Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * drivers/pwm/pwm-tegra.c
  3 *
  4 * Tegra pulse-width-modulation controller driver
  5 *
  6 * Copyright (c) 2010, NVIDIA Corporation.
  7 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License as published by
 11 * the Free Software Foundation; either version 2 of the License, or
 12 * (at your option) any later version.
 13 *
 14 * This program is distributed in the hope that it will be useful, but WITHOUT
 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 17 * more details.
 18 *
 19 * You should have received a copy of the GNU General Public License along
 20 * with this program; if not, write to the Free Software Foundation, Inc.,
 21 * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22 */
 23
 24#include <linux/clk.h>
 25#include <linux/err.h>
 26#include <linux/io.h>
 27#include <linux/module.h>
 28#include <linux/of.h>
 
 29#include <linux/pwm.h>
 30#include <linux/platform_device.h>
 
 31#include <linux/slab.h>
 
 32
 33#define PWM_ENABLE	(1 << 31)
 34#define PWM_DUTY_WIDTH	8
 35#define PWM_DUTY_SHIFT	16
 36#define PWM_SCALE_WIDTH	13
 37#define PWM_SCALE_SHIFT	0
 38
 39#define NUM_PWM 4
 
 
 
 
 
 40
 41struct tegra_pwm_chip {
 42	struct pwm_chip		chip;
 43	struct device		*dev;
 
 
 
 
 
 
 44
 45	struct clk		*clk;
 46
 47	void __iomem		*mmio_base;
 48};
 49
 50static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
 51{
 52	return container_of(chip, struct tegra_pwm_chip, chip);
 53}
 54
 55static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
 56{
 57	return readl(chip->mmio_base + (num << 4));
 58}
 59
 60static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
 61			     unsigned long val)
 62{
 63	writel(val, chip->mmio_base + (num << 4));
 64}
 65
 66static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
 67			    int duty_ns, int period_ns)
 68{
 69	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
 70	unsigned long long c;
 71	unsigned long rate, hz;
 72	u32 val = 0;
 73	int err;
 74
 75	/*
 76	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
 77	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
 78	 * nearest integer during division.
 79	 */
 80	c = duty_ns * ((1 << PWM_DUTY_WIDTH) - 1) + period_ns / 2;
 81	do_div(c, period_ns);
 82
 83	val = (u32)c << PWM_DUTY_SHIFT;
 84
 85	/*
 
 
 
 
 
 
 86	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
 87	 * cycles at the PWM clock rate will take period_ns nanoseconds.
 
 
 
 
 
 
 
 
 
 88	 */
 89	rate = clk_get_rate(pc->clk) >> PWM_DUTY_WIDTH;
 90	hz = NSEC_PER_SEC / period_ns;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91
 92	rate = (rate + (hz / 2)) / hz;
 
 
 93
 94	/*
 95	 * Since the actual PWM divider is the register's frequency divider
 96	 * field minus 1, we need to decrement to get the correct value to
 97	 * write to the register.
 98	 */
 99	if (rate > 0)
100		rate--;
101
102	/*
103	 * Make sure that the rate will fit in the register's frequency
104	 * divider field.
105	 */
106	if (rate >> PWM_SCALE_WIDTH)
107		return -EINVAL;
108
109	val |= rate << PWM_SCALE_SHIFT;
110
111	/*
112	 * If the PWM channel is disabled, make sure to turn on the clock
113	 * before writing the register. Otherwise, keep it enabled.
114	 */
115	if (!pwm_is_enabled(pwm)) {
116		err = clk_prepare_enable(pc->clk);
117		if (err < 0)
118			return err;
119	} else
120		val |= PWM_ENABLE;
121
122	pwm_writel(pc, pwm->hwpwm, val);
123
124	/*
125	 * If the PWM is not enabled, turn the clock off again to save power.
126	 */
127	if (!pwm_is_enabled(pwm))
128		clk_disable_unprepare(pc->clk);
129
130	return 0;
131}
132
133static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
134{
135	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
136	int rc = 0;
137	u32 val;
138
139	rc = clk_prepare_enable(pc->clk);
140	if (rc < 0)
141		return rc;
142
143	val = pwm_readl(pc, pwm->hwpwm);
144	val |= PWM_ENABLE;
145	pwm_writel(pc, pwm->hwpwm, val);
146
147	return 0;
148}
149
150static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
151{
152	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
153	u32 val;
154
155	val = pwm_readl(pc, pwm->hwpwm);
156	val &= ~PWM_ENABLE;
157	pwm_writel(pc, pwm->hwpwm, val);
158
159	clk_disable_unprepare(pc->clk);
160}
161
162static const struct pwm_ops tegra_pwm_ops = {
163	.config = tegra_pwm_config,
164	.enable = tegra_pwm_enable,
165	.disable = tegra_pwm_disable,
166	.owner = THIS_MODULE,
167};
168
169static int tegra_pwm_probe(struct platform_device *pdev)
170{
171	struct tegra_pwm_chip *pwm;
172	struct resource *r;
173	int ret;
174
175	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
176	if (!pwm)
177		return -ENOMEM;
178
 
179	pwm->dev = &pdev->dev;
180
181	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
182	pwm->mmio_base = devm_ioremap_resource(&pdev->dev, r);
183	if (IS_ERR(pwm->mmio_base))
184		return PTR_ERR(pwm->mmio_base);
185
186	platform_set_drvdata(pdev, pwm);
187
188	pwm->clk = devm_clk_get(&pdev->dev, NULL);
189	if (IS_ERR(pwm->clk))
190		return PTR_ERR(pwm->clk);
191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192	pwm->chip.dev = &pdev->dev;
193	pwm->chip.ops = &tegra_pwm_ops;
194	pwm->chip.base = -1;
195	pwm->chip.npwm = NUM_PWM;
196
197	ret = pwmchip_add(&pwm->chip);
198	if (ret < 0) {
199		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
 
200		return ret;
201	}
202
203	return 0;
204}
205
206static int tegra_pwm_remove(struct platform_device *pdev)
207{
208	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
209	int i;
210
211	if (WARN_ON(!pc))
212		return -ENODEV;
213
214	for (i = 0; i < NUM_PWM; i++) {
215		struct pwm_device *pwm = &pc->chip.pwms[i];
216
217		if (!pwm_is_enabled(pwm))
218			if (clk_prepare_enable(pc->clk) < 0)
219				continue;
220
221		pwm_writel(pc, i, 0);
222
223		clk_disable_unprepare(pc->clk);
224	}
 
 
 
225
226	return pwmchip_remove(&pc->chip);
 
 
227}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
229static const struct of_device_id tegra_pwm_of_match[] = {
230	{ .compatible = "nvidia,tegra20-pwm" },
231	{ .compatible = "nvidia,tegra30-pwm" },
 
232	{ }
233};
234
235MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
236
 
 
 
 
237static struct platform_driver tegra_pwm_driver = {
238	.driver = {
239		.name = "tegra-pwm",
240		.of_match_table = tegra_pwm_of_match,
 
241	},
242	.probe = tegra_pwm_probe,
243	.remove = tegra_pwm_remove,
244};
245
246module_platform_driver(tegra_pwm_driver);
247
248MODULE_LICENSE("GPL");
249MODULE_AUTHOR("NVIDIA Corporation");
 
250MODULE_ALIAS("platform:tegra-pwm");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * drivers/pwm/pwm-tegra.c
  4 *
  5 * Tegra pulse-width-modulation controller driver
  6 *
  7 * Copyright (c) 2010-2020, NVIDIA Corporation.
  8 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
  9 *
 10 * Overview of Tegra Pulse Width Modulator Register:
 11 * 1. 13-bit: Frequency division (SCALE)
 12 * 2. 8-bit : Pulse division (DUTY)
 13 * 3. 1-bit : Enable bit
 14 *
 15 * The PWM clock frequency is divided by 256 before subdividing it based
 16 * on the programmable frequency division value to generate the required
 17 * frequency for PWM output. The maximum output frequency that can be
 18 * achieved is (max rate of source clock) / 256.
 19 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
 20 * 408 MHz/256 = 1.6 MHz.
 21 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
 22 *
 23 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
 24 * To achieve 100% duty cycle, program Bit [24] of this register to
 25 * 1’b1. In which case the other bits [23:16] are set to don't care.
 26 *
 27 * Limitations:
 28 * -	When PWM is disabled, the output is driven to inactive.
 29 * -	It does not allow the current PWM period to complete and
 30 *	stops abruptly.
 31 *
 32 * -	If the register is reconfigured while PWM is running,
 33 *	it does not complete the currently running period.
 34 *
 35 * -	If the user input duty is beyond acceptible limits,
 36 *	-EINVAL is returned.
 37 */
 38
 39#include <linux/clk.h>
 40#include <linux/err.h>
 41#include <linux/io.h>
 42#include <linux/module.h>
 43#include <linux/of.h>
 44#include <linux/of_device.h>
 45#include <linux/pwm.h>
 46#include <linux/platform_device.h>
 47#include <linux/pinctrl/consumer.h>
 48#include <linux/slab.h>
 49#include <linux/reset.h>
 50
 51#define PWM_ENABLE	(1 << 31)
 52#define PWM_DUTY_WIDTH	8
 53#define PWM_DUTY_SHIFT	16
 54#define PWM_SCALE_WIDTH	13
 55#define PWM_SCALE_SHIFT	0
 56
 57struct tegra_pwm_soc {
 58	unsigned int num_channels;
 59
 60	/* Maximum IP frequency for given SoCs */
 61	unsigned long max_frequency;
 62};
 63
 64struct tegra_pwm_chip {
 65	struct pwm_chip chip;
 66	struct device *dev;
 67
 68	struct clk *clk;
 69	struct reset_control*rst;
 70
 71	unsigned long clk_rate;
 72	unsigned long min_period_ns;
 73
 74	void __iomem *regs;
 75
 76	const struct tegra_pwm_soc *soc;
 77};
 78
 79static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
 80{
 81	return container_of(chip, struct tegra_pwm_chip, chip);
 82}
 83
 84static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
 85{
 86	return readl(chip->regs + (num << 4));
 87}
 88
 89static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
 90			     unsigned long val)
 91{
 92	writel(val, chip->regs + (num << 4));
 93}
 94
 95static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
 96			    int duty_ns, int period_ns)
 97{
 98	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
 99	unsigned long long c = duty_ns, hz;
100	unsigned long rate, required_clk_rate;
101	u32 val = 0;
102	int err;
103
104	/*
105	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
106	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
107	 * nearest integer during division.
108	 */
109	c *= (1 << PWM_DUTY_WIDTH);
110	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
111
112	val = (u32)c << PWM_DUTY_SHIFT;
113
114	/*
115	 *  min period = max clock limit >> PWM_DUTY_WIDTH
116	 */
117	if (period_ns < pc->min_period_ns)
118		return -EINVAL;
119
120	/*
121	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
122	 * cycles at the PWM clock rate will take period_ns nanoseconds.
123	 *
124	 * num_channels: If single instance of PWM controller has multiple
125	 * channels (e.g. Tegra210 or older) then it is not possible to
126	 * configure separate clock rates to each of the channels, in such
127	 * case the value stored during probe will be referred.
128	 *
129	 * If every PWM controller instance has one channel respectively, i.e.
130	 * nums_channels == 1 then only the clock rate can be modified
131	 * dynamically (e.g. Tegra186 or Tegra194).
132	 */
133	if (pc->soc->num_channels == 1) {
134		/*
135		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
136		 * with the maximum possible rate that the controller can
137		 * provide. Any further lower value can be derived by setting
138		 * PFM bits[0:12].
139		 *
140		 * required_clk_rate is a reference rate for source clock and
141		 * it is derived based on user requested period. By setting the
142		 * source clock rate as required_clk_rate, PWM controller will
143		 * be able to configure the requested period.
144		 */
145		required_clk_rate =
146			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
147
148		err = clk_set_rate(pc->clk, required_clk_rate);
149		if (err < 0)
150			return -EINVAL;
151
152		/* Store the new rate for further references */
153		pc->clk_rate = clk_get_rate(pc->clk);
154	}
155
156	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
157
158	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
159	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
160	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
161
162	/*
163	 * Since the actual PWM divider is the register's frequency divider
164	 * field plus 1, we need to decrement to get the correct value to
165	 * write to the register.
166	 */
167	if (rate > 0)
168		rate--;
169
170	/*
171	 * Make sure that the rate will fit in the register's frequency
172	 * divider field.
173	 */
174	if (rate >> PWM_SCALE_WIDTH)
175		return -EINVAL;
176
177	val |= rate << PWM_SCALE_SHIFT;
178
179	/*
180	 * If the PWM channel is disabled, make sure to turn on the clock
181	 * before writing the register. Otherwise, keep it enabled.
182	 */
183	if (!pwm_is_enabled(pwm)) {
184		err = clk_prepare_enable(pc->clk);
185		if (err < 0)
186			return err;
187	} else
188		val |= PWM_ENABLE;
189
190	pwm_writel(pc, pwm->hwpwm, val);
191
192	/*
193	 * If the PWM is not enabled, turn the clock off again to save power.
194	 */
195	if (!pwm_is_enabled(pwm))
196		clk_disable_unprepare(pc->clk);
197
198	return 0;
199}
200
201static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
202{
203	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
204	int rc = 0;
205	u32 val;
206
207	rc = clk_prepare_enable(pc->clk);
208	if (rc < 0)
209		return rc;
210
211	val = pwm_readl(pc, pwm->hwpwm);
212	val |= PWM_ENABLE;
213	pwm_writel(pc, pwm->hwpwm, val);
214
215	return 0;
216}
217
218static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
219{
220	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
221	u32 val;
222
223	val = pwm_readl(pc, pwm->hwpwm);
224	val &= ~PWM_ENABLE;
225	pwm_writel(pc, pwm->hwpwm, val);
226
227	clk_disable_unprepare(pc->clk);
228}
229
230static const struct pwm_ops tegra_pwm_ops = {
231	.config = tegra_pwm_config,
232	.enable = tegra_pwm_enable,
233	.disable = tegra_pwm_disable,
234	.owner = THIS_MODULE,
235};
236
237static int tegra_pwm_probe(struct platform_device *pdev)
238{
239	struct tegra_pwm_chip *pwm;
 
240	int ret;
241
242	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
243	if (!pwm)
244		return -ENOMEM;
245
246	pwm->soc = of_device_get_match_data(&pdev->dev);
247	pwm->dev = &pdev->dev;
248
249	pwm->regs = devm_platform_ioremap_resource(pdev, 0);
250	if (IS_ERR(pwm->regs))
251		return PTR_ERR(pwm->regs);
 
252
253	platform_set_drvdata(pdev, pwm);
254
255	pwm->clk = devm_clk_get(&pdev->dev, NULL);
256	if (IS_ERR(pwm->clk))
257		return PTR_ERR(pwm->clk);
258
259	/* Set maximum frequency of the IP */
260	ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
261	if (ret < 0) {
262		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
263		return ret;
264	}
265
266	/*
267	 * The requested and configured frequency may differ due to
268	 * clock register resolutions. Get the configured frequency
269	 * so that PWM period can be calculated more accurately.
270	 */
271	pwm->clk_rate = clk_get_rate(pwm->clk);
272
273	/* Set minimum limit of PWM period for the IP */
274	pwm->min_period_ns =
275	    (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
276
277	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
278	if (IS_ERR(pwm->rst)) {
279		ret = PTR_ERR(pwm->rst);
280		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
281		return ret;
282	}
283
284	reset_control_deassert(pwm->rst);
285
286	pwm->chip.dev = &pdev->dev;
287	pwm->chip.ops = &tegra_pwm_ops;
288	pwm->chip.npwm = pwm->soc->num_channels;
 
289
290	ret = pwmchip_add(&pwm->chip);
291	if (ret < 0) {
292		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
293		reset_control_assert(pwm->rst);
294		return ret;
295	}
296
297	return 0;
298}
299
300static int tegra_pwm_remove(struct platform_device *pdev)
301{
302	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
 
303
304	pwmchip_remove(&pc->chip);
 
305
306	reset_control_assert(pc->rst);
 
307
308	return 0;
309}
 
 
 
310
311#ifdef CONFIG_PM_SLEEP
312static int tegra_pwm_suspend(struct device *dev)
313{
314	return pinctrl_pm_select_sleep_state(dev);
315}
316
317static int tegra_pwm_resume(struct device *dev)
318{
319	return pinctrl_pm_select_default_state(dev);
320}
321#endif
322
323static const struct tegra_pwm_soc tegra20_pwm_soc = {
324	.num_channels = 4,
325	.max_frequency = 48000000UL,
326};
327
328static const struct tegra_pwm_soc tegra186_pwm_soc = {
329	.num_channels = 1,
330	.max_frequency = 102000000UL,
331};
332
333static const struct tegra_pwm_soc tegra194_pwm_soc = {
334	.num_channels = 1,
335	.max_frequency = 408000000UL,
336};
337
338static const struct of_device_id tegra_pwm_of_match[] = {
339	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
340	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
341	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
342	{ }
343};
 
344MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
345
346static const struct dev_pm_ops tegra_pwm_pm_ops = {
347	SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
348};
349
350static struct platform_driver tegra_pwm_driver = {
351	.driver = {
352		.name = "tegra-pwm",
353		.of_match_table = tegra_pwm_of_match,
354		.pm = &tegra_pwm_pm_ops,
355	},
356	.probe = tegra_pwm_probe,
357	.remove = tegra_pwm_remove,
358};
359
360module_platform_driver(tegra_pwm_driver);
361
362MODULE_LICENSE("GPL");
363MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
364MODULE_DESCRIPTION("Tegra PWM controller driver");
365MODULE_ALIAS("platform:tegra-pwm");