Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (C) 2007 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#ifndef __BTRFS_I__
 20#define __BTRFS_I__
 21
 22#include <linux/hash.h>
 
 23#include "extent_map.h"
 24#include "extent_io.h"
 25#include "ordered-data.h"
 26#include "delayed-inode.h"
 27
 28/*
 29 * ordered_data_close is set by truncate when a file that used
 30 * to have good data has been truncated to zero.  When it is set
 31 * the btrfs file release call will add this inode to the
 32 * ordered operations list so that we make sure to flush out any
 33 * new data the application may have written before commit.
 34 */
 35#define BTRFS_INODE_ORDERED_DATA_CLOSE		0
 36#define BTRFS_INODE_ORPHAN_META_RESERVED	1
 37#define BTRFS_INODE_DUMMY			2
 38#define BTRFS_INODE_IN_DEFRAG			3
 39#define BTRFS_INODE_DELALLOC_META_RESERVED	4
 40#define BTRFS_INODE_HAS_ORPHAN_ITEM		5
 41#define BTRFS_INODE_HAS_ASYNC_EXTENT		6
 42#define BTRFS_INODE_NEEDS_FULL_SYNC		7
 43#define BTRFS_INODE_COPY_EVERYTHING		8
 44#define BTRFS_INODE_IN_DELALLOC_LIST		9
 45#define BTRFS_INODE_READDIO_NEED_LOCK		10
 46#define BTRFS_INODE_HAS_PROPS		        11
 47/*
 48 * The following 3 bits are meant only for the btree inode.
 49 * When any of them is set, it means an error happened while writing an
 50 * extent buffer belonging to:
 51 * 1) a non-log btree
 52 * 2) a log btree and first log sub-transaction
 53 * 3) a log btree and second log sub-transaction
 54 */
 55#define BTRFS_INODE_BTREE_ERR		        12
 56#define BTRFS_INODE_BTREE_LOG1_ERR		13
 57#define BTRFS_INODE_BTREE_LOG2_ERR		14
 
 
 
 
 
 
 
 
 
 58
 59/* in memory btrfs inode */
 60struct btrfs_inode {
 61	/* which subvolume this inode belongs to */
 62	struct btrfs_root *root;
 63
 64	/* key used to find this inode on disk.  This is used by the code
 65	 * to read in roots of subvolumes
 66	 */
 67	struct btrfs_key location;
 68
 69	/*
 70	 * Lock for counters and all fields used to determine if the inode is in
 71	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 72	 * logged_trans).
 
 73	 */
 74	spinlock_t lock;
 75
 76	/* the extent_tree has caches of all the extent mappings to disk */
 77	struct extent_map_tree extent_tree;
 78
 79	/* the io_tree does range state (DIRTY, LOCKED etc) */
 80	struct extent_io_tree io_tree;
 81
 82	/* special utility tree used to record which mirrors have already been
 83	 * tried when checksums fail for a given block
 84	 */
 85	struct extent_io_tree io_failure_tree;
 86
 
 
 
 
 
 
 87	/* held while logging the inode in tree-log.c */
 88	struct mutex log_mutex;
 89
 90	/* held while doing delalloc reservations */
 91	struct mutex delalloc_mutex;
 92
 93	/* used to order data wrt metadata */
 94	struct btrfs_ordered_inode_tree ordered_tree;
 95
 96	/* list of all the delalloc inodes in the FS.  There are times we need
 97	 * to write all the delalloc pages to disk, and this list is used
 98	 * to walk them all.
 99	 */
100	struct list_head delalloc_inodes;
101
102	/* node for the red-black tree that links inodes in subvolume root */
103	struct rb_node rb_node;
104
105	unsigned long runtime_flags;
106
107	/* Keep track of who's O_SYNC/fsyncing currently */
108	atomic_t sync_writers;
109
110	/* full 64 bit generation number, struct vfs_inode doesn't have a big
111	 * enough field for this.
112	 */
113	u64 generation;
114
115	/*
116	 * transid of the trans_handle that last modified this inode
117	 */
118	u64 last_trans;
119
120	/*
121	 * transid that last logged this inode
122	 */
123	u64 logged_trans;
124
125	/*
126	 * log transid when this inode was last modified
127	 */
128	int last_sub_trans;
129
130	/* a local copy of root's last_log_commit */
131	int last_log_commit;
132
133	/* total number of bytes pending delalloc, used by stat to calc the
134	 * real block usage of the file
135	 */
136	u64 delalloc_bytes;
137
138	/*
 
 
 
 
 
 
 
139	 * total number of bytes pending defrag, used by stat to check whether
140	 * it needs COW.
141	 */
142	u64 defrag_bytes;
143
144	/*
145	 * the size of the file stored in the metadata on disk.  data=ordered
146	 * means the in-memory i_size might be larger than the size on disk
147	 * because not all the blocks are written yet.
148	 */
149	u64 disk_i_size;
150
151	/*
152	 * if this is a directory then index_cnt is the counter for the index
153	 * number for new files that are created
154	 */
155	u64 index_cnt;
156
157	/* Cache the directory index number to speed the dir/file remove */
158	u64 dir_index;
159
160	/* the fsync log has some corner cases that mean we have to check
161	 * directories to see if any unlinks have been done before
162	 * the directory was logged.  See tree-log.c for all the
163	 * details
164	 */
165	u64 last_unlink_trans;
166
167	/*
 
 
 
 
 
 
 
 
 
 
 
168	 * Number of bytes outstanding that are going to need csums.  This is
169	 * used in ENOSPC accounting.
170	 */
171	u64 csum_bytes;
172
173	/* flags field from the on disk inode */
174	u32 flags;
175
176	/*
177	 * Counters to keep track of the number of extent item's we may use due
178	 * to delalloc and such.  outstanding_extents is the number of extent
179	 * items we think we'll end up using, and reserved_extents is the number
180	 * of extent items we've reserved metadata for.
181	 */
182	unsigned outstanding_extents;
183	unsigned reserved_extents;
 
184
185	/*
186	 * always compress this one file
187	 */
188	unsigned force_compress;
 
 
 
 
 
189
190	struct btrfs_delayed_node *delayed_node;
191
192	/* File creation time. */
193	struct timespec i_otime;
194
195	/* Hook into fs_info->delayed_iputs */
196	struct list_head delayed_iput;
197	long delayed_iput_count;
198
 
199	struct inode vfs_inode;
200};
201
202extern unsigned char btrfs_filetype_table[];
 
 
 
203
204static inline struct btrfs_inode *BTRFS_I(struct inode *inode)
205{
206	return container_of(inode, struct btrfs_inode, vfs_inode);
207}
208
209static inline unsigned long btrfs_inode_hash(u64 objectid,
210					     const struct btrfs_root *root)
211{
212	u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
213
214#if BITS_PER_LONG == 32
215	h = (h >> 32) ^ (h & 0xffffffff);
216#endif
217
218	return (unsigned long)h;
219}
220
221static inline void btrfs_insert_inode_hash(struct inode *inode)
222{
223	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
224
225	__insert_inode_hash(inode, h);
226}
227
228static inline u64 btrfs_ino(struct inode *inode)
229{
230	u64 ino = BTRFS_I(inode)->location.objectid;
231
232	/*
233	 * !ino: btree_inode
234	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
235	 */
236	if (!ino || BTRFS_I(inode)->location.type == BTRFS_ROOT_ITEM_KEY)
237		ino = inode->i_ino;
238	return ino;
239}
240
241static inline void btrfs_i_size_write(struct inode *inode, u64 size)
242{
243	i_size_write(inode, size);
244	BTRFS_I(inode)->disk_i_size = size;
245}
246
247static inline bool btrfs_is_free_space_inode(struct inode *inode)
248{
249	struct btrfs_root *root = BTRFS_I(inode)->root;
250
251	if (root == root->fs_info->tree_root &&
252	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
253		return true;
254	if (BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
255		return true;
256	return false;
257}
258
259static inline int btrfs_inode_in_log(struct inode *inode, u64 generation)
260{
261	int ret = 0;
 
262
263	spin_lock(&BTRFS_I(inode)->lock);
264	if (BTRFS_I(inode)->logged_trans == generation &&
265	    BTRFS_I(inode)->last_sub_trans <=
266	    BTRFS_I(inode)->last_log_commit &&
267	    BTRFS_I(inode)->last_sub_trans <=
268	    BTRFS_I(inode)->root->last_log_commit) {
269		/*
270		 * After a ranged fsync we might have left some extent maps
271		 * (that fall outside the fsync's range). So return false
272		 * here if the list isn't empty, to make sure btrfs_log_inode()
273		 * will be called and process those extent maps.
274		 */
275		smp_mb();
276		if (list_empty(&BTRFS_I(inode)->extent_tree.modified_extents))
277			ret = 1;
278	}
279	spin_unlock(&BTRFS_I(inode)->lock);
280	return ret;
 
 
 
 
 
 
281}
282
283#define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
 
 
 
 
 
 
 
 
 
 
 
284
285struct btrfs_dio_private {
286	struct inode *inode;
287	unsigned long flags;
288	u64 logical_offset;
289	u64 disk_bytenr;
290	u64 bytes;
291	void *private;
292
293	/* number of bios pending for this dio */
294	atomic_t pending_bios;
295
296	/* IO errors */
297	int errors;
298
299	/* orig_bio is our btrfs_io_bio */
300	struct bio *orig_bio;
301
302	/* dio_bio came from fs/direct-io.c */
303	struct bio *dio_bio;
304
305	/*
306	 * The original bio may be splited to several sub-bios, this is
307	 * done during endio of sub-bios
308	 */
309	int (*subio_endio)(struct inode *, struct btrfs_io_bio *, int);
310};
311
312/*
313 * Disable DIO read nolock optimization, so new dio readers will be forced
314 * to grab i_mutex. It is used to avoid the endless truncate due to
315 * nonlocked dio read.
316 */
317static inline void btrfs_inode_block_unlocked_dio(struct inode *inode)
318{
319	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &BTRFS_I(inode)->runtime_flags);
320	smp_mb();
321}
322
323static inline void btrfs_inode_resume_unlocked_dio(struct inode *inode)
 
324{
325	smp_mb__before_atomic();
326	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK,
327		  &BTRFS_I(inode)->runtime_flags);
328}
329
330bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331
332#endif
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 10#include <linux/refcount.h>
 11#include "extent_map.h"
 12#include "extent_io.h"
 13#include "ordered-data.h"
 14#include "delayed-inode.h"
 15
 16/*
 17 * ordered_data_close is set by truncate when a file that used
 18 * to have good data has been truncated to zero.  When it is set
 19 * the btrfs file release call will add this inode to the
 20 * ordered operations list so that we make sure to flush out any
 21 * new data the application may have written before commit.
 22 */
 23enum {
 24	BTRFS_INODE_FLUSH_ON_CLOSE,
 25	BTRFS_INODE_DUMMY,
 26	BTRFS_INODE_IN_DEFRAG,
 27	BTRFS_INODE_HAS_ASYNC_EXTENT,
 28	 /*
 29	  * Always set under the VFS' inode lock, otherwise it can cause races
 30	  * during fsync (we start as a fast fsync and then end up in a full
 31	  * fsync racing with ordered extent completion).
 32	  */
 33	BTRFS_INODE_NEEDS_FULL_SYNC,
 34	BTRFS_INODE_COPY_EVERYTHING,
 35	BTRFS_INODE_IN_DELALLOC_LIST,
 36	BTRFS_INODE_HAS_PROPS,
 37	BTRFS_INODE_SNAPSHOT_FLUSH,
 38	/*
 39	 * Set and used when logging an inode and it serves to signal that an
 40	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
 41	 * for xattrs to log. This bit must be cleared whenever a xattr is added
 42	 * to an inode.
 43	 */
 44	BTRFS_INODE_NO_XATTRS,
 45	/*
 46	 * Set when we are in a context where we need to start a transaction and
 47	 * have dirty pages with the respective file range locked. This is to
 48	 * ensure that when reserving space for the transaction, if we are low
 49	 * on available space and need to flush delalloc, we will not flush
 50	 * delalloc for this inode, because that could result in a deadlock (on
 51	 * the file range, inode's io_tree).
 52	 */
 53	BTRFS_INODE_NO_DELALLOC_FLUSH,
 54};
 55
 56/* in memory btrfs inode */
 57struct btrfs_inode {
 58	/* which subvolume this inode belongs to */
 59	struct btrfs_root *root;
 60
 61	/* key used to find this inode on disk.  This is used by the code
 62	 * to read in roots of subvolumes
 63	 */
 64	struct btrfs_key location;
 65
 66	/*
 67	 * Lock for counters and all fields used to determine if the inode is in
 68	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 69	 * logged_trans), to access/update new_delalloc_bytes and to update the
 70	 * VFS' inode number of bytes used.
 71	 */
 72	spinlock_t lock;
 73
 74	/* the extent_tree has caches of all the extent mappings to disk */
 75	struct extent_map_tree extent_tree;
 76
 77	/* the io_tree does range state (DIRTY, LOCKED etc) */
 78	struct extent_io_tree io_tree;
 79
 80	/* special utility tree used to record which mirrors have already been
 81	 * tried when checksums fail for a given block
 82	 */
 83	struct extent_io_tree io_failure_tree;
 84
 85	/*
 86	 * Keep track of where the inode has extent items mapped in order to
 87	 * make sure the i_size adjustments are accurate
 88	 */
 89	struct extent_io_tree file_extent_tree;
 90
 91	/* held while logging the inode in tree-log.c */
 92	struct mutex log_mutex;
 93
 
 
 
 94	/* used to order data wrt metadata */
 95	struct btrfs_ordered_inode_tree ordered_tree;
 96
 97	/* list of all the delalloc inodes in the FS.  There are times we need
 98	 * to write all the delalloc pages to disk, and this list is used
 99	 * to walk them all.
100	 */
101	struct list_head delalloc_inodes;
102
103	/* node for the red-black tree that links inodes in subvolume root */
104	struct rb_node rb_node;
105
106	unsigned long runtime_flags;
107
108	/* Keep track of who's O_SYNC/fsyncing currently */
109	atomic_t sync_writers;
110
111	/* full 64 bit generation number, struct vfs_inode doesn't have a big
112	 * enough field for this.
113	 */
114	u64 generation;
115
116	/*
117	 * transid of the trans_handle that last modified this inode
118	 */
119	u64 last_trans;
120
121	/*
122	 * transid that last logged this inode
123	 */
124	u64 logged_trans;
125
126	/*
127	 * log transid when this inode was last modified
128	 */
129	int last_sub_trans;
130
131	/* a local copy of root's last_log_commit */
132	int last_log_commit;
133
134	/* total number of bytes pending delalloc, used by stat to calc the
135	 * real block usage of the file
136	 */
137	u64 delalloc_bytes;
138
139	/*
140	 * Total number of bytes pending delalloc that fall within a file
141	 * range that is either a hole or beyond EOF (and no prealloc extent
142	 * exists in the range). This is always <= delalloc_bytes.
143	 */
144	u64 new_delalloc_bytes;
145
146	/*
147	 * total number of bytes pending defrag, used by stat to check whether
148	 * it needs COW.
149	 */
150	u64 defrag_bytes;
151
152	/*
153	 * the size of the file stored in the metadata on disk.  data=ordered
154	 * means the in-memory i_size might be larger than the size on disk
155	 * because not all the blocks are written yet.
156	 */
157	u64 disk_i_size;
158
159	/*
160	 * if this is a directory then index_cnt is the counter for the index
161	 * number for new files that are created
162	 */
163	u64 index_cnt;
164
165	/* Cache the directory index number to speed the dir/file remove */
166	u64 dir_index;
167
168	/* the fsync log has some corner cases that mean we have to check
169	 * directories to see if any unlinks have been done before
170	 * the directory was logged.  See tree-log.c for all the
171	 * details
172	 */
173	u64 last_unlink_trans;
174
175	/*
176	 * The id/generation of the last transaction where this inode was
177	 * either the source or the destination of a clone/dedupe operation.
178	 * Used when logging an inode to know if there are shared extents that
179	 * need special care when logging checksum items, to avoid duplicate
180	 * checksum items in a log (which can lead to a corruption where we end
181	 * up with missing checksum ranges after log replay).
182	 * Protected by the vfs inode lock.
183	 */
184	u64 last_reflink_trans;
185
186	/*
187	 * Number of bytes outstanding that are going to need csums.  This is
188	 * used in ENOSPC accounting.
189	 */
190	u64 csum_bytes;
191
192	/* flags field from the on disk inode */
193	u32 flags;
194
195	/*
196	 * Counters to keep track of the number of extent item's we may use due
197	 * to delalloc and such.  outstanding_extents is the number of extent
198	 * items we think we'll end up using, and reserved_extents is the number
199	 * of extent items we've reserved metadata for.
200	 */
201	unsigned outstanding_extents;
202
203	struct btrfs_block_rsv block_rsv;
204
205	/*
206	 * Cached values of inode properties
207	 */
208	unsigned prop_compress;		/* per-file compression algorithm */
209	/*
210	 * Force compression on the file using the defrag ioctl, could be
211	 * different from prop_compress and takes precedence if set
212	 */
213	unsigned defrag_compress;
214
215	struct btrfs_delayed_node *delayed_node;
216
217	/* File creation time. */
218	struct timespec64 i_otime;
219
220	/* Hook into fs_info->delayed_iputs */
221	struct list_head delayed_iput;
 
222
223	struct rw_semaphore i_mmap_lock;
224	struct inode vfs_inode;
225};
226
227static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode)
228{
229	return inode->root->fs_info->sectorsize;
230}
231
232static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
233{
234	return container_of(inode, struct btrfs_inode, vfs_inode);
235}
236
237static inline unsigned long btrfs_inode_hash(u64 objectid,
238					     const struct btrfs_root *root)
239{
240	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
241
242#if BITS_PER_LONG == 32
243	h = (h >> 32) ^ (h & 0xffffffff);
244#endif
245
246	return (unsigned long)h;
247}
248
249static inline void btrfs_insert_inode_hash(struct inode *inode)
250{
251	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
252
253	__insert_inode_hash(inode, h);
254}
255
256static inline u64 btrfs_ino(const struct btrfs_inode *inode)
257{
258	u64 ino = inode->location.objectid;
259
260	/*
261	 * !ino: btree_inode
262	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
263	 */
264	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
265		ino = inode->vfs_inode.i_ino;
266	return ino;
267}
268
269static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
270{
271	i_size_write(&inode->vfs_inode, size);
272	inode->disk_i_size = size;
273}
274
275static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
276{
277	struct btrfs_root *root = inode->root;
278
279	if (root == root->fs_info->tree_root &&
280	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
281		return true;
282	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
283		return true;
284	return false;
285}
286
287static inline bool is_data_inode(struct inode *inode)
288{
289	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
290}
291
292static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
293						 int mod)
294{
295	lockdep_assert_held(&inode->lock);
296	inode->outstanding_extents += mod;
297	if (btrfs_is_free_space_inode(inode))
298		return;
299	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
300						  mod);
301}
302
303/*
304 * Called every time after doing a buffered, direct IO or memory mapped write.
305 *
306 * This is to ensure that if we write to a file that was previously fsynced in
307 * the current transaction, then try to fsync it again in the same transaction,
308 * we will know that there were changes in the file and that it needs to be
309 * logged.
310 */
311static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
312{
313	spin_lock(&inode->lock);
314	inode->last_sub_trans = inode->root->log_transid;
315	spin_unlock(&inode->lock);
316}
317
318static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
319{
320	bool ret = false;
321
322	spin_lock(&inode->lock);
323	if (inode->logged_trans == generation &&
324	    inode->last_sub_trans <= inode->last_log_commit &&
325	    inode->last_sub_trans <= inode->root->last_log_commit)
326		ret = true;
327	spin_unlock(&inode->lock);
328	return ret;
329}
330
331struct btrfs_dio_private {
332	struct inode *inode;
 
333	u64 logical_offset;
334	u64 disk_bytenr;
335	/* Used for bio::bi_size */
336	u32 bytes;
 
 
 
337
338	/*
339	 * References to this structure. There is one reference per in-flight
340	 * bio plus one while we're still setting up.
341	 */
342	refcount_t refs;
343
344	/* dio_bio came from fs/direct-io.c */
345	struct bio *dio_bio;
346
347	/* Array of checksums */
348	u8 csums[];
 
 
 
349};
350
351/* Array of bytes with variable length, hexadecimal format 0x1234 */
352#define CSUM_FMT				"0x%*phN"
353#define CSUM_FMT_VALUE(size, bytes)		size, bytes
 
 
 
 
 
 
 
354
355static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
356		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
357{
358	struct btrfs_root *root = inode->root;
359	const u32 csum_size = root->fs_info->csum_size;
 
 
360
361	/* Output minus objectid, which is more meaningful */
362	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
363		btrfs_warn_rl(root->fs_info,
364"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
365			root->root_key.objectid, btrfs_ino(inode),
366			logical_start,
367			CSUM_FMT_VALUE(csum_size, csum),
368			CSUM_FMT_VALUE(csum_size, csum_expected),
369			mirror_num);
370	else
371		btrfs_warn_rl(root->fs_info,
372"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
373			root->root_key.objectid, btrfs_ino(inode),
374			logical_start,
375			CSUM_FMT_VALUE(csum_size, csum),
376			CSUM_FMT_VALUE(csum_size, csum_expected),
377			mirror_num);
378}
379
380#endif