMirr";
1774		static const char *es2 = "$MFTMirr does not match $MFT";
1775		static const char *es3 = ".  Run ntfsfix and/or chkdsk.";
1776
1777		/* If a read-write mount, convert it to a read-only mount. */
1778		if (!sb_rdonly(sb)) {
1779			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1780					ON_ERRORS_CONTINUE))) {
1781				ntfs_error(sb, "%s and neither on_errors="
1782						"continue nor on_errors="
1783						"remount-ro was specified%s",
1784						!vol->mftmirr_ino ? es1 : es2,
1785						es3);
1786				goto iput_mirr_err_out;
1787			}
1788			sb->s_flags |= SB_RDONLY;
1789			ntfs_error(sb, "%s.  Mounting read-only%s",
1790					!vol->mftmirr_ino ? es1 : es2, es3);
1791		} else
1792			ntfs_warning(sb, "%s.  Will not be able to remount "
1793					"read-write%s",
1794					!vol->mftmirr_ino ? es1 : es2, es3);
1795		/* This will prevent a read-write remount. */
1796		NVolSetErrors(vol);
1797	}
1798#endif /* NTFS_RW */
1799	/* Get mft bitmap attribute inode. */
1800	vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1801	if (IS_ERR(vol->mftbmp_ino)) {
1802		ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1803		goto iput_mirr_err_out;
1804	}
1805	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1806			   &mftbmp_runlist_lock_key);
1807	lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1808			   &mftbmp_mrec_lock_key);
1809	/* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1810	if (!load_and_init_upcase(vol))
1811		goto iput_mftbmp_err_out;
1812#ifdef NTFS_RW
1813	/*
1814	 * Read attribute definitions table and setup @vol->attrdef and
1815	 * @vol->attrdef_size.
1816	 */
1817	if (!load_and_init_attrdef(vol))
1818		goto iput_upcase_err_out;
1819#endif /* NTFS_RW */
1820	/*
1821	 * Get the cluster allocation bitmap inode and verify the size, no
1822	 * need for any locking at this stage as we are already running
1823	 * exclusively as we are mount in progress task.
1824	 */
1825	vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1826	if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1827		if (!IS_ERR(vol->lcnbmp_ino))
1828			iput(vol->lcnbmp_ino);
1829		goto bitmap_failed;
1830	}
1831	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1832			   &lcnbmp_runlist_lock_key);
1833	lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1834			   &lcnbmp_mrec_lock_key);
1835
1836	NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1837	if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1838		iput(vol->lcnbmp_ino);
1839bitmap_failed:
1840		ntfs_error(sb, "Failed to load $Bitmap.");
1841		goto iput_attrdef_err_out;
1842	}
1843	/*
1844	 * Get the volume inode and setup our cache of the volume flags and
1845	 * version.
1846	 */
1847	vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1848	if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1849		if (!IS_ERR(vol->vol_ino))
1850			iput(vol->vol_ino);
1851volume_failed:
1852		ntfs_error(sb, "Failed to load $Volume.");
1853		goto iput_lcnbmp_err_out;
1854	}
1855	m = map_mft_record(NTFS_I(vol->vol_ino));
1856	if (IS_ERR(m)) {
1857iput_volume_failed:
1858		iput(vol->vol_ino);
1859		goto volume_failed;
1860	}
1861	if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1862		ntfs_error(sb, "Failed to get attribute search context.");
1863		goto get_ctx_vol_failed;
1864	}
1865	if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1866			ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1867err_put_vol:
1868		ntfs_attr_put_search_ctx(ctx);
1869get_ctx_vol_failed:
1870		unmap_mft_record(NTFS_I(vol->vol_ino));
1871		goto iput_volume_failed;
1872	}
1873	vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1874			le16_to_cpu(ctx->attr->data.resident.value_offset));
1875	/* Some bounds checks. */
1876	if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1877			le32_to_cpu(ctx->attr->data.resident.value_length) >
1878			(u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1879		goto err_put_vol;
1880	/* Copy the volume flags and version to the ntfs_volume structure. */
1881	vol->vol_flags = vi->flags;
1882	vol->major_ver = vi->major_ver;
1883	vol->minor_ver = vi->minor_ver;
1884	ntfs_attr_put_search_ctx(ctx);
1885	unmap_mft_record(NTFS_I(vol->vol_ino));
1886	pr_info("volume version %i.%i.\n", vol->major_ver,
1887			vol->minor_ver);
1888	if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1889		ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1890				"volume version %i.%i (need at least version "
1891				"3.0).", vol->major_ver, vol->minor_ver);
1892		NVolClearSparseEnabled(vol);
1893	}
1894#ifdef NTFS_RW
1895	/* Make sure that no unsupported volume flags are set. */
1896	if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1897		static const char *es1a = "Volume is dirty";
1898		static const char *es1b = "Volume has been modified by chkdsk";
1899		static const char *es1c = "Volume has unsupported flags set";
1900		static const char *es2a = ".  Run chkdsk and mount in Windows.";
1901		static const char *es2b = ".  Mount in Windows.";
1902		const char *es1, *es2;
1903
1904		es2 = es2a;
1905		if (vol->vol_flags & VOLUME_IS_DIRTY)
1906			es1 = es1a;
1907		else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1908			es1 = es1b;
1909			es2 = es2b;
1910		} else {
1911			es1 = es1c;
1912			ntfs_warning(sb, "Unsupported volume flags 0x%x "
1913					"encountered.",
1914					(unsigned)le16_to_cpu(vol->vol_flags));
1915		}
1916		/* If a read-write mount, convert it to a read-only mount. */
1917		if (!sb_rdonly(sb)) {
1918			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1919					ON_ERRORS_CONTINUE))) {
1920				ntfs_error(sb, "%s and neither on_errors="
1921						"continue nor on_errors="
1922						"remount-ro was specified%s",
1923						es1, es2);
1924				goto iput_vol_err_out;
1925			}
1926			sb->s_flags |= SB_RDONLY;
1927			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1928		} else
1929			ntfs_warning(sb, "%s.  Will not be able to remount "
1930					"read-write%s", es1, es2);
1931		/*
1932		 * Do not set NVolErrors() because ntfs_remount() re-checks the
1933		 * flags which we need to do in case any flags have changed.
1934		 */
1935	}
1936	/*
1937	 * Get the inode for the logfile, check it and determine if the volume
1938	 * was shutdown cleanly.
1939	 */
1940	rp = NULL;
1941	if (!load_and_check_logfile(vol, &rp) ||
1942			!ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1943		static const char *es1a = "Failed to load $LogFile";
1944		static const char *es1b = "$LogFile is not clean";
1945		static const char *es2 = ".  Mount in Windows.";
1946		const char *es1;
1947
1948		es1 = !vol->logfile_ino ? es1a : es1b;
1949		/* If a read-write mount, convert it to a read-only mount. */
1950		if (!sb_rdonly(sb)) {
1951			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1952					ON_ERRORS_CONTINUE))) {
1953				ntfs_error(sb, "%s and neither on_errors="
1954						"continue nor on_errors="
1955						"remount-ro was specified%s",
1956						es1, es2);
1957				if (vol->logfile_ino) {
1958					BUG_ON(!rp);
1959					ntfs_free(rp);
1960				}
1961				goto iput_logfile_err_out;
1962			}
1963			sb->s_flags |= SB_RDONLY;
1964			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
1965		} else
1966			ntfs_warning(sb, "%s.  Will not be able to remount "
1967					"read-write%s", es1, es2);
1968		/* This will prevent a read-write remount. */
1969		NVolSetErrors(vol);
1970	}
1971	ntfs_free(rp);
1972#endif /* NTFS_RW */
1973	/* Get the root directory inode so we can do path lookups. */
1974	vol->root_ino = ntfs_iget(sb, FILE_root);
1975	if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1976		if (!IS_ERR(vol->root_ino))
1977			iput(vol->root_ino);
1978		ntfs_error(sb, "Failed to load root directory.");
1979		goto iput_logfile_err_out;
1980	}
1981#ifdef NTFS_RW
1982	/*
1983	 * Check if Windows is suspended to disk on the target volume.  If it
1984	 * is hibernated, we must not write *anything* to the disk so set
1985	 * NVolErrors() without setting the dirty volume flag and mount
1986	 * read-only.  This will prevent read-write remounting and it will also
1987	 * prevent all writes.
1988	 */
1989	err = check_windows_hibernation_status(vol);
1990	if (unlikely(err)) {
1991		static const char *es1a = "Failed to determine if Windows is "
1992				"hibernated";
1993		static const char *es1b = "Windows is hibernated";
1994		static const char *es2 = ".  Run chkdsk.";
1995		const char *es1;
1996
1997		es1 = err < 0 ? es1a : es1b;
1998		/* If a read-write mount, convert it to a read-only mount. */
1999		if (!sb_rdonly(sb)) {
2000			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2001					ON_ERRORS_CONTINUE))) {
2002				ntfs_error(sb, "%s and neither on_errors="
2003						"continue nor on_errors="
2004						"remount-ro was specified%s",
2005						es1, es2);
2006				goto iput_root_err_out;
2007			}
2008			sb->s_flags |= SB_RDONLY;
2009			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2010		} else
2011			ntfs_warning(sb, "%s.  Will not be able to remount "
2012					"read-write%s", es1, es2);
2013		/* This will prevent a read-write remount. */
2014		NVolSetErrors(vol);
2015	}
2016	/* If (still) a read-write mount, mark the volume dirty. */
2017	if (!sb_rdonly(sb) && ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
 
2018		static const char *es1 = "Failed to set dirty bit in volume "
2019				"information flags";
2020		static const char *es2 = ".  Run chkdsk.";
2021
2022		/* Convert to a read-only mount. */
2023		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2024				ON_ERRORS_CONTINUE))) {
2025			ntfs_error(sb, "%s and neither on_errors=continue nor "
2026					"on_errors=remount-ro was specified%s",
2027					es1, es2);
2028			goto iput_root_err_out;
2029		}
2030		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2031		sb->s_flags |= SB_RDONLY;
2032		/*
2033		 * Do not set NVolErrors() because ntfs_remount() might manage
2034		 * to set the dirty flag in which case all would be well.
2035		 */
2036	}
2037#if 0
2038	// TODO: Enable this code once we start modifying anything that is
2039	//	 different between NTFS 1.2 and 3.x...
2040	/*
2041	 * If (still) a read-write mount, set the NT4 compatibility flag on
2042	 * newer NTFS version volumes.
2043	 */
2044	if (!(sb->s_flags & SB_RDONLY) && (vol->major_ver > 1) &&
2045			ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2046		static const char *es1 = "Failed to set NT4 compatibility flag";
2047		static const char *es2 = ".  Run chkdsk.";
2048
2049		/* Convert to a read-only mount. */
2050		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2051				ON_ERRORS_CONTINUE))) {
2052			ntfs_error(sb, "%s and neither on_errors=continue nor "
2053					"on_errors=remount-ro was specified%s",
2054					es1, es2);
2055			goto iput_root_err_out;
2056		}
2057		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2058		sb->s_flags |= SB_RDONLY;
2059		NVolSetErrors(vol);
2060	}
2061#endif
2062	/* If (still) a read-write mount, empty the logfile. */
2063	if (!sb_rdonly(sb) && !ntfs_empty_logfile(vol->logfile_ino)) {
 
2064		static const char *es1 = "Failed to empty $LogFile";
2065		static const char *es2 = ".  Mount in Windows.";
2066
2067		/* Convert to a read-only mount. */
2068		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2069				ON_ERRORS_CONTINUE))) {
2070			ntfs_error(sb, "%s and neither on_errors=continue nor "
2071					"on_errors=remount-ro was specified%s",
2072					es1, es2);
2073			goto iput_root_err_out;
2074		}
2075		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2076		sb->s_flags |= SB_RDONLY;
2077		NVolSetErrors(vol);
2078	}
2079#endif /* NTFS_RW */
2080	/* If on NTFS versions before 3.0, we are done. */
2081	if (unlikely(vol->major_ver < 3))
2082		return true;
2083	/* NTFS 3.0+ specific initialization. */
2084	/* Get the security descriptors inode. */
2085	vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2086	if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2087		if (!IS_ERR(vol->secure_ino))
2088			iput(vol->secure_ino);
2089		ntfs_error(sb, "Failed to load $Secure.");
2090		goto iput_root_err_out;
2091	}
2092	// TODO: Initialize security.
2093	/* Get the extended system files' directory inode. */
2094	vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2095	if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2096		if (!IS_ERR(vol->extend_ino))
2097			iput(vol->extend_ino);
2098		ntfs_error(sb, "Failed to load $Extend.");
2099		goto iput_sec_err_out;
2100	}
2101#ifdef NTFS_RW
2102	/* Find the quota file, load it if present, and set it up. */
2103	if (!load_and_init_quota(vol)) {
2104		static const char *es1 = "Failed to load $Quota";
2105		static const char *es2 = ".  Run chkdsk.";
2106
2107		/* If a read-write mount, convert it to a read-only mount. */
2108		if (!sb_rdonly(sb)) {
2109			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2110					ON_ERRORS_CONTINUE))) {
2111				ntfs_error(sb, "%s and neither on_errors="
2112						"continue nor on_errors="
2113						"remount-ro was specified%s",
2114						es1, es2);
2115				goto iput_quota_err_out;
2116			}
2117			sb->s_flags |= SB_RDONLY;
2118			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2119		} else
2120			ntfs_warning(sb, "%s.  Will not be able to remount "
2121					"read-write%s", es1, es2);
2122		/* This will prevent a read-write remount. */
2123		NVolSetErrors(vol);
2124	}
2125	/* If (still) a read-write mount, mark the quotas out of date. */
2126	if (!sb_rdonly(sb) && !ntfs_mark_quotas_out_of_date(vol)) {
 
2127		static const char *es1 = "Failed to mark quotas out of date";
2128		static const char *es2 = ".  Run chkdsk.";
2129
2130		/* Convert to a read-only mount. */
2131		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2132				ON_ERRORS_CONTINUE))) {
2133			ntfs_error(sb, "%s and neither on_errors=continue nor "
2134					"on_errors=remount-ro was specified%s",
2135					es1, es2);
2136			goto iput_quota_err_out;
2137		}
2138		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2139		sb->s_flags |= SB_RDONLY;
2140		NVolSetErrors(vol);
2141	}
2142	/*
2143	 * Find the transaction log file ($UsnJrnl), load it if present, check
2144	 * it, and set it up.
2145	 */
2146	if (!load_and_init_usnjrnl(vol)) {
2147		static const char *es1 = "Failed to load $UsnJrnl";
2148		static const char *es2 = ".  Run chkdsk.";
2149
2150		/* If a read-write mount, convert it to a read-only mount. */
2151		if (!sb_rdonly(sb)) {
2152			if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2153					ON_ERRORS_CONTINUE))) {
2154				ntfs_error(sb, "%s and neither on_errors="
2155						"continue nor on_errors="
2156						"remount-ro was specified%s",
2157						es1, es2);
2158				goto iput_usnjrnl_err_out;
2159			}
2160			sb->s_flags |= SB_RDONLY;
2161			ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2162		} else
2163			ntfs_warning(sb, "%s.  Will not be able to remount "
2164					"read-write%s", es1, es2);
2165		/* This will prevent a read-write remount. */
2166		NVolSetErrors(vol);
2167	}
2168	/* If (still) a read-write mount, stamp the transaction log. */
2169	if (!sb_rdonly(sb) && !ntfs_stamp_usnjrnl(vol)) {
2170		static const char *es1 = "Failed to stamp transaction log "
2171				"($UsnJrnl)";
2172		static const char *es2 = ".  Run chkdsk.";
2173
2174		/* Convert to a read-only mount. */
2175		if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2176				ON_ERRORS_CONTINUE))) {
2177			ntfs_error(sb, "%s and neither on_errors=continue nor "
2178					"on_errors=remount-ro was specified%s",
2179					es1, es2);
2180			goto iput_usnjrnl_err_out;
2181		}
2182		ntfs_error(sb, "%s.  Mounting read-only%s", es1, es2);
2183		sb->s_flags |= SB_RDONLY;
2184		NVolSetErrors(vol);
2185	}
2186#endif /* NTFS_RW */
2187	return true;
2188#ifdef NTFS_RW
2189iput_usnjrnl_err_out:
2190	iput(vol->usnjrnl_j_ino);
2191	iput(vol->usnjrnl_max_ino);
2192	iput(vol->usnjrnl_ino);
2193iput_quota_err_out:
2194	iput(vol->quota_q_ino);
2195	iput(vol->quota_ino);
2196	iput(vol->extend_ino);
2197#endif /* NTFS_RW */
2198iput_sec_err_out:
2199	iput(vol->secure_ino);
2200iput_root_err_out:
2201	iput(vol->root_ino);
2202iput_logfile_err_out:
2203#ifdef NTFS_RW
2204	iput(vol->logfile_ino);
2205iput_vol_err_out:
2206#endif /* NTFS_RW */
2207	iput(vol->vol_ino);
2208iput_lcnbmp_err_out:
2209	iput(vol->lcnbmp_ino);
2210iput_attrdef_err_out:
2211	vol->attrdef_size = 0;
2212	if (vol->attrdef) {
2213		ntfs_free(vol->attrdef);
2214		vol->attrdef = NULL;
2215	}
2216#ifdef NTFS_RW
2217iput_upcase_err_out:
2218#endif /* NTFS_RW */
2219	vol->upcase_len = 0;
2220	mutex_lock(&ntfs_lock);
2221	if (vol->upcase == default_upcase) {
2222		ntfs_nr_upcase_users--;
2223		vol->upcase = NULL;
2224	}
2225	mutex_unlock(&ntfs_lock);
2226	if (vol->upcase) {
2227		ntfs_free(vol->upcase);
2228		vol->upcase = NULL;
2229	}
2230iput_mftbmp_err_out:
2231	iput(vol->mftbmp_ino);
2232iput_mirr_err_out:
2233#ifdef NTFS_RW
2234	iput(vol->mftmirr_ino);
2235#endif /* NTFS_RW */
2236	return false;
2237}
2238
2239/**
2240 * ntfs_put_super - called by the vfs to unmount a volume
2241 * @sb:		vfs superblock of volume to unmount
2242 *
2243 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2244 * the volume is being unmounted (umount system call has been invoked) and it
2245 * releases all inodes and memory belonging to the NTFS specific part of the
2246 * super block.
2247 */
2248static void ntfs_put_super(struct super_block *sb)
2249{
2250	ntfs_volume *vol = NTFS_SB(sb);
2251
2252	ntfs_debug("Entering.");
2253
2254#ifdef NTFS_RW
2255	/*
2256	 * Commit all inodes while they are still open in case some of them
2257	 * cause others to be dirtied.
2258	 */
2259	ntfs_commit_inode(vol->vol_ino);
2260
2261	/* NTFS 3.0+ specific. */
2262	if (vol->major_ver >= 3) {
2263		if (vol->usnjrnl_j_ino)
2264			ntfs_commit_inode(vol->usnjrnl_j_ino);
2265		if (vol->usnjrnl_max_ino)
2266			ntfs_commit_inode(vol->usnjrnl_max_ino);
2267		if (vol->usnjrnl_ino)
2268			ntfs_commit_inode(vol->usnjrnl_ino);
2269		if (vol->quota_q_ino)
2270			ntfs_commit_inode(vol->quota_q_ino);
2271		if (vol->quota_ino)
2272			ntfs_commit_inode(vol->quota_ino);
2273		if (vol->extend_ino)
2274			ntfs_commit_inode(vol->extend_ino);
2275		if (vol->secure_ino)
2276			ntfs_commit_inode(vol->secure_ino);
2277	}
2278
2279	ntfs_commit_inode(vol->root_ino);
2280
2281	down_write(&vol->lcnbmp_lock);
2282	ntfs_commit_inode(vol->lcnbmp_ino);
2283	up_write(&vol->lcnbmp_lock);
2284
2285	down_write(&vol->mftbmp_lock);
2286	ntfs_commit_inode(vol->mftbmp_ino);
2287	up_write(&vol->mftbmp_lock);
2288
2289	if (vol->logfile_ino)
2290		ntfs_commit_inode(vol->logfile_ino);
2291
2292	if (vol->mftmirr_ino)
2293		ntfs_commit_inode(vol->mftmirr_ino);
2294	ntfs_commit_inode(vol->mft_ino);
2295
2296	/*
2297	 * If a read-write mount and no volume errors have occurred, mark the
2298	 * volume clean.  Also, re-commit all affected inodes.
2299	 */
2300	if (!sb_rdonly(sb)) {
2301		if (!NVolErrors(vol)) {
2302			if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2303				ntfs_warning(sb, "Failed to clear dirty bit "
2304						"in volume information "
2305						"flags.  Run chkdsk.");
2306			ntfs_commit_inode(vol->vol_ino);
2307			ntfs_commit_inode(vol->root_ino);
2308			if (vol->mftmirr_ino)
2309				ntfs_commit_inode(vol->mftmirr_ino);
2310			ntfs_commit_inode(vol->mft_ino);
2311		} else {
2312			ntfs_warning(sb, "Volume has errors.  Leaving volume "
2313					"marked dirty.  Run chkdsk.");
2314		}
2315	}
2316#endif /* NTFS_RW */
2317
2318	iput(vol->vol_ino);
2319	vol->vol_ino = NULL;
2320
2321	/* NTFS 3.0+ specific clean up. */
2322	if (vol->major_ver >= 3) {
2323#ifdef NTFS_RW
2324		if (vol->usnjrnl_j_ino) {
2325			iput(vol->usnjrnl_j_ino);
2326			vol->usnjrnl_j_ino = NULL;
2327		}
2328		if (vol->usnjrnl_max_ino) {
2329			iput(vol->usnjrnl_max_ino);
2330			vol->usnjrnl_max_ino = NULL;
2331		}
2332		if (vol->usnjrnl_ino) {
2333			iput(vol->usnjrnl_ino);
2334			vol->usnjrnl_ino = NULL;
2335		}
2336		if (vol->quota_q_ino) {
2337			iput(vol->quota_q_ino);
2338			vol->quota_q_ino = NULL;
2339		}
2340		if (vol->quota_ino) {
2341			iput(vol->quota_ino);
2342			vol->quota_ino = NULL;
2343		}
2344#endif /* NTFS_RW */
2345		if (vol->extend_ino) {
2346			iput(vol->extend_ino);
2347			vol->extend_ino = NULL;
2348		}
2349		if (vol->secure_ino) {
2350			iput(vol->secure_ino);
2351			vol->secure_ino = NULL;
2352		}
2353	}
2354
2355	iput(vol->root_ino);
2356	vol->root_ino = NULL;
2357
2358	down_write(&vol->lcnbmp_lock);
2359	iput(vol->lcnbmp_ino);
2360	vol->lcnbmp_ino = NULL;
2361	up_write(&vol->lcnbmp_lock);
2362
2363	down_write(&vol->mftbmp_lock);
2364	iput(vol->mftbmp_ino);
2365	vol->mftbmp_ino = NULL;
2366	up_write(&vol->mftbmp_lock);
2367
2368#ifdef NTFS_RW
2369	if (vol->logfile_ino) {
2370		iput(vol->logfile_ino);
2371		vol->logfile_ino = NULL;
2372	}
2373	if (vol->mftmirr_ino) {
2374		/* Re-commit the mft mirror and mft just in case. */
2375		ntfs_commit_inode(vol->mftmirr_ino);
2376		ntfs_commit_inode(vol->mft_ino);
2377		iput(vol->mftmirr_ino);
2378		vol->mftmirr_ino = NULL;
2379	}
2380	/*
2381	 * We should have no dirty inodes left, due to
2382	 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2383	 * the underlying mft records are written out and cleaned.
2384	 */
2385	ntfs_commit_inode(vol->mft_ino);
2386	write_inode_now(vol->mft_ino, 1);
2387#endif /* NTFS_RW */
2388
2389	iput(vol->mft_ino);
2390	vol->mft_ino = NULL;
2391
2392	/* Throw away the table of attribute definitions. */
2393	vol->attrdef_size = 0;
2394	if (vol->attrdef) {
2395		ntfs_free(vol->attrdef);
2396		vol->attrdef = NULL;
2397	}
2398	vol->upcase_len = 0;
2399	/*
2400	 * Destroy the global default upcase table if necessary.  Also decrease
2401	 * the number of upcase users if we are a user.
2402	 */
2403	mutex_lock(&ntfs_lock);
2404	if (vol->upcase == default_upcase) {
2405		ntfs_nr_upcase_users--;
2406		vol->upcase = NULL;
2407	}
2408	if (!ntfs_nr_upcase_users && default_upcase) {
2409		ntfs_free(default_upcase);
2410		default_upcase = NULL;
2411	}
2412	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2413		free_compression_buffers();
2414	mutex_unlock(&ntfs_lock);
2415	if (vol->upcase) {
2416		ntfs_free(vol->upcase);
2417		vol->upcase = NULL;
2418	}
2419
2420	unload_nls(vol->nls_map);
2421
2422	sb->s_fs_info = NULL;
2423	kfree(vol);
2424}
2425
2426/**
2427 * get_nr_free_clusters - return the number of free clusters on a volume
2428 * @vol:	ntfs volume for which to obtain free cluster count
2429 *
2430 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2431 * actually calculate the number of clusters in use instead because this
2432 * allows us to not care about partial pages as these will be just zero filled
2433 * and hence not be counted as allocated clusters.
2434 *
2435 * The only particularity is that clusters beyond the end of the logical ntfs
2436 * volume will be marked as allocated to prevent errors which means we have to
2437 * discount those at the end. This is important as the cluster bitmap always
2438 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2439 * the logical volume and marked in use when they are not as they do not exist.
2440 *
2441 * If any pages cannot be read we assume all clusters in the erroring pages are
2442 * in use. This means we return an underestimate on errors which is better than
2443 * an overestimate.
2444 */
2445static s64 get_nr_free_clusters(ntfs_volume *vol)
2446{
2447	s64 nr_free = vol->nr_clusters;
2448	struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2449	struct page *page;
2450	pgoff_t index, max_index;
2451
2452	ntfs_debug("Entering.");
2453	/* Serialize accesses to the cluster bitmap. */
2454	down_read(&vol->lcnbmp_lock);
2455	/*
2456	 * Convert the number of bits into bytes rounded up, then convert into
2457	 * multiples of PAGE_SIZE, rounding up so that if we have one
2458	 * full and one partial page max_index = 2.
2459	 */
2460	max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >>
2461			PAGE_SHIFT;
2462	/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2463	ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2464			max_index, PAGE_SIZE / 4);
2465	for (index = 0; index < max_index; index++) {
2466		unsigned long *kaddr;
2467
2468		/*
2469		 * Read the page from page cache, getting it from backing store
2470		 * if necessary, and increment the use count.
2471		 */
2472		page = read_mapping_page(mapping, index, NULL);
2473		/* Ignore pages which errored synchronously. */
2474		if (IS_ERR(page)) {
2475			ntfs_debug("read_mapping_page() error. Skipping "
2476					"page (index 0x%lx).", index);
2477			nr_free -= PAGE_SIZE * 8;
2478			continue;
2479		}
2480		kaddr = kmap_atomic(page);
2481		/*
2482		 * Subtract the number of set bits. If this
2483		 * is the last page and it is partial we don't really care as
2484		 * it just means we do a little extra work but it won't affect
2485		 * the result as all out of range bytes are set to zero by
2486		 * ntfs_readpage().
2487		 */
2488		nr_free -= bitmap_weight(kaddr,
2489					PAGE_SIZE * BITS_PER_BYTE);
2490		kunmap_atomic(kaddr);
2491		put_page(page);
2492	}
2493	ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2494	/*
2495	 * Fixup for eventual bits outside logical ntfs volume (see function
2496	 * description above).
2497	 */
2498	if (vol->nr_clusters & 63)
2499		nr_free += 64 - (vol->nr_clusters & 63);
2500	up_read(&vol->lcnbmp_lock);
2501	/* If errors occurred we may well have gone below zero, fix this. */
2502	if (nr_free < 0)
2503		nr_free = 0;
2504	ntfs_debug("Exiting.");
2505	return nr_free;
2506}
2507
2508/**
2509 * __get_nr_free_mft_records - return the number of free inodes on a volume
2510 * @vol:	ntfs volume for which to obtain free inode count
2511 * @nr_free:	number of mft records in filesystem
2512 * @max_index:	maximum number of pages containing set bits
2513 *
2514 * Calculate the number of free mft records (inodes) on the mounted NTFS
2515 * volume @vol. We actually calculate the number of mft records in use instead
2516 * because this allows us to not care about partial pages as these will be just
2517 * zero filled and hence not be counted as allocated mft record.
2518 *
2519 * If any pages cannot be read we assume all mft records in the erroring pages
2520 * are in use. This means we return an underestimate on errors which is better
2521 * than an overestimate.
2522 *
2523 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2524 */
2525static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2526		s64 nr_free, const pgoff_t max_index)
2527{
2528	struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2529	struct page *page;
2530	pgoff_t index;
2531
2532	ntfs_debug("Entering.");
2533	/* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2534	ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2535			"0x%lx.", max_index, PAGE_SIZE / 4);
2536	for (index = 0; index < max_index; index++) {
2537		unsigned long *kaddr;
2538
2539		/*
2540		 * Read the page from page cache, getting it from backing store
2541		 * if necessary, and increment the use count.
2542		 */
2543		page = read_mapping_page(mapping, index, NULL);
2544		/* Ignore pages which errored synchronously. */
2545		if (IS_ERR(page)) {
2546			ntfs_debug("read_mapping_page() error. Skipping "
2547					"page (index 0x%lx).", index);
2548			nr_free -= PAGE_SIZE * 8;
2549			continue;
2550		}
2551		kaddr = kmap_atomic(page);
2552		/*
2553		 * Subtract the number of set bits. If this
2554		 * is the last page and it is partial we don't really care as
2555		 * it just means we do a little extra work but it won't affect
2556		 * the result as all out of range bytes are set to zero by
2557		 * ntfs_readpage().
2558		 */
2559		nr_free -= bitmap_weight(kaddr,
2560					PAGE_SIZE * BITS_PER_BYTE);
2561		kunmap_atomic(kaddr);
2562		put_page(page);
2563	}
2564	ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2565			index - 1);
2566	/* If errors occurred we may well have gone below zero, fix this. */
2567	if (nr_free < 0)
2568		nr_free = 0;
2569	ntfs_debug("Exiting.");
2570	return nr_free;
2571}
2572
2573/**
2574 * ntfs_statfs - return information about mounted NTFS volume
2575 * @dentry:	dentry from mounted volume
2576 * @sfs:	statfs structure in which to return the information
2577 *
2578 * Return information about the mounted NTFS volume @dentry in the statfs structure
2579 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2580 * called). We interpret the values to be correct of the moment in time at
2581 * which we are called. Most values are variable otherwise and this isn't just
2582 * the free values but the totals as well. For example we can increase the
2583 * total number of file nodes if we run out and we can keep doing this until
2584 * there is no more space on the volume left at all.
2585 *
2586 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2587 * ustat system calls.
2588 *
2589 * Return 0 on success or -errno on error.
2590 */
2591static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2592{
2593	struct super_block *sb = dentry->d_sb;
2594	s64 size;
2595	ntfs_volume *vol = NTFS_SB(sb);
2596	ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2597	pgoff_t max_index;
2598	unsigned long flags;
2599
2600	ntfs_debug("Entering.");
2601	/* Type of filesystem. */
2602	sfs->f_type   = NTFS_SB_MAGIC;
2603	/* Optimal transfer block size. */
2604	sfs->f_bsize  = PAGE_SIZE;
2605	/*
2606	 * Total data blocks in filesystem in units of f_bsize and since
2607	 * inodes are also stored in data blocs ($MFT is a file) this is just
2608	 * the total clusters.
2609	 */
2610	sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2611				PAGE_SHIFT;
2612	/* Free data blocks in filesystem in units of f_bsize. */
2613	size	      = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2614				PAGE_SHIFT;
2615	if (size < 0LL)
2616		size = 0LL;
2617	/* Free blocks avail to non-superuser, same as above on NTFS. */
2618	sfs->f_bavail = sfs->f_bfree = size;
2619	/* Serialize accesses to the inode bitmap. */
2620	down_read(&vol->mftbmp_lock);
2621	read_lock_irqsave(&mft_ni->size_lock, flags);
2622	size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2623	/*
2624	 * Convert the maximum number of set bits into bytes rounded up, then
2625	 * convert into multiples of PAGE_SIZE, rounding up so that if we
2626	 * have one full and one partial page max_index = 2.
2627	 */
2628	max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2629			+ 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT;
2630	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2631	/* Number of inodes in filesystem (at this point in time). */
2632	sfs->f_files = size;
2633	/* Free inodes in fs (based on current total count). */
2634	sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2635	up_read(&vol->mftbmp_lock);
2636	/*
2637	 * File system id. This is extremely *nix flavour dependent and even
2638	 * within Linux itself all fs do their own thing. I interpret this to
2639	 * mean a unique id associated with the mounted fs and not the id
2640	 * associated with the filesystem driver, the latter is already given
2641	 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2642	 * volume serial number splitting it into two 32-bit parts. We enter
2643	 * the least significant 32-bits in f_fsid[0] and the most significant
2644	 * 32-bits in f_fsid[1].
2645	 */
2646	sfs->f_fsid = u64_to_fsid(vol->serial_no);
 
2647	/* Maximum length of filenames. */
2648	sfs->f_namelen	   = NTFS_MAX_NAME_LEN;
2649	return 0;
2650}
2651
2652#ifdef NTFS_RW
2653static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2654{
2655	return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2656}
2657#endif
2658
2659/**
2660 * The complete super operations.
2661 */
2662static const struct super_operations ntfs_sops = {
2663	.alloc_inode	= ntfs_alloc_big_inode,	  /* VFS: Allocate new inode. */
2664	.free_inode	= ntfs_free_big_inode, /* VFS: Deallocate inode. */
2665#ifdef NTFS_RW
2666	.write_inode	= ntfs_write_inode,	/* VFS: Write dirty inode to
2667						   disk. */
2668#endif /* NTFS_RW */
2669	.put_super	= ntfs_put_super,	/* Syscall: umount. */
2670	.statfs		= ntfs_statfs,		/* Syscall: statfs */
2671	.remount_fs	= ntfs_remount,		/* Syscall: mount -o remount. */
2672	.evict_inode	= ntfs_evict_big_inode,	/* VFS: Called when an inode is
2673						   removed from memory. */
2674	.show_options	= ntfs_show_options,	/* Show mount options in
2675						   proc. */
2676};
2677
2678/**
2679 * ntfs_fill_super - mount an ntfs filesystem
2680 * @sb:		super block of ntfs filesystem to mount
2681 * @opt:	string containing the mount options
2682 * @silent:	silence error output
2683 *
2684 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2685 * with the mount otions in @data with the NTFS filesystem.
2686 *
2687 * If @silent is true, remain silent even if errors are detected. This is used
2688 * during bootup, when the kernel tries to mount the root filesystem with all
2689 * registered filesystems one after the other until one succeeds. This implies
2690 * that all filesystems except the correct one will quite correctly and
2691 * expectedly return an error, but nobody wants to see error messages when in
2692 * fact this is what is supposed to happen.
2693 *
2694 * NOTE: @sb->s_flags contains the mount options flags.
2695 */
2696static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2697{
2698	ntfs_volume *vol;
2699	struct buffer_head *bh;
2700	struct inode *tmp_ino;
2701	int blocksize, result;
2702
2703	/*
2704	 * We do a pretty difficult piece of bootstrap by reading the
2705	 * MFT (and other metadata) from disk into memory. We'll only
2706	 * release this metadata during umount, so the locking patterns
2707	 * observed during bootstrap do not count. So turn off the
2708	 * observation of locking patterns (strictly for this context
2709	 * only) while mounting NTFS. [The validator is still active
2710	 * otherwise, even for this context: it will for example record
2711	 * lock class registrations.]
2712	 */
2713	lockdep_off();
2714	ntfs_debug("Entering.");
2715#ifndef NTFS_RW
2716	sb->s_flags |= SB_RDONLY;
2717#endif /* ! NTFS_RW */
2718	/* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2719	sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2720	vol = NTFS_SB(sb);
2721	if (!vol) {
2722		if (!silent)
2723			ntfs_error(sb, "Allocation of NTFS volume structure "
2724					"failed. Aborting mount...");
2725		lockdep_on();
2726		return -ENOMEM;
2727	}
2728	/* Initialize ntfs_volume structure. */
2729	*vol = (ntfs_volume) {
2730		.sb = sb,
2731		/*
2732		 * Default is group and other don't have any access to files or
2733		 * directories while owner has full access. Further, files by
2734		 * default are not executable but directories are of course
2735		 * browseable.
2736		 */
2737		.fmask = 0177,
2738		.dmask = 0077,
2739	};
2740	init_rwsem(&vol->mftbmp_lock);
2741	init_rwsem(&vol->lcnbmp_lock);
2742
2743	/* By default, enable sparse support. */
2744	NVolSetSparseEnabled(vol);
2745
2746	/* Important to get the mount options dealt with now. */
2747	if (!parse_options(vol, (char*)opt))
2748		goto err_out_now;
2749
2750	/* We support sector sizes up to the PAGE_SIZE. */
2751	if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) {
2752		if (!silent)
2753			ntfs_error(sb, "Device has unsupported sector size "
2754					"(%i).  The maximum supported sector "
2755					"size on this architecture is %lu "
2756					"bytes.",
2757					bdev_logical_block_size(sb->s_bdev),
2758					PAGE_SIZE);
2759		goto err_out_now;
2760	}
2761	/*
2762	 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2763	 * sector size, whichever is bigger.
2764	 */
2765	blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2766	if (blocksize < NTFS_BLOCK_SIZE) {
2767		if (!silent)
2768			ntfs_error(sb, "Unable to set device block size.");
2769		goto err_out_now;
2770	}
2771	BUG_ON(blocksize != sb->s_blocksize);
2772	ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2773			blocksize, sb->s_blocksize_bits);
2774	/* Determine the size of the device in units of block_size bytes. */
2775	if (!i_size_read(sb->s_bdev->bd_inode)) {
2776		if (!silent)
2777			ntfs_error(sb, "Unable to determine device size.");
2778		goto err_out_now;
2779	}
2780	vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2781			sb->s_blocksize_bits;
2782	/* Read the boot sector and return unlocked buffer head to it. */
2783	if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2784		if (!silent)
2785			ntfs_error(sb, "Not an NTFS volume.");
2786		goto err_out_now;
2787	}
2788	/*
2789	 * Extract the data from the boot sector and setup the ntfs volume
2790	 * using it.
2791	 */
2792	result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2793	brelse(bh);
2794	if (!result) {
2795		if (!silent)
2796			ntfs_error(sb, "Unsupported NTFS filesystem.");
2797		goto err_out_now;
2798	}
2799	/*
2800	 * If the boot sector indicates a sector size bigger than the current
2801	 * device block size, switch the device block size to the sector size.
2802	 * TODO: It may be possible to support this case even when the set
2803	 * below fails, we would just be breaking up the i/o for each sector
2804	 * into multiple blocks for i/o purposes but otherwise it should just
2805	 * work.  However it is safer to leave disabled until someone hits this
2806	 * error message and then we can get them to try it without the setting
2807	 * so we know for sure that it works.
2808	 */
2809	if (vol->sector_size > blocksize) {
2810		blocksize = sb_set_blocksize(sb, vol->sector_size);
2811		if (blocksize != vol->sector_size) {
2812			if (!silent)
2813				ntfs_error(sb, "Unable to set device block "
2814						"size to sector size (%i).",
2815						vol->sector_size);
2816			goto err_out_now;
2817		}
2818		BUG_ON(blocksize != sb->s_blocksize);
2819		vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2820				sb->s_blocksize_bits;
2821		ntfs_debug("Changed device block size to %i bytes (block size "
2822				"bits %i) to match volume sector size.",
2823				blocksize, sb->s_blocksize_bits);
2824	}
2825	/* Initialize the cluster and mft allocators. */
2826	ntfs_setup_allocators(vol);
2827	/* Setup remaining fields in the super block. */
2828	sb->s_magic = NTFS_SB_MAGIC;
2829	/*
2830	 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2831	 *	sb->s_maxbytes = ~0ULL >> 1;
2832	 * But the kernel uses a long as the page cache page index which on
2833	 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2834	 * defined to the maximum the page cache page index can cope with
2835	 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2836	 */
2837	sb->s_maxbytes = MAX_LFS_FILESIZE;
2838	/* Ntfs measures time in 100ns intervals. */
2839	sb->s_time_gran = 100;
2840	/*
2841	 * Now load the metadata required for the page cache and our address
2842	 * space operations to function. We do this by setting up a specialised
2843	 * read_inode method and then just calling the normal iget() to obtain
2844	 * the inode for $MFT which is sufficient to allow our normal inode
2845	 * operations and associated address space operations to function.
2846	 */
2847	sb->s_op = &ntfs_sops;
2848	tmp_ino = new_inode(sb);
2849	if (!tmp_ino) {
2850		if (!silent)
2851			ntfs_error(sb, "Failed to load essential metadata.");
2852		goto err_out_now;
2853	}
2854	tmp_ino->i_ino = FILE_MFT;
2855	insert_inode_hash(tmp_ino);
2856	if (ntfs_read_inode_mount(tmp_ino) < 0) {
2857		if (!silent)
2858			ntfs_error(sb, "Failed to load essential metadata.");
2859		goto iput_tmp_ino_err_out_now;
2860	}
2861	mutex_lock(&ntfs_lock);
2862	/*
2863	 * The current mount is a compression user if the cluster size is
2864	 * less than or equal 4kiB.
2865	 */
2866	if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2867		result = allocate_compression_buffers();
2868		if (result) {
2869			ntfs_error(NULL, "Failed to allocate buffers "
2870					"for compression engine.");
2871			ntfs_nr_compression_users--;
2872			mutex_unlock(&ntfs_lock);
2873			goto iput_tmp_ino_err_out_now;
2874		}
2875	}
2876	/*
2877	 * Generate the global default upcase table if necessary.  Also
2878	 * temporarily increment the number of upcase users to avoid race
2879	 * conditions with concurrent (u)mounts.
2880	 */
2881	if (!default_upcase)
2882		default_upcase = generate_default_upcase();
2883	ntfs_nr_upcase_users++;
2884	mutex_unlock(&ntfs_lock);
2885	/*
2886	 * From now on, ignore @silent parameter. If we fail below this line,
2887	 * it will be due to a corrupt fs or a system error, so we report it.
2888	 */
2889	/*
2890	 * Open the system files with normal access functions and complete
2891	 * setting up the ntfs super block.
2892	 */
2893	if (!load_system_files(vol)) {
2894		ntfs_error(sb, "Failed to load system files.");
2895		goto unl_upcase_iput_tmp_ino_err_out_now;
2896	}
2897
2898	/* We grab a reference, simulating an ntfs_iget(). */
2899	ihold(vol->root_ino);
2900	if ((sb->s_root = d_make_root(vol->root_ino))) {
2901		ntfs_debug("Exiting, status successful.");
2902		/* Release the default upcase if it has no users. */
2903		mutex_lock(&ntfs_lock);
2904		if (!--ntfs_nr_upcase_users && default_upcase) {
2905			ntfs_free(default_upcase);
2906			default_upcase = NULL;
2907		}
2908		mutex_unlock(&ntfs_lock);
2909		sb->s_export_op = &ntfs_export_ops;
2910		lockdep_on();
2911		return 0;
2912	}
2913	ntfs_error(sb, "Failed to allocate root directory.");
2914	/* Clean up after the successful load_system_files() call from above. */
2915	// TODO: Use ntfs_put_super() instead of repeating all this code...
2916	// FIXME: Should mark the volume clean as the error is most likely
2917	// 	  -ENOMEM.
2918	iput(vol->vol_ino);
2919	vol->vol_ino = NULL;
2920	/* NTFS 3.0+ specific clean up. */
2921	if (vol->major_ver >= 3) {
2922#ifdef NTFS_RW
2923		if (vol->usnjrnl_j_ino) {
2924			iput(vol->usnjrnl_j_ino);
2925			vol->usnjrnl_j_ino = NULL;
2926		}
2927		if (vol->usnjrnl_max_ino) {
2928			iput(vol->usnjrnl_max_ino);
2929			vol->usnjrnl_max_ino = NULL;
2930		}
2931		if (vol->usnjrnl_ino) {
2932			iput(vol->usnjrnl_ino);
2933			vol->usnjrnl_ino = NULL;
2934		}
2935		if (vol->quota_q_ino) {
2936			iput(vol->quota_q_ino);
2937			vol->quota_q_ino = NULL;
2938		}
2939		if (vol->quota_ino) {
2940			iput(vol->quota_ino);
2941			vol->quota_ino = NULL;
2942		}
2943#endif /* NTFS_RW */
2944		if (vol->extend_ino) {
2945			iput(vol->extend_ino);
2946			vol->extend_ino = NULL;
2947		}
2948		if (vol->secure_ino) {
2949			iput(vol->secure_ino);
2950			vol->secure_ino = NULL;
2951		}
2952	}
2953	iput(vol->root_ino);
2954	vol->root_ino = NULL;
2955	iput(vol->lcnbmp_ino);
2956	vol->lcnbmp_ino = NULL;
2957	iput(vol->mftbmp_ino);
2958	vol->mftbmp_ino = NULL;
2959#ifdef NTFS_RW
2960	if (vol->logfile_ino) {
2961		iput(vol->logfile_ino);
2962		vol->logfile_ino = NULL;
2963	}
2964	if (vol->mftmirr_ino) {
2965		iput(vol->mftmirr_ino);
2966		vol->mftmirr_ino = NULL;
2967	}
2968#endif /* NTFS_RW */
2969	/* Throw away the table of attribute definitions. */
2970	vol->attrdef_size = 0;
2971	if (vol->attrdef) {
2972		ntfs_free(vol->attrdef);
2973		vol->attrdef = NULL;
2974	}
2975	vol->upcase_len = 0;
2976	mutex_lock(&ntfs_lock);
2977	if (vol->upcase == default_upcase) {
2978		ntfs_nr_upcase_users--;
2979		vol->upcase = NULL;
2980	}
2981	mutex_unlock(&ntfs_lock);
2982	if (vol->upcase) {
2983		ntfs_free(vol->upcase);
2984		vol->upcase = NULL;
2985	}
2986	if (vol->nls_map) {
2987		unload_nls(vol->nls_map);
2988		vol->nls_map = NULL;
2989	}
2990	/* Error exit code path. */
2991unl_upcase_iput_tmp_ino_err_out_now:
2992	/*
2993	 * Decrease the number of upcase users and destroy the global default
2994	 * upcase table if necessary.
2995	 */
2996	mutex_lock(&ntfs_lock);
2997	if (!--ntfs_nr_upcase_users && default_upcase) {
2998		ntfs_free(default_upcase);
2999		default_upcase = NULL;
3000	}
3001	if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3002		free_compression_buffers();
3003	mutex_unlock(&ntfs_lock);
3004iput_tmp_ino_err_out_now:
3005	iput(tmp_ino);
3006	if (vol->mft_ino && vol->mft_ino != tmp_ino)
3007		iput(vol->mft_ino);
3008	vol->mft_ino = NULL;
3009	/* Errors at this stage are irrelevant. */
3010err_out_now:
3011	sb->s_fs_info = NULL;
3012	kfree(vol);
3013	ntfs_debug("Failed, returning -EINVAL.");
3014	lockdep_on();
3015	return -EINVAL;
3016}
3017
3018/*
3019 * This is a slab cache to optimize allocations and deallocations of Unicode
3020 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3021 * (255) Unicode characters + a terminating NULL Unicode character.
3022 */
3023struct kmem_cache *ntfs_name_cache;
3024
3025/* Slab caches for efficient allocation/deallocation of inodes. */
3026struct kmem_cache *ntfs_inode_cache;
3027struct kmem_cache *ntfs_big_inode_cache;
3028
3029/* Init once constructor for the inode slab cache. */
3030static void ntfs_big_inode_init_once(void *foo)
3031{
3032	ntfs_inode *ni = (ntfs_inode *)foo;
3033
3034	inode_init_once(VFS_I(ni));
3035}
3036
3037/*
3038 * Slab caches to optimize allocations and deallocations of attribute search
3039 * contexts and index contexts, respectively.
3040 */
3041struct kmem_cache *ntfs_attr_ctx_cache;
3042struct kmem_cache *ntfs_index_ctx_cache;
3043
3044/* Driver wide mutex. */
3045DEFINE_MUTEX(ntfs_lock);
3046
3047static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3048	int flags, const char *dev_name, void *data)
3049{
3050	return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3051}
3052
3053static struct file_system_type ntfs_fs_type = {
3054	.owner		= THIS_MODULE,
3055	.name		= "ntfs",
3056	.mount		= ntfs_mount,
3057	.kill_sb	= kill_block_super,
3058	.fs_flags	= FS_REQUIRES_DEV,
3059};
3060MODULE_ALIAS_FS("ntfs");
3061
3062/* Stable names for the slab caches. */
3063static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3064static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3065static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3066static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3067static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3068
3069static int __init init_ntfs_fs(void)
3070{
3071	int err = 0;
3072
3073	/* This may be ugly but it results in pretty output so who cares. (-8 */
3074	pr_info("driver " NTFS_VERSION " [Flags: R/"
3075#ifdef NTFS_RW
3076			"W"
3077#else
3078			"O"
3079#endif
3080#ifdef DEBUG
3081			" DEBUG"
3082#endif
3083#ifdef MODULE
3084			" MODULE"
3085#endif
3086			"].\n");
3087
3088	ntfs_debug("Debug messages are enabled.");
3089
3090	ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3091			sizeof(ntfs_index_context), 0 /* offset */,
3092			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3093	if (!ntfs_index_ctx_cache) {
3094		pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
3095		goto ictx_err_out;
3096	}
3097	ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3098			sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3099			SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3100	if (!ntfs_attr_ctx_cache) {
3101		pr_crit("NTFS: Failed to create %s!\n",
3102			ntfs_attr_ctx_cache_name);
3103		goto actx_err_out;
3104	}
3105
3106	ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3107			(NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3108			SLAB_HWCACHE_ALIGN, NULL);
3109	if (!ntfs_name_cache) {
3110		pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
3111		goto name_err_out;
3112	}
3113
3114	ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3115			sizeof(ntfs_inode), 0,
3116			SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3117	if (!ntfs_inode_cache) {
3118		pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
3119		goto inode_err_out;
3120	}
3121
3122	ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3123			sizeof(big_ntfs_inode), 0,
3124			SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
3125			SLAB_ACCOUNT, ntfs_big_inode_init_once);
3126	if (!ntfs_big_inode_cache) {
3127		pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
3128		goto big_inode_err_out;
3129	}
3130
3131	/* Register the ntfs sysctls. */
3132	err = ntfs_sysctl(1);
3133	if (err) {
3134		pr_crit("Failed to register NTFS sysctls!\n");
3135		goto sysctl_err_out;
3136	}
3137
3138	err = register_filesystem(&ntfs_fs_type);
3139	if (!err) {
3140		ntfs_debug("NTFS driver registered successfully.");
3141		return 0; /* Success! */
3142	}
3143	pr_crit("Failed to register NTFS filesystem driver!\n");
3144
3145	/* Unregister the ntfs sysctls. */
3146	ntfs_sysctl(0);
3147sysctl_err_out:
3148	kmem_cache_destroy(ntfs_big_inode_cache);
3149big_inode_err_out:
3150	kmem_cache_destroy(ntfs_inode_cache);
3151inode_err_out:
3152	kmem_cache_destroy(ntfs_name_cache);
3153name_err_out:
3154	kmem_cache_destroy(ntfs_attr_ctx_cache);
3155actx_err_out:
3156	kmem_cache_destroy(ntfs_index_ctx_cache);
3157ictx_err_out:
3158	if (!err) {
3159		pr_crit("Aborting NTFS filesystem driver registration...\n");
3160		err = -ENOMEM;
3161	}
3162	return err;
3163}
3164
3165static void __exit exit_ntfs_fs(void)
3166{
3167	ntfs_debug("Unregistering NTFS driver.");
3168
3169	unregister_filesystem(&ntfs_fs_type);
3170
3171	/*
3172	 * Make sure all delayed rcu free inodes are flushed before we
3173	 * destroy cache.
3174	 */
3175	rcu_barrier();
3176	kmem_cache_destroy(ntfs_big_inode_cache);
3177	kmem_cache_destroy(ntfs_inode_cache);
3178	kmem_cache_destroy(ntfs_name_cache);
3179	kmem_cache_destroy(ntfs_attr_ctx_cache);
3180	kmem_cache_destroy(ntfs_index_ctx_cache);
3181	/* Unregister the ntfs sysctls. */
3182	ntfs_sysctl(0);
3183}
3184
3185MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3186MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
3187MODULE_VERSION(NTFS_VERSION);
3188MODULE_LICENSE("GPL");
3189#ifdef DEBUG
3190module_param(debug_msgs, bint, 0);
3191MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3192#endif
3193
3194module_init(init_ntfs_fs)
3195module_exit(exit_ntfs_fs)