Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/vmalloc.h>
 
 
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "backref.h"
  23#include "ulist.h"
  24#include "transaction.h"
  25#include "delayed-ref.h"
  26#include "locking.h"
 
 
  27
  28/* Just an arbitrary number so we can be sure this happened */
  29#define BACKREF_FOUND_SHARED 6
  30
  31struct extent_inode_elem {
  32	u64 inum;
  33	u64 offset;
  34	struct extent_inode_elem *next;
  35};
  36
  37static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  38				struct btrfs_file_extent_item *fi,
  39				u64 extent_item_pos,
  40				struct extent_inode_elem **eie)
 
 
  41{
  42	u64 offset = 0;
  43	struct extent_inode_elem *e;
  44
  45	if (!btrfs_file_extent_compression(eb, fi) &&
 
  46	    !btrfs_file_extent_encryption(eb, fi) &&
  47	    !btrfs_file_extent_other_encoding(eb, fi)) {
  48		u64 data_offset;
  49		u64 data_len;
  50
  51		data_offset = btrfs_file_extent_offset(eb, fi);
  52		data_len = btrfs_file_extent_num_bytes(eb, fi);
  53
  54		if (extent_item_pos < data_offset ||
  55		    extent_item_pos >= data_offset + data_len)
  56			return 1;
  57		offset = extent_item_pos - data_offset;
  58	}
  59
  60	e = kmalloc(sizeof(*e), GFP_NOFS);
  61	if (!e)
  62		return -ENOMEM;
  63
  64	e->next = *eie;
  65	e->inum = key->objectid;
  66	e->offset = key->offset + offset;
  67	*eie = e;
  68
  69	return 0;
  70}
  71
  72static void free_inode_elem_list(struct extent_inode_elem *eie)
  73{
  74	struct extent_inode_elem *eie_next;
  75
  76	for (; eie; eie = eie_next) {
  77		eie_next = eie->next;
  78		kfree(eie);
  79	}
  80}
  81
  82static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  83				u64 extent_item_pos,
  84				struct extent_inode_elem **eie)
 
  85{
  86	u64 disk_byte;
  87	struct btrfs_key key;
  88	struct btrfs_file_extent_item *fi;
  89	int slot;
  90	int nritems;
  91	int extent_type;
  92	int ret;
  93
  94	/*
  95	 * from the shared data ref, we only have the leaf but we need
  96	 * the key. thus, we must look into all items and see that we
  97	 * find one (some) with a reference to our extent item.
  98	 */
  99	nritems = btrfs_header_nritems(eb);
 100	for (slot = 0; slot < nritems; ++slot) {
 101		btrfs_item_key_to_cpu(eb, &key, slot);
 102		if (key.type != BTRFS_EXTENT_DATA_KEY)
 103			continue;
 104		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 105		extent_type = btrfs_file_extent_type(eb, fi);
 106		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 107			continue;
 108		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 109		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 110		if (disk_byte != wanted_disk_byte)
 111			continue;
 112
 113		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
 114		if (ret < 0)
 115			return ret;
 116	}
 117
 118	return 0;
 119}
 120
 
 
 
 
 
 
 
 
 
 
 
 
 
 121/*
 122 * this structure records all encountered refs on the way up to the root
 
 
 
 
 
 123 */
 124struct __prelim_ref {
 125	struct list_head list;
 126	u64 root_id;
 127	struct btrfs_key key_for_search;
 128	int level;
 129	int count;
 130	struct extent_inode_elem *inode_list;
 131	u64 parent;
 132	u64 wanted_disk_byte;
 133};
 134
 
 
 
 
 
 135static struct kmem_cache *btrfs_prelim_ref_cache;
 136
 137int __init btrfs_prelim_ref_init(void)
 138{
 139	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 140					sizeof(struct __prelim_ref),
 141					0,
 142					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 143					NULL);
 144	if (!btrfs_prelim_ref_cache)
 145		return -ENOMEM;
 146	return 0;
 147}
 148
 149void btrfs_prelim_ref_exit(void)
 150{
 151	kmem_cache_destroy(btrfs_prelim_ref_cache);
 152}
 153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154/*
 155 * the rules for all callers of this function are:
 156 * - obtaining the parent is the goal
 157 * - if you add a key, you must know that it is a correct key
 158 * - if you cannot add the parent or a correct key, then we will look into the
 159 *   block later to set a correct key
 160 *
 161 * delayed refs
 162 * ============
 163 *        backref type | shared | indirect | shared | indirect
 164 * information         |   tree |     tree |   data |     data
 165 * --------------------+--------+----------+--------+----------
 166 *      parent logical |    y   |     -    |    -   |     -
 167 *      key to resolve |    -   |     y    |    y   |     y
 168 *  tree block logical |    -   |     -    |    -   |     -
 169 *  root for resolving |    y   |     y    |    y   |     y
 170 *
 171 * - column 1:       we've the parent -> done
 172 * - column 2, 3, 4: we use the key to find the parent
 173 *
 174 * on disk refs (inline or keyed)
 175 * ==============================
 176 *        backref type | shared | indirect | shared | indirect
 177 * information         |   tree |     tree |   data |     data
 178 * --------------------+--------+----------+--------+----------
 179 *      parent logical |    y   |     -    |    y   |     -
 180 *      key to resolve |    -   |     -    |    -   |     y
 181 *  tree block logical |    y   |     y    |    y   |     y
 182 *  root for resolving |    -   |     y    |    y   |     y
 183 *
 184 * - column 1, 3: we've the parent -> done
 185 * - column 2:    we take the first key from the block to find the parent
 186 *                (see __add_missing_keys)
 187 * - column 4:    we use the key to find the parent
 188 *
 189 * additional information that's available but not required to find the parent
 190 * block might help in merging entries to gain some speed.
 191 */
 192
 193static int __add_prelim_ref(struct list_head *head, u64 root_id,
 194			    struct btrfs_key *key, int level,
 195			    u64 parent, u64 wanted_disk_byte, int count,
 196			    gfp_t gfp_mask)
 197{
 198	struct __prelim_ref *ref;
 199
 200	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 201		return 0;
 202
 203	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 204	if (!ref)
 205		return -ENOMEM;
 206
 207	ref->root_id = root_id;
 208	if (key) {
 209		ref->key_for_search = *key;
 210		/*
 211		 * We can often find data backrefs with an offset that is too
 212		 * large (>= LLONG_MAX, maximum allowed file offset) due to
 213		 * underflows when subtracting a file's offset with the data
 214		 * offset of its corresponding extent data item. This can
 215		 * happen for example in the clone ioctl.
 216		 * So if we detect such case we set the search key's offset to
 217		 * zero to make sure we will find the matching file extent item
 218		 * at add_all_parents(), otherwise we will miss it because the
 219		 * offset taken form the backref is much larger then the offset
 220		 * of the file extent item. This can make us scan a very large
 221		 * number of file extent items, but at least it will not make
 222		 * us miss any.
 223		 * This is an ugly workaround for a behaviour that should have
 224		 * never existed, but it does and a fix for the clone ioctl
 225		 * would touch a lot of places, cause backwards incompatibility
 226		 * and would not fix the problem for extents cloned with older
 227		 * kernels.
 228		 */
 229		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
 230		    ref->key_for_search.offset >= LLONG_MAX)
 231			ref->key_for_search.offset = 0;
 232	} else {
 233		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 234	}
 235
 236	ref->inode_list = NULL;
 237	ref->level = level;
 238	ref->count = count;
 239	ref->parent = parent;
 240	ref->wanted_disk_byte = wanted_disk_byte;
 241	list_add_tail(&ref->list, head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242
 
 
 
 
 
 
 
 
 
 
 
 
 243	return 0;
 244}
 245
 246static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 247			   struct ulist *parents, struct __prelim_ref *ref,
 
 248			   int level, u64 time_seq, const u64 *extent_item_pos,
 249			   u64 total_refs)
 250{
 251	int ret = 0;
 252	int slot;
 253	struct extent_buffer *eb;
 254	struct btrfs_key key;
 255	struct btrfs_key *key_for_search = &ref->key_for_search;
 256	struct btrfs_file_extent_item *fi;
 257	struct extent_inode_elem *eie = NULL, *old = NULL;
 258	u64 disk_byte;
 259	u64 wanted_disk_byte = ref->wanted_disk_byte;
 260	u64 count = 0;
 
 261
 262	if (level != 0) {
 263		eb = path->nodes[level];
 264		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 265		if (ret < 0)
 266			return ret;
 267		return 0;
 268	}
 269
 270	/*
 271	 * We normally enter this function with the path already pointing to
 272	 * the first item to check. But sometimes, we may enter it with
 273	 * slot==nritems. In that case, go to the next leaf before we continue.
 
 
 
 
 
 274	 */
 275	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 276		if (time_seq == (u64)-1)
 
 
 
 277			ret = btrfs_next_leaf(root, path);
 278		else
 279			ret = btrfs_next_old_leaf(root, path, time_seq);
 280	}
 281
 282	while (!ret && count < total_refs) {
 283		eb = path->nodes[0];
 284		slot = path->slots[0];
 285
 286		btrfs_item_key_to_cpu(eb, &key, slot);
 287
 288		if (key.objectid != key_for_search->objectid ||
 289		    key.type != BTRFS_EXTENT_DATA_KEY)
 290			break;
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 293		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 
 294
 295		if (disk_byte == wanted_disk_byte) {
 296			eie = NULL;
 297			old = NULL;
 298			count++;
 
 
 
 299			if (extent_item_pos) {
 300				ret = check_extent_in_eb(&key, eb, fi,
 301						*extent_item_pos,
 302						&eie);
 303				if (ret < 0)
 304					break;
 305			}
 306			if (ret > 0)
 307				goto next;
 308			ret = ulist_add_merge_ptr(parents, eb->start,
 309						  eie, (void **)&old, GFP_NOFS);
 310			if (ret < 0)
 311				break;
 312			if (!ret && extent_item_pos) {
 313				while (old->next)
 314					old = old->next;
 315				old->next = eie;
 316			}
 317			eie = NULL;
 318		}
 319next:
 320		if (time_seq == (u64)-1)
 321			ret = btrfs_next_item(root, path);
 322		else
 323			ret = btrfs_next_old_item(root, path, time_seq);
 324	}
 325
 326	if (ret > 0)
 327		ret = 0;
 328	else if (ret < 0)
 329		free_inode_elem_list(eie);
 330	return ret;
 331}
 332
 333/*
 334 * resolve an indirect backref in the form (root_id, key, level)
 335 * to a logical address
 336 */
 337static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 338				  struct btrfs_path *path, u64 time_seq,
 339				  struct __prelim_ref *ref,
 340				  struct ulist *parents,
 341				  const u64 *extent_item_pos, u64 total_refs)
 342{
 343	struct btrfs_root *root;
 344	struct btrfs_key root_key;
 345	struct extent_buffer *eb;
 346	int ret = 0;
 347	int root_level;
 348	int level = ref->level;
 349	int index;
 350
 351	root_key.objectid = ref->root_id;
 352	root_key.type = BTRFS_ROOT_ITEM_KEY;
 353	root_key.offset = (u64)-1;
 354
 355	index = srcu_read_lock(&fs_info->subvol_srcu);
 356
 357	root = btrfs_get_fs_root(fs_info, &root_key, false);
 
 
 
 
 
 
 
 
 
 358	if (IS_ERR(root)) {
 359		srcu_read_unlock(&fs_info->subvol_srcu, index);
 360		ret = PTR_ERR(root);
 
 
 
 
 
 
 361		goto out;
 362	}
 363
 364	if (btrfs_test_is_dummy_root(root)) {
 365		srcu_read_unlock(&fs_info->subvol_srcu, index);
 366		ret = -ENOENT;
 367		goto out;
 368	}
 369
 370	if (path->search_commit_root)
 371		root_level = btrfs_header_level(root->commit_root);
 372	else if (time_seq == (u64)-1)
 373		root_level = btrfs_header_level(root->node);
 374	else
 375		root_level = btrfs_old_root_level(root, time_seq);
 376
 377	if (root_level + 1 == level) {
 378		srcu_read_unlock(&fs_info->subvol_srcu, index);
 379		goto out;
 380	}
 381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382	path->lowest_level = level;
 383	if (time_seq == (u64)-1)
 384		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
 385					0, 0);
 386	else
 387		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
 388					    time_seq);
 389
 390	/* root node has been locked, we can release @subvol_srcu safely here */
 391	srcu_read_unlock(&fs_info->subvol_srcu, index);
 392
 393	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 394		 "%d for key (%llu %u %llu)\n",
 395		 ref->root_id, level, ref->count, ret,
 396		 ref->key_for_search.objectid, ref->key_for_search.type,
 397		 ref->key_for_search.offset);
 398	if (ret < 0)
 399		goto out;
 400
 401	eb = path->nodes[level];
 402	while (!eb) {
 403		if (WARN_ON(!level)) {
 404			ret = 1;
 405			goto out;
 406		}
 407		level--;
 408		eb = path->nodes[level];
 409	}
 410
 411	ret = add_all_parents(root, path, parents, ref, level, time_seq,
 412			      extent_item_pos, total_refs);
 413out:
 
 
 414	path->lowest_level = 0;
 415	btrfs_release_path(path);
 416	return ret;
 417}
 418
 
 
 
 
 
 
 
 
 419/*
 420 * resolve all indirect backrefs from the list
 421 */
 422static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 423				   struct btrfs_path *path, u64 time_seq,
 424				   struct list_head *head,
 425				   const u64 *extent_item_pos, u64 total_refs,
 426				   u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 427{
 428	int err;
 429	int ret = 0;
 430	struct __prelim_ref *ref;
 431	struct __prelim_ref *ref_safe;
 432	struct __prelim_ref *new_ref;
 433	struct ulist *parents;
 434	struct ulist_node *node;
 435	struct ulist_iterator uiter;
 
 436
 437	parents = ulist_alloc(GFP_NOFS);
 438	if (!parents)
 439		return -ENOMEM;
 440
 441	/*
 442	 * _safe allows us to insert directly after the current item without
 443	 * iterating over the newly inserted items.
 444	 * we're also allowed to re-assign ref during iteration.
 
 445	 */
 446	list_for_each_entry_safe(ref, ref_safe, head, list) {
 447		if (ref->parent)	/* already direct */
 448			continue;
 449		if (ref->count == 0)
 
 
 
 
 
 
 
 
 
 
 
 450			continue;
 451		if (root_objectid && ref->root_id != root_objectid) {
 
 
 
 
 452			ret = BACKREF_FOUND_SHARED;
 453			goto out;
 454		}
 455		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
 456					     parents, extent_item_pos,
 457					     total_refs);
 458		/*
 459		 * we can only tolerate ENOENT,otherwise,we should catch error
 460		 * and return directly.
 461		 */
 462		if (err == -ENOENT) {
 
 
 463			continue;
 464		} else if (err) {
 
 465			ret = err;
 466			goto out;
 467		}
 468
 469		/* we put the first parent into the ref at hand */
 470		ULIST_ITER_INIT(&uiter);
 471		node = ulist_next(parents, &uiter);
 472		ref->parent = node ? node->val : 0;
 473		ref->inode_list = node ?
 474			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
 475
 476		/* additional parents require new refs being added here */
 477		while ((node = ulist_next(parents, &uiter))) {
 
 
 478			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 479						   GFP_NOFS);
 480			if (!new_ref) {
 
 481				ret = -ENOMEM;
 482				goto out;
 483			}
 484			memcpy(new_ref, ref, sizeof(*ref));
 485			new_ref->parent = node->val;
 486			new_ref->inode_list = (struct extent_inode_elem *)
 487							(uintptr_t)node->aux;
 488			list_add(&new_ref->list, &ref->list);
 489		}
 
 
 
 
 
 
 
 490		ulist_reinit(parents);
 
 491	}
 492out:
 493	ulist_free(parents);
 494	return ret;
 495}
 496
 497static inline int ref_for_same_block(struct __prelim_ref *ref1,
 498				     struct __prelim_ref *ref2)
 499{
 500	if (ref1->level != ref2->level)
 501		return 0;
 502	if (ref1->root_id != ref2->root_id)
 503		return 0;
 504	if (ref1->key_for_search.type != ref2->key_for_search.type)
 505		return 0;
 506	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 507		return 0;
 508	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 509		return 0;
 510	if (ref1->parent != ref2->parent)
 511		return 0;
 512
 513	return 1;
 514}
 515
 516/*
 517 * read tree blocks and add keys where required.
 518 */
 519static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 520			      struct list_head *head)
 521{
 522	struct __prelim_ref *ref;
 523	struct extent_buffer *eb;
 
 
 524
 525	list_for_each_entry(ref, head, list) {
 526		if (ref->parent)
 527			continue;
 528		if (ref->key_for_search.type)
 529			continue;
 
 530		BUG_ON(!ref->wanted_disk_byte);
 531		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 532				     0);
 
 533		if (IS_ERR(eb)) {
 
 534			return PTR_ERR(eb);
 535		} else if (!extent_buffer_uptodate(eb)) {
 
 536			free_extent_buffer(eb);
 537			return -EIO;
 538		}
 539		btrfs_tree_read_lock(eb);
 
 540		if (btrfs_header_level(eb) == 0)
 541			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 542		else
 543			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 544		btrfs_tree_read_unlock(eb);
 
 545		free_extent_buffer(eb);
 
 
 546	}
 547	return 0;
 548}
 549
 550/*
 551 * merge backrefs and adjust counts accordingly
 552 *
 553 * mode = 1: merge identical keys, if key is set
 554 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 555 *           additionally, we could even add a key range for the blocks we
 556 *           looked into to merge even more (-> replace unresolved refs by those
 557 *           having a parent).
 558 * mode = 2: merge identical parents
 559 */
 560static void __merge_refs(struct list_head *head, int mode)
 561{
 562	struct __prelim_ref *pos1;
 563
 564	list_for_each_entry(pos1, head, list) {
 565		struct __prelim_ref *pos2 = pos1, *tmp;
 566
 567		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
 568			struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
 569			struct extent_inode_elem *eie;
 570
 571			if (!ref_for_same_block(ref1, ref2))
 572				continue;
 573			if (mode == 1) {
 574				if (!ref1->parent && ref2->parent)
 575					swap(ref1, ref2);
 576			} else {
 577				if (ref1->parent != ref2->parent)
 578					continue;
 579			}
 580
 581			eie = ref1->inode_list;
 582			while (eie && eie->next)
 583				eie = eie->next;
 584			if (eie)
 585				eie->next = ref2->inode_list;
 586			else
 587				ref1->inode_list = ref2->inode_list;
 588			ref1->count += ref2->count;
 589
 590			list_del(&ref2->list);
 591			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
 592		}
 593
 594	}
 595}
 596
 597/*
 598 * add all currently queued delayed refs from this head whose seq nr is
 599 * smaller or equal that seq to the list
 600 */
 601static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 602			      struct list_head *prefs, u64 *total_refs,
 603			      u64 inum)
 604{
 605	struct btrfs_delayed_ref_node *node;
 606	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 607	struct btrfs_key key;
 608	struct btrfs_key op_key = {0};
 609	int sgn;
 
 610	int ret = 0;
 611
 612	if (extent_op && extent_op->update_key)
 613		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 614
 615	spin_lock(&head->lock);
 616	list_for_each_entry(node, &head->ref_list, list) {
 
 
 617		if (node->seq > seq)
 618			continue;
 619
 620		switch (node->action) {
 621		case BTRFS_ADD_DELAYED_EXTENT:
 622		case BTRFS_UPDATE_DELAYED_HEAD:
 623			WARN_ON(1);
 624			continue;
 625		case BTRFS_ADD_DELAYED_REF:
 626			sgn = 1;
 627			break;
 628		case BTRFS_DROP_DELAYED_REF:
 629			sgn = -1;
 630			break;
 631		default:
 632			BUG_ON(1);
 633		}
 634		*total_refs += (node->ref_mod * sgn);
 635		switch (node->type) {
 636		case BTRFS_TREE_BLOCK_REF_KEY: {
 
 637			struct btrfs_delayed_tree_ref *ref;
 638
 639			ref = btrfs_delayed_node_to_tree_ref(node);
 640			ret = __add_prelim_ref(prefs, ref->root, &op_key,
 641					       ref->level + 1, 0, node->bytenr,
 642					       node->ref_mod * sgn, GFP_ATOMIC);
 
 643			break;
 644		}
 645		case BTRFS_SHARED_BLOCK_REF_KEY: {
 
 646			struct btrfs_delayed_tree_ref *ref;
 647
 648			ref = btrfs_delayed_node_to_tree_ref(node);
 649			ret = __add_prelim_ref(prefs, 0, NULL,
 650					       ref->level + 1, ref->parent,
 651					       node->bytenr,
 652					       node->ref_mod * sgn, GFP_ATOMIC);
 653			break;
 654		}
 655		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 656			struct btrfs_delayed_data_ref *ref;
 657			ref = btrfs_delayed_node_to_data_ref(node);
 658
 659			key.objectid = ref->objectid;
 660			key.type = BTRFS_EXTENT_DATA_KEY;
 661			key.offset = ref->offset;
 662
 663			/*
 664			 * Found a inum that doesn't match our known inum, we
 665			 * know it's shared.
 666			 */
 667			if (inum && ref->objectid != inum) {
 668				ret = BACKREF_FOUND_SHARED;
 669				break;
 670			}
 671
 672			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 673					       node->bytenr,
 674					       node->ref_mod * sgn, GFP_ATOMIC);
 675			break;
 676		}
 677		case BTRFS_SHARED_DATA_REF_KEY: {
 
 678			struct btrfs_delayed_data_ref *ref;
 679
 680			ref = btrfs_delayed_node_to_data_ref(node);
 681			ret = __add_prelim_ref(prefs, 0, NULL, 0,
 682					       ref->parent, node->bytenr,
 683					       node->ref_mod * sgn, GFP_ATOMIC);
 
 684			break;
 685		}
 686		default:
 687			WARN_ON(1);
 688		}
 689		if (ret)
 
 
 
 
 690			break;
 691	}
 
 
 
 692	spin_unlock(&head->lock);
 693	return ret;
 694}
 695
 696/*
 697 * add all inline backrefs for bytenr to the list
 
 
 698 */
 699static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 700			     struct btrfs_path *path, u64 bytenr,
 701			     int *info_level, struct list_head *prefs,
 702			     u64 *total_refs, u64 inum)
 703{
 704	int ret = 0;
 705	int slot;
 706	struct extent_buffer *leaf;
 707	struct btrfs_key key;
 708	struct btrfs_key found_key;
 709	unsigned long ptr;
 710	unsigned long end;
 711	struct btrfs_extent_item *ei;
 712	u64 flags;
 713	u64 item_size;
 714
 715	/*
 716	 * enumerate all inline refs
 717	 */
 718	leaf = path->nodes[0];
 719	slot = path->slots[0];
 720
 721	item_size = btrfs_item_size_nr(leaf, slot);
 722	BUG_ON(item_size < sizeof(*ei));
 723
 724	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 725	flags = btrfs_extent_flags(leaf, ei);
 726	*total_refs += btrfs_extent_refs(leaf, ei);
 727	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 728
 729	ptr = (unsigned long)(ei + 1);
 730	end = (unsigned long)ei + item_size;
 731
 732	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 733	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 734		struct btrfs_tree_block_info *info;
 735
 736		info = (struct btrfs_tree_block_info *)ptr;
 737		*info_level = btrfs_tree_block_level(leaf, info);
 738		ptr += sizeof(struct btrfs_tree_block_info);
 739		BUG_ON(ptr > end);
 740	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 741		*info_level = found_key.offset;
 742	} else {
 743		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 744	}
 745
 746	while (ptr < end) {
 747		struct btrfs_extent_inline_ref *iref;
 748		u64 offset;
 749		int type;
 750
 751		iref = (struct btrfs_extent_inline_ref *)ptr;
 752		type = btrfs_extent_inline_ref_type(leaf, iref);
 
 
 
 
 753		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 754
 755		switch (type) {
 756		case BTRFS_SHARED_BLOCK_REF_KEY:
 757			ret = __add_prelim_ref(prefs, 0, NULL,
 758						*info_level + 1, offset,
 759						bytenr, 1, GFP_NOFS);
 760			break;
 761		case BTRFS_SHARED_DATA_REF_KEY: {
 762			struct btrfs_shared_data_ref *sdref;
 763			int count;
 764
 765			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 766			count = btrfs_shared_data_ref_count(leaf, sdref);
 767			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 768					       bytenr, count, GFP_NOFS);
 
 769			break;
 770		}
 771		case BTRFS_TREE_BLOCK_REF_KEY:
 772			ret = __add_prelim_ref(prefs, offset, NULL,
 773					       *info_level + 1, 0,
 774					       bytenr, 1, GFP_NOFS);
 775			break;
 776		case BTRFS_EXTENT_DATA_REF_KEY: {
 777			struct btrfs_extent_data_ref *dref;
 778			int count;
 779			u64 root;
 780
 781			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 782			count = btrfs_extent_data_ref_count(leaf, dref);
 783			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 784								      dref);
 785			key.type = BTRFS_EXTENT_DATA_KEY;
 786			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 787
 788			if (inum && key.objectid != inum) {
 789				ret = BACKREF_FOUND_SHARED;
 790				break;
 791			}
 792
 793			root = btrfs_extent_data_ref_root(leaf, dref);
 794			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 795					       bytenr, count, GFP_NOFS);
 
 
 796			break;
 797		}
 798		default:
 799			WARN_ON(1);
 800		}
 801		if (ret)
 802			return ret;
 803		ptr += btrfs_extent_inline_ref_size(type);
 804	}
 805
 806	return 0;
 807}
 808
 809/*
 810 * add all non-inline backrefs for bytenr to the list
 
 
 811 */
 812static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 813			    struct btrfs_path *path, u64 bytenr,
 814			    int info_level, struct list_head *prefs, u64 inum)
 
 815{
 816	struct btrfs_root *extent_root = fs_info->extent_root;
 817	int ret;
 818	int slot;
 819	struct extent_buffer *leaf;
 820	struct btrfs_key key;
 821
 822	while (1) {
 823		ret = btrfs_next_item(extent_root, path);
 824		if (ret < 0)
 825			break;
 826		if (ret) {
 827			ret = 0;
 828			break;
 829		}
 830
 831		slot = path->slots[0];
 832		leaf = path->nodes[0];
 833		btrfs_item_key_to_cpu(leaf, &key, slot);
 834
 835		if (key.objectid != bytenr)
 836			break;
 837		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 838			continue;
 839		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 840			break;
 841
 842		switch (key.type) {
 843		case BTRFS_SHARED_BLOCK_REF_KEY:
 844			ret = __add_prelim_ref(prefs, 0, NULL,
 845						info_level + 1, key.offset,
 846						bytenr, 1, GFP_NOFS);
 
 847			break;
 848		case BTRFS_SHARED_DATA_REF_KEY: {
 
 849			struct btrfs_shared_data_ref *sdref;
 850			int count;
 851
 852			sdref = btrfs_item_ptr(leaf, slot,
 853					      struct btrfs_shared_data_ref);
 854			count = btrfs_shared_data_ref_count(leaf, sdref);
 855			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 856						bytenr, count, GFP_NOFS);
 
 857			break;
 858		}
 859		case BTRFS_TREE_BLOCK_REF_KEY:
 860			ret = __add_prelim_ref(prefs, key.offset, NULL,
 861					       info_level + 1, 0,
 862					       bytenr, 1, GFP_NOFS);
 
 863			break;
 864		case BTRFS_EXTENT_DATA_REF_KEY: {
 
 865			struct btrfs_extent_data_ref *dref;
 866			int count;
 867			u64 root;
 868
 869			dref = btrfs_item_ptr(leaf, slot,
 870					      struct btrfs_extent_data_ref);
 871			count = btrfs_extent_data_ref_count(leaf, dref);
 872			key.objectid = btrfs_extent_data_ref_objectid(leaf,
 873								      dref);
 874			key.type = BTRFS_EXTENT_DATA_KEY;
 875			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 876
 877			if (inum && key.objectid != inum) {
 878				ret = BACKREF_FOUND_SHARED;
 879				break;
 880			}
 881
 882			root = btrfs_extent_data_ref_root(leaf, dref);
 883			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 884					       bytenr, count, GFP_NOFS);
 
 885			break;
 886		}
 887		default:
 888			WARN_ON(1);
 889		}
 890		if (ret)
 891			return ret;
 892
 893	}
 894
 895	return ret;
 896}
 897
 898/*
 899 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 900 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 901 * indirect refs to their parent bytenr.
 902 * When roots are found, they're added to the roots list
 903 *
 904 * NOTE: This can return values > 0
 905 *
 906 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
 907 * much like trans == NULL case, the difference only lies in it will not
 908 * commit root.
 909 * The special case is for qgroup to search roots in commit_transaction().
 910 *
 
 
 
 
 
 
 
 
 
 911 * FIXME some caching might speed things up
 912 */
 913static int find_parent_nodes(struct btrfs_trans_handle *trans,
 914			     struct btrfs_fs_info *fs_info, u64 bytenr,
 915			     u64 time_seq, struct ulist *refs,
 916			     struct ulist *roots, const u64 *extent_item_pos,
 917			     u64 root_objectid, u64 inum)
 918{
 919	struct btrfs_key key;
 920	struct btrfs_path *path;
 921	struct btrfs_delayed_ref_root *delayed_refs = NULL;
 922	struct btrfs_delayed_ref_head *head;
 923	int info_level = 0;
 924	int ret;
 925	struct list_head prefs_delayed;
 926	struct list_head prefs;
 927	struct __prelim_ref *ref;
 928	struct extent_inode_elem *eie = NULL;
 929	u64 total_refs = 0;
 930
 931	INIT_LIST_HEAD(&prefs);
 932	INIT_LIST_HEAD(&prefs_delayed);
 
 933
 934	key.objectid = bytenr;
 935	key.offset = (u64)-1;
 936	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
 937		key.type = BTRFS_METADATA_ITEM_KEY;
 938	else
 939		key.type = BTRFS_EXTENT_ITEM_KEY;
 940
 941	path = btrfs_alloc_path();
 942	if (!path)
 943		return -ENOMEM;
 944	if (!trans) {
 945		path->search_commit_root = 1;
 946		path->skip_locking = 1;
 947	}
 948
 949	if (time_seq == (u64)-1)
 950		path->skip_locking = 1;
 951
 952	/*
 953	 * grab both a lock on the path and a lock on the delayed ref head.
 954	 * We need both to get a consistent picture of how the refs look
 955	 * at a specified point in time
 956	 */
 957again:
 958	head = NULL;
 959
 960	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 961	if (ret < 0)
 962		goto out;
 963	BUG_ON(ret == 0);
 964
 965#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 966	if (trans && likely(trans->type != __TRANS_DUMMY) &&
 967	    time_seq != (u64)-1) {
 968#else
 969	if (trans && time_seq != (u64)-1) {
 970#endif
 971		/*
 972		 * look if there are updates for this ref queued and lock the
 973		 * head
 974		 */
 975		delayed_refs = &trans->transaction->delayed_refs;
 976		spin_lock(&delayed_refs->lock);
 977		head = btrfs_find_delayed_ref_head(trans, bytenr);
 978		if (head) {
 979			if (!mutex_trylock(&head->mutex)) {
 980				atomic_inc(&head->node.refs);
 981				spin_unlock(&delayed_refs->lock);
 982
 983				btrfs_release_path(path);
 984
 985				/*
 986				 * Mutex was contended, block until it's
 987				 * released and try again
 988				 */
 989				mutex_lock(&head->mutex);
 990				mutex_unlock(&head->mutex);
 991				btrfs_put_delayed_ref(&head->node);
 992				goto again;
 993			}
 994			spin_unlock(&delayed_refs->lock);
 995			ret = __add_delayed_refs(head, time_seq,
 996						 &prefs_delayed, &total_refs,
 997						 inum);
 998			mutex_unlock(&head->mutex);
 999			if (ret)
1000				goto out;
1001		} else {
1002			spin_unlock(&delayed_refs->lock);
1003		}
1004	}
1005
1006	if (path->slots[0]) {
1007		struct extent_buffer *leaf;
1008		int slot;
1009
1010		path->slots[0]--;
1011		leaf = path->nodes[0];
1012		slot = path->slots[0];
1013		btrfs_item_key_to_cpu(leaf, &key, slot);
1014		if (key.objectid == bytenr &&
1015		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1016		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1017			ret = __add_inline_refs(fs_info, path, bytenr,
1018						&info_level, &prefs,
1019						&total_refs, inum);
1020			if (ret)
1021				goto out;
1022			ret = __add_keyed_refs(fs_info, path, bytenr,
1023					       info_level, &prefs, inum);
1024			if (ret)
1025				goto out;
1026		}
1027	}
1028	btrfs_release_path(path);
1029
1030	list_splice_init(&prefs_delayed, &prefs);
1031
1032	ret = __add_missing_keys(fs_info, &prefs);
1033	if (ret)
1034		goto out;
1035
1036	__merge_refs(&prefs, 1);
1037
1038	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1039				      extent_item_pos, total_refs,
1040				      root_objectid);
1041	if (ret)
1042		goto out;
1043
1044	__merge_refs(&prefs, 2);
1045
1046	while (!list_empty(&prefs)) {
1047		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1048		WARN_ON(ref->count < 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1050			if (root_objectid && ref->root_id != root_objectid) {
 
1051				ret = BACKREF_FOUND_SHARED;
1052				goto out;
1053			}
1054
1055			/* no parent == root of tree */
1056			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1057			if (ret < 0)
1058				goto out;
1059		}
1060		if (ref->count && ref->parent) {
1061			if (extent_item_pos && !ref->inode_list &&
1062			    ref->level == 0) {
1063				struct extent_buffer *eb;
1064
1065				eb = read_tree_block(fs_info->extent_root,
1066							   ref->parent, 0);
1067				if (IS_ERR(eb)) {
1068					ret = PTR_ERR(eb);
1069					goto out;
1070				} else if (!extent_buffer_uptodate(eb)) {
1071					free_extent_buffer(eb);
1072					ret = -EIO;
1073					goto out;
1074				}
1075				btrfs_tree_read_lock(eb);
1076				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 
1077				ret = find_extent_in_eb(eb, bytenr,
1078							*extent_item_pos, &eie);
1079				btrfs_tree_read_unlock_blocking(eb);
 
1080				free_extent_buffer(eb);
1081				if (ret < 0)
1082					goto out;
1083				ref->inode_list = eie;
1084			}
1085			ret = ulist_add_merge_ptr(refs, ref->parent,
1086						  ref->inode_list,
1087						  (void **)&eie, GFP_NOFS);
1088			if (ret < 0)
1089				goto out;
1090			if (!ret && extent_item_pos) {
1091				/*
1092				 * we've recorded that parent, so we must extend
1093				 * its inode list here
1094				 */
1095				BUG_ON(!eie);
1096				while (eie->next)
1097					eie = eie->next;
1098				eie->next = ref->inode_list;
1099			}
1100			eie = NULL;
1101		}
1102		list_del(&ref->list);
1103		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1104	}
1105
1106out:
1107	btrfs_free_path(path);
1108	while (!list_empty(&prefs)) {
1109		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1110		list_del(&ref->list);
1111		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1112	}
1113	while (!list_empty(&prefs_delayed)) {
1114		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1115				       list);
1116		list_del(&ref->list);
1117		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1118	}
1119	if (ret < 0)
1120		free_inode_elem_list(eie);
1121	return ret;
1122}
1123
1124static void free_leaf_list(struct ulist *blocks)
1125{
1126	struct ulist_node *node = NULL;
1127	struct extent_inode_elem *eie;
1128	struct ulist_iterator uiter;
1129
1130	ULIST_ITER_INIT(&uiter);
1131	while ((node = ulist_next(blocks, &uiter))) {
1132		if (!node->aux)
1133			continue;
1134		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1135		free_inode_elem_list(eie);
1136		node->aux = 0;
1137	}
1138
1139	ulist_free(blocks);
1140}
1141
1142/*
1143 * Finds all leafs with a reference to the specified combination of bytenr and
1144 * offset. key_list_head will point to a list of corresponding keys (caller must
1145 * free each list element). The leafs will be stored in the leafs ulist, which
1146 * must be freed with ulist_free.
1147 *
1148 * returns 0 on success, <0 on error
1149 */
1150static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1151				struct btrfs_fs_info *fs_info, u64 bytenr,
1152				u64 time_seq, struct ulist **leafs,
1153				const u64 *extent_item_pos)
1154{
1155	int ret;
1156
1157	*leafs = ulist_alloc(GFP_NOFS);
1158	if (!*leafs)
1159		return -ENOMEM;
1160
1161	ret = find_parent_nodes(trans, fs_info, bytenr,
1162				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1163	if (ret < 0 && ret != -ENOENT) {
1164		free_leaf_list(*leafs);
1165		return ret;
1166	}
1167
1168	return 0;
1169}
1170
1171/*
1172 * walk all backrefs for a given extent to find all roots that reference this
1173 * extent. Walking a backref means finding all extents that reference this
1174 * extent and in turn walk the backrefs of those, too. Naturally this is a
1175 * recursive process, but here it is implemented in an iterative fashion: We
1176 * find all referencing extents for the extent in question and put them on a
1177 * list. In turn, we find all referencing extents for those, further appending
1178 * to the list. The way we iterate the list allows adding more elements after
1179 * the current while iterating. The process stops when we reach the end of the
1180 * list. Found roots are added to the roots list.
1181 *
1182 * returns 0 on success, < 0 on error.
1183 */
1184static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1185				  struct btrfs_fs_info *fs_info, u64 bytenr,
1186				  u64 time_seq, struct ulist **roots)
 
1187{
1188	struct ulist *tmp;
1189	struct ulist_node *node = NULL;
1190	struct ulist_iterator uiter;
1191	int ret;
1192
1193	tmp = ulist_alloc(GFP_NOFS);
1194	if (!tmp)
1195		return -ENOMEM;
1196	*roots = ulist_alloc(GFP_NOFS);
1197	if (!*roots) {
1198		ulist_free(tmp);
1199		return -ENOMEM;
1200	}
1201
1202	ULIST_ITER_INIT(&uiter);
1203	while (1) {
1204		ret = find_parent_nodes(trans, fs_info, bytenr,
1205					time_seq, tmp, *roots, NULL, 0, 0);
1206		if (ret < 0 && ret != -ENOENT) {
1207			ulist_free(tmp);
1208			ulist_free(*roots);
 
1209			return ret;
1210		}
1211		node = ulist_next(tmp, &uiter);
1212		if (!node)
1213			break;
1214		bytenr = node->val;
1215		cond_resched();
1216	}
1217
1218	ulist_free(tmp);
1219	return 0;
1220}
1221
1222int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1223			 struct btrfs_fs_info *fs_info, u64 bytenr,
1224			 u64 time_seq, struct ulist **roots)
 
1225{
1226	int ret;
1227
1228	if (!trans)
1229		down_read(&fs_info->commit_root_sem);
1230	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1231	if (!trans)
 
1232		up_read(&fs_info->commit_root_sem);
1233	return ret;
1234}
1235
1236/**
1237 * btrfs_check_shared - tell us whether an extent is shared
1238 *
1239 * @trans: optional trans handle
 
 
 
 
1240 *
1241 * btrfs_check_shared uses the backref walking code but will short
1242 * circuit as soon as it finds a root or inode that doesn't match the
1243 * one passed in. This provides a significant performance benefit for
1244 * callers (such as fiemap) which want to know whether the extent is
1245 * shared but do not need a ref count.
1246 *
 
 
 
1247 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1248 */
1249int btrfs_check_shared(struct btrfs_trans_handle *trans,
1250		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1251		       u64 inum, u64 bytenr)
1252{
1253	struct ulist *tmp = NULL;
1254	struct ulist *roots = NULL;
1255	struct ulist_iterator uiter;
1256	struct ulist_node *node;
1257	struct seq_list elem = SEQ_LIST_INIT(elem);
1258	int ret = 0;
1259
1260	tmp = ulist_alloc(GFP_NOFS);
1261	roots = ulist_alloc(GFP_NOFS);
1262	if (!tmp || !roots) {
1263		ulist_free(tmp);
1264		ulist_free(roots);
1265		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
1266	}
1267
1268	if (trans)
1269		btrfs_get_tree_mod_seq(fs_info, &elem);
1270	else
1271		down_read(&fs_info->commit_root_sem);
1272	ULIST_ITER_INIT(&uiter);
1273	while (1) {
1274		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1275					roots, NULL, root_objectid, inum);
1276		if (ret == BACKREF_FOUND_SHARED) {
1277			/* this is the only condition under which we return 1 */
1278			ret = 1;
1279			break;
1280		}
1281		if (ret < 0 && ret != -ENOENT)
1282			break;
1283		ret = 0;
1284		node = ulist_next(tmp, &uiter);
1285		if (!node)
1286			break;
1287		bytenr = node->val;
 
1288		cond_resched();
1289	}
1290	if (trans)
 
1291		btrfs_put_tree_mod_seq(fs_info, &elem);
1292	else
 
1293		up_read(&fs_info->commit_root_sem);
1294	ulist_free(tmp);
1295	ulist_free(roots);
 
 
1296	return ret;
1297}
1298
1299int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1300			  u64 start_off, struct btrfs_path *path,
1301			  struct btrfs_inode_extref **ret_extref,
1302			  u64 *found_off)
1303{
1304	int ret, slot;
1305	struct btrfs_key key;
1306	struct btrfs_key found_key;
1307	struct btrfs_inode_extref *extref;
1308	struct extent_buffer *leaf;
1309	unsigned long ptr;
1310
1311	key.objectid = inode_objectid;
1312	key.type = BTRFS_INODE_EXTREF_KEY;
1313	key.offset = start_off;
1314
1315	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1316	if (ret < 0)
1317		return ret;
1318
1319	while (1) {
1320		leaf = path->nodes[0];
1321		slot = path->slots[0];
1322		if (slot >= btrfs_header_nritems(leaf)) {
1323			/*
1324			 * If the item at offset is not found,
1325			 * btrfs_search_slot will point us to the slot
1326			 * where it should be inserted. In our case
1327			 * that will be the slot directly before the
1328			 * next INODE_REF_KEY_V2 item. In the case
1329			 * that we're pointing to the last slot in a
1330			 * leaf, we must move one leaf over.
1331			 */
1332			ret = btrfs_next_leaf(root, path);
1333			if (ret) {
1334				if (ret >= 1)
1335					ret = -ENOENT;
1336				break;
1337			}
1338			continue;
1339		}
1340
1341		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1342
1343		/*
1344		 * Check that we're still looking at an extended ref key for
1345		 * this particular objectid. If we have different
1346		 * objectid or type then there are no more to be found
1347		 * in the tree and we can exit.
1348		 */
1349		ret = -ENOENT;
1350		if (found_key.objectid != inode_objectid)
1351			break;
1352		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1353			break;
1354
1355		ret = 0;
1356		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1357		extref = (struct btrfs_inode_extref *)ptr;
1358		*ret_extref = extref;
1359		if (found_off)
1360			*found_off = found_key.offset;
1361		break;
1362	}
1363
1364	return ret;
1365}
1366
1367/*
1368 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1369 * Elements of the path are separated by '/' and the path is guaranteed to be
1370 * 0-terminated. the path is only given within the current file system.
1371 * Therefore, it never starts with a '/'. the caller is responsible to provide
1372 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1373 * the start point of the resulting string is returned. this pointer is within
1374 * dest, normally.
1375 * in case the path buffer would overflow, the pointer is decremented further
1376 * as if output was written to the buffer, though no more output is actually
1377 * generated. that way, the caller can determine how much space would be
1378 * required for the path to fit into the buffer. in that case, the returned
1379 * value will be smaller than dest. callers must check this!
1380 */
1381char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1382			u32 name_len, unsigned long name_off,
1383			struct extent_buffer *eb_in, u64 parent,
1384			char *dest, u32 size)
1385{
1386	int slot;
1387	u64 next_inum;
1388	int ret;
1389	s64 bytes_left = ((s64)size) - 1;
1390	struct extent_buffer *eb = eb_in;
1391	struct btrfs_key found_key;
1392	int leave_spinning = path->leave_spinning;
1393	struct btrfs_inode_ref *iref;
1394
1395	if (bytes_left >= 0)
1396		dest[bytes_left] = '\0';
1397
1398	path->leave_spinning = 1;
1399	while (1) {
1400		bytes_left -= name_len;
1401		if (bytes_left >= 0)
1402			read_extent_buffer(eb, dest + bytes_left,
1403					   name_off, name_len);
1404		if (eb != eb_in) {
1405			if (!path->skip_locking)
1406				btrfs_tree_read_unlock_blocking(eb);
1407			free_extent_buffer(eb);
1408		}
1409		ret = btrfs_find_item(fs_root, path, parent, 0,
1410				BTRFS_INODE_REF_KEY, &found_key);
1411		if (ret > 0)
1412			ret = -ENOENT;
1413		if (ret)
1414			break;
1415
1416		next_inum = found_key.offset;
1417
1418		/* regular exit ahead */
1419		if (parent == next_inum)
1420			break;
1421
1422		slot = path->slots[0];
1423		eb = path->nodes[0];
1424		/* make sure we can use eb after releasing the path */
1425		if (eb != eb_in) {
1426			if (!path->skip_locking)
1427				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1428			path->nodes[0] = NULL;
1429			path->locks[0] = 0;
1430		}
1431		btrfs_release_path(path);
1432		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1433
1434		name_len = btrfs_inode_ref_name_len(eb, iref);
1435		name_off = (unsigned long)(iref + 1);
1436
1437		parent = next_inum;
1438		--bytes_left;
1439		if (bytes_left >= 0)
1440			dest[bytes_left] = '/';
1441	}
1442
1443	btrfs_release_path(path);
1444	path->leave_spinning = leave_spinning;
1445
1446	if (ret)
1447		return ERR_PTR(ret);
1448
1449	return dest + bytes_left;
1450}
1451
1452/*
1453 * this makes the path point to (logical EXTENT_ITEM *)
1454 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1455 * tree blocks and <0 on error.
1456 */
1457int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1458			struct btrfs_path *path, struct btrfs_key *found_key,
1459			u64 *flags_ret)
1460{
1461	int ret;
1462	u64 flags;
1463	u64 size = 0;
1464	u32 item_size;
1465	struct extent_buffer *eb;
1466	struct btrfs_extent_item *ei;
1467	struct btrfs_key key;
1468
1469	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1470		key.type = BTRFS_METADATA_ITEM_KEY;
1471	else
1472		key.type = BTRFS_EXTENT_ITEM_KEY;
1473	key.objectid = logical;
1474	key.offset = (u64)-1;
1475
1476	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1477	if (ret < 0)
1478		return ret;
1479
1480	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1481	if (ret) {
1482		if (ret > 0)
1483			ret = -ENOENT;
1484		return ret;
1485	}
1486	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1487	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1488		size = fs_info->extent_root->nodesize;
1489	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1490		size = found_key->offset;
1491
1492	if (found_key->objectid > logical ||
1493	    found_key->objectid + size <= logical) {
1494		pr_debug("logical %llu is not within any extent\n", logical);
 
1495		return -ENOENT;
1496	}
1497
1498	eb = path->nodes[0];
1499	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1500	BUG_ON(item_size < sizeof(*ei));
1501
1502	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1503	flags = btrfs_extent_flags(eb, ei);
1504
1505	pr_debug("logical %llu is at position %llu within the extent (%llu "
1506		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1507		 logical, logical - found_key->objectid, found_key->objectid,
1508		 found_key->offset, flags, item_size);
1509
1510	WARN_ON(!flags_ret);
1511	if (flags_ret) {
1512		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1513			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1514		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1515			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1516		else
1517			BUG_ON(1);
1518		return 0;
1519	}
1520
1521	return -EIO;
1522}
1523
1524/*
1525 * helper function to iterate extent inline refs. ptr must point to a 0 value
1526 * for the first call and may be modified. it is used to track state.
1527 * if more refs exist, 0 is returned and the next call to
1528 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1529 * next ref. after the last ref was processed, 1 is returned.
1530 * returns <0 on error
1531 */
1532static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1533				   struct btrfs_key *key,
1534				   struct btrfs_extent_item *ei, u32 item_size,
1535				   struct btrfs_extent_inline_ref **out_eiref,
1536				   int *out_type)
 
 
1537{
1538	unsigned long end;
1539	u64 flags;
1540	struct btrfs_tree_block_info *info;
1541
1542	if (!*ptr) {
1543		/* first call */
1544		flags = btrfs_extent_flags(eb, ei);
1545		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1546			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1547				/* a skinny metadata extent */
1548				*out_eiref =
1549				     (struct btrfs_extent_inline_ref *)(ei + 1);
1550			} else {
1551				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1552				info = (struct btrfs_tree_block_info *)(ei + 1);
1553				*out_eiref =
1554				   (struct btrfs_extent_inline_ref *)(info + 1);
1555			}
1556		} else {
1557			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1558		}
1559		*ptr = (unsigned long)*out_eiref;
1560		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1561			return -ENOENT;
1562	}
1563
1564	end = (unsigned long)ei + item_size;
1565	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1566	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
 
 
 
1567
1568	*ptr += btrfs_extent_inline_ref_size(*out_type);
1569	WARN_ON(*ptr > end);
1570	if (*ptr == end)
1571		return 1; /* last */
1572
1573	return 0;
1574}
1575
1576/*
1577 * reads the tree block backref for an extent. tree level and root are returned
1578 * through out_level and out_root. ptr must point to a 0 value for the first
1579 * call and may be modified (see __get_extent_inline_ref comment).
1580 * returns 0 if data was provided, 1 if there was no more data to provide or
1581 * <0 on error.
1582 */
1583int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1584			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1585			    u32 item_size, u64 *out_root, u8 *out_level)
1586{
1587	int ret;
1588	int type;
1589	struct btrfs_extent_inline_ref *eiref;
1590
1591	if (*ptr == (unsigned long)-1)
1592		return 1;
1593
1594	while (1) {
1595		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1596					      &eiref, &type);
1597		if (ret < 0)
1598			return ret;
1599
1600		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1601		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1602			break;
1603
1604		if (ret == 1)
1605			return 1;
1606	}
1607
1608	/* we can treat both ref types equally here */
1609	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1610
1611	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1612		struct btrfs_tree_block_info *info;
1613
1614		info = (struct btrfs_tree_block_info *)(ei + 1);
1615		*out_level = btrfs_tree_block_level(eb, info);
1616	} else {
1617		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1618		*out_level = (u8)key->offset;
1619	}
1620
1621	if (ret == 1)
1622		*ptr = (unsigned long)-1;
1623
1624	return 0;
1625}
1626
1627static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1628				u64 root, u64 extent_item_objectid,
1629				iterate_extent_inodes_t *iterate, void *ctx)
 
1630{
1631	struct extent_inode_elem *eie;
1632	int ret = 0;
1633
1634	for (eie = inode_list; eie; eie = eie->next) {
1635		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1636			 "root %llu\n", extent_item_objectid,
1637			 eie->inum, eie->offset, root);
 
1638		ret = iterate(eie->inum, eie->offset, root, ctx);
1639		if (ret) {
1640			pr_debug("stopping iteration for %llu due to ret=%d\n",
1641				 extent_item_objectid, ret);
 
1642			break;
1643		}
1644	}
1645
1646	return ret;
1647}
1648
1649/*
1650 * calls iterate() for every inode that references the extent identified by
1651 * the given parameters.
1652 * when the iterator function returns a non-zero value, iteration stops.
1653 */
1654int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1655				u64 extent_item_objectid, u64 extent_item_pos,
1656				int search_commit_root,
1657				iterate_extent_inodes_t *iterate, void *ctx)
 
1658{
1659	int ret;
1660	struct btrfs_trans_handle *trans = NULL;
1661	struct ulist *refs = NULL;
1662	struct ulist *roots = NULL;
1663	struct ulist_node *ref_node = NULL;
1664	struct ulist_node *root_node = NULL;
1665	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1666	struct ulist_iterator ref_uiter;
1667	struct ulist_iterator root_uiter;
1668
1669	pr_debug("resolving all inodes for extent %llu\n",
1670			extent_item_objectid);
1671
1672	if (!search_commit_root) {
1673		trans = btrfs_join_transaction(fs_info->extent_root);
1674		if (IS_ERR(trans))
1675			return PTR_ERR(trans);
1676		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1677	} else {
1678		down_read(&fs_info->commit_root_sem);
 
1679	}
1680
 
 
 
 
 
1681	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1682				   tree_mod_seq_elem.seq, &refs,
1683				   &extent_item_pos);
1684	if (ret)
1685		goto out;
1686
1687	ULIST_ITER_INIT(&ref_uiter);
1688	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1689		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1690					     tree_mod_seq_elem.seq, &roots);
 
1691		if (ret)
1692			break;
1693		ULIST_ITER_INIT(&root_uiter);
1694		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1695			pr_debug("root %llu references leaf %llu, data list "
1696				 "%#llx\n", root_node->val, ref_node->val,
1697				 ref_node->aux);
1698			ret = iterate_leaf_refs((struct extent_inode_elem *)
 
 
1699						(uintptr_t)ref_node->aux,
1700						root_node->val,
1701						extent_item_objectid,
1702						iterate, ctx);
1703		}
1704		ulist_free(roots);
1705	}
1706
1707	free_leaf_list(refs);
1708out:
1709	if (!search_commit_root) {
1710		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1711		btrfs_end_transaction(trans, fs_info->extent_root);
1712	} else {
1713		up_read(&fs_info->commit_root_sem);
1714	}
1715
1716	return ret;
1717}
1718
1719int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1720				struct btrfs_path *path,
1721				iterate_extent_inodes_t *iterate, void *ctx)
 
1722{
1723	int ret;
1724	u64 extent_item_pos;
1725	u64 flags = 0;
1726	struct btrfs_key found_key;
1727	int search_commit_root = path->search_commit_root;
1728
1729	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1730	btrfs_release_path(path);
1731	if (ret < 0)
1732		return ret;
1733	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1734		return -EINVAL;
1735
1736	extent_item_pos = logical - found_key.objectid;
1737	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1738					extent_item_pos, search_commit_root,
1739					iterate, ctx);
1740
1741	return ret;
1742}
1743
1744typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1745			      struct extent_buffer *eb, void *ctx);
1746
1747static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1748			      struct btrfs_path *path,
1749			      iterate_irefs_t *iterate, void *ctx)
1750{
1751	int ret = 0;
1752	int slot;
1753	u32 cur;
1754	u32 len;
1755	u32 name_len;
1756	u64 parent = 0;
1757	int found = 0;
1758	struct extent_buffer *eb;
1759	struct btrfs_item *item;
1760	struct btrfs_inode_ref *iref;
1761	struct btrfs_key found_key;
1762
1763	while (!ret) {
1764		ret = btrfs_find_item(fs_root, path, inum,
1765				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1766				&found_key);
1767
1768		if (ret < 0)
1769			break;
1770		if (ret) {
1771			ret = found ? 0 : -ENOENT;
1772			break;
1773		}
1774		++found;
1775
1776		parent = found_key.offset;
1777		slot = path->slots[0];
1778		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1779		if (!eb) {
1780			ret = -ENOMEM;
1781			break;
1782		}
1783		extent_buffer_get(eb);
1784		btrfs_tree_read_lock(eb);
1785		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1786		btrfs_release_path(path);
1787
1788		item = btrfs_item_nr(slot);
1789		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1790
1791		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1792			name_len = btrfs_inode_ref_name_len(eb, iref);
1793			/* path must be released before calling iterate()! */
1794			pr_debug("following ref at offset %u for inode %llu in "
1795				 "tree %llu\n", cur, found_key.objectid,
1796				 fs_root->objectid);
 
1797			ret = iterate(parent, name_len,
1798				      (unsigned long)(iref + 1), eb, ctx);
1799			if (ret)
1800				break;
1801			len = sizeof(*iref) + name_len;
1802			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1803		}
1804		btrfs_tree_read_unlock_blocking(eb);
1805		free_extent_buffer(eb);
1806	}
1807
1808	btrfs_release_path(path);
1809
1810	return ret;
1811}
1812
1813static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1814				 struct btrfs_path *path,
1815				 iterate_irefs_t *iterate, void *ctx)
1816{
1817	int ret;
1818	int slot;
1819	u64 offset = 0;
1820	u64 parent;
1821	int found = 0;
1822	struct extent_buffer *eb;
1823	struct btrfs_inode_extref *extref;
1824	u32 item_size;
1825	u32 cur_offset;
1826	unsigned long ptr;
1827
1828	while (1) {
1829		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1830					    &offset);
1831		if (ret < 0)
1832			break;
1833		if (ret) {
1834			ret = found ? 0 : -ENOENT;
1835			break;
1836		}
1837		++found;
1838
1839		slot = path->slots[0];
1840		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1841		if (!eb) {
1842			ret = -ENOMEM;
1843			break;
1844		}
1845		extent_buffer_get(eb);
1846
1847		btrfs_tree_read_lock(eb);
1848		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1849		btrfs_release_path(path);
1850
1851		item_size = btrfs_item_size_nr(eb, slot);
1852		ptr = btrfs_item_ptr_offset(eb, slot);
1853		cur_offset = 0;
1854
1855		while (cur_offset < item_size) {
1856			u32 name_len;
1857
1858			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1859			parent = btrfs_inode_extref_parent(eb, extref);
1860			name_len = btrfs_inode_extref_name_len(eb, extref);
1861			ret = iterate(parent, name_len,
1862				      (unsigned long)&extref->name, eb, ctx);
1863			if (ret)
1864				break;
1865
1866			cur_offset += btrfs_inode_extref_name_len(eb, extref);
1867			cur_offset += sizeof(*extref);
1868		}
1869		btrfs_tree_read_unlock_blocking(eb);
1870		free_extent_buffer(eb);
1871
1872		offset++;
1873	}
1874
1875	btrfs_release_path(path);
1876
1877	return ret;
1878}
1879
1880static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1881			 struct btrfs_path *path, iterate_irefs_t *iterate,
1882			 void *ctx)
1883{
1884	int ret;
1885	int found_refs = 0;
1886
1887	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1888	if (!ret)
1889		++found_refs;
1890	else if (ret != -ENOENT)
1891		return ret;
1892
1893	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1894	if (ret == -ENOENT && found_refs)
1895		return 0;
1896
1897	return ret;
1898}
1899
1900/*
1901 * returns 0 if the path could be dumped (probably truncated)
1902 * returns <0 in case of an error
1903 */
1904static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1905			 struct extent_buffer *eb, void *ctx)
1906{
1907	struct inode_fs_paths *ipath = ctx;
1908	char *fspath;
1909	char *fspath_min;
1910	int i = ipath->fspath->elem_cnt;
1911	const int s_ptr = sizeof(char *);
1912	u32 bytes_left;
1913
1914	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1915					ipath->fspath->bytes_left - s_ptr : 0;
1916
1917	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1918	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1919				   name_off, eb, inum, fspath_min, bytes_left);
1920	if (IS_ERR(fspath))
1921		return PTR_ERR(fspath);
1922
1923	if (fspath > fspath_min) {
1924		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1925		++ipath->fspath->elem_cnt;
1926		ipath->fspath->bytes_left = fspath - fspath_min;
1927	} else {
1928		++ipath->fspath->elem_missed;
1929		ipath->fspath->bytes_missing += fspath_min - fspath;
1930		ipath->fspath->bytes_left = 0;
1931	}
1932
1933	return 0;
1934}
1935
1936/*
1937 * this dumps all file system paths to the inode into the ipath struct, provided
1938 * is has been created large enough. each path is zero-terminated and accessed
1939 * from ipath->fspath->val[i].
1940 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1941 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1942 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1943 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1944 * have been needed to return all paths.
1945 */
1946int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1947{
1948	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1949			     inode_to_path, ipath);
1950}
1951
1952struct btrfs_data_container *init_data_container(u32 total_bytes)
1953{
1954	struct btrfs_data_container *data;
1955	size_t alloc_bytes;
1956
1957	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1958	data = vmalloc(alloc_bytes);
1959	if (!data)
1960		return ERR_PTR(-ENOMEM);
1961
1962	if (total_bytes >= sizeof(*data)) {
1963		data->bytes_left = total_bytes - sizeof(*data);
1964		data->bytes_missing = 0;
1965	} else {
1966		data->bytes_missing = sizeof(*data) - total_bytes;
1967		data->bytes_left = 0;
1968	}
1969
1970	data->elem_cnt = 0;
1971	data->elem_missed = 0;
1972
1973	return data;
1974}
1975
1976/*
1977 * allocates space to return multiple file system paths for an inode.
1978 * total_bytes to allocate are passed, note that space usable for actual path
1979 * information will be total_bytes - sizeof(struct inode_fs_paths).
1980 * the returned pointer must be freed with free_ipath() in the end.
1981 */
1982struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1983					struct btrfs_path *path)
1984{
1985	struct inode_fs_paths *ifp;
1986	struct btrfs_data_container *fspath;
1987
1988	fspath = init_data_container(total_bytes);
1989	if (IS_ERR(fspath))
1990		return (void *)fspath;
1991
1992	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1993	if (!ifp) {
1994		kfree(fspath);
1995		return ERR_PTR(-ENOMEM);
1996	}
1997
1998	ifp->btrfs_path = path;
1999	ifp->fspath = fspath;
2000	ifp->fs_root = fs_root;
2001
2002	return ifp;
2003}
2004
2005void free_ipath(struct inode_fs_paths *ipath)
2006{
2007	if (!ipath)
2008		return;
2009	vfree(ipath->fspath);
2010	kfree(ipath);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 STRATO.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/mm.h>
   7#include <linux/rbtree.h>
   8#include <trace/events/btrfs.h>
   9#include "ctree.h"
  10#include "disk-io.h"
  11#include "backref.h"
  12#include "ulist.h"
  13#include "transaction.h"
  14#include "delayed-ref.h"
  15#include "locking.h"
  16#include "misc.h"
  17#include "tree-mod-log.h"
  18
  19/* Just an arbitrary number so we can be sure this happened */
  20#define BACKREF_FOUND_SHARED 6
  21
  22struct extent_inode_elem {
  23	u64 inum;
  24	u64 offset;
  25	struct extent_inode_elem *next;
  26};
  27
  28static int check_extent_in_eb(const struct btrfs_key *key,
  29			      const struct extent_buffer *eb,
  30			      const struct btrfs_file_extent_item *fi,
  31			      u64 extent_item_pos,
  32			      struct extent_inode_elem **eie,
  33			      bool ignore_offset)
  34{
  35	u64 offset = 0;
  36	struct extent_inode_elem *e;
  37
  38	if (!ignore_offset &&
  39	    !btrfs_file_extent_compression(eb, fi) &&
  40	    !btrfs_file_extent_encryption(eb, fi) &&
  41	    !btrfs_file_extent_other_encoding(eb, fi)) {
  42		u64 data_offset;
  43		u64 data_len;
  44
  45		data_offset = btrfs_file_extent_offset(eb, fi);
  46		data_len = btrfs_file_extent_num_bytes(eb, fi);
  47
  48		if (extent_item_pos < data_offset ||
  49		    extent_item_pos >= data_offset + data_len)
  50			return 1;
  51		offset = extent_item_pos - data_offset;
  52	}
  53
  54	e = kmalloc(sizeof(*e), GFP_NOFS);
  55	if (!e)
  56		return -ENOMEM;
  57
  58	e->next = *eie;
  59	e->inum = key->objectid;
  60	e->offset = key->offset + offset;
  61	*eie = e;
  62
  63	return 0;
  64}
  65
  66static void free_inode_elem_list(struct extent_inode_elem *eie)
  67{
  68	struct extent_inode_elem *eie_next;
  69
  70	for (; eie; eie = eie_next) {
  71		eie_next = eie->next;
  72		kfree(eie);
  73	}
  74}
  75
  76static int find_extent_in_eb(const struct extent_buffer *eb,
  77			     u64 wanted_disk_byte, u64 extent_item_pos,
  78			     struct extent_inode_elem **eie,
  79			     bool ignore_offset)
  80{
  81	u64 disk_byte;
  82	struct btrfs_key key;
  83	struct btrfs_file_extent_item *fi;
  84	int slot;
  85	int nritems;
  86	int extent_type;
  87	int ret;
  88
  89	/*
  90	 * from the shared data ref, we only have the leaf but we need
  91	 * the key. thus, we must look into all items and see that we
  92	 * find one (some) with a reference to our extent item.
  93	 */
  94	nritems = btrfs_header_nritems(eb);
  95	for (slot = 0; slot < nritems; ++slot) {
  96		btrfs_item_key_to_cpu(eb, &key, slot);
  97		if (key.type != BTRFS_EXTENT_DATA_KEY)
  98			continue;
  99		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 100		extent_type = btrfs_file_extent_type(eb, fi);
 101		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
 102			continue;
 103		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
 104		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 105		if (disk_byte != wanted_disk_byte)
 106			continue;
 107
 108		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
 109		if (ret < 0)
 110			return ret;
 111	}
 112
 113	return 0;
 114}
 115
 116struct preftree {
 117	struct rb_root_cached root;
 118	unsigned int count;
 119};
 120
 121#define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
 122
 123struct preftrees {
 124	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
 125	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
 126	struct preftree indirect_missing_keys;
 127};
 128
 129/*
 130 * Checks for a shared extent during backref search.
 131 *
 132 * The share_count tracks prelim_refs (direct and indirect) having a
 133 * ref->count >0:
 134 *  - incremented when a ref->count transitions to >0
 135 *  - decremented when a ref->count transitions to <1
 136 */
 137struct share_check {
 138	u64 root_objectid;
 139	u64 inum;
 140	int share_count;
 
 
 
 
 
 141};
 142
 143static inline int extent_is_shared(struct share_check *sc)
 144{
 145	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
 146}
 147
 148static struct kmem_cache *btrfs_prelim_ref_cache;
 149
 150int __init btrfs_prelim_ref_init(void)
 151{
 152	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
 153					sizeof(struct prelim_ref),
 154					0,
 155					SLAB_MEM_SPREAD,
 156					NULL);
 157	if (!btrfs_prelim_ref_cache)
 158		return -ENOMEM;
 159	return 0;
 160}
 161
 162void __cold btrfs_prelim_ref_exit(void)
 163{
 164	kmem_cache_destroy(btrfs_prelim_ref_cache);
 165}
 166
 167static void free_pref(struct prelim_ref *ref)
 168{
 169	kmem_cache_free(btrfs_prelim_ref_cache, ref);
 170}
 171
 172/*
 173 * Return 0 when both refs are for the same block (and can be merged).
 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
 175 * indicates a 'higher' block.
 176 */
 177static int prelim_ref_compare(struct prelim_ref *ref1,
 178			      struct prelim_ref *ref2)
 179{
 180	if (ref1->level < ref2->level)
 181		return -1;
 182	if (ref1->level > ref2->level)
 183		return 1;
 184	if (ref1->root_id < ref2->root_id)
 185		return -1;
 186	if (ref1->root_id > ref2->root_id)
 187		return 1;
 188	if (ref1->key_for_search.type < ref2->key_for_search.type)
 189		return -1;
 190	if (ref1->key_for_search.type > ref2->key_for_search.type)
 191		return 1;
 192	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
 193		return -1;
 194	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
 195		return 1;
 196	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
 197		return -1;
 198	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
 199		return 1;
 200	if (ref1->parent < ref2->parent)
 201		return -1;
 202	if (ref1->parent > ref2->parent)
 203		return 1;
 204
 205	return 0;
 206}
 207
 208static void update_share_count(struct share_check *sc, int oldcount,
 209			       int newcount)
 210{
 211	if ((!sc) || (oldcount == 0 && newcount < 1))
 212		return;
 213
 214	if (oldcount > 0 && newcount < 1)
 215		sc->share_count--;
 216	else if (oldcount < 1 && newcount > 0)
 217		sc->share_count++;
 218}
 219
 220/*
 221 * Add @newref to the @root rbtree, merging identical refs.
 222 *
 223 * Callers should assume that newref has been freed after calling.
 224 */
 225static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
 226			      struct preftree *preftree,
 227			      struct prelim_ref *newref,
 228			      struct share_check *sc)
 229{
 230	struct rb_root_cached *root;
 231	struct rb_node **p;
 232	struct rb_node *parent = NULL;
 233	struct prelim_ref *ref;
 234	int result;
 235	bool leftmost = true;
 236
 237	root = &preftree->root;
 238	p = &root->rb_root.rb_node;
 239
 240	while (*p) {
 241		parent = *p;
 242		ref = rb_entry(parent, struct prelim_ref, rbnode);
 243		result = prelim_ref_compare(ref, newref);
 244		if (result < 0) {
 245			p = &(*p)->rb_left;
 246		} else if (result > 0) {
 247			p = &(*p)->rb_right;
 248			leftmost = false;
 249		} else {
 250			/* Identical refs, merge them and free @newref */
 251			struct extent_inode_elem *eie = ref->inode_list;
 252
 253			while (eie && eie->next)
 254				eie = eie->next;
 255
 256			if (!eie)
 257				ref->inode_list = newref->inode_list;
 258			else
 259				eie->next = newref->inode_list;
 260			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
 261						     preftree->count);
 262			/*
 263			 * A delayed ref can have newref->count < 0.
 264			 * The ref->count is updated to follow any
 265			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
 266			 */
 267			update_share_count(sc, ref->count,
 268					   ref->count + newref->count);
 269			ref->count += newref->count;
 270			free_pref(newref);
 271			return;
 272		}
 273	}
 274
 275	update_share_count(sc, 0, newref->count);
 276	preftree->count++;
 277	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
 278	rb_link_node(&newref->rbnode, parent, p);
 279	rb_insert_color_cached(&newref->rbnode, root, leftmost);
 280}
 281
 282/*
 283 * Release the entire tree.  We don't care about internal consistency so
 284 * just free everything and then reset the tree root.
 285 */
 286static void prelim_release(struct preftree *preftree)
 287{
 288	struct prelim_ref *ref, *next_ref;
 289
 290	rbtree_postorder_for_each_entry_safe(ref, next_ref,
 291					     &preftree->root.rb_root, rbnode)
 292		free_pref(ref);
 293
 294	preftree->root = RB_ROOT_CACHED;
 295	preftree->count = 0;
 296}
 297
 298/*
 299 * the rules for all callers of this function are:
 300 * - obtaining the parent is the goal
 301 * - if you add a key, you must know that it is a correct key
 302 * - if you cannot add the parent or a correct key, then we will look into the
 303 *   block later to set a correct key
 304 *
 305 * delayed refs
 306 * ============
 307 *        backref type | shared | indirect | shared | indirect
 308 * information         |   tree |     tree |   data |     data
 309 * --------------------+--------+----------+--------+----------
 310 *      parent logical |    y   |     -    |    -   |     -
 311 *      key to resolve |    -   |     y    |    y   |     y
 312 *  tree block logical |    -   |     -    |    -   |     -
 313 *  root for resolving |    y   |     y    |    y   |     y
 314 *
 315 * - column 1:       we've the parent -> done
 316 * - column 2, 3, 4: we use the key to find the parent
 317 *
 318 * on disk refs (inline or keyed)
 319 * ==============================
 320 *        backref type | shared | indirect | shared | indirect
 321 * information         |   tree |     tree |   data |     data
 322 * --------------------+--------+----------+--------+----------
 323 *      parent logical |    y   |     -    |    y   |     -
 324 *      key to resolve |    -   |     -    |    -   |     y
 325 *  tree block logical |    y   |     y    |    y   |     y
 326 *  root for resolving |    -   |     y    |    y   |     y
 327 *
 328 * - column 1, 3: we've the parent -> done
 329 * - column 2:    we take the first key from the block to find the parent
 330 *                (see add_missing_keys)
 331 * - column 4:    we use the key to find the parent
 332 *
 333 * additional information that's available but not required to find the parent
 334 * block might help in merging entries to gain some speed.
 335 */
 336static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
 337			  struct preftree *preftree, u64 root_id,
 338			  const struct btrfs_key *key, int level, u64 parent,
 339			  u64 wanted_disk_byte, int count,
 340			  struct share_check *sc, gfp_t gfp_mask)
 341{
 342	struct prelim_ref *ref;
 343
 344	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
 345		return 0;
 346
 347	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
 348	if (!ref)
 349		return -ENOMEM;
 350
 351	ref->root_id = root_id;
 352	if (key)
 353		ref->key_for_search = *key;
 354	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 
 356
 357	ref->inode_list = NULL;
 358	ref->level = level;
 359	ref->count = count;
 360	ref->parent = parent;
 361	ref->wanted_disk_byte = wanted_disk_byte;
 362	prelim_ref_insert(fs_info, preftree, ref, sc);
 363	return extent_is_shared(sc);
 364}
 365
 366/* direct refs use root == 0, key == NULL */
 367static int add_direct_ref(const struct btrfs_fs_info *fs_info,
 368			  struct preftrees *preftrees, int level, u64 parent,
 369			  u64 wanted_disk_byte, int count,
 370			  struct share_check *sc, gfp_t gfp_mask)
 371{
 372	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
 373			      parent, wanted_disk_byte, count, sc, gfp_mask);
 374}
 375
 376/* indirect refs use parent == 0 */
 377static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
 378			    struct preftrees *preftrees, u64 root_id,
 379			    const struct btrfs_key *key, int level,
 380			    u64 wanted_disk_byte, int count,
 381			    struct share_check *sc, gfp_t gfp_mask)
 382{
 383	struct preftree *tree = &preftrees->indirect;
 384
 385	if (!key)
 386		tree = &preftrees->indirect_missing_keys;
 387	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
 388			      wanted_disk_byte, count, sc, gfp_mask);
 389}
 390
 391static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
 392{
 393	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
 394	struct rb_node *parent = NULL;
 395	struct prelim_ref *ref = NULL;
 396	struct prelim_ref target = {};
 397	int result;
 398
 399	target.parent = bytenr;
 400
 401	while (*p) {
 402		parent = *p;
 403		ref = rb_entry(parent, struct prelim_ref, rbnode);
 404		result = prelim_ref_compare(ref, &target);
 405
 406		if (result < 0)
 407			p = &(*p)->rb_left;
 408		else if (result > 0)
 409			p = &(*p)->rb_right;
 410		else
 411			return 1;
 412	}
 413	return 0;
 414}
 415
 416static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 417			   struct ulist *parents,
 418			   struct preftrees *preftrees, struct prelim_ref *ref,
 419			   int level, u64 time_seq, const u64 *extent_item_pos,
 420			   bool ignore_offset)
 421{
 422	int ret = 0;
 423	int slot;
 424	struct extent_buffer *eb;
 425	struct btrfs_key key;
 426	struct btrfs_key *key_for_search = &ref->key_for_search;
 427	struct btrfs_file_extent_item *fi;
 428	struct extent_inode_elem *eie = NULL, *old = NULL;
 429	u64 disk_byte;
 430	u64 wanted_disk_byte = ref->wanted_disk_byte;
 431	u64 count = 0;
 432	u64 data_offset;
 433
 434	if (level != 0) {
 435		eb = path->nodes[level];
 436		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 437		if (ret < 0)
 438			return ret;
 439		return 0;
 440	}
 441
 442	/*
 443	 * 1. We normally enter this function with the path already pointing to
 444	 *    the first item to check. But sometimes, we may enter it with
 445	 *    slot == nritems.
 446	 * 2. We are searching for normal backref but bytenr of this leaf
 447	 *    matches shared data backref
 448	 * 3. The leaf owner is not equal to the root we are searching
 449	 *
 450	 * For these cases, go to the next leaf before we continue.
 451	 */
 452	eb = path->nodes[0];
 453	if (path->slots[0] >= btrfs_header_nritems(eb) ||
 454	    is_shared_data_backref(preftrees, eb->start) ||
 455	    ref->root_id != btrfs_header_owner(eb)) {
 456		if (time_seq == BTRFS_SEQ_LAST)
 457			ret = btrfs_next_leaf(root, path);
 458		else
 459			ret = btrfs_next_old_leaf(root, path, time_seq);
 460	}
 461
 462	while (!ret && count < ref->count) {
 463		eb = path->nodes[0];
 464		slot = path->slots[0];
 465
 466		btrfs_item_key_to_cpu(eb, &key, slot);
 467
 468		if (key.objectid != key_for_search->objectid ||
 469		    key.type != BTRFS_EXTENT_DATA_KEY)
 470			break;
 471
 472		/*
 473		 * We are searching for normal backref but bytenr of this leaf
 474		 * matches shared data backref, OR
 475		 * the leaf owner is not equal to the root we are searching for
 476		 */
 477		if (slot == 0 &&
 478		    (is_shared_data_backref(preftrees, eb->start) ||
 479		     ref->root_id != btrfs_header_owner(eb))) {
 480			if (time_seq == BTRFS_SEQ_LAST)
 481				ret = btrfs_next_leaf(root, path);
 482			else
 483				ret = btrfs_next_old_leaf(root, path, time_seq);
 484			continue;
 485		}
 486		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 487		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 488		data_offset = btrfs_file_extent_offset(eb, fi);
 489
 490		if (disk_byte == wanted_disk_byte) {
 491			eie = NULL;
 492			old = NULL;
 493			if (ref->key_for_search.offset == key.offset - data_offset)
 494				count++;
 495			else
 496				goto next;
 497			if (extent_item_pos) {
 498				ret = check_extent_in_eb(&key, eb, fi,
 499						*extent_item_pos,
 500						&eie, ignore_offset);
 501				if (ret < 0)
 502					break;
 503			}
 504			if (ret > 0)
 505				goto next;
 506			ret = ulist_add_merge_ptr(parents, eb->start,
 507						  eie, (void **)&old, GFP_NOFS);
 508			if (ret < 0)
 509				break;
 510			if (!ret && extent_item_pos) {
 511				while (old->next)
 512					old = old->next;
 513				old->next = eie;
 514			}
 515			eie = NULL;
 516		}
 517next:
 518		if (time_seq == BTRFS_SEQ_LAST)
 519			ret = btrfs_next_item(root, path);
 520		else
 521			ret = btrfs_next_old_item(root, path, time_seq);
 522	}
 523
 524	if (ret > 0)
 525		ret = 0;
 526	else if (ret < 0)
 527		free_inode_elem_list(eie);
 528	return ret;
 529}
 530
 531/*
 532 * resolve an indirect backref in the form (root_id, key, level)
 533 * to a logical address
 534 */
 535static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 536				struct btrfs_path *path, u64 time_seq,
 537				struct preftrees *preftrees,
 538				struct prelim_ref *ref, struct ulist *parents,
 539				const u64 *extent_item_pos, bool ignore_offset)
 540{
 541	struct btrfs_root *root;
 
 542	struct extent_buffer *eb;
 543	int ret = 0;
 544	int root_level;
 545	int level = ref->level;
 546	struct btrfs_key search_key = ref->key_for_search;
 
 
 
 
 547
 548	/*
 549	 * If we're search_commit_root we could possibly be holding locks on
 550	 * other tree nodes.  This happens when qgroups does backref walks when
 551	 * adding new delayed refs.  To deal with this we need to look in cache
 552	 * for the root, and if we don't find it then we need to search the
 553	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
 554	 * here.
 555	 */
 556	if (path->search_commit_root)
 557		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
 558	else
 559		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
 560	if (IS_ERR(root)) {
 
 561		ret = PTR_ERR(root);
 562		goto out_free;
 563	}
 564
 565	if (!path->search_commit_root &&
 566	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
 567		ret = -ENOENT;
 568		goto out;
 569	}
 570
 571	if (btrfs_is_testing(fs_info)) {
 
 572		ret = -ENOENT;
 573		goto out;
 574	}
 575
 576	if (path->search_commit_root)
 577		root_level = btrfs_header_level(root->commit_root);
 578	else if (time_seq == BTRFS_SEQ_LAST)
 579		root_level = btrfs_header_level(root->node);
 580	else
 581		root_level = btrfs_old_root_level(root, time_seq);
 582
 583	if (root_level + 1 == level)
 
 584		goto out;
 
 585
 586	/*
 587	 * We can often find data backrefs with an offset that is too large
 588	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
 589	 * subtracting a file's offset with the data offset of its
 590	 * corresponding extent data item. This can happen for example in the
 591	 * clone ioctl.
 592	 *
 593	 * So if we detect such case we set the search key's offset to zero to
 594	 * make sure we will find the matching file extent item at
 595	 * add_all_parents(), otherwise we will miss it because the offset
 596	 * taken form the backref is much larger then the offset of the file
 597	 * extent item. This can make us scan a very large number of file
 598	 * extent items, but at least it will not make us miss any.
 599	 *
 600	 * This is an ugly workaround for a behaviour that should have never
 601	 * existed, but it does and a fix for the clone ioctl would touch a lot
 602	 * of places, cause backwards incompatibility and would not fix the
 603	 * problem for extents cloned with older kernels.
 604	 */
 605	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
 606	    search_key.offset >= LLONG_MAX)
 607		search_key.offset = 0;
 608	path->lowest_level = level;
 609	if (time_seq == BTRFS_SEQ_LAST)
 610		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
 
 611	else
 612		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
 
 613
 614	btrfs_debug(fs_info,
 615		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
 
 
 
 616		 ref->root_id, level, ref->count, ret,
 617		 ref->key_for_search.objectid, ref->key_for_search.type,
 618		 ref->key_for_search.offset);
 619	if (ret < 0)
 620		goto out;
 621
 622	eb = path->nodes[level];
 623	while (!eb) {
 624		if (WARN_ON(!level)) {
 625			ret = 1;
 626			goto out;
 627		}
 628		level--;
 629		eb = path->nodes[level];
 630	}
 631
 632	ret = add_all_parents(root, path, parents, preftrees, ref, level,
 633			      time_seq, extent_item_pos, ignore_offset);
 634out:
 635	btrfs_put_root(root);
 636out_free:
 637	path->lowest_level = 0;
 638	btrfs_release_path(path);
 639	return ret;
 640}
 641
 642static struct extent_inode_elem *
 643unode_aux_to_inode_list(struct ulist_node *node)
 644{
 645	if (!node)
 646		return NULL;
 647	return (struct extent_inode_elem *)(uintptr_t)node->aux;
 648}
 649
 650/*
 651 * We maintain three separate rbtrees: one for direct refs, one for
 652 * indirect refs which have a key, and one for indirect refs which do not
 653 * have a key. Each tree does merge on insertion.
 654 *
 655 * Once all of the references are located, we iterate over the tree of
 656 * indirect refs with missing keys. An appropriate key is located and
 657 * the ref is moved onto the tree for indirect refs. After all missing
 658 * keys are thus located, we iterate over the indirect ref tree, resolve
 659 * each reference, and then insert the resolved reference onto the
 660 * direct tree (merging there too).
 661 *
 662 * New backrefs (i.e., for parent nodes) are added to the appropriate
 663 * rbtree as they are encountered. The new backrefs are subsequently
 664 * resolved as above.
 665 */
 666static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 667				 struct btrfs_path *path, u64 time_seq,
 668				 struct preftrees *preftrees,
 669				 const u64 *extent_item_pos,
 670				 struct share_check *sc, bool ignore_offset)
 671{
 672	int err;
 673	int ret = 0;
 
 
 
 674	struct ulist *parents;
 675	struct ulist_node *node;
 676	struct ulist_iterator uiter;
 677	struct rb_node *rnode;
 678
 679	parents = ulist_alloc(GFP_NOFS);
 680	if (!parents)
 681		return -ENOMEM;
 682
 683	/*
 684	 * We could trade memory usage for performance here by iterating
 685	 * the tree, allocating new refs for each insertion, and then
 686	 * freeing the entire indirect tree when we're done.  In some test
 687	 * cases, the tree can grow quite large (~200k objects).
 688	 */
 689	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
 690		struct prelim_ref *ref;
 691
 692		ref = rb_entry(rnode, struct prelim_ref, rbnode);
 693		if (WARN(ref->parent,
 694			 "BUG: direct ref found in indirect tree")) {
 695			ret = -EINVAL;
 696			goto out;
 697		}
 698
 699		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
 700		preftrees->indirect.count--;
 701
 702		if (ref->count == 0) {
 703			free_pref(ref);
 704			continue;
 705		}
 706
 707		if (sc && sc->root_objectid &&
 708		    ref->root_id != sc->root_objectid) {
 709			free_pref(ref);
 710			ret = BACKREF_FOUND_SHARED;
 711			goto out;
 712		}
 713		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
 714					   ref, parents, extent_item_pos,
 715					   ignore_offset);
 716		/*
 717		 * we can only tolerate ENOENT,otherwise,we should catch error
 718		 * and return directly.
 719		 */
 720		if (err == -ENOENT) {
 721			prelim_ref_insert(fs_info, &preftrees->direct, ref,
 722					  NULL);
 723			continue;
 724		} else if (err) {
 725			free_pref(ref);
 726			ret = err;
 727			goto out;
 728		}
 729
 730		/* we put the first parent into the ref at hand */
 731		ULIST_ITER_INIT(&uiter);
 732		node = ulist_next(parents, &uiter);
 733		ref->parent = node ? node->val : 0;
 734		ref->inode_list = unode_aux_to_inode_list(node);
 
 735
 736		/* Add a prelim_ref(s) for any other parent(s). */
 737		while ((node = ulist_next(parents, &uiter))) {
 738			struct prelim_ref *new_ref;
 739
 740			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
 741						   GFP_NOFS);
 742			if (!new_ref) {
 743				free_pref(ref);
 744				ret = -ENOMEM;
 745				goto out;
 746			}
 747			memcpy(new_ref, ref, sizeof(*ref));
 748			new_ref->parent = node->val;
 749			new_ref->inode_list = unode_aux_to_inode_list(node);
 750			prelim_ref_insert(fs_info, &preftrees->direct,
 751					  new_ref, NULL);
 752		}
 753
 754		/*
 755		 * Now it's a direct ref, put it in the direct tree. We must
 756		 * do this last because the ref could be merged/freed here.
 757		 */
 758		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
 759
 760		ulist_reinit(parents);
 761		cond_resched();
 762	}
 763out:
 764	ulist_free(parents);
 765	return ret;
 766}
 767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768/*
 769 * read tree blocks and add keys where required.
 770 */
 771static int add_missing_keys(struct btrfs_fs_info *fs_info,
 772			    struct preftrees *preftrees, bool lock)
 773{
 774	struct prelim_ref *ref;
 775	struct extent_buffer *eb;
 776	struct preftree *tree = &preftrees->indirect_missing_keys;
 777	struct rb_node *node;
 778
 779	while ((node = rb_first_cached(&tree->root))) {
 780		ref = rb_entry(node, struct prelim_ref, rbnode);
 781		rb_erase_cached(node, &tree->root);
 782
 783		BUG_ON(ref->parent);	/* should not be a direct ref */
 784		BUG_ON(ref->key_for_search.type);
 785		BUG_ON(!ref->wanted_disk_byte);
 786
 787		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
 788				     ref->root_id, 0, ref->level - 1, NULL);
 789		if (IS_ERR(eb)) {
 790			free_pref(ref);
 791			return PTR_ERR(eb);
 792		} else if (!extent_buffer_uptodate(eb)) {
 793			free_pref(ref);
 794			free_extent_buffer(eb);
 795			return -EIO;
 796		}
 797		if (lock)
 798			btrfs_tree_read_lock(eb);
 799		if (btrfs_header_level(eb) == 0)
 800			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 801		else
 802			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 803		if (lock)
 804			btrfs_tree_read_unlock(eb);
 805		free_extent_buffer(eb);
 806		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
 807		cond_resched();
 808	}
 809	return 0;
 810}
 811
 812/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813 * add all currently queued delayed refs from this head whose seq nr is
 814 * smaller or equal that seq to the list
 815 */
 816static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
 817			    struct btrfs_delayed_ref_head *head, u64 seq,
 818			    struct preftrees *preftrees, struct share_check *sc)
 819{
 820	struct btrfs_delayed_ref_node *node;
 821	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 822	struct btrfs_key key;
 823	struct btrfs_key tmp_op_key;
 824	struct rb_node *n;
 825	int count;
 826	int ret = 0;
 827
 828	if (extent_op && extent_op->update_key)
 829		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
 830
 831	spin_lock(&head->lock);
 832	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
 833		node = rb_entry(n, struct btrfs_delayed_ref_node,
 834				ref_node);
 835		if (node->seq > seq)
 836			continue;
 837
 838		switch (node->action) {
 839		case BTRFS_ADD_DELAYED_EXTENT:
 840		case BTRFS_UPDATE_DELAYED_HEAD:
 841			WARN_ON(1);
 842			continue;
 843		case BTRFS_ADD_DELAYED_REF:
 844			count = node->ref_mod;
 845			break;
 846		case BTRFS_DROP_DELAYED_REF:
 847			count = node->ref_mod * -1;
 848			break;
 849		default:
 850			BUG();
 851		}
 
 852		switch (node->type) {
 853		case BTRFS_TREE_BLOCK_REF_KEY: {
 854			/* NORMAL INDIRECT METADATA backref */
 855			struct btrfs_delayed_tree_ref *ref;
 856
 857			ref = btrfs_delayed_node_to_tree_ref(node);
 858			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 859					       &tmp_op_key, ref->level + 1,
 860					       node->bytenr, count, sc,
 861					       GFP_ATOMIC);
 862			break;
 863		}
 864		case BTRFS_SHARED_BLOCK_REF_KEY: {
 865			/* SHARED DIRECT METADATA backref */
 866			struct btrfs_delayed_tree_ref *ref;
 867
 868			ref = btrfs_delayed_node_to_tree_ref(node);
 869
 870			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
 871					     ref->parent, node->bytenr, count,
 872					     sc, GFP_ATOMIC);
 873			break;
 874		}
 875		case BTRFS_EXTENT_DATA_REF_KEY: {
 876			/* NORMAL INDIRECT DATA backref */
 877			struct btrfs_delayed_data_ref *ref;
 878			ref = btrfs_delayed_node_to_data_ref(node);
 879
 880			key.objectid = ref->objectid;
 881			key.type = BTRFS_EXTENT_DATA_KEY;
 882			key.offset = ref->offset;
 883
 884			/*
 885			 * Found a inum that doesn't match our known inum, we
 886			 * know it's shared.
 887			 */
 888			if (sc && sc->inum && ref->objectid != sc->inum) {
 889				ret = BACKREF_FOUND_SHARED;
 890				goto out;
 891			}
 892
 893			ret = add_indirect_ref(fs_info, preftrees, ref->root,
 894					       &key, 0, node->bytenr, count, sc,
 895					       GFP_ATOMIC);
 896			break;
 897		}
 898		case BTRFS_SHARED_DATA_REF_KEY: {
 899			/* SHARED DIRECT FULL backref */
 900			struct btrfs_delayed_data_ref *ref;
 901
 902			ref = btrfs_delayed_node_to_data_ref(node);
 903
 904			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
 905					     node->bytenr, count, sc,
 906					     GFP_ATOMIC);
 907			break;
 908		}
 909		default:
 910			WARN_ON(1);
 911		}
 912		/*
 913		 * We must ignore BACKREF_FOUND_SHARED until all delayed
 914		 * refs have been checked.
 915		 */
 916		if (ret && (ret != BACKREF_FOUND_SHARED))
 917			break;
 918	}
 919	if (!ret)
 920		ret = extent_is_shared(sc);
 921out:
 922	spin_unlock(&head->lock);
 923	return ret;
 924}
 925
 926/*
 927 * add all inline backrefs for bytenr to the list
 928 *
 929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
 930 */
 931static int add_inline_refs(const struct btrfs_fs_info *fs_info,
 932			   struct btrfs_path *path, u64 bytenr,
 933			   int *info_level, struct preftrees *preftrees,
 934			   struct share_check *sc)
 935{
 936	int ret = 0;
 937	int slot;
 938	struct extent_buffer *leaf;
 939	struct btrfs_key key;
 940	struct btrfs_key found_key;
 941	unsigned long ptr;
 942	unsigned long end;
 943	struct btrfs_extent_item *ei;
 944	u64 flags;
 945	u64 item_size;
 946
 947	/*
 948	 * enumerate all inline refs
 949	 */
 950	leaf = path->nodes[0];
 951	slot = path->slots[0];
 952
 953	item_size = btrfs_item_size_nr(leaf, slot);
 954	BUG_ON(item_size < sizeof(*ei));
 955
 956	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 957	flags = btrfs_extent_flags(leaf, ei);
 
 958	btrfs_item_key_to_cpu(leaf, &found_key, slot);
 959
 960	ptr = (unsigned long)(ei + 1);
 961	end = (unsigned long)ei + item_size;
 962
 963	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
 964	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 965		struct btrfs_tree_block_info *info;
 966
 967		info = (struct btrfs_tree_block_info *)ptr;
 968		*info_level = btrfs_tree_block_level(leaf, info);
 969		ptr += sizeof(struct btrfs_tree_block_info);
 970		BUG_ON(ptr > end);
 971	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
 972		*info_level = found_key.offset;
 973	} else {
 974		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 975	}
 976
 977	while (ptr < end) {
 978		struct btrfs_extent_inline_ref *iref;
 979		u64 offset;
 980		int type;
 981
 982		iref = (struct btrfs_extent_inline_ref *)ptr;
 983		type = btrfs_get_extent_inline_ref_type(leaf, iref,
 984							BTRFS_REF_TYPE_ANY);
 985		if (type == BTRFS_REF_TYPE_INVALID)
 986			return -EUCLEAN;
 987
 988		offset = btrfs_extent_inline_ref_offset(leaf, iref);
 989
 990		switch (type) {
 991		case BTRFS_SHARED_BLOCK_REF_KEY:
 992			ret = add_direct_ref(fs_info, preftrees,
 993					     *info_level + 1, offset,
 994					     bytenr, 1, NULL, GFP_NOFS);
 995			break;
 996		case BTRFS_SHARED_DATA_REF_KEY: {
 997			struct btrfs_shared_data_ref *sdref;
 998			int count;
 999
1000			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1001			count = btrfs_shared_data_ref_count(leaf, sdref);
1002
1003			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1004					     bytenr, count, sc, GFP_NOFS);
1005			break;
1006		}
1007		case BTRFS_TREE_BLOCK_REF_KEY:
1008			ret = add_indirect_ref(fs_info, preftrees, offset,
1009					       NULL, *info_level + 1,
1010					       bytenr, 1, NULL, GFP_NOFS);
1011			break;
1012		case BTRFS_EXTENT_DATA_REF_KEY: {
1013			struct btrfs_extent_data_ref *dref;
1014			int count;
1015			u64 root;
1016
1017			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1018			count = btrfs_extent_data_ref_count(leaf, dref);
1019			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1020								      dref);
1021			key.type = BTRFS_EXTENT_DATA_KEY;
1022			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1023
1024			if (sc && sc->inum && key.objectid != sc->inum) {
1025				ret = BACKREF_FOUND_SHARED;
1026				break;
1027			}
1028
1029			root = btrfs_extent_data_ref_root(leaf, dref);
1030
1031			ret = add_indirect_ref(fs_info, preftrees, root,
1032					       &key, 0, bytenr, count,
1033					       sc, GFP_NOFS);
1034			break;
1035		}
1036		default:
1037			WARN_ON(1);
1038		}
1039		if (ret)
1040			return ret;
1041		ptr += btrfs_extent_inline_ref_size(type);
1042	}
1043
1044	return 0;
1045}
1046
1047/*
1048 * add all non-inline backrefs for bytenr to the list
1049 *
1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051 */
1052static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1053			  struct btrfs_path *path, u64 bytenr,
1054			  int info_level, struct preftrees *preftrees,
1055			  struct share_check *sc)
1056{
1057	struct btrfs_root *extent_root = fs_info->extent_root;
1058	int ret;
1059	int slot;
1060	struct extent_buffer *leaf;
1061	struct btrfs_key key;
1062
1063	while (1) {
1064		ret = btrfs_next_item(extent_root, path);
1065		if (ret < 0)
1066			break;
1067		if (ret) {
1068			ret = 0;
1069			break;
1070		}
1071
1072		slot = path->slots[0];
1073		leaf = path->nodes[0];
1074		btrfs_item_key_to_cpu(leaf, &key, slot);
1075
1076		if (key.objectid != bytenr)
1077			break;
1078		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1079			continue;
1080		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1081			break;
1082
1083		switch (key.type) {
1084		case BTRFS_SHARED_BLOCK_REF_KEY:
1085			/* SHARED DIRECT METADATA backref */
1086			ret = add_direct_ref(fs_info, preftrees,
1087					     info_level + 1, key.offset,
1088					     bytenr, 1, NULL, GFP_NOFS);
1089			break;
1090		case BTRFS_SHARED_DATA_REF_KEY: {
1091			/* SHARED DIRECT FULL backref */
1092			struct btrfs_shared_data_ref *sdref;
1093			int count;
1094
1095			sdref = btrfs_item_ptr(leaf, slot,
1096					      struct btrfs_shared_data_ref);
1097			count = btrfs_shared_data_ref_count(leaf, sdref);
1098			ret = add_direct_ref(fs_info, preftrees, 0,
1099					     key.offset, bytenr, count,
1100					     sc, GFP_NOFS);
1101			break;
1102		}
1103		case BTRFS_TREE_BLOCK_REF_KEY:
1104			/* NORMAL INDIRECT METADATA backref */
1105			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1106					       NULL, info_level + 1, bytenr,
1107					       1, NULL, GFP_NOFS);
1108			break;
1109		case BTRFS_EXTENT_DATA_REF_KEY: {
1110			/* NORMAL INDIRECT DATA backref */
1111			struct btrfs_extent_data_ref *dref;
1112			int count;
1113			u64 root;
1114
1115			dref = btrfs_item_ptr(leaf, slot,
1116					      struct btrfs_extent_data_ref);
1117			count = btrfs_extent_data_ref_count(leaf, dref);
1118			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1119								      dref);
1120			key.type = BTRFS_EXTENT_DATA_KEY;
1121			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1122
1123			if (sc && sc->inum && key.objectid != sc->inum) {
1124				ret = BACKREF_FOUND_SHARED;
1125				break;
1126			}
1127
1128			root = btrfs_extent_data_ref_root(leaf, dref);
1129			ret = add_indirect_ref(fs_info, preftrees, root,
1130					       &key, 0, bytenr, count,
1131					       sc, GFP_NOFS);
1132			break;
1133		}
1134		default:
1135			WARN_ON(1);
1136		}
1137		if (ret)
1138			return ret;
1139
1140	}
1141
1142	return ret;
1143}
1144
1145/*
1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1148 * indirect refs to their parent bytenr.
1149 * When roots are found, they're added to the roots list
1150 *
1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1152 * behave much like trans == NULL case, the difference only lies in it will not
 
 
1153 * commit root.
1154 * The special case is for qgroup to search roots in commit_transaction().
1155 *
1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1157 * shared extent is detected.
1158 *
1159 * Otherwise this returns 0 for success and <0 for an error.
1160 *
1161 * If ignore_offset is set to false, only extent refs whose offsets match
1162 * extent_item_pos are returned.  If true, every extent ref is returned
1163 * and extent_item_pos is ignored.
1164 *
1165 * FIXME some caching might speed things up
1166 */
1167static int find_parent_nodes(struct btrfs_trans_handle *trans,
1168			     struct btrfs_fs_info *fs_info, u64 bytenr,
1169			     u64 time_seq, struct ulist *refs,
1170			     struct ulist *roots, const u64 *extent_item_pos,
1171			     struct share_check *sc, bool ignore_offset)
1172{
1173	struct btrfs_key key;
1174	struct btrfs_path *path;
1175	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1176	struct btrfs_delayed_ref_head *head;
1177	int info_level = 0;
1178	int ret;
1179	struct prelim_ref *ref;
1180	struct rb_node *node;
 
1181	struct extent_inode_elem *eie = NULL;
1182	struct preftrees preftrees = {
1183		.direct = PREFTREE_INIT,
1184		.indirect = PREFTREE_INIT,
1185		.indirect_missing_keys = PREFTREE_INIT
1186	};
1187
1188	key.objectid = bytenr;
1189	key.offset = (u64)-1;
1190	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1191		key.type = BTRFS_METADATA_ITEM_KEY;
1192	else
1193		key.type = BTRFS_EXTENT_ITEM_KEY;
1194
1195	path = btrfs_alloc_path();
1196	if (!path)
1197		return -ENOMEM;
1198	if (!trans) {
1199		path->search_commit_root = 1;
1200		path->skip_locking = 1;
1201	}
1202
1203	if (time_seq == BTRFS_SEQ_LAST)
1204		path->skip_locking = 1;
1205
1206	/*
1207	 * grab both a lock on the path and a lock on the delayed ref head.
1208	 * We need both to get a consistent picture of how the refs look
1209	 * at a specified point in time
1210	 */
1211again:
1212	head = NULL;
1213
1214	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1215	if (ret < 0)
1216		goto out;
1217	BUG_ON(ret == 0);
1218
1219#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1221	    time_seq != BTRFS_SEQ_LAST) {
1222#else
1223	if (trans && time_seq != BTRFS_SEQ_LAST) {
1224#endif
1225		/*
1226		 * look if there are updates for this ref queued and lock the
1227		 * head
1228		 */
1229		delayed_refs = &trans->transaction->delayed_refs;
1230		spin_lock(&delayed_refs->lock);
1231		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1232		if (head) {
1233			if (!mutex_trylock(&head->mutex)) {
1234				refcount_inc(&head->refs);
1235				spin_unlock(&delayed_refs->lock);
1236
1237				btrfs_release_path(path);
1238
1239				/*
1240				 * Mutex was contended, block until it's
1241				 * released and try again
1242				 */
1243				mutex_lock(&head->mutex);
1244				mutex_unlock(&head->mutex);
1245				btrfs_put_delayed_ref_head(head);
1246				goto again;
1247			}
1248			spin_unlock(&delayed_refs->lock);
1249			ret = add_delayed_refs(fs_info, head, time_seq,
1250					       &preftrees, sc);
 
1251			mutex_unlock(&head->mutex);
1252			if (ret)
1253				goto out;
1254		} else {
1255			spin_unlock(&delayed_refs->lock);
1256		}
1257	}
1258
1259	if (path->slots[0]) {
1260		struct extent_buffer *leaf;
1261		int slot;
1262
1263		path->slots[0]--;
1264		leaf = path->nodes[0];
1265		slot = path->slots[0];
1266		btrfs_item_key_to_cpu(leaf, &key, slot);
1267		if (key.objectid == bytenr &&
1268		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1269		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1270			ret = add_inline_refs(fs_info, path, bytenr,
1271					      &info_level, &preftrees, sc);
 
1272			if (ret)
1273				goto out;
1274			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1275					     &preftrees, sc);
1276			if (ret)
1277				goto out;
1278		}
1279	}
 
1280
1281	btrfs_release_path(path);
1282
1283	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1284	if (ret)
1285		goto out;
1286
1287	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1288
1289	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1290				    extent_item_pos, sc, ignore_offset);
 
1291	if (ret)
1292		goto out;
1293
1294	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1295
1296	/*
1297	 * This walks the tree of merged and resolved refs. Tree blocks are
1298	 * read in as needed. Unique entries are added to the ulist, and
1299	 * the list of found roots is updated.
1300	 *
1301	 * We release the entire tree in one go before returning.
1302	 */
1303	node = rb_first_cached(&preftrees.direct.root);
1304	while (node) {
1305		ref = rb_entry(node, struct prelim_ref, rbnode);
1306		node = rb_next(&ref->rbnode);
1307		/*
1308		 * ref->count < 0 can happen here if there are delayed
1309		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1310		 * prelim_ref_insert() relies on this when merging
1311		 * identical refs to keep the overall count correct.
1312		 * prelim_ref_insert() will merge only those refs
1313		 * which compare identically.  Any refs having
1314		 * e.g. different offsets would not be merged,
1315		 * and would retain their original ref->count < 0.
1316		 */
1317		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1318			if (sc && sc->root_objectid &&
1319			    ref->root_id != sc->root_objectid) {
1320				ret = BACKREF_FOUND_SHARED;
1321				goto out;
1322			}
1323
1324			/* no parent == root of tree */
1325			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1326			if (ret < 0)
1327				goto out;
1328		}
1329		if (ref->count && ref->parent) {
1330			if (extent_item_pos && !ref->inode_list &&
1331			    ref->level == 0) {
1332				struct extent_buffer *eb;
1333
1334				eb = read_tree_block(fs_info, ref->parent, 0,
1335						     0, ref->level, NULL);
1336				if (IS_ERR(eb)) {
1337					ret = PTR_ERR(eb);
1338					goto out;
1339				} else if (!extent_buffer_uptodate(eb)) {
1340					free_extent_buffer(eb);
1341					ret = -EIO;
1342					goto out;
1343				}
1344
1345				if (!path->skip_locking)
1346					btrfs_tree_read_lock(eb);
1347				ret = find_extent_in_eb(eb, bytenr,
1348							*extent_item_pos, &eie, ignore_offset);
1349				if (!path->skip_locking)
1350					btrfs_tree_read_unlock(eb);
1351				free_extent_buffer(eb);
1352				if (ret < 0)
1353					goto out;
1354				ref->inode_list = eie;
1355			}
1356			ret = ulist_add_merge_ptr(refs, ref->parent,
1357						  ref->inode_list,
1358						  (void **)&eie, GFP_NOFS);
1359			if (ret < 0)
1360				goto out;
1361			if (!ret && extent_item_pos) {
1362				/*
1363				 * we've recorded that parent, so we must extend
1364				 * its inode list here
1365				 */
1366				BUG_ON(!eie);
1367				while (eie->next)
1368					eie = eie->next;
1369				eie->next = ref->inode_list;
1370			}
1371			eie = NULL;
1372		}
1373		cond_resched();
 
1374	}
1375
1376out:
1377	btrfs_free_path(path);
1378
1379	prelim_release(&preftrees.direct);
1380	prelim_release(&preftrees.indirect);
1381	prelim_release(&preftrees.indirect_missing_keys);
1382
 
 
 
 
 
 
1383	if (ret < 0)
1384		free_inode_elem_list(eie);
1385	return ret;
1386}
1387
1388static void free_leaf_list(struct ulist *blocks)
1389{
1390	struct ulist_node *node = NULL;
1391	struct extent_inode_elem *eie;
1392	struct ulist_iterator uiter;
1393
1394	ULIST_ITER_INIT(&uiter);
1395	while ((node = ulist_next(blocks, &uiter))) {
1396		if (!node->aux)
1397			continue;
1398		eie = unode_aux_to_inode_list(node);
1399		free_inode_elem_list(eie);
1400		node->aux = 0;
1401	}
1402
1403	ulist_free(blocks);
1404}
1405
1406/*
1407 * Finds all leafs with a reference to the specified combination of bytenr and
1408 * offset. key_list_head will point to a list of corresponding keys (caller must
1409 * free each list element). The leafs will be stored in the leafs ulist, which
1410 * must be freed with ulist_free.
1411 *
1412 * returns 0 on success, <0 on error
1413 */
1414int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1415			 struct btrfs_fs_info *fs_info, u64 bytenr,
1416			 u64 time_seq, struct ulist **leafs,
1417			 const u64 *extent_item_pos, bool ignore_offset)
1418{
1419	int ret;
1420
1421	*leafs = ulist_alloc(GFP_NOFS);
1422	if (!*leafs)
1423		return -ENOMEM;
1424
1425	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1426				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1427	if (ret < 0 && ret != -ENOENT) {
1428		free_leaf_list(*leafs);
1429		return ret;
1430	}
1431
1432	return 0;
1433}
1434
1435/*
1436 * walk all backrefs for a given extent to find all roots that reference this
1437 * extent. Walking a backref means finding all extents that reference this
1438 * extent and in turn walk the backrefs of those, too. Naturally this is a
1439 * recursive process, but here it is implemented in an iterative fashion: We
1440 * find all referencing extents for the extent in question and put them on a
1441 * list. In turn, we find all referencing extents for those, further appending
1442 * to the list. The way we iterate the list allows adding more elements after
1443 * the current while iterating. The process stops when we reach the end of the
1444 * list. Found roots are added to the roots list.
1445 *
1446 * returns 0 on success, < 0 on error.
1447 */
1448static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1449				     struct btrfs_fs_info *fs_info, u64 bytenr,
1450				     u64 time_seq, struct ulist **roots,
1451				     bool ignore_offset)
1452{
1453	struct ulist *tmp;
1454	struct ulist_node *node = NULL;
1455	struct ulist_iterator uiter;
1456	int ret;
1457
1458	tmp = ulist_alloc(GFP_NOFS);
1459	if (!tmp)
1460		return -ENOMEM;
1461	*roots = ulist_alloc(GFP_NOFS);
1462	if (!*roots) {
1463		ulist_free(tmp);
1464		return -ENOMEM;
1465	}
1466
1467	ULIST_ITER_INIT(&uiter);
1468	while (1) {
1469		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1470					tmp, *roots, NULL, NULL, ignore_offset);
1471		if (ret < 0 && ret != -ENOENT) {
1472			ulist_free(tmp);
1473			ulist_free(*roots);
1474			*roots = NULL;
1475			return ret;
1476		}
1477		node = ulist_next(tmp, &uiter);
1478		if (!node)
1479			break;
1480		bytenr = node->val;
1481		cond_resched();
1482	}
1483
1484	ulist_free(tmp);
1485	return 0;
1486}
1487
1488int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1489			 struct btrfs_fs_info *fs_info, u64 bytenr,
1490			 u64 time_seq, struct ulist **roots,
1491			 bool ignore_offset, bool skip_commit_root_sem)
1492{
1493	int ret;
1494
1495	if (!trans && !skip_commit_root_sem)
1496		down_read(&fs_info->commit_root_sem);
1497	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1498					time_seq, roots, ignore_offset);
1499	if (!trans && !skip_commit_root_sem)
1500		up_read(&fs_info->commit_root_sem);
1501	return ret;
1502}
1503
1504/**
1505 * Check if an extent is shared or not
1506 *
1507 * @root:   root inode belongs to
1508 * @inum:   inode number of the inode whose extent we are checking
1509 * @bytenr: logical bytenr of the extent we are checking
1510 * @roots:  list of roots this extent is shared among
1511 * @tmp:    temporary list used for iteration
1512 *
1513 * btrfs_check_shared uses the backref walking code but will short
1514 * circuit as soon as it finds a root or inode that doesn't match the
1515 * one passed in. This provides a significant performance benefit for
1516 * callers (such as fiemap) which want to know whether the extent is
1517 * shared but do not need a ref count.
1518 *
1519 * This attempts to attach to the running transaction in order to account for
1520 * delayed refs, but continues on even when no running transaction exists.
1521 *
1522 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1523 */
1524int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1525		struct ulist *roots, struct ulist *tmp)
 
1526{
1527	struct btrfs_fs_info *fs_info = root->fs_info;
1528	struct btrfs_trans_handle *trans;
1529	struct ulist_iterator uiter;
1530	struct ulist_node *node;
1531	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1532	int ret = 0;
1533	struct share_check shared = {
1534		.root_objectid = root->root_key.objectid,
1535		.inum = inum,
1536		.share_count = 0,
1537	};
1538
1539	ulist_init(roots);
1540	ulist_init(tmp);
1541
1542	trans = btrfs_join_transaction_nostart(root);
1543	if (IS_ERR(trans)) {
1544		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1545			ret = PTR_ERR(trans);
1546			goto out;
1547		}
1548		trans = NULL;
1549		down_read(&fs_info->commit_root_sem);
1550	} else {
1551		btrfs_get_tree_mod_seq(fs_info, &elem);
1552	}
1553
 
 
 
 
1554	ULIST_ITER_INIT(&uiter);
1555	while (1) {
1556		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1557					roots, NULL, &shared, false);
1558		if (ret == BACKREF_FOUND_SHARED) {
1559			/* this is the only condition under which we return 1 */
1560			ret = 1;
1561			break;
1562		}
1563		if (ret < 0 && ret != -ENOENT)
1564			break;
1565		ret = 0;
1566		node = ulist_next(tmp, &uiter);
1567		if (!node)
1568			break;
1569		bytenr = node->val;
1570		shared.share_count = 0;
1571		cond_resched();
1572	}
1573
1574	if (trans) {
1575		btrfs_put_tree_mod_seq(fs_info, &elem);
1576		btrfs_end_transaction(trans);
1577	} else {
1578		up_read(&fs_info->commit_root_sem);
1579	}
1580out:
1581	ulist_release(roots);
1582	ulist_release(tmp);
1583	return ret;
1584}
1585
1586int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1587			  u64 start_off, struct btrfs_path *path,
1588			  struct btrfs_inode_extref **ret_extref,
1589			  u64 *found_off)
1590{
1591	int ret, slot;
1592	struct btrfs_key key;
1593	struct btrfs_key found_key;
1594	struct btrfs_inode_extref *extref;
1595	const struct extent_buffer *leaf;
1596	unsigned long ptr;
1597
1598	key.objectid = inode_objectid;
1599	key.type = BTRFS_INODE_EXTREF_KEY;
1600	key.offset = start_off;
1601
1602	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1603	if (ret < 0)
1604		return ret;
1605
1606	while (1) {
1607		leaf = path->nodes[0];
1608		slot = path->slots[0];
1609		if (slot >= btrfs_header_nritems(leaf)) {
1610			/*
1611			 * If the item at offset is not found,
1612			 * btrfs_search_slot will point us to the slot
1613			 * where it should be inserted. In our case
1614			 * that will be the slot directly before the
1615			 * next INODE_REF_KEY_V2 item. In the case
1616			 * that we're pointing to the last slot in a
1617			 * leaf, we must move one leaf over.
1618			 */
1619			ret = btrfs_next_leaf(root, path);
1620			if (ret) {
1621				if (ret >= 1)
1622					ret = -ENOENT;
1623				break;
1624			}
1625			continue;
1626		}
1627
1628		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1629
1630		/*
1631		 * Check that we're still looking at an extended ref key for
1632		 * this particular objectid. If we have different
1633		 * objectid or type then there are no more to be found
1634		 * in the tree and we can exit.
1635		 */
1636		ret = -ENOENT;
1637		if (found_key.objectid != inode_objectid)
1638			break;
1639		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1640			break;
1641
1642		ret = 0;
1643		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1644		extref = (struct btrfs_inode_extref *)ptr;
1645		*ret_extref = extref;
1646		if (found_off)
1647			*found_off = found_key.offset;
1648		break;
1649	}
1650
1651	return ret;
1652}
1653
1654/*
1655 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1656 * Elements of the path are separated by '/' and the path is guaranteed to be
1657 * 0-terminated. the path is only given within the current file system.
1658 * Therefore, it never starts with a '/'. the caller is responsible to provide
1659 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1660 * the start point of the resulting string is returned. this pointer is within
1661 * dest, normally.
1662 * in case the path buffer would overflow, the pointer is decremented further
1663 * as if output was written to the buffer, though no more output is actually
1664 * generated. that way, the caller can determine how much space would be
1665 * required for the path to fit into the buffer. in that case, the returned
1666 * value will be smaller than dest. callers must check this!
1667 */
1668char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1669			u32 name_len, unsigned long name_off,
1670			struct extent_buffer *eb_in, u64 parent,
1671			char *dest, u32 size)
1672{
1673	int slot;
1674	u64 next_inum;
1675	int ret;
1676	s64 bytes_left = ((s64)size) - 1;
1677	struct extent_buffer *eb = eb_in;
1678	struct btrfs_key found_key;
 
1679	struct btrfs_inode_ref *iref;
1680
1681	if (bytes_left >= 0)
1682		dest[bytes_left] = '\0';
1683
 
1684	while (1) {
1685		bytes_left -= name_len;
1686		if (bytes_left >= 0)
1687			read_extent_buffer(eb, dest + bytes_left,
1688					   name_off, name_len);
1689		if (eb != eb_in) {
1690			if (!path->skip_locking)
1691				btrfs_tree_read_unlock(eb);
1692			free_extent_buffer(eb);
1693		}
1694		ret = btrfs_find_item(fs_root, path, parent, 0,
1695				BTRFS_INODE_REF_KEY, &found_key);
1696		if (ret > 0)
1697			ret = -ENOENT;
1698		if (ret)
1699			break;
1700
1701		next_inum = found_key.offset;
1702
1703		/* regular exit ahead */
1704		if (parent == next_inum)
1705			break;
1706
1707		slot = path->slots[0];
1708		eb = path->nodes[0];
1709		/* make sure we can use eb after releasing the path */
1710		if (eb != eb_in) {
 
 
1711			path->nodes[0] = NULL;
1712			path->locks[0] = 0;
1713		}
1714		btrfs_release_path(path);
1715		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1716
1717		name_len = btrfs_inode_ref_name_len(eb, iref);
1718		name_off = (unsigned long)(iref + 1);
1719
1720		parent = next_inum;
1721		--bytes_left;
1722		if (bytes_left >= 0)
1723			dest[bytes_left] = '/';
1724	}
1725
1726	btrfs_release_path(path);
 
1727
1728	if (ret)
1729		return ERR_PTR(ret);
1730
1731	return dest + bytes_left;
1732}
1733
1734/*
1735 * this makes the path point to (logical EXTENT_ITEM *)
1736 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1737 * tree blocks and <0 on error.
1738 */
1739int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1740			struct btrfs_path *path, struct btrfs_key *found_key,
1741			u64 *flags_ret)
1742{
1743	int ret;
1744	u64 flags;
1745	u64 size = 0;
1746	u32 item_size;
1747	const struct extent_buffer *eb;
1748	struct btrfs_extent_item *ei;
1749	struct btrfs_key key;
1750
1751	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1752		key.type = BTRFS_METADATA_ITEM_KEY;
1753	else
1754		key.type = BTRFS_EXTENT_ITEM_KEY;
1755	key.objectid = logical;
1756	key.offset = (u64)-1;
1757
1758	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1759	if (ret < 0)
1760		return ret;
1761
1762	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1763	if (ret) {
1764		if (ret > 0)
1765			ret = -ENOENT;
1766		return ret;
1767	}
1768	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1769	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1770		size = fs_info->nodesize;
1771	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1772		size = found_key->offset;
1773
1774	if (found_key->objectid > logical ||
1775	    found_key->objectid + size <= logical) {
1776		btrfs_debug(fs_info,
1777			"logical %llu is not within any extent", logical);
1778		return -ENOENT;
1779	}
1780
1781	eb = path->nodes[0];
1782	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1783	BUG_ON(item_size < sizeof(*ei));
1784
1785	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1786	flags = btrfs_extent_flags(eb, ei);
1787
1788	btrfs_debug(fs_info,
1789		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1790		 logical, logical - found_key->objectid, found_key->objectid,
1791		 found_key->offset, flags, item_size);
1792
1793	WARN_ON(!flags_ret);
1794	if (flags_ret) {
1795		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1796			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1797		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1798			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1799		else
1800			BUG();
1801		return 0;
1802	}
1803
1804	return -EIO;
1805}
1806
1807/*
1808 * helper function to iterate extent inline refs. ptr must point to a 0 value
1809 * for the first call and may be modified. it is used to track state.
1810 * if more refs exist, 0 is returned and the next call to
1811 * get_extent_inline_ref must pass the modified ptr parameter to get the
1812 * next ref. after the last ref was processed, 1 is returned.
1813 * returns <0 on error
1814 */
1815static int get_extent_inline_ref(unsigned long *ptr,
1816				 const struct extent_buffer *eb,
1817				 const struct btrfs_key *key,
1818				 const struct btrfs_extent_item *ei,
1819				 u32 item_size,
1820				 struct btrfs_extent_inline_ref **out_eiref,
1821				 int *out_type)
1822{
1823	unsigned long end;
1824	u64 flags;
1825	struct btrfs_tree_block_info *info;
1826
1827	if (!*ptr) {
1828		/* first call */
1829		flags = btrfs_extent_flags(eb, ei);
1830		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1831			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1832				/* a skinny metadata extent */
1833				*out_eiref =
1834				     (struct btrfs_extent_inline_ref *)(ei + 1);
1835			} else {
1836				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1837				info = (struct btrfs_tree_block_info *)(ei + 1);
1838				*out_eiref =
1839				   (struct btrfs_extent_inline_ref *)(info + 1);
1840			}
1841		} else {
1842			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1843		}
1844		*ptr = (unsigned long)*out_eiref;
1845		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1846			return -ENOENT;
1847	}
1848
1849	end = (unsigned long)ei + item_size;
1850	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1851	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1852						     BTRFS_REF_TYPE_ANY);
1853	if (*out_type == BTRFS_REF_TYPE_INVALID)
1854		return -EUCLEAN;
1855
1856	*ptr += btrfs_extent_inline_ref_size(*out_type);
1857	WARN_ON(*ptr > end);
1858	if (*ptr == end)
1859		return 1; /* last */
1860
1861	return 0;
1862}
1863
1864/*
1865 * reads the tree block backref for an extent. tree level and root are returned
1866 * through out_level and out_root. ptr must point to a 0 value for the first
1867 * call and may be modified (see get_extent_inline_ref comment).
1868 * returns 0 if data was provided, 1 if there was no more data to provide or
1869 * <0 on error.
1870 */
1871int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1872			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1873			    u32 item_size, u64 *out_root, u8 *out_level)
1874{
1875	int ret;
1876	int type;
1877	struct btrfs_extent_inline_ref *eiref;
1878
1879	if (*ptr == (unsigned long)-1)
1880		return 1;
1881
1882	while (1) {
1883		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1884					      &eiref, &type);
1885		if (ret < 0)
1886			return ret;
1887
1888		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1889		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1890			break;
1891
1892		if (ret == 1)
1893			return 1;
1894	}
1895
1896	/* we can treat both ref types equally here */
1897	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1898
1899	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1900		struct btrfs_tree_block_info *info;
1901
1902		info = (struct btrfs_tree_block_info *)(ei + 1);
1903		*out_level = btrfs_tree_block_level(eb, info);
1904	} else {
1905		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1906		*out_level = (u8)key->offset;
1907	}
1908
1909	if (ret == 1)
1910		*ptr = (unsigned long)-1;
1911
1912	return 0;
1913}
1914
1915static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1916			     struct extent_inode_elem *inode_list,
1917			     u64 root, u64 extent_item_objectid,
1918			     iterate_extent_inodes_t *iterate, void *ctx)
1919{
1920	struct extent_inode_elem *eie;
1921	int ret = 0;
1922
1923	for (eie = inode_list; eie; eie = eie->next) {
1924		btrfs_debug(fs_info,
1925			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1926			    extent_item_objectid, eie->inum,
1927			    eie->offset, root);
1928		ret = iterate(eie->inum, eie->offset, root, ctx);
1929		if (ret) {
1930			btrfs_debug(fs_info,
1931				    "stopping iteration for %llu due to ret=%d",
1932				    extent_item_objectid, ret);
1933			break;
1934		}
1935	}
1936
1937	return ret;
1938}
1939
1940/*
1941 * calls iterate() for every inode that references the extent identified by
1942 * the given parameters.
1943 * when the iterator function returns a non-zero value, iteration stops.
1944 */
1945int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1946				u64 extent_item_objectid, u64 extent_item_pos,
1947				int search_commit_root,
1948				iterate_extent_inodes_t *iterate, void *ctx,
1949				bool ignore_offset)
1950{
1951	int ret;
1952	struct btrfs_trans_handle *trans = NULL;
1953	struct ulist *refs = NULL;
1954	struct ulist *roots = NULL;
1955	struct ulist_node *ref_node = NULL;
1956	struct ulist_node *root_node = NULL;
1957	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
1958	struct ulist_iterator ref_uiter;
1959	struct ulist_iterator root_uiter;
1960
1961	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1962			extent_item_objectid);
1963
1964	if (!search_commit_root) {
1965		trans = btrfs_attach_transaction(fs_info->extent_root);
1966		if (IS_ERR(trans)) {
1967			if (PTR_ERR(trans) != -ENOENT &&
1968			    PTR_ERR(trans) != -EROFS)
1969				return PTR_ERR(trans);
1970			trans = NULL;
1971		}
1972	}
1973
1974	if (trans)
1975		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1976	else
1977		down_read(&fs_info->commit_root_sem);
1978
1979	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1980				   seq_elem.seq, &refs,
1981				   &extent_item_pos, ignore_offset);
1982	if (ret)
1983		goto out;
1984
1985	ULIST_ITER_INIT(&ref_uiter);
1986	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1987		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1988						seq_elem.seq, &roots,
1989						ignore_offset);
1990		if (ret)
1991			break;
1992		ULIST_ITER_INIT(&root_uiter);
1993		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1994			btrfs_debug(fs_info,
1995				    "root %llu references leaf %llu, data list %#llx",
1996				    root_node->val, ref_node->val,
1997				    ref_node->aux);
1998			ret = iterate_leaf_refs(fs_info,
1999						(struct extent_inode_elem *)
2000						(uintptr_t)ref_node->aux,
2001						root_node->val,
2002						extent_item_objectid,
2003						iterate, ctx);
2004		}
2005		ulist_free(roots);
2006	}
2007
2008	free_leaf_list(refs);
2009out:
2010	if (trans) {
2011		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2012		btrfs_end_transaction(trans);
2013	} else {
2014		up_read(&fs_info->commit_root_sem);
2015	}
2016
2017	return ret;
2018}
2019
2020int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2021				struct btrfs_path *path,
2022				iterate_extent_inodes_t *iterate, void *ctx,
2023				bool ignore_offset)
2024{
2025	int ret;
2026	u64 extent_item_pos;
2027	u64 flags = 0;
2028	struct btrfs_key found_key;
2029	int search_commit_root = path->search_commit_root;
2030
2031	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2032	btrfs_release_path(path);
2033	if (ret < 0)
2034		return ret;
2035	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2036		return -EINVAL;
2037
2038	extent_item_pos = logical - found_key.objectid;
2039	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2040					extent_item_pos, search_commit_root,
2041					iterate, ctx, ignore_offset);
2042
2043	return ret;
2044}
2045
2046typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2047			      struct extent_buffer *eb, void *ctx);
2048
2049static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2050			      struct btrfs_path *path,
2051			      iterate_irefs_t *iterate, void *ctx)
2052{
2053	int ret = 0;
2054	int slot;
2055	u32 cur;
2056	u32 len;
2057	u32 name_len;
2058	u64 parent = 0;
2059	int found = 0;
2060	struct extent_buffer *eb;
2061	struct btrfs_item *item;
2062	struct btrfs_inode_ref *iref;
2063	struct btrfs_key found_key;
2064
2065	while (!ret) {
2066		ret = btrfs_find_item(fs_root, path, inum,
2067				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2068				&found_key);
2069
2070		if (ret < 0)
2071			break;
2072		if (ret) {
2073			ret = found ? 0 : -ENOENT;
2074			break;
2075		}
2076		++found;
2077
2078		parent = found_key.offset;
2079		slot = path->slots[0];
2080		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2081		if (!eb) {
2082			ret = -ENOMEM;
2083			break;
2084		}
 
 
 
2085		btrfs_release_path(path);
2086
2087		item = btrfs_item_nr(slot);
2088		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2089
2090		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2091			name_len = btrfs_inode_ref_name_len(eb, iref);
2092			/* path must be released before calling iterate()! */
2093			btrfs_debug(fs_root->fs_info,
2094				"following ref at offset %u for inode %llu in tree %llu",
2095				cur, found_key.objectid,
2096				fs_root->root_key.objectid);
2097			ret = iterate(parent, name_len,
2098				      (unsigned long)(iref + 1), eb, ctx);
2099			if (ret)
2100				break;
2101			len = sizeof(*iref) + name_len;
2102			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2103		}
 
2104		free_extent_buffer(eb);
2105	}
2106
2107	btrfs_release_path(path);
2108
2109	return ret;
2110}
2111
2112static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2113				 struct btrfs_path *path,
2114				 iterate_irefs_t *iterate, void *ctx)
2115{
2116	int ret;
2117	int slot;
2118	u64 offset = 0;
2119	u64 parent;
2120	int found = 0;
2121	struct extent_buffer *eb;
2122	struct btrfs_inode_extref *extref;
2123	u32 item_size;
2124	u32 cur_offset;
2125	unsigned long ptr;
2126
2127	while (1) {
2128		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2129					    &offset);
2130		if (ret < 0)
2131			break;
2132		if (ret) {
2133			ret = found ? 0 : -ENOENT;
2134			break;
2135		}
2136		++found;
2137
2138		slot = path->slots[0];
2139		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2140		if (!eb) {
2141			ret = -ENOMEM;
2142			break;
2143		}
 
 
 
 
2144		btrfs_release_path(path);
2145
2146		item_size = btrfs_item_size_nr(eb, slot);
2147		ptr = btrfs_item_ptr_offset(eb, slot);
2148		cur_offset = 0;
2149
2150		while (cur_offset < item_size) {
2151			u32 name_len;
2152
2153			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2154			parent = btrfs_inode_extref_parent(eb, extref);
2155			name_len = btrfs_inode_extref_name_len(eb, extref);
2156			ret = iterate(parent, name_len,
2157				      (unsigned long)&extref->name, eb, ctx);
2158			if (ret)
2159				break;
2160
2161			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2162			cur_offset += sizeof(*extref);
2163		}
 
2164		free_extent_buffer(eb);
2165
2166		offset++;
2167	}
2168
2169	btrfs_release_path(path);
2170
2171	return ret;
2172}
2173
2174static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2175			 struct btrfs_path *path, iterate_irefs_t *iterate,
2176			 void *ctx)
2177{
2178	int ret;
2179	int found_refs = 0;
2180
2181	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2182	if (!ret)
2183		++found_refs;
2184	else if (ret != -ENOENT)
2185		return ret;
2186
2187	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2188	if (ret == -ENOENT && found_refs)
2189		return 0;
2190
2191	return ret;
2192}
2193
2194/*
2195 * returns 0 if the path could be dumped (probably truncated)
2196 * returns <0 in case of an error
2197 */
2198static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2199			 struct extent_buffer *eb, void *ctx)
2200{
2201	struct inode_fs_paths *ipath = ctx;
2202	char *fspath;
2203	char *fspath_min;
2204	int i = ipath->fspath->elem_cnt;
2205	const int s_ptr = sizeof(char *);
2206	u32 bytes_left;
2207
2208	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2209					ipath->fspath->bytes_left - s_ptr : 0;
2210
2211	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2212	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2213				   name_off, eb, inum, fspath_min, bytes_left);
2214	if (IS_ERR(fspath))
2215		return PTR_ERR(fspath);
2216
2217	if (fspath > fspath_min) {
2218		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2219		++ipath->fspath->elem_cnt;
2220		ipath->fspath->bytes_left = fspath - fspath_min;
2221	} else {
2222		++ipath->fspath->elem_missed;
2223		ipath->fspath->bytes_missing += fspath_min - fspath;
2224		ipath->fspath->bytes_left = 0;
2225	}
2226
2227	return 0;
2228}
2229
2230/*
2231 * this dumps all file system paths to the inode into the ipath struct, provided
2232 * is has been created large enough. each path is zero-terminated and accessed
2233 * from ipath->fspath->val[i].
2234 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2235 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2236 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2237 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2238 * have been needed to return all paths.
2239 */
2240int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2241{
2242	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2243			     inode_to_path, ipath);
2244}
2245
2246struct btrfs_data_container *init_data_container(u32 total_bytes)
2247{
2248	struct btrfs_data_container *data;
2249	size_t alloc_bytes;
2250
2251	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2252	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2253	if (!data)
2254		return ERR_PTR(-ENOMEM);
2255
2256	if (total_bytes >= sizeof(*data)) {
2257		data->bytes_left = total_bytes - sizeof(*data);
2258		data->bytes_missing = 0;
2259	} else {
2260		data->bytes_missing = sizeof(*data) - total_bytes;
2261		data->bytes_left = 0;
2262	}
2263
2264	data->elem_cnt = 0;
2265	data->elem_missed = 0;
2266
2267	return data;
2268}
2269
2270/*
2271 * allocates space to return multiple file system paths for an inode.
2272 * total_bytes to allocate are passed, note that space usable for actual path
2273 * information will be total_bytes - sizeof(struct inode_fs_paths).
2274 * the returned pointer must be freed with free_ipath() in the end.
2275 */
2276struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2277					struct btrfs_path *path)
2278{
2279	struct inode_fs_paths *ifp;
2280	struct btrfs_data_container *fspath;
2281
2282	fspath = init_data_container(total_bytes);
2283	if (IS_ERR(fspath))
2284		return ERR_CAST(fspath);
2285
2286	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2287	if (!ifp) {
2288		kvfree(fspath);
2289		return ERR_PTR(-ENOMEM);
2290	}
2291
2292	ifp->btrfs_path = path;
2293	ifp->fspath = fspath;
2294	ifp->fs_root = fs_root;
2295
2296	return ifp;
2297}
2298
2299void free_ipath(struct inode_fs_paths *ipath)
2300{
2301	if (!ipath)
2302		return;
2303	kvfree(ipath->fspath);
2304	kfree(ipath);
2305}
2306
2307struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2308		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2309{
2310	struct btrfs_backref_iter *ret;
2311
2312	ret = kzalloc(sizeof(*ret), gfp_flag);
2313	if (!ret)
2314		return NULL;
2315
2316	ret->path = btrfs_alloc_path();
2317	if (!ret->path) {
2318		kfree(ret);
2319		return NULL;
2320	}
2321
2322	/* Current backref iterator only supports iteration in commit root */
2323	ret->path->search_commit_root = 1;
2324	ret->path->skip_locking = 1;
2325	ret->fs_info = fs_info;
2326
2327	return ret;
2328}
2329
2330int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2331{
2332	struct btrfs_fs_info *fs_info = iter->fs_info;
2333	struct btrfs_path *path = iter->path;
2334	struct btrfs_extent_item *ei;
2335	struct btrfs_key key;
2336	int ret;
2337
2338	key.objectid = bytenr;
2339	key.type = BTRFS_METADATA_ITEM_KEY;
2340	key.offset = (u64)-1;
2341	iter->bytenr = bytenr;
2342
2343	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2344	if (ret < 0)
2345		return ret;
2346	if (ret == 0) {
2347		ret = -EUCLEAN;
2348		goto release;
2349	}
2350	if (path->slots[0] == 0) {
2351		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2352		ret = -EUCLEAN;
2353		goto release;
2354	}
2355	path->slots[0]--;
2356
2357	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2358	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2359	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2360		ret = -ENOENT;
2361		goto release;
2362	}
2363	memcpy(&iter->cur_key, &key, sizeof(key));
2364	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2365						    path->slots[0]);
2366	iter->end_ptr = (u32)(iter->item_ptr +
2367			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2368	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2369			    struct btrfs_extent_item);
2370
2371	/*
2372	 * Only support iteration on tree backref yet.
2373	 *
2374	 * This is an extra precaution for non skinny-metadata, where
2375	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2376	 * extent flags to determine if it's a tree block.
2377	 */
2378	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2379		ret = -ENOTSUPP;
2380		goto release;
2381	}
2382	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2383
2384	/* If there is no inline backref, go search for keyed backref */
2385	if (iter->cur_ptr >= iter->end_ptr) {
2386		ret = btrfs_next_item(fs_info->extent_root, path);
2387
2388		/* No inline nor keyed ref */
2389		if (ret > 0) {
2390			ret = -ENOENT;
2391			goto release;
2392		}
2393		if (ret < 0)
2394			goto release;
2395
2396		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2397				path->slots[0]);
2398		if (iter->cur_key.objectid != bytenr ||
2399		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2400		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2401			ret = -ENOENT;
2402			goto release;
2403		}
2404		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2405							   path->slots[0]);
2406		iter->item_ptr = iter->cur_ptr;
2407		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2408				      path->nodes[0], path->slots[0]));
2409	}
2410
2411	return 0;
2412release:
2413	btrfs_backref_iter_release(iter);
2414	return ret;
2415}
2416
2417/*
2418 * Go to the next backref item of current bytenr, can be either inlined or
2419 * keyed.
2420 *
2421 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2422 *
2423 * Return 0 if we get next backref without problem.
2424 * Return >0 if there is no extra backref for this bytenr.
2425 * Return <0 if there is something wrong happened.
2426 */
2427int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2428{
2429	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2430	struct btrfs_path *path = iter->path;
2431	struct btrfs_extent_inline_ref *iref;
2432	int ret;
2433	u32 size;
2434
2435	if (btrfs_backref_iter_is_inline_ref(iter)) {
2436		/* We're still inside the inline refs */
2437		ASSERT(iter->cur_ptr < iter->end_ptr);
2438
2439		if (btrfs_backref_has_tree_block_info(iter)) {
2440			/* First tree block info */
2441			size = sizeof(struct btrfs_tree_block_info);
2442		} else {
2443			/* Use inline ref type to determine the size */
2444			int type;
2445
2446			iref = (struct btrfs_extent_inline_ref *)
2447				((unsigned long)iter->cur_ptr);
2448			type = btrfs_extent_inline_ref_type(eb, iref);
2449
2450			size = btrfs_extent_inline_ref_size(type);
2451		}
2452		iter->cur_ptr += size;
2453		if (iter->cur_ptr < iter->end_ptr)
2454			return 0;
2455
2456		/* All inline items iterated, fall through */
2457	}
2458
2459	/* We're at keyed items, there is no inline item, go to the next one */
2460	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2461	if (ret)
2462		return ret;
2463
2464	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2465	if (iter->cur_key.objectid != iter->bytenr ||
2466	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2467	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2468		return 1;
2469	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2470					path->slots[0]);
2471	iter->cur_ptr = iter->item_ptr;
2472	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2473						path->slots[0]);
2474	return 0;
2475}
2476
2477void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2478			      struct btrfs_backref_cache *cache, int is_reloc)
2479{
2480	int i;
2481
2482	cache->rb_root = RB_ROOT;
2483	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2484		INIT_LIST_HEAD(&cache->pending[i]);
2485	INIT_LIST_HEAD(&cache->changed);
2486	INIT_LIST_HEAD(&cache->detached);
2487	INIT_LIST_HEAD(&cache->leaves);
2488	INIT_LIST_HEAD(&cache->pending_edge);
2489	INIT_LIST_HEAD(&cache->useless_node);
2490	cache->fs_info = fs_info;
2491	cache->is_reloc = is_reloc;
2492}
2493
2494struct btrfs_backref_node *btrfs_backref_alloc_node(
2495		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2496{
2497	struct btrfs_backref_node *node;
2498
2499	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2500	node = kzalloc(sizeof(*node), GFP_NOFS);
2501	if (!node)
2502		return node;
2503
2504	INIT_LIST_HEAD(&node->list);
2505	INIT_LIST_HEAD(&node->upper);
2506	INIT_LIST_HEAD(&node->lower);
2507	RB_CLEAR_NODE(&node->rb_node);
2508	cache->nr_nodes++;
2509	node->level = level;
2510	node->bytenr = bytenr;
2511
2512	return node;
2513}
2514
2515struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2516		struct btrfs_backref_cache *cache)
2517{
2518	struct btrfs_backref_edge *edge;
2519
2520	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2521	if (edge)
2522		cache->nr_edges++;
2523	return edge;
2524}
2525
2526/*
2527 * Drop the backref node from cache, also cleaning up all its
2528 * upper edges and any uncached nodes in the path.
2529 *
2530 * This cleanup happens bottom up, thus the node should either
2531 * be the lowest node in the cache or a detached node.
2532 */
2533void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2534				struct btrfs_backref_node *node)
2535{
2536	struct btrfs_backref_node *upper;
2537	struct btrfs_backref_edge *edge;
2538
2539	if (!node)
2540		return;
2541
2542	BUG_ON(!node->lowest && !node->detached);
2543	while (!list_empty(&node->upper)) {
2544		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2545				  list[LOWER]);
2546		upper = edge->node[UPPER];
2547		list_del(&edge->list[LOWER]);
2548		list_del(&edge->list[UPPER]);
2549		btrfs_backref_free_edge(cache, edge);
2550
2551		/*
2552		 * Add the node to leaf node list if no other child block
2553		 * cached.
2554		 */
2555		if (list_empty(&upper->lower)) {
2556			list_add_tail(&upper->lower, &cache->leaves);
2557			upper->lowest = 1;
2558		}
2559	}
2560
2561	btrfs_backref_drop_node(cache, node);
2562}
2563
2564/*
2565 * Release all nodes/edges from current cache
2566 */
2567void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2568{
2569	struct btrfs_backref_node *node;
2570	int i;
2571
2572	while (!list_empty(&cache->detached)) {
2573		node = list_entry(cache->detached.next,
2574				  struct btrfs_backref_node, list);
2575		btrfs_backref_cleanup_node(cache, node);
2576	}
2577
2578	while (!list_empty(&cache->leaves)) {
2579		node = list_entry(cache->leaves.next,
2580				  struct btrfs_backref_node, lower);
2581		btrfs_backref_cleanup_node(cache, node);
2582	}
2583
2584	cache->last_trans = 0;
2585
2586	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2587		ASSERT(list_empty(&cache->pending[i]));
2588	ASSERT(list_empty(&cache->pending_edge));
2589	ASSERT(list_empty(&cache->useless_node));
2590	ASSERT(list_empty(&cache->changed));
2591	ASSERT(list_empty(&cache->detached));
2592	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2593	ASSERT(!cache->nr_nodes);
2594	ASSERT(!cache->nr_edges);
2595}
2596
2597/*
2598 * Handle direct tree backref
2599 *
2600 * Direct tree backref means, the backref item shows its parent bytenr
2601 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2602 *
2603 * @ref_key:	The converted backref key.
2604 *		For keyed backref, it's the item key.
2605 *		For inlined backref, objectid is the bytenr,
2606 *		type is btrfs_inline_ref_type, offset is
2607 *		btrfs_inline_ref_offset.
2608 */
2609static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2610				      struct btrfs_key *ref_key,
2611				      struct btrfs_backref_node *cur)
2612{
2613	struct btrfs_backref_edge *edge;
2614	struct btrfs_backref_node *upper;
2615	struct rb_node *rb_node;
2616
2617	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2618
2619	/* Only reloc root uses backref pointing to itself */
2620	if (ref_key->objectid == ref_key->offset) {
2621		struct btrfs_root *root;
2622
2623		cur->is_reloc_root = 1;
2624		/* Only reloc backref cache cares about a specific root */
2625		if (cache->is_reloc) {
2626			root = find_reloc_root(cache->fs_info, cur->bytenr);
2627			if (!root)
2628				return -ENOENT;
2629			cur->root = root;
2630		} else {
2631			/*
2632			 * For generic purpose backref cache, reloc root node
2633			 * is useless.
2634			 */
2635			list_add(&cur->list, &cache->useless_node);
2636		}
2637		return 0;
2638	}
2639
2640	edge = btrfs_backref_alloc_edge(cache);
2641	if (!edge)
2642		return -ENOMEM;
2643
2644	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2645	if (!rb_node) {
2646		/* Parent node not yet cached */
2647		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2648					   cur->level + 1);
2649		if (!upper) {
2650			btrfs_backref_free_edge(cache, edge);
2651			return -ENOMEM;
2652		}
2653
2654		/*
2655		 *  Backrefs for the upper level block isn't cached, add the
2656		 *  block to pending list
2657		 */
2658		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2659	} else {
2660		/* Parent node already cached */
2661		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2662		ASSERT(upper->checked);
2663		INIT_LIST_HEAD(&edge->list[UPPER]);
2664	}
2665	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2666	return 0;
2667}
2668
2669/*
2670 * Handle indirect tree backref
2671 *
2672 * Indirect tree backref means, we only know which tree the node belongs to.
2673 * We still need to do a tree search to find out the parents. This is for
2674 * TREE_BLOCK_REF backref (keyed or inlined).
2675 *
2676 * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2677 * @tree_key:	The first key of this tree block.
2678 * @path:	A clean (released) path, to avoid allocating path every time
2679 *		the function get called.
2680 */
2681static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2682					struct btrfs_path *path,
2683					struct btrfs_key *ref_key,
2684					struct btrfs_key *tree_key,
2685					struct btrfs_backref_node *cur)
2686{
2687	struct btrfs_fs_info *fs_info = cache->fs_info;
2688	struct btrfs_backref_node *upper;
2689	struct btrfs_backref_node *lower;
2690	struct btrfs_backref_edge *edge;
2691	struct extent_buffer *eb;
2692	struct btrfs_root *root;
2693	struct rb_node *rb_node;
2694	int level;
2695	bool need_check = true;
2696	int ret;
2697
2698	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2699	if (IS_ERR(root))
2700		return PTR_ERR(root);
2701	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2702		cur->cowonly = 1;
2703
2704	if (btrfs_root_level(&root->root_item) == cur->level) {
2705		/* Tree root */
2706		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2707		/*
2708		 * For reloc backref cache, we may ignore reloc root.  But for
2709		 * general purpose backref cache, we can't rely on
2710		 * btrfs_should_ignore_reloc_root() as it may conflict with
2711		 * current running relocation and lead to missing root.
2712		 *
2713		 * For general purpose backref cache, reloc root detection is
2714		 * completely relying on direct backref (key->offset is parent
2715		 * bytenr), thus only do such check for reloc cache.
2716		 */
2717		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2718			btrfs_put_root(root);
2719			list_add(&cur->list, &cache->useless_node);
2720		} else {
2721			cur->root = root;
2722		}
2723		return 0;
2724	}
2725
2726	level = cur->level + 1;
2727
2728	/* Search the tree to find parent blocks referring to the block */
2729	path->search_commit_root = 1;
2730	path->skip_locking = 1;
2731	path->lowest_level = level;
2732	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2733	path->lowest_level = 0;
2734	if (ret < 0) {
2735		btrfs_put_root(root);
2736		return ret;
2737	}
2738	if (ret > 0 && path->slots[level] > 0)
2739		path->slots[level]--;
2740
2741	eb = path->nodes[level];
2742	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2743		btrfs_err(fs_info,
2744"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2745			  cur->bytenr, level - 1, root->root_key.objectid,
2746			  tree_key->objectid, tree_key->type, tree_key->offset);
2747		btrfs_put_root(root);
2748		ret = -ENOENT;
2749		goto out;
2750	}
2751	lower = cur;
2752
2753	/* Add all nodes and edges in the path */
2754	for (; level < BTRFS_MAX_LEVEL; level++) {
2755		if (!path->nodes[level]) {
2756			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2757			       lower->bytenr);
2758			/* Same as previous should_ignore_reloc_root() call */
2759			if (btrfs_should_ignore_reloc_root(root) &&
2760			    cache->is_reloc) {
2761				btrfs_put_root(root);
2762				list_add(&lower->list, &cache->useless_node);
2763			} else {
2764				lower->root = root;
2765			}
2766			break;
2767		}
2768
2769		edge = btrfs_backref_alloc_edge(cache);
2770		if (!edge) {
2771			btrfs_put_root(root);
2772			ret = -ENOMEM;
2773			goto out;
2774		}
2775
2776		eb = path->nodes[level];
2777		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2778		if (!rb_node) {
2779			upper = btrfs_backref_alloc_node(cache, eb->start,
2780							 lower->level + 1);
2781			if (!upper) {
2782				btrfs_put_root(root);
2783				btrfs_backref_free_edge(cache, edge);
2784				ret = -ENOMEM;
2785				goto out;
2786			}
2787			upper->owner = btrfs_header_owner(eb);
2788			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2789				upper->cowonly = 1;
2790
2791			/*
2792			 * If we know the block isn't shared we can avoid
2793			 * checking its backrefs.
2794			 */
2795			if (btrfs_block_can_be_shared(root, eb))
2796				upper->checked = 0;
2797			else
2798				upper->checked = 1;
2799
2800			/*
2801			 * Add the block to pending list if we need to check its
2802			 * backrefs, we only do this once while walking up a
2803			 * tree as we will catch anything else later on.
2804			 */
2805			if (!upper->checked && need_check) {
2806				need_check = false;
2807				list_add_tail(&edge->list[UPPER],
2808					      &cache->pending_edge);
2809			} else {
2810				if (upper->checked)
2811					need_check = true;
2812				INIT_LIST_HEAD(&edge->list[UPPER]);
2813			}
2814		} else {
2815			upper = rb_entry(rb_node, struct btrfs_backref_node,
2816					 rb_node);
2817			ASSERT(upper->checked);
2818			INIT_LIST_HEAD(&edge->list[UPPER]);
2819			if (!upper->owner)
2820				upper->owner = btrfs_header_owner(eb);
2821		}
2822		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2823
2824		if (rb_node) {
2825			btrfs_put_root(root);
2826			break;
2827		}
2828		lower = upper;
2829		upper = NULL;
2830	}
2831out:
2832	btrfs_release_path(path);
2833	return ret;
2834}
2835
2836/*
2837 * Add backref node @cur into @cache.
2838 *
2839 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2840 *	 links aren't yet bi-directional. Needs to finish such links.
2841 *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2842 *
2843 * @path:	Released path for indirect tree backref lookup
2844 * @iter:	Released backref iter for extent tree search
2845 * @node_key:	The first key of the tree block
2846 */
2847int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2848				struct btrfs_path *path,
2849				struct btrfs_backref_iter *iter,
2850				struct btrfs_key *node_key,
2851				struct btrfs_backref_node *cur)
2852{
2853	struct btrfs_fs_info *fs_info = cache->fs_info;
2854	struct btrfs_backref_edge *edge;
2855	struct btrfs_backref_node *exist;
2856	int ret;
2857
2858	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2859	if (ret < 0)
2860		return ret;
2861	/*
2862	 * We skip the first btrfs_tree_block_info, as we don't use the key
2863	 * stored in it, but fetch it from the tree block
2864	 */
2865	if (btrfs_backref_has_tree_block_info(iter)) {
2866		ret = btrfs_backref_iter_next(iter);
2867		if (ret < 0)
2868			goto out;
2869		/* No extra backref? This means the tree block is corrupted */
2870		if (ret > 0) {
2871			ret = -EUCLEAN;
2872			goto out;
2873		}
2874	}
2875	WARN_ON(cur->checked);
2876	if (!list_empty(&cur->upper)) {
2877		/*
2878		 * The backref was added previously when processing backref of
2879		 * type BTRFS_TREE_BLOCK_REF_KEY
2880		 */
2881		ASSERT(list_is_singular(&cur->upper));
2882		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2883				  list[LOWER]);
2884		ASSERT(list_empty(&edge->list[UPPER]));
2885		exist = edge->node[UPPER];
2886		/*
2887		 * Add the upper level block to pending list if we need check
2888		 * its backrefs
2889		 */
2890		if (!exist->checked)
2891			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2892	} else {
2893		exist = NULL;
2894	}
2895
2896	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2897		struct extent_buffer *eb;
2898		struct btrfs_key key;
2899		int type;
2900
2901		cond_resched();
2902		eb = btrfs_backref_get_eb(iter);
2903
2904		key.objectid = iter->bytenr;
2905		if (btrfs_backref_iter_is_inline_ref(iter)) {
2906			struct btrfs_extent_inline_ref *iref;
2907
2908			/* Update key for inline backref */
2909			iref = (struct btrfs_extent_inline_ref *)
2910				((unsigned long)iter->cur_ptr);
2911			type = btrfs_get_extent_inline_ref_type(eb, iref,
2912							BTRFS_REF_TYPE_BLOCK);
2913			if (type == BTRFS_REF_TYPE_INVALID) {
2914				ret = -EUCLEAN;
2915				goto out;
2916			}
2917			key.type = type;
2918			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2919		} else {
2920			key.type = iter->cur_key.type;
2921			key.offset = iter->cur_key.offset;
2922		}
2923
2924		/*
2925		 * Parent node found and matches current inline ref, no need to
2926		 * rebuild this node for this inline ref
2927		 */
2928		if (exist &&
2929		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2930		      exist->owner == key.offset) ||
2931		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2932		      exist->bytenr == key.offset))) {
2933			exist = NULL;
2934			continue;
2935		}
2936
2937		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2938		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2939			ret = handle_direct_tree_backref(cache, &key, cur);
2940			if (ret < 0)
2941				goto out;
2942			continue;
2943		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2944			ret = -EINVAL;
2945			btrfs_print_v0_err(fs_info);
2946			btrfs_handle_fs_error(fs_info, ret, NULL);
2947			goto out;
2948		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2949			continue;
2950		}
2951
2952		/*
2953		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2954		 * means the root objectid. We need to search the tree to get
2955		 * its parent bytenr.
2956		 */
2957		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2958						   cur);
2959		if (ret < 0)
2960			goto out;
2961	}
2962	ret = 0;
2963	cur->checked = 1;
2964	WARN_ON(exist);
2965out:
2966	btrfs_backref_iter_release(iter);
2967	return ret;
2968}
2969
2970/*
2971 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2972 */
2973int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2974				     struct btrfs_backref_node *start)
2975{
2976	struct list_head *useless_node = &cache->useless_node;
2977	struct btrfs_backref_edge *edge;
2978	struct rb_node *rb_node;
2979	LIST_HEAD(pending_edge);
2980
2981	ASSERT(start->checked);
2982
2983	/* Insert this node to cache if it's not COW-only */
2984	if (!start->cowonly) {
2985		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2986					   &start->rb_node);
2987		if (rb_node)
2988			btrfs_backref_panic(cache->fs_info, start->bytenr,
2989					    -EEXIST);
2990		list_add_tail(&start->lower, &cache->leaves);
2991	}
2992
2993	/*
2994	 * Use breadth first search to iterate all related edges.
2995	 *
2996	 * The starting points are all the edges of this node
2997	 */
2998	list_for_each_entry(edge, &start->upper, list[LOWER])
2999		list_add_tail(&edge->list[UPPER], &pending_edge);
3000
3001	while (!list_empty(&pending_edge)) {
3002		struct btrfs_backref_node *upper;
3003		struct btrfs_backref_node *lower;
3004
3005		edge = list_first_entry(&pending_edge,
3006				struct btrfs_backref_edge, list[UPPER]);
3007		list_del_init(&edge->list[UPPER]);
3008		upper = edge->node[UPPER];
3009		lower = edge->node[LOWER];
3010
3011		/* Parent is detached, no need to keep any edges */
3012		if (upper->detached) {
3013			list_del(&edge->list[LOWER]);
3014			btrfs_backref_free_edge(cache, edge);
3015
3016			/* Lower node is orphan, queue for cleanup */
3017			if (list_empty(&lower->upper))
3018				list_add(&lower->list, useless_node);
3019			continue;
3020		}
3021
3022		/*
3023		 * All new nodes added in current build_backref_tree() haven't
3024		 * been linked to the cache rb tree.
3025		 * So if we have upper->rb_node populated, this means a cache
3026		 * hit. We only need to link the edge, as @upper and all its
3027		 * parents have already been linked.
3028		 */
3029		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3030			if (upper->lowest) {
3031				list_del_init(&upper->lower);
3032				upper->lowest = 0;
3033			}
3034
3035			list_add_tail(&edge->list[UPPER], &upper->lower);
3036			continue;
3037		}
3038
3039		/* Sanity check, we shouldn't have any unchecked nodes */
3040		if (!upper->checked) {
3041			ASSERT(0);
3042			return -EUCLEAN;
3043		}
3044
3045		/* Sanity check, COW-only node has non-COW-only parent */
3046		if (start->cowonly != upper->cowonly) {
3047			ASSERT(0);
3048			return -EUCLEAN;
3049		}
3050
3051		/* Only cache non-COW-only (subvolume trees) tree blocks */
3052		if (!upper->cowonly) {
3053			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3054						   &upper->rb_node);
3055			if (rb_node) {
3056				btrfs_backref_panic(cache->fs_info,
3057						upper->bytenr, -EEXIST);
3058				return -EUCLEAN;
3059			}
3060		}
3061
3062		list_add_tail(&edge->list[UPPER], &upper->lower);
3063
3064		/*
3065		 * Also queue all the parent edges of this uncached node
3066		 * to finish the upper linkage
3067		 */
3068		list_for_each_entry(edge, &upper->upper, list[LOWER])
3069			list_add_tail(&edge->list[UPPER], &pending_edge);
3070	}
3071	return 0;
3072}
3073
3074void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3075				 struct btrfs_backref_node *node)
3076{
3077	struct btrfs_backref_node *lower;
3078	struct btrfs_backref_node *upper;
3079	struct btrfs_backref_edge *edge;
3080
3081	while (!list_empty(&cache->useless_node)) {
3082		lower = list_first_entry(&cache->useless_node,
3083				   struct btrfs_backref_node, list);
3084		list_del_init(&lower->list);
3085	}
3086	while (!list_empty(&cache->pending_edge)) {
3087		edge = list_first_entry(&cache->pending_edge,
3088				struct btrfs_backref_edge, list[UPPER]);
3089		list_del(&edge->list[UPPER]);
3090		list_del(&edge->list[LOWER]);
3091		lower = edge->node[LOWER];
3092		upper = edge->node[UPPER];
3093		btrfs_backref_free_edge(cache, edge);
3094
3095		/*
3096		 * Lower is no longer linked to any upper backref nodes and
3097		 * isn't in the cache, we can free it ourselves.
3098		 */
3099		if (list_empty(&lower->upper) &&
3100		    RB_EMPTY_NODE(&lower->rb_node))
3101			list_add(&lower->list, &cache->useless_node);
3102
3103		if (!RB_EMPTY_NODE(&upper->rb_node))
3104			continue;
3105
3106		/* Add this guy's upper edges to the list to process */
3107		list_for_each_entry(edge, &upper->upper, list[LOWER])
3108			list_add_tail(&edge->list[UPPER],
3109				      &cache->pending_edge);
3110		if (list_empty(&upper->upper))
3111			list_add(&upper->list, &cache->useless_node);
3112	}
3113
3114	while (!list_empty(&cache->useless_node)) {
3115		lower = list_first_entry(&cache->useless_node,
3116				   struct btrfs_backref_node, list);
3117		list_del_init(&lower->list);
3118		if (lower == node)
3119			node = NULL;
3120		btrfs_backref_drop_node(cache, lower);
3121	}
3122
3123	btrfs_backref_cleanup_node(cache, node);
3124	ASSERT(list_empty(&cache->useless_node) &&
3125	       list_empty(&cache->pending_edge));
3126}