Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (c) 2009, Microsoft Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * Authors:
  17 *   Haiyang Zhang <haiyangz@microsoft.com>
  18 *   Hank Janssen  <hjanssen@microsoft.com>
  19 */
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/init.h>
  23#include <linux/atomic.h>
 
  24#include <linux/module.h>
  25#include <linux/highmem.h>
  26#include <linux/device.h>
  27#include <linux/io.h>
  28#include <linux/delay.h>
  29#include <linux/netdevice.h>
  30#include <linux/inetdevice.h>
  31#include <linux/etherdevice.h>
 
  32#include <linux/skbuff.h>
  33#include <linux/if_vlan.h>
  34#include <linux/in.h>
  35#include <linux/slab.h>
 
 
 
 
  36#include <net/arp.h>
  37#include <net/route.h>
  38#include <net/sock.h>
  39#include <net/pkt_sched.h>
 
 
  40
  41#include "hyperv_net.h"
  42
 
  43
  44#define RING_SIZE_MIN 64
  45#define LINKCHANGE_INT (2 * HZ)
  46#define NETVSC_HW_FEATURES	(NETIF_F_RXCSUM | \
  47				 NETIF_F_SG | \
  48				 NETIF_F_TSO | \
  49				 NETIF_F_TSO6 | \
  50				 NETIF_F_HW_CSUM)
  51static int ring_size = 128;
  52module_param(ring_size, int, S_IRUGO);
  53MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  54
  55static int max_num_vrss_chns = 8;
 
 
 
  56
  57static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  58				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  59				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  60				NETIF_MSG_TX_ERR;
  61
  62static int debug = -1;
  63module_param(debug, int, S_IRUGO);
  64MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  65
  66static void do_set_multicast(struct work_struct *w)
 
 
  67{
  68	struct net_device_context *ndevctx =
  69		container_of(w, struct net_device_context, work);
  70	struct netvsc_device *nvdev;
  71	struct rndis_device *rdev;
  72
  73	nvdev = hv_get_drvdata(ndevctx->device_ctx);
  74	if (nvdev == NULL || nvdev->ndev == NULL)
  75		return;
  76
  77	rdev = nvdev->extension;
  78	if (rdev == NULL)
  79		return;
 
  80
  81	if (nvdev->ndev->flags & IFF_PROMISC)
  82		rndis_filter_set_packet_filter(rdev,
  83			NDIS_PACKET_TYPE_PROMISCUOUS);
  84	else
  85		rndis_filter_set_packet_filter(rdev,
  86			NDIS_PACKET_TYPE_BROADCAST |
  87			NDIS_PACKET_TYPE_ALL_MULTICAST |
  88			NDIS_PACKET_TYPE_DIRECTED);
  89}
  90
  91static void netvsc_set_multicast_list(struct net_device *net)
  92{
  93	struct net_device_context *net_device_ctx = netdev_priv(net);
 
 
  94
  95	schedule_work(&net_device_ctx->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
  97
  98static int netvsc_open(struct net_device *net)
  99{
 100	struct net_device_context *net_device_ctx = netdev_priv(net);
 101	struct hv_device *device_obj = net_device_ctx->device_ctx;
 102	struct netvsc_device *nvdev;
 103	struct rndis_device *rdev;
 104	int ret = 0;
 105
 106	netif_carrier_off(net);
 107
 108	/* Open up the device */
 109	ret = rndis_filter_open(device_obj);
 110	if (ret != 0) {
 111		netdev_err(net, "unable to open device (ret %d).\n", ret);
 112		return ret;
 113	}
 114
 115	netif_tx_wake_all_queues(net);
 116
 117	nvdev = hv_get_drvdata(device_obj);
 118	rdev = nvdev->extension;
 119	if (!rdev->link_state)
 120		netif_carrier_on(net);
 
 
 121
 122	return ret;
 
 
 
 
 
 
 
 
 
 
 
 123}
 124
 125static int netvsc_close(struct net_device *net)
 126{
 127	struct net_device_context *net_device_ctx = netdev_priv(net);
 128	struct hv_device *device_obj = net_device_ctx->device_ctx;
 129	struct netvsc_device *nvdev = hv_get_drvdata(device_obj);
 130	int ret;
 131	u32 aread, awrite, i, msec = 10, retry = 0, retry_max = 20;
 132	struct vmbus_channel *chn;
 133
 134	netif_tx_disable(net);
 135
 136	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
 137	cancel_work_sync(&net_device_ctx->work);
 138	ret = rndis_filter_close(device_obj);
 139	if (ret != 0) {
 140		netdev_err(net, "unable to close device (ret %d).\n", ret);
 141		return ret;
 142	}
 143
 144	/* Ensure pending bytes in ring are read */
 145	while (true) {
 146		aread = 0;
 
 147		for (i = 0; i < nvdev->num_chn; i++) {
 148			chn = nvdev->chn_table[i];
 
 
 149			if (!chn)
 150				continue;
 151
 152			hv_get_ringbuffer_availbytes(&chn->inbound, &aread,
 153						     &awrite);
 154
 
 155			if (aread)
 156				break;
 157
 158			hv_get_ringbuffer_availbytes(&chn->outbound, &aread,
 159						     &awrite);
 160
 161			if (aread)
 162				break;
 163		}
 164
 165		retry++;
 166		if (retry > retry_max || aread == 0)
 167			break;
 168
 169		msleep(msec);
 
 170
 171		if (msec < 1000)
 172			msec *= 2;
 173	}
 
 174
 175	if (aread) {
 176		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 177		ret = -ETIMEDOUT;
 
 
 
 178	}
 179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180	return ret;
 181}
 182
 183static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
 184				int pkt_type)
 185{
 186	struct rndis_packet *rndis_pkt;
 187	struct rndis_per_packet_info *ppi;
 188
 189	rndis_pkt = &msg->msg.pkt;
 190	rndis_pkt->data_offset += ppi_size;
 191
 192	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
 193		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
 194
 195	ppi->size = ppi_size;
 196	ppi->type = pkt_type;
 
 197	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 198
 199	rndis_pkt->per_pkt_info_len += ppi_size;
 200
 201	return ppi;
 202}
 203
 204static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 205			void *accel_priv, select_queue_fallback_t fallback)
 
 
 
 
 206{
 207	struct net_device_context *net_device_ctx = netdev_priv(ndev);
 208	struct hv_device *hdev =  net_device_ctx->device_ctx;
 209	struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev);
 210	u32 hash;
 211	u16 q_idx = 0;
 212
 213	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
 214		return 0;
 215
 216	hash = skb_get_hash(skb);
 217	q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
 218		ndev->real_num_tx_queues;
 
 
 
 219
 220	if (!nvsc_dev->chn_table[q_idx])
 221		q_idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222
 223	return q_idx;
 224}
 225
 226static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
 227			struct hv_page_buffer *pb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 229	int j = 0;
 230
 231	/* Deal with compund pages by ignoring unused part
 232	 * of the page.
 233	 */
 234	page += (offset >> PAGE_SHIFT);
 235	offset &= ~PAGE_MASK;
 236
 237	while (len > 0) {
 238		unsigned long bytes;
 239
 240		bytes = PAGE_SIZE - offset;
 241		if (bytes > len)
 242			bytes = len;
 243		pb[j].pfn = page_to_pfn(page);
 244		pb[j].offset = offset;
 245		pb[j].len = bytes;
 246
 247		offset += bytes;
 248		len -= bytes;
 249
 250		if (offset == PAGE_SIZE && len) {
 251			page++;
 252			offset = 0;
 253			j++;
 254		}
 255	}
 256
 257	return j + 1;
 258}
 259
 260static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 261			   struct hv_netvsc_packet *packet,
 262			   struct hv_page_buffer **page_buf)
 263{
 264	struct hv_page_buffer *pb = *page_buf;
 265	u32 slots_used = 0;
 266	char *data = skb->data;
 267	int frags = skb_shinfo(skb)->nr_frags;
 268	int i;
 269
 270	/* The packet is laid out thus:
 271	 * 1. hdr: RNDIS header and PPI
 272	 * 2. skb linear data
 273	 * 3. skb fragment data
 274	 */
 275	if (hdr != NULL)
 276		slots_used += fill_pg_buf(virt_to_page(hdr),
 277					offset_in_page(hdr),
 278					len, &pb[slots_used]);
 279
 280	packet->rmsg_size = len;
 281	packet->rmsg_pgcnt = slots_used;
 282
 283	slots_used += fill_pg_buf(virt_to_page(data),
 284				offset_in_page(data),
 285				skb_headlen(skb), &pb[slots_used]);
 
 286
 287	for (i = 0; i < frags; i++) {
 288		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 289
 290		slots_used += fill_pg_buf(skb_frag_page(frag),
 291					frag->page_offset,
 292					skb_frag_size(frag), &pb[slots_used]);
 
 293	}
 294	return slots_used;
 295}
 296
 297static int count_skb_frag_slots(struct sk_buff *skb)
 298{
 299	int i, frags = skb_shinfo(skb)->nr_frags;
 300	int pages = 0;
 301
 302	for (i = 0; i < frags; i++) {
 303		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 304		unsigned long size = skb_frag_size(frag);
 305		unsigned long offset = frag->page_offset;
 306
 307		/* Skip unused frames from start of page */
 308		offset &= ~PAGE_MASK;
 309		pages += PFN_UP(offset + size);
 310	}
 311	return pages;
 312}
 313
 314static int netvsc_get_slots(struct sk_buff *skb)
 315{
 316	char *data = skb->data;
 317	unsigned int offset = offset_in_page(data);
 318	unsigned int len = skb_headlen(skb);
 319	int slots;
 320	int frag_slots;
 321
 322	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
 323	frag_slots = count_skb_frag_slots(skb);
 324	return slots + frag_slots;
 325}
 326
 327static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
 328{
 329	u32 ret_val = TRANSPORT_INFO_NOT_IP;
 
 330
 331	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
 332		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
 333		goto not_ip;
 
 
 
 
 
 
 
 
 334	}
 335
 336	*trans_off = skb_transport_offset(skb);
 
 337
 338	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
 339		struct iphdr *iphdr = ip_hdr(skb);
 
 
 
 
 
 340
 341		if (iphdr->protocol == IPPROTO_TCP)
 342			ret_val = TRANSPORT_INFO_IPV4_TCP;
 343		else if (iphdr->protocol == IPPROTO_UDP)
 344			ret_val = TRANSPORT_INFO_IPV4_UDP;
 
 
 
 
 
 
 
 
 345	} else {
 346		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 347			ret_val = TRANSPORT_INFO_IPV6_TCP;
 348		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
 349			ret_val = TRANSPORT_INFO_IPV6_UDP;
 350	}
 351
 352not_ip:
 353	return ret_val;
 354}
 355
 356static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
 357{
 358	struct net_device_context *net_device_ctx = netdev_priv(net);
 359	struct hv_netvsc_packet *packet = NULL;
 360	int ret;
 361	unsigned int num_data_pgs;
 362	struct rndis_message *rndis_msg;
 363	struct rndis_packet *rndis_pkt;
 364	u32 rndis_msg_size;
 365	bool isvlan;
 366	bool linear = false;
 367	struct rndis_per_packet_info *ppi;
 368	struct ndis_tcp_ip_checksum_info *csum_info;
 369	struct ndis_tcp_lso_info *lso_info;
 370	int  hdr_offset;
 371	u32 net_trans_info;
 372	u32 hash;
 373	u32 skb_length;
 374	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
 375	struct hv_page_buffer *pb = page_buf;
 376	struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
 
 
 
 
 
 
 
 377
 378	/* We will atmost need two pages to describe the rndis
 379	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 380	 * of pages in a single packet. If skb is scattered around
 381	 * more pages we try linearizing it.
 382	 */
 383
 384check_size:
 385	skb_length = skb->len;
 386	num_data_pgs = netvsc_get_slots(skb) + 2;
 387	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
 388		net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
 389				      num_data_pgs, skb->len);
 390		ret = -EFAULT;
 391		goto drop;
 392	} else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 393		if (skb_linearize(skb)) {
 394			net_alert_ratelimited("failed to linearize skb\n");
 395			ret = -ENOMEM;
 
 396			goto drop;
 397		}
 398		linear = true;
 399		goto check_size;
 400	}
 401
 402	/*
 403	 * Place the rndis header in the skb head room and
 404	 * the skb->cb will be used for hv_netvsc_packet
 405	 * structure.
 406	 */
 407	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 408	if (ret) {
 409		netdev_err(net, "unable to alloc hv_netvsc_packet\n");
 410		ret = -ENOMEM;
 411		goto drop;
 412	}
 413	/* Use the skb control buffer for building up the packet */
 414	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 415			FIELD_SIZEOF(struct sk_buff, cb));
 416	packet = (struct hv_netvsc_packet *)skb->cb;
 417
 418
 419	packet->q_idx = skb_get_queue_mapping(skb);
 420
 421	packet->total_data_buflen = skb->len;
 
 
 422
 423	rndis_msg = (struct rndis_message *)skb->head;
 424
 425	memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
 426
 427	isvlan = skb->vlan_tci & VLAN_TAG_PRESENT;
 428
 429	/* Add the rndis header */
 430	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 431	rndis_msg->msg_len = packet->total_data_buflen;
 432	rndis_pkt = &rndis_msg->msg.pkt;
 433	rndis_pkt->data_offset = sizeof(struct rndis_packet);
 434	rndis_pkt->data_len = packet->total_data_buflen;
 435	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
 
 
 436
 437	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 438
 439	hash = skb_get_hash_raw(skb);
 440	if (hash != 0 && net->real_num_tx_queues > 1) {
 441		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 442		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 443				    NBL_HASH_VALUE);
 444		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
 445	}
 446
 447	if (isvlan) {
 448		struct ndis_pkt_8021q_info *vlan;
 449
 450		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 451		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 452					IEEE_8021Q_INFO);
 453		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
 454						ppi->ppi_offset);
 455		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
 456		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
 457				VLAN_PRIO_SHIFT;
 458	}
 459
 460	net_trans_info = get_net_transport_info(skb, &hdr_offset);
 461	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
 462		goto do_send;
 463
 464	/*
 465	 * Setup the sendside checksum offload only if this is not a
 466	 * GSO packet.
 467	 */
 468	if (skb_is_gso(skb))
 469		goto do_lso;
 470
 471	if ((skb->ip_summed == CHECKSUM_NONE) ||
 472	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
 473		goto do_send;
 474
 475	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 476	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 477			    TCPIP_CHKSUM_PKTINFO);
 478
 479	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
 480			ppi->ppi_offset);
 481
 482	if (net_trans_info & (INFO_IPV4 << 16))
 483		csum_info->transmit.is_ipv4 = 1;
 484	else
 485		csum_info->transmit.is_ipv6 = 1;
 
 
 
 
 
 
 
 
 486
 487	if (net_trans_info & INFO_TCP) {
 488		csum_info->transmit.tcp_checksum = 1;
 489		csum_info->transmit.tcp_header_offset = hdr_offset;
 490	} else if (net_trans_info & INFO_UDP) {
 491		/* UDP checksum offload is not supported on ws2008r2.
 492		 * Furthermore, on ws2012 and ws2012r2, there are some
 493		 * issues with udp checksum offload from Linux guests.
 494		 * (these are host issues).
 495		 * For now compute the checksum here.
 496		 */
 497		struct udphdr *uh;
 498		u16 udp_len;
 499
 500		ret = skb_cow_head(skb, 0);
 501		if (ret)
 502			goto drop;
 503
 504		uh = udp_hdr(skb);
 505		udp_len = ntohs(uh->len);
 506		uh->check = 0;
 507		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
 508					      ip_hdr(skb)->daddr,
 509					      udp_len, IPPROTO_UDP,
 510					      csum_partial(uh, udp_len, 0));
 511		if (uh->check == 0)
 512			uh->check = CSUM_MANGLED_0;
 513
 514		csum_info->transmit.udp_checksum = 0;
 515	}
 516	goto do_send;
 517
 518do_lso:
 519	rndis_msg_size += NDIS_LSO_PPI_SIZE;
 520	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 521			    TCP_LARGESEND_PKTINFO);
 522
 523	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
 524			ppi->ppi_offset);
 525
 526	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 527	if (net_trans_info & (INFO_IPV4 << 16)) {
 528		lso_info->lso_v2_transmit.ip_version =
 529			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 530		ip_hdr(skb)->tot_len = 0;
 531		ip_hdr(skb)->check = 0;
 532		tcp_hdr(skb)->check =
 533		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 534				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 535	} else {
 536		lso_info->lso_v2_transmit.ip_version =
 537			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 538		ipv6_hdr(skb)->payload_len = 0;
 539		tcp_hdr(skb)->check =
 540		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 541				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542	}
 543	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
 544	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 545
 546do_send:
 547	/* Start filling in the page buffers with the rndis hdr */
 548	rndis_msg->msg_len += rndis_msg_size;
 549	packet->total_data_buflen = rndis_msg->msg_len;
 550	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 551					       skb, packet, &pb);
 552
 553	/* timestamp packet in software */
 554	skb_tx_timestamp(skb);
 555	ret = netvsc_send(net_device_ctx->device_ctx, packet,
 556			  rndis_msg, &pb, skb);
 557
 558drop:
 559	if (ret == 0) {
 560		u64_stats_update_begin(&tx_stats->syncp);
 561		tx_stats->packets++;
 562		tx_stats->bytes += skb_length;
 563		u64_stats_update_end(&tx_stats->syncp);
 564	} else {
 565		if (ret != -EAGAIN) {
 566			dev_kfree_skb_any(skb);
 567			net->stats.tx_dropped++;
 568		}
 569	}
 570
 571	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572}
 573
 574/*
 575 * netvsc_linkstatus_callback - Link up/down notification
 576 */
 577void netvsc_linkstatus_callback(struct hv_device *device_obj,
 578				struct rndis_message *resp)
 
 579{
 580	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 581	struct net_device *net;
 582	struct net_device_context *ndev_ctx;
 583	struct netvsc_device *net_device;
 584	struct netvsc_reconfig *event;
 585	unsigned long flags;
 586
 587	/* Handle link change statuses only */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 589	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 590	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 591		return;
 592
 593	net_device = hv_get_drvdata(device_obj);
 594	net = net_device->ndev;
 595
 596	if (!net || net->reg_state != NETREG_REGISTERED)
 597		return;
 598
 599	ndev_ctx = netdev_priv(net);
 600
 601	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 602	if (!event)
 603		return;
 604	event->event = indicate->status;
 605
 606	spin_lock_irqsave(&ndev_ctx->lock, flags);
 607	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 608	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 609
 610	schedule_delayed_work(&ndev_ctx->dwork, 0);
 611}
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613/*
 614 * netvsc_recv_callback -  Callback when we receive a packet from the
 615 * "wire" on the specified device.
 616 */
 617int netvsc_recv_callback(struct hv_device *device_obj,
 618				struct hv_netvsc_packet *packet,
 619				void **data,
 620				struct ndis_tcp_ip_checksum_info *csum_info,
 621				struct vmbus_channel *channel,
 622				u16 vlan_tci)
 623{
 624	struct net_device *net;
 625	struct net_device_context *net_device_ctx;
 
 626	struct sk_buff *skb;
 627	struct netvsc_stats *rx_stats;
 
 
 628
 629	net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev;
 630	if (!net || net->reg_state != NETREG_REGISTERED) {
 631		return NVSP_STAT_FAIL;
 
 
 
 
 
 
 
 
 
 632	}
 633	net_device_ctx = netdev_priv(net);
 634	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
 635
 636	/* Allocate a skb - TODO direct I/O to pages? */
 637	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
 
 638	if (unlikely(!skb)) {
 639		++net->stats.rx_dropped;
 640		return NVSP_STAT_FAIL;
 641	}
 642
 
 
 643	/*
 644	 * Copy to skb. This copy is needed here since the memory pointed by
 645	 * hv_netvsc_packet cannot be deallocated
 
 646	 */
 647	memcpy(skb_put(skb, packet->total_data_buflen), *data,
 648		packet->total_data_buflen);
 649
 650	skb->protocol = eth_type_trans(skb, net);
 651	if (csum_info) {
 652		/* We only look at the IP checksum here.
 653		 * Should we be dropping the packet if checksum
 654		 * failed? How do we deal with other checksums - TCP/UDP?
 655		 */
 656		if (csum_info->receive.ip_checksum_succeeded)
 657			skb->ip_summed = CHECKSUM_UNNECESSARY;
 658		else
 659			skb->ip_summed = CHECKSUM_NONE;
 660	}
 661
 662	if (vlan_tci & VLAN_TAG_PRESENT)
 663		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 664				       vlan_tci);
 665
 666	skb_record_rx_queue(skb, channel->
 667			    offermsg.offer.sub_channel_index);
 668
 669	u64_stats_update_begin(&rx_stats->syncp);
 670	rx_stats->packets++;
 671	rx_stats->bytes += packet->total_data_buflen;
 
 
 
 
 
 672	u64_stats_update_end(&rx_stats->syncp);
 673
 674	/*
 675	 * Pass the skb back up. Network stack will deallocate the skb when it
 676	 * is done.
 677	 * TODO - use NAPI?
 678	 */
 679	netif_rx(skb);
 680
 681	return 0;
 
 682}
 683
 684static void netvsc_get_drvinfo(struct net_device *net,
 685			       struct ethtool_drvinfo *info)
 686{
 687	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 688	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 689}
 690
 691static void netvsc_get_channels(struct net_device *net,
 692				struct ethtool_channels *channel)
 693{
 694	struct net_device_context *net_device_ctx = netdev_priv(net);
 695	struct hv_device *dev = net_device_ctx->device_ctx;
 696	struct netvsc_device *nvdev = hv_get_drvdata(dev);
 697
 698	if (nvdev) {
 699		channel->max_combined	= nvdev->max_chn;
 700		channel->combined_count = nvdev->num_chn;
 701	}
 702}
 703
 704static int netvsc_set_channels(struct net_device *net,
 705			       struct ethtool_channels *channels)
 
 
 
 706{
 707	struct net_device_context *net_device_ctx = netdev_priv(net);
 708	struct hv_device *dev = net_device_ctx->device_ctx;
 709	struct netvsc_device *nvdev = hv_get_drvdata(dev);
 710	struct netvsc_device_info device_info;
 711	u32 num_chn;
 712	u32 max_chn;
 713	int ret = 0;
 714	bool recovering = false;
 715
 716	if (!nvdev || nvdev->destroy)
 717		return -ENODEV;
 718
 719	num_chn = nvdev->num_chn;
 720	max_chn = min_t(u32, nvdev->max_chn, num_online_cpus());
 721
 722	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) {
 723		pr_info("vRSS unsupported before NVSP Version 5\n");
 724		return -EINVAL;
 725	}
 726
 727	/* We do not support rx, tx, or other */
 728	if (!channels ||
 729	    channels->rx_count ||
 730	    channels->tx_count ||
 731	    channels->other_count ||
 732	    (channels->combined_count < 1))
 733		return -EINVAL;
 734
 735	if (channels->combined_count > max_chn) {
 736		pr_info("combined channels too high, using %d\n", max_chn);
 737		channels->combined_count = max_chn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738	}
 739
 740	ret = netvsc_close(net);
 741	if (ret)
 742		goto out;
 743
 744 do_set:
 745	nvdev->start_remove = true;
 746	rndis_filter_device_remove(dev);
 
 
 
 
 747
 748	nvdev->num_chn = channels->combined_count;
 
 749
 750	net_device_ctx->device_ctx = dev;
 751	hv_set_drvdata(dev, net);
 
 
 
 
 752
 753	memset(&device_info, 0, sizeof(device_info));
 754	device_info.num_chn = nvdev->num_chn; /* passed to RNDIS */
 755	device_info.ring_size = ring_size;
 756	device_info.max_num_vrss_chns = max_num_vrss_chns;
 
 
 
 
 
 
 
 
 
 
 
 
 757
 758	ret = rndis_filter_device_add(dev, &device_info);
 759	if (ret) {
 760		if (recovering) {
 761			netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
 762			return ret;
 763		}
 764		goto recover;
 765	}
 766
 767	nvdev = hv_get_drvdata(dev);
 768
 769	ret = netif_set_real_num_tx_queues(net, nvdev->num_chn);
 770	if (ret) {
 771		if (recovering) {
 772			netdev_err(net, "could not set tx queue count (ret %d)\n", ret);
 773			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774		}
 775		goto recover;
 776	}
 777
 778	ret = netif_set_real_num_rx_queues(net, nvdev->num_chn);
 779	if (ret) {
 780		if (recovering) {
 781			netdev_err(net, "could not set rx queue count (ret %d)\n", ret);
 782			return ret;
 
 
 783		}
 784		goto recover;
 785	}
 786
 787 out:
 788	netvsc_open(net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789
 790	return ret;
 
 791
 792 recover:
 793	/* If the above failed, we attempt to recover through the same
 794	 * process but with the original number of channels.
 795	 */
 796	netdev_err(net, "could not set channels, recovering\n");
 797	recovering = true;
 798	channels->combined_count = num_chn;
 799	goto do_set;
 800}
 801
 802static bool netvsc_validate_ethtool_ss_cmd(const struct ethtool_cmd *cmd)
 803{
 804	struct ethtool_cmd diff1 = *cmd;
 805	struct ethtool_cmd diff2 = {};
 806
 807	ethtool_cmd_speed_set(&diff1, 0);
 808	diff1.duplex = 0;
 809	/* advertising and cmd are usually set */
 810	diff1.advertising = 0;
 811	diff1.cmd = 0;
 812	/* We set port to PORT_OTHER */
 813	diff2.port = PORT_OTHER;
 814
 815	return !memcmp(&diff1, &diff2, sizeof(diff1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816}
 817
 818static void netvsc_init_settings(struct net_device *dev)
 819{
 820	struct net_device_context *ndc = netdev_priv(dev);
 821
 
 
 822	ndc->speed = SPEED_UNKNOWN;
 823	ndc->duplex = DUPLEX_UNKNOWN;
 
 
 824}
 825
 826static int netvsc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
 827{
 828	struct net_device_context *ndc = netdev_priv(dev);
 
 
 
 
 
 
 829
 830	ethtool_cmd_speed_set(cmd, ndc->speed);
 831	cmd->duplex = ndc->duplex;
 832	cmd->port = PORT_OTHER;
 833
 834	return 0;
 835}
 836
 837static int netvsc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
 838{
 839	struct net_device_context *ndc = netdev_priv(dev);
 840	u32 speed;
 841
 842	speed = ethtool_cmd_speed(cmd);
 843	if (!ethtool_validate_speed(speed) ||
 844	    !ethtool_validate_duplex(cmd->duplex) ||
 845	    !netvsc_validate_ethtool_ss_cmd(cmd))
 846		return -EINVAL;
 847
 848	ndc->speed = speed;
 849	ndc->duplex = cmd->duplex;
 
 850
 851	return 0;
 
 852}
 853
 854static int netvsc_change_mtu(struct net_device *ndev, int mtu)
 855{
 856	struct net_device_context *ndevctx = netdev_priv(ndev);
 857	struct hv_device *hdev =  ndevctx->device_ctx;
 858	struct netvsc_device *nvdev = hv_get_drvdata(hdev);
 859	struct netvsc_device_info device_info;
 860	int limit = ETH_DATA_LEN;
 861	u32 num_chn;
 862	int ret = 0;
 863
 864	if (nvdev == NULL || nvdev->destroy)
 865		return -ENODEV;
 866
 867	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
 868		limit = NETVSC_MTU - ETH_HLEN;
 869
 870	if (mtu < NETVSC_MTU_MIN || mtu > limit)
 871		return -EINVAL;
 872
 873	ret = netvsc_close(ndev);
 
 
 
 
 
 
 
 874	if (ret)
 
 
 
 
 
 
 875		goto out;
 876
 877	num_chn = nvdev->num_chn;
 
 878
 879	nvdev->start_remove = true;
 880	rndis_filter_device_remove(hdev);
 
 
 
 881
 882	ndev->mtu = mtu;
 
 
 
 883
 884	ndevctx->device_ctx = hdev;
 885	hv_set_drvdata(hdev, ndev);
 
 
 
 886
 887	memset(&device_info, 0, sizeof(device_info));
 888	device_info.ring_size = ring_size;
 889	device_info.num_chn = num_chn;
 890	device_info.max_num_vrss_chns = max_num_vrss_chns;
 891	rndis_filter_device_add(hdev, &device_info);
 892
 893out:
 894	netvsc_open(ndev);
 
 
 
 895
 896	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 897}
 898
 899static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
 900						    struct rtnl_link_stats64 *t)
 901{
 902	struct net_device_context *ndev_ctx = netdev_priv(net);
 903	int cpu;
 
 904
 905	for_each_possible_cpu(cpu) {
 906		struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
 907							    cpu);
 908		struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
 909							    cpu);
 910		u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
 911		unsigned int start;
 912
 913		do {
 914			start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
 915			tx_packets = tx_stats->packets;
 916			tx_bytes = tx_stats->bytes;
 917		} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 
 919		do {
 920			start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
 921			rx_packets = rx_stats->packets;
 922			rx_bytes = rx_stats->bytes;
 923		} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
 
 
 
 924
 925		t->tx_bytes	+= tx_bytes;
 926		t->tx_packets	+= tx_packets;
 927		t->rx_bytes	+= rx_bytes;
 928		t->rx_packets	+= rx_packets;
 
 
 
 
 
 929	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 930
 931	t->tx_dropped	= net->stats.tx_dropped;
 932	t->tx_errors	= net->stats.tx_dropped;
 
 
 
 
 933
 934	t->rx_dropped	= net->stats.rx_dropped;
 935	t->rx_errors	= net->stats.rx_errors;
 936
 937	return t;
 
 
 
 
 
 
 
 
 
 
 
 
 
 938}
 939
 940static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
 941{
 942	struct net_device_context *ndevctx = netdev_priv(ndev);
 943	struct hv_device *hdev =  ndevctx->device_ctx;
 
 944	struct sockaddr *addr = p;
 945	char save_adr[ETH_ALEN];
 946	unsigned char save_aatype;
 947	int err;
 948
 949	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
 950	save_aatype = ndev->addr_assign_type;
 951
 952	err = eth_mac_addr(ndev, p);
 953	if (err != 0)
 954		return err;
 955
 956	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
 957	if (err != 0) {
 958		/* roll back to saved MAC */
 959		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
 960		ndev->addr_assign_type = save_aatype;
 
 
 
 
 
 
 
 
 
 
 
 961	}
 962
 963	return err;
 964}
 965
 966#ifdef CONFIG_NET_POLL_CONTROLLER
 967static void netvsc_poll_controller(struct net_device *net)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968{
 969	/* As netvsc_start_xmit() works synchronous we don't have to
 970	 * trigger anything here.
 971	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972}
 973#endif
 974
 975static const struct ethtool_ops ethtool_ops = {
 976	.get_drvinfo	= netvsc_get_drvinfo,
 
 
 
 
 977	.get_link	= ethtool_op_get_link,
 
 
 
 978	.get_channels   = netvsc_get_channels,
 979	.set_channels   = netvsc_set_channels,
 980	.get_ts_info	= ethtool_op_get_ts_info,
 981	.get_settings	= netvsc_get_settings,
 982	.set_settings	= netvsc_set_settings,
 
 
 
 
 
 
 
 
 983};
 984
 985static const struct net_device_ops device_ops = {
 986	.ndo_open =			netvsc_open,
 987	.ndo_stop =			netvsc_close,
 988	.ndo_start_xmit =		netvsc_start_xmit,
 989	.ndo_set_rx_mode =		netvsc_set_multicast_list,
 
 
 
 990	.ndo_change_mtu =		netvsc_change_mtu,
 991	.ndo_validate_addr =		eth_validate_addr,
 992	.ndo_set_mac_address =		netvsc_set_mac_addr,
 993	.ndo_select_queue =		netvsc_select_queue,
 994	.ndo_get_stats64 =		netvsc_get_stats64,
 995#ifdef CONFIG_NET_POLL_CONTROLLER
 996	.ndo_poll_controller =		netvsc_poll_controller,
 997#endif
 998};
 999
1000/*
1001 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1002 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1003 * present send GARP packet to network peers with netif_notify_peers().
1004 */
1005static void netvsc_link_change(struct work_struct *w)
1006{
1007	struct net_device_context *ndev_ctx;
1008	struct net_device *net;
 
 
 
 
1009	struct netvsc_device *net_device;
1010	struct rndis_device *rdev;
1011	struct netvsc_reconfig *event = NULL;
1012	bool notify = false, reschedule = false;
1013	unsigned long flags, next_reconfig, delay;
 
 
 
 
 
 
 
 
1014
1015	ndev_ctx = container_of(w, struct net_device_context, dwork.work);
1016	net_device = hv_get_drvdata(ndev_ctx->device_ctx);
1017	rdev = net_device->extension;
1018	net = net_device->ndev;
1019
1020	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1021	if (time_is_after_jiffies(next_reconfig)) {
1022		/* link_watch only sends one notification with current state
1023		 * per second, avoid doing reconfig more frequently. Handle
1024		 * wrap around.
1025		 */
1026		delay = next_reconfig - jiffies;
1027		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1028		schedule_delayed_work(&ndev_ctx->dwork, delay);
1029		return;
1030	}
1031	ndev_ctx->last_reconfig = jiffies;
1032
1033	spin_lock_irqsave(&ndev_ctx->lock, flags);
1034	if (!list_empty(&ndev_ctx->reconfig_events)) {
1035		event = list_first_entry(&ndev_ctx->reconfig_events,
1036					 struct netvsc_reconfig, list);
1037		list_del(&event->list);
1038		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1039	}
1040	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1041
1042	if (!event)
1043		return;
1044
1045	rtnl_lock();
1046
1047	switch (event->event) {
1048		/* Only the following events are possible due to the check in
1049		 * netvsc_linkstatus_callback()
1050		 */
1051	case RNDIS_STATUS_MEDIA_CONNECT:
1052		if (rdev->link_state) {
1053			rdev->link_state = false;
1054			netif_carrier_on(net);
1055			netif_tx_wake_all_queues(net);
1056		} else {
1057			notify = true;
1058		}
1059		kfree(event);
1060		break;
1061	case RNDIS_STATUS_MEDIA_DISCONNECT:
1062		if (!rdev->link_state) {
1063			rdev->link_state = true;
1064			netif_carrier_off(net);
1065			netif_tx_stop_all_queues(net);
1066		}
1067		kfree(event);
1068		break;
1069	case RNDIS_STATUS_NETWORK_CHANGE:
1070		/* Only makes sense if carrier is present */
1071		if (!rdev->link_state) {
1072			rdev->link_state = true;
1073			netif_carrier_off(net);
1074			netif_tx_stop_all_queues(net);
1075			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1076			spin_lock_irqsave(&ndev_ctx->lock, flags);
1077			list_add_tail(&event->list, &ndev_ctx->reconfig_events);
1078			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1079			reschedule = true;
1080		}
1081		break;
1082	}
1083
1084	rtnl_unlock();
1085
1086	if (notify)
1087		netdev_notify_peers(net);
1088
1089	/* link_watch only sends one notification with current state per
1090	 * second, handle next reconfig event in 2 seconds.
1091	 */
1092	if (reschedule)
1093		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
 
 
 
 
 
1094}
1095
1096static void netvsc_free_netdev(struct net_device *netdev)
1097{
1098	struct net_device_context *net_device_ctx = netdev_priv(netdev);
 
 
 
 
 
1099
1100	free_percpu(net_device_ctx->tx_stats);
1101	free_percpu(net_device_ctx->rx_stats);
1102	free_netdev(netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103}
1104
1105static int netvsc_probe(struct hv_device *dev,
1106			const struct hv_vmbus_device_id *dev_id)
1107{
1108	struct net_device *net = NULL;
1109	struct net_device_context *net_device_ctx;
1110	struct netvsc_device_info device_info;
1111	struct netvsc_device *nvdev;
1112	int ret;
1113
1114	net = alloc_etherdev_mq(sizeof(struct net_device_context),
1115				num_online_cpus());
1116	if (!net)
1117		return -ENOMEM;
1118
1119	netif_carrier_off(net);
1120
 
 
1121	net_device_ctx = netdev_priv(net);
1122	net_device_ctx->device_ctx = dev;
1123	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1124	if (netif_msg_probe(net_device_ctx))
1125		netdev_dbg(net, "netvsc msg_enable: %d\n",
1126			   net_device_ctx->msg_enable);
1127
1128	net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1129	if (!net_device_ctx->tx_stats) {
1130		free_netdev(net);
1131		return -ENOMEM;
1132	}
1133	net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
1134	if (!net_device_ctx->rx_stats) {
1135		free_percpu(net_device_ctx->tx_stats);
1136		free_netdev(net);
1137		return -ENOMEM;
1138	}
1139
1140	hv_set_drvdata(dev, net);
 
1141	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1142	INIT_WORK(&net_device_ctx->work, do_set_multicast);
1143
1144	spin_lock_init(&net_device_ctx->lock);
1145	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
 
1146
1147	net->netdev_ops = &device_ops;
1148
1149	net->hw_features = NETVSC_HW_FEATURES;
1150	net->features = NETVSC_HW_FEATURES | NETIF_F_HW_VLAN_CTAG_TX;
1151
 
1152	net->ethtool_ops = &ethtool_ops;
1153	SET_NETDEV_DEV(net, &dev->device);
1154
1155	/* We always need headroom for rndis header */
1156	net->needed_headroom = RNDIS_AND_PPI_SIZE;
1157
 
 
 
 
 
 
1158	/* Notify the netvsc driver of the new device */
1159	memset(&device_info, 0, sizeof(device_info));
1160	device_info.ring_size = ring_size;
1161	device_info.max_num_vrss_chns = max_num_vrss_chns;
1162	ret = rndis_filter_device_add(dev, &device_info);
1163	if (ret != 0) {
 
 
 
 
 
1164		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1165		netvsc_free_netdev(net);
1166		hv_set_drvdata(dev, NULL);
1167		return ret;
1168	}
1169	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1170
1171	nvdev = hv_get_drvdata(dev);
1172	netif_set_real_num_tx_queues(net, nvdev->num_chn);
1173	netif_set_real_num_rx_queues(net, nvdev->num_chn);
1174
1175	netvsc_init_settings(net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176
1177	ret = register_netdev(net);
 
 
 
 
 
 
 
 
 
 
 
1178	if (ret != 0) {
1179		pr_err("Unable to register netdev.\n");
1180		rndis_filter_device_remove(dev);
1181		netvsc_free_netdev(net);
1182	}
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184	return ret;
1185}
1186
1187static int netvsc_remove(struct hv_device *dev)
1188{
1189	struct net_device *net;
1190	struct net_device_context *ndev_ctx;
1191	struct netvsc_device *net_device;
1192
1193	net_device = hv_get_drvdata(dev);
1194	net = net_device->ndev;
1195
 
1196	if (net == NULL) {
1197		dev_err(&dev->device, "No net device to remove\n");
1198		return 0;
1199	}
1200
1201	net_device->start_remove = true;
1202
1203	ndev_ctx = netdev_priv(net);
1204	cancel_delayed_work_sync(&ndev_ctx->dwork);
1205	cancel_work_sync(&ndev_ctx->work);
1206
1207	/* Stop outbound asap */
1208	netif_tx_disable(net);
1209
1210	unregister_netdev(net);
 
 
 
 
 
1211
1212	/*
1213	 * Call to the vsc driver to let it know that the device is being
1214	 * removed
1215	 */
1216	rndis_filter_device_remove(dev);
 
 
1217
1218	netvsc_free_netdev(net);
 
 
 
 
 
 
 
 
 
 
 
1219	return 0;
1220}
1221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222static const struct hv_vmbus_device_id id_table[] = {
1223	/* Network guid */
1224	{ HV_NIC_GUID, },
1225	{ },
1226};
1227
1228MODULE_DEVICE_TABLE(vmbus, id_table);
1229
1230/* The one and only one */
1231static struct  hv_driver netvsc_drv = {
1232	.name = KBUILD_MODNAME,
1233	.id_table = id_table,
1234	.probe = netvsc_probe,
1235	.remove = netvsc_remove,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236};
1237
1238static void __exit netvsc_drv_exit(void)
1239{
 
1240	vmbus_driver_unregister(&netvsc_drv);
1241}
1242
1243static int __init netvsc_drv_init(void)
1244{
 
 
1245	if (ring_size < RING_SIZE_MIN) {
1246		ring_size = RING_SIZE_MIN;
1247		pr_info("Increased ring_size to %d (min allowed)\n",
1248			ring_size);
1249	}
1250	return vmbus_driver_register(&netvsc_drv);
 
 
 
 
 
 
 
1251}
1252
1253MODULE_LICENSE("GPL");
1254MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1255
1256module_init(netvsc_drv_init);
1257module_exit(netvsc_drv_exit);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
  41
 
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
 
 
 
 
 
 
 
  44
  45static unsigned int ring_size __ro_after_init = 128;
  46module_param(ring_size, uint, 0444);
  47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  48unsigned int netvsc_ring_bytes __ro_after_init;
  49
  50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  51				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  52				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  53				NETIF_MSG_TX_ERR;
  54
  55static int debug = -1;
  56module_param(debug, int, 0444);
  57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  58
  59static LIST_HEAD(netvsc_dev_list);
  60
  61static void netvsc_change_rx_flags(struct net_device *net, int change)
  62{
  63	struct net_device_context *ndev_ctx = netdev_priv(net);
  64	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  65	int inc;
 
  66
  67	if (!vf_netdev)
 
  68		return;
  69
  70	if (change & IFF_PROMISC) {
  71		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  72		dev_set_promiscuity(vf_netdev, inc);
  73	}
  74
  75	if (change & IFF_ALLMULTI) {
  76		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  77		dev_set_allmulti(vf_netdev, inc);
  78	}
 
 
 
 
  79}
  80
  81static void netvsc_set_rx_mode(struct net_device *net)
  82{
  83	struct net_device_context *ndev_ctx = netdev_priv(net);
  84	struct net_device *vf_netdev;
  85	struct netvsc_device *nvdev;
  86
  87	rcu_read_lock();
  88	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  89	if (vf_netdev) {
  90		dev_uc_sync(vf_netdev, net);
  91		dev_mc_sync(vf_netdev, net);
  92	}
  93
  94	nvdev = rcu_dereference(ndev_ctx->nvdev);
  95	if (nvdev)
  96		rndis_filter_update(nvdev);
  97	rcu_read_unlock();
  98}
  99
 100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 101			     struct net_device *ndev)
 102{
 103	nvscdev->tx_disable = false;
 104	virt_wmb(); /* ensure queue wake up mechanism is on */
 105
 106	netif_tx_wake_all_queues(ndev);
 107}
 108
 109static int netvsc_open(struct net_device *net)
 110{
 111	struct net_device_context *ndev_ctx = netdev_priv(net);
 112	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 113	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 114	struct rndis_device *rdev;
 115	int ret = 0;
 116
 117	netif_carrier_off(net);
 118
 119	/* Open up the device */
 120	ret = rndis_filter_open(nvdev);
 121	if (ret != 0) {
 122		netdev_err(net, "unable to open device (ret %d).\n", ret);
 123		return ret;
 124	}
 125
 
 
 
 126	rdev = nvdev->extension;
 127	if (!rdev->link_state) {
 128		netif_carrier_on(net);
 129		netvsc_tx_enable(nvdev, net);
 130	}
 131
 132	if (vf_netdev) {
 133		/* Setting synthetic device up transparently sets
 134		 * slave as up. If open fails, then slave will be
 135		 * still be offline (and not used).
 136		 */
 137		ret = dev_open(vf_netdev, NULL);
 138		if (ret)
 139			netdev_warn(net,
 140				    "unable to open slave: %s: %d\n",
 141				    vf_netdev->name, ret);
 142	}
 143	return 0;
 144}
 145
 146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 147{
 148	unsigned int retry = 0;
 149	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150
 151	/* Ensure pending bytes in ring are read */
 152	for (;;) {
 153		u32 aread = 0;
 154
 155		for (i = 0; i < nvdev->num_chn; i++) {
 156			struct vmbus_channel *chn
 157				= nvdev->chan_table[i].channel;
 158
 159			if (!chn)
 160				continue;
 161
 162			/* make sure receive not running now */
 163			napi_synchronize(&nvdev->chan_table[i].napi);
 164
 165			aread = hv_get_bytes_to_read(&chn->inbound);
 166			if (aread)
 167				break;
 168
 169			aread = hv_get_bytes_to_read(&chn->outbound);
 
 
 170			if (aread)
 171				break;
 172		}
 173
 174		if (aread == 0)
 175			return 0;
 
 176
 177		if (++retry > RETRY_MAX)
 178			return -ETIMEDOUT;
 179
 180		usleep_range(RETRY_US_LO, RETRY_US_HI);
 
 181	}
 182}
 183
 184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 185			      struct net_device *ndev)
 186{
 187	if (nvscdev) {
 188		nvscdev->tx_disable = true;
 189		virt_wmb(); /* ensure txq will not wake up after stop */
 190	}
 191
 192	netif_tx_disable(ndev);
 193}
 194
 195static int netvsc_close(struct net_device *net)
 196{
 197	struct net_device_context *net_device_ctx = netdev_priv(net);
 198	struct net_device *vf_netdev
 199		= rtnl_dereference(net_device_ctx->vf_netdev);
 200	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 201	int ret;
 202
 203	netvsc_tx_disable(nvdev, net);
 204
 205	/* No need to close rndis filter if it is removed already */
 206	if (!nvdev)
 207		return 0;
 208
 209	ret = rndis_filter_close(nvdev);
 210	if (ret != 0) {
 211		netdev_err(net, "unable to close device (ret %d).\n", ret);
 212		return ret;
 213	}
 214
 215	ret = netvsc_wait_until_empty(nvdev);
 216	if (ret)
 217		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 218
 219	if (vf_netdev)
 220		dev_close(vf_netdev);
 221
 222	return ret;
 223}
 224
 225static inline void *init_ppi_data(struct rndis_message *msg,
 226				  u32 ppi_size, u32 pkt_type)
 227{
 228	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 229	struct rndis_per_packet_info *ppi;
 230
 
 231	rndis_pkt->data_offset += ppi_size;
 232	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 233		+ rndis_pkt->per_pkt_info_len;
 
 234
 235	ppi->size = ppi_size;
 236	ppi->type = pkt_type;
 237	ppi->internal = 0;
 238	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 239
 240	rndis_pkt->per_pkt_info_len += ppi_size;
 241
 242	return ppi + 1;
 243}
 244
 245/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 246 * packets. We can use ethtool to change UDP hash level when necessary.
 247 */
 248static inline u32 netvsc_get_hash(
 249	struct sk_buff *skb,
 250	const struct net_device_context *ndc)
 251{
 252	struct flow_keys flow;
 253	u32 hash, pkt_proto = 0;
 254	static u32 hashrnd __read_mostly;
 255
 256	net_get_random_once(&hashrnd, sizeof(hashrnd));
 257
 258	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 259		return 0;
 260
 261	switch (flow.basic.ip_proto) {
 262	case IPPROTO_TCP:
 263		if (flow.basic.n_proto == htons(ETH_P_IP))
 264			pkt_proto = HV_TCP4_L4HASH;
 265		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 266			pkt_proto = HV_TCP6_L4HASH;
 267
 268		break;
 269
 270	case IPPROTO_UDP:
 271		if (flow.basic.n_proto == htons(ETH_P_IP))
 272			pkt_proto = HV_UDP4_L4HASH;
 273		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 274			pkt_proto = HV_UDP6_L4HASH;
 275
 276		break;
 277	}
 278
 279	if (pkt_proto & ndc->l4_hash) {
 280		return skb_get_hash(skb);
 281	} else {
 282		if (flow.basic.n_proto == htons(ETH_P_IP))
 283			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 284		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 285			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 286		else
 287			return 0;
 288
 289		__skb_set_sw_hash(skb, hash, false);
 290	}
 291
 292	return hash;
 293}
 294
 295static inline int netvsc_get_tx_queue(struct net_device *ndev,
 296				      struct sk_buff *skb, int old_idx)
 297{
 298	const struct net_device_context *ndc = netdev_priv(ndev);
 299	struct sock *sk = skb->sk;
 300	int q_idx;
 301
 302	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 303			      (VRSS_SEND_TAB_SIZE - 1)];
 304
 305	/* If queue index changed record the new value */
 306	if (q_idx != old_idx &&
 307	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 308		sk_tx_queue_set(sk, q_idx);
 309
 310	return q_idx;
 311}
 312
 313/*
 314 * Select queue for transmit.
 315 *
 316 * If a valid queue has already been assigned, then use that.
 317 * Otherwise compute tx queue based on hash and the send table.
 318 *
 319 * This is basically similar to default (netdev_pick_tx) with the added step
 320 * of using the host send_table when no other queue has been assigned.
 321 *
 322 * TODO support XPS - but get_xps_queue not exported
 323 */
 324static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 325{
 326	int q_idx = sk_tx_queue_get(skb->sk);
 327
 328	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 329		/* If forwarding a packet, we use the recorded queue when
 330		 * available for better cache locality.
 331		 */
 332		if (skb_rx_queue_recorded(skb))
 333			q_idx = skb_get_rx_queue(skb);
 334		else
 335			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 336	}
 337
 338	return q_idx;
 339}
 340
 341static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 342			       struct net_device *sb_dev)
 343{
 344	struct net_device_context *ndc = netdev_priv(ndev);
 345	struct net_device *vf_netdev;
 346	u16 txq;
 347
 348	rcu_read_lock();
 349	vf_netdev = rcu_dereference(ndc->vf_netdev);
 350	if (vf_netdev) {
 351		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 352
 353		if (vf_ops->ndo_select_queue)
 354			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 355		else
 356			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 357
 358		/* Record the queue selected by VF so that it can be
 359		 * used for common case where VF has more queues than
 360		 * the synthetic device.
 361		 */
 362		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 363	} else {
 364		txq = netvsc_pick_tx(ndev, skb);
 365	}
 366	rcu_read_unlock();
 367
 368	while (txq >= ndev->real_num_tx_queues)
 369		txq -= ndev->real_num_tx_queues;
 370
 371	return txq;
 372}
 373
 374static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 375		       struct hv_page_buffer *pb)
 376{
 377	int j = 0;
 378
 379	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 380	offset = offset & ~HV_HYP_PAGE_MASK;
 
 
 
 381
 382	while (len > 0) {
 383		unsigned long bytes;
 384
 385		bytes = HV_HYP_PAGE_SIZE - offset;
 386		if (bytes > len)
 387			bytes = len;
 388		pb[j].pfn = hvpfn;
 389		pb[j].offset = offset;
 390		pb[j].len = bytes;
 391
 392		offset += bytes;
 393		len -= bytes;
 394
 395		if (offset == HV_HYP_PAGE_SIZE && len) {
 396			hvpfn++;
 397			offset = 0;
 398			j++;
 399		}
 400	}
 401
 402	return j + 1;
 403}
 404
 405static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 406			   struct hv_netvsc_packet *packet,
 407			   struct hv_page_buffer *pb)
 408{
 
 409	u32 slots_used = 0;
 410	char *data = skb->data;
 411	int frags = skb_shinfo(skb)->nr_frags;
 412	int i;
 413
 414	/* The packet is laid out thus:
 415	 * 1. hdr: RNDIS header and PPI
 416	 * 2. skb linear data
 417	 * 3. skb fragment data
 418	 */
 419	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 420				  offset_in_hvpage(hdr),
 421				  len,
 422				  &pb[slots_used]);
 423
 424	packet->rmsg_size = len;
 425	packet->rmsg_pgcnt = slots_used;
 426
 427	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 428				  offset_in_hvpage(data),
 429				  skb_headlen(skb),
 430				  &pb[slots_used]);
 431
 432	for (i = 0; i < frags; i++) {
 433		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 434
 435		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 436					  skb_frag_off(frag),
 437					  skb_frag_size(frag),
 438					  &pb[slots_used]);
 439	}
 440	return slots_used;
 441}
 442
 443static int count_skb_frag_slots(struct sk_buff *skb)
 444{
 445	int i, frags = skb_shinfo(skb)->nr_frags;
 446	int pages = 0;
 447
 448	for (i = 0; i < frags; i++) {
 449		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 450		unsigned long size = skb_frag_size(frag);
 451		unsigned long offset = skb_frag_off(frag);
 452
 453		/* Skip unused frames from start of page */
 454		offset &= ~HV_HYP_PAGE_MASK;
 455		pages += HVPFN_UP(offset + size);
 456	}
 457	return pages;
 458}
 459
 460static int netvsc_get_slots(struct sk_buff *skb)
 461{
 462	char *data = skb->data;
 463	unsigned int offset = offset_in_hvpage(data);
 464	unsigned int len = skb_headlen(skb);
 465	int slots;
 466	int frag_slots;
 467
 468	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 469	frag_slots = count_skb_frag_slots(skb);
 470	return slots + frag_slots;
 471}
 472
 473static u32 net_checksum_info(struct sk_buff *skb)
 474{
 475	if (skb->protocol == htons(ETH_P_IP)) {
 476		struct iphdr *ip = ip_hdr(skb);
 477
 478		if (ip->protocol == IPPROTO_TCP)
 479			return TRANSPORT_INFO_IPV4_TCP;
 480		else if (ip->protocol == IPPROTO_UDP)
 481			return TRANSPORT_INFO_IPV4_UDP;
 482	} else {
 483		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 484
 485		if (ip6->nexthdr == IPPROTO_TCP)
 486			return TRANSPORT_INFO_IPV6_TCP;
 487		else if (ip6->nexthdr == IPPROTO_UDP)
 488			return TRANSPORT_INFO_IPV6_UDP;
 489	}
 490
 491	return TRANSPORT_INFO_NOT_IP;
 492}
 493
 494/* Send skb on the slave VF device. */
 495static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 496			  struct sk_buff *skb)
 497{
 498	struct net_device_context *ndev_ctx = netdev_priv(net);
 499	unsigned int len = skb->len;
 500	int rc;
 501
 502	skb->dev = vf_netdev;
 503	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 504
 505	rc = dev_queue_xmit(skb);
 506	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 507		struct netvsc_vf_pcpu_stats *pcpu_stats
 508			= this_cpu_ptr(ndev_ctx->vf_stats);
 509
 510		u64_stats_update_begin(&pcpu_stats->syncp);
 511		pcpu_stats->tx_packets++;
 512		pcpu_stats->tx_bytes += len;
 513		u64_stats_update_end(&pcpu_stats->syncp);
 514	} else {
 515		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 
 
 
 516	}
 517
 518	return rc;
 
 519}
 520
 521static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 522{
 523	struct net_device_context *net_device_ctx = netdev_priv(net);
 524	struct hv_netvsc_packet *packet = NULL;
 525	int ret;
 526	unsigned int num_data_pgs;
 527	struct rndis_message *rndis_msg;
 528	struct net_device *vf_netdev;
 529	u32 rndis_msg_size;
 
 
 
 
 
 
 
 530	u32 hash;
 531	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 532
 533	/* If VF is present and up then redirect packets to it.
 534	 * Skip the VF if it is marked down or has no carrier.
 535	 * If netpoll is in uses, then VF can not be used either.
 536	 */
 537	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 538	if (vf_netdev && netif_running(vf_netdev) &&
 539	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 540	    net_device_ctx->data_path_is_vf)
 541		return netvsc_vf_xmit(net, vf_netdev, skb);
 542
 543	/* We will atmost need two pages to describe the rndis
 544	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 545	 * of pages in a single packet. If skb is scattered around
 546	 * more pages we try linearizing it.
 547	 */
 548
 
 
 549	num_data_pgs = netvsc_get_slots(skb) + 2;
 550
 551	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 552		++net_device_ctx->eth_stats.tx_scattered;
 553
 554		if (skb_linearize(skb))
 555			goto no_memory;
 556
 557		num_data_pgs = netvsc_get_slots(skb) + 2;
 558		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 559			++net_device_ctx->eth_stats.tx_too_big;
 560			goto drop;
 561		}
 
 
 562	}
 563
 564	/*
 565	 * Place the rndis header in the skb head room and
 566	 * the skb->cb will be used for hv_netvsc_packet
 567	 * structure.
 568	 */
 569	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 570	if (ret)
 571		goto no_memory;
 572
 
 
 573	/* Use the skb control buffer for building up the packet */
 574	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 575			sizeof_field(struct sk_buff, cb));
 576	packet = (struct hv_netvsc_packet *)skb->cb;
 577
 
 578	packet->q_idx = skb_get_queue_mapping(skb);
 579
 580	packet->total_data_buflen = skb->len;
 581	packet->total_bytes = skb->len;
 582	packet->total_packets = 1;
 583
 584	rndis_msg = (struct rndis_message *)skb->head;
 585
 
 
 
 
 586	/* Add the rndis header */
 587	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 588	rndis_msg->msg_len = packet->total_data_buflen;
 589
 590	rndis_msg->msg.pkt = (struct rndis_packet) {
 591		.data_offset = sizeof(struct rndis_packet),
 592		.data_len = packet->total_data_buflen,
 593		.per_pkt_info_offset = sizeof(struct rndis_packet),
 594	};
 595
 596	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 597
 598	hash = skb_get_hash_raw(skb);
 599	if (hash != 0 && net->real_num_tx_queues > 1) {
 600		u32 *hash_info;
 
 
 
 
 601
 602		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 603		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 604					  NBL_HASH_VALUE);
 605		*hash_info = hash;
 
 
 
 
 
 
 
 606	}
 607
 608	/* When using AF_PACKET we need to drop VLAN header from
 609	 * the frame and update the SKB to allow the HOST OS
 610	 * to transmit the 802.1Q packet
 
 
 
 
 611	 */
 612	if (skb->protocol == htons(ETH_P_8021Q)) {
 613		u16 vlan_tci;
 
 
 
 
 
 
 
 
 614
 615		skb_reset_mac_header(skb);
 616		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 617			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 618				++net_device_ctx->eth_stats.vlan_error;
 619				goto drop;
 620			}
 621
 622			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 623			/* Update the NDIS header pkt lengths */
 624			packet->total_data_buflen -= VLAN_HLEN;
 625			packet->total_bytes -= VLAN_HLEN;
 626			rndis_msg->msg_len = packet->total_data_buflen;
 627			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 628		}
 629	}
 630
 631	if (skb_vlan_tag_present(skb)) {
 632		struct ndis_pkt_8021q_info *vlan;
 
 
 
 
 
 
 
 
 
 
 633
 634		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 635		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 636				     IEEE_8021Q_INFO);
 637
 638		vlan->value = 0;
 639		vlan->vlanid = skb_vlan_tag_get_id(skb);
 640		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 641		vlan->pri = skb_vlan_tag_get_prio(skb);
 642	}
 643
 644	if (skb_is_gso(skb)) {
 645		struct ndis_tcp_lso_info *lso_info;
 646
 647		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 648		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 649					 TCP_LARGESEND_PKTINFO);
 650
 651		lso_info->value = 0;
 652		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 653		if (skb->protocol == htons(ETH_P_IP)) {
 654			lso_info->lso_v2_transmit.ip_version =
 655				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 656			ip_hdr(skb)->tot_len = 0;
 657			ip_hdr(skb)->check = 0;
 658			tcp_hdr(skb)->check =
 659				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 660						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 661		} else {
 662			lso_info->lso_v2_transmit.ip_version =
 663				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 664			tcp_v6_gso_csum_prep(skb);
 665		}
 666		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 667		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 668	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 669		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 670			struct ndis_tcp_ip_checksum_info *csum_info;
 671
 672			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 673			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 674						  TCPIP_CHKSUM_PKTINFO);
 675
 676			csum_info->value = 0;
 677			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 678
 679			if (skb->protocol == htons(ETH_P_IP)) {
 680				csum_info->transmit.is_ipv4 = 1;
 681
 682				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 683					csum_info->transmit.tcp_checksum = 1;
 684				else
 685					csum_info->transmit.udp_checksum = 1;
 686			} else {
 687				csum_info->transmit.is_ipv6 = 1;
 688
 689				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 690					csum_info->transmit.tcp_checksum = 1;
 691				else
 692					csum_info->transmit.udp_checksum = 1;
 693			}
 694		} else {
 695			/* Can't do offload of this type of checksum */
 696			if (skb_checksum_help(skb))
 697				goto drop;
 698		}
 699	}
 
 
 700
 
 701	/* Start filling in the page buffers with the rndis hdr */
 702	rndis_msg->msg_len += rndis_msg_size;
 703	packet->total_data_buflen = rndis_msg->msg_len;
 704	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 705					       skb, packet, pb);
 706
 707	/* timestamp packet in software */
 708	skb_tx_timestamp(skb);
 
 
 709
 710	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 711	if (likely(ret == 0))
 712		return NETDEV_TX_OK;
 713
 714	if (ret == -EAGAIN) {
 715		++net_device_ctx->eth_stats.tx_busy;
 716		return NETDEV_TX_BUSY;
 
 
 
 
 717	}
 718
 719	if (ret == -ENOSPC)
 720		++net_device_ctx->eth_stats.tx_no_space;
 721
 722drop:
 723	dev_kfree_skb_any(skb);
 724	net->stats.tx_dropped++;
 725
 726	return NETDEV_TX_OK;
 727
 728no_memory:
 729	++net_device_ctx->eth_stats.tx_no_memory;
 730	goto drop;
 731}
 732
 733static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 734				     struct net_device *ndev)
 735{
 736	return netvsc_xmit(skb, ndev, false);
 737}
 738
 739/*
 740 * netvsc_linkstatus_callback - Link up/down notification
 741 */
 742void netvsc_linkstatus_callback(struct net_device *net,
 743				struct rndis_message *resp,
 744				void *data, u32 data_buflen)
 745{
 746	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 747	struct net_device_context *ndev_ctx = netdev_priv(net);
 
 
 748	struct netvsc_reconfig *event;
 749	unsigned long flags;
 750
 751	/* Ensure the packet is big enough to access its fields */
 752	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 753		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 754			   resp->msg_len);
 755		return;
 756	}
 757
 758	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 759	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 760
 761	/* Update the physical link speed when changing to another vSwitch */
 762	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 763		u32 speed;
 764
 765		/* Validate status_buf_offset and status_buflen.
 766		 *
 767		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 768		 * for the status buffer field in resp->msg_len; perform the validation
 769		 * using data_buflen (>= resp->msg_len).
 770		 */
 771		if (indicate->status_buflen < sizeof(speed) ||
 772		    indicate->status_buf_offset < sizeof(*indicate) ||
 773		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 774		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 775				< indicate->status_buflen) {
 776			netdev_err(net, "invalid rndis_indicate_status packet\n");
 777			return;
 778		}
 779
 780		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 781		ndev_ctx->speed = speed;
 782		return;
 783	}
 784
 785	/* Handle these link change statuses below */
 786	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 787	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 788	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 789		return;
 790
 791	if (net->reg_state != NETREG_REGISTERED)
 
 
 
 792		return;
 793
 
 
 794	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 795	if (!event)
 796		return;
 797	event->event = indicate->status;
 798
 799	spin_lock_irqsave(&ndev_ctx->lock, flags);
 800	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 801	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 802
 803	schedule_delayed_work(&ndev_ctx->dwork, 0);
 804}
 805
 806static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 807{
 808	int rc;
 809
 810	skb->queue_mapping = skb_get_rx_queue(skb);
 811	__skb_push(skb, ETH_HLEN);
 812
 813	rc = netvsc_xmit(skb, ndev, true);
 814
 815	if (dev_xmit_complete(rc))
 816		return;
 817
 818	dev_kfree_skb_any(skb);
 819	ndev->stats.tx_dropped++;
 820}
 821
 822static void netvsc_comp_ipcsum(struct sk_buff *skb)
 823{
 824	struct iphdr *iph = (struct iphdr *)skb->data;
 825
 826	iph->check = 0;
 827	iph->check = ip_fast_csum(iph, iph->ihl);
 828}
 829
 830static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 831					     struct netvsc_channel *nvchan,
 832					     struct xdp_buff *xdp)
 833{
 834	struct napi_struct *napi = &nvchan->napi;
 835	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 836	const struct ndis_tcp_ip_checksum_info *csum_info =
 837						&nvchan->rsc.csum_info;
 838	const u32 *hash_info = &nvchan->rsc.hash_info;
 839	u8 ppi_flags = nvchan->rsc.ppi_flags;
 840	struct sk_buff *skb;
 841	void *xbuf = xdp->data_hard_start;
 842	int i;
 843
 844	if (xbuf) {
 845		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 846		unsigned int xlen = xdp->data_end - xdp->data;
 847		unsigned int frag_size = xdp->frame_sz;
 848
 849		skb = build_skb(xbuf, frag_size);
 850
 851		if (!skb) {
 852			__free_page(virt_to_page(xbuf));
 853			return NULL;
 854		}
 855
 856		skb_reserve(skb, hdroom);
 857		skb_put(skb, xlen);
 858		skb->dev = napi->dev;
 859	} else {
 860		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 861
 862		if (!skb)
 863			return NULL;
 864
 865		/* Copy to skb. This copy is needed here since the memory
 866		 * pointed by hv_netvsc_packet cannot be deallocated.
 867		 */
 868		for (i = 0; i < nvchan->rsc.cnt; i++)
 869			skb_put_data(skb, nvchan->rsc.data[i],
 870				     nvchan->rsc.len[i]);
 871	}
 872
 873	skb->protocol = eth_type_trans(skb, net);
 874
 875	/* skb is already created with CHECKSUM_NONE */
 876	skb_checksum_none_assert(skb);
 877
 878	/* Incoming packets may have IP header checksum verified by the host.
 879	 * They may not have IP header checksum computed after coalescing.
 880	 * We compute it here if the flags are set, because on Linux, the IP
 881	 * checksum is always checked.
 882	 */
 883	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 884	    csum_info->receive.ip_checksum_succeeded &&
 885	    skb->protocol == htons(ETH_P_IP)) {
 886		/* Check that there is enough space to hold the IP header. */
 887		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 888			kfree_skb(skb);
 889			return NULL;
 890		}
 891		netvsc_comp_ipcsum(skb);
 892	}
 893
 894	/* Do L4 checksum offload if enabled and present. */
 895	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 896		if (csum_info->receive.tcp_checksum_succeeded ||
 897		    csum_info->receive.udp_checksum_succeeded)
 898			skb->ip_summed = CHECKSUM_UNNECESSARY;
 899	}
 900
 901	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 902		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 903
 904	if (ppi_flags & NVSC_RSC_VLAN) {
 905		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 906			(vlan->cfi ? VLAN_CFI_MASK : 0);
 907
 908		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 909				       vlan_tci);
 910	}
 911
 912	return skb;
 913}
 914
 915/*
 916 * netvsc_recv_callback -  Callback when we receive a packet from the
 917 * "wire" on the specified device.
 918 */
 919int netvsc_recv_callback(struct net_device *net,
 920			 struct netvsc_device *net_device,
 921			 struct netvsc_channel *nvchan)
 
 
 
 922{
 923	struct net_device_context *net_device_ctx = netdev_priv(net);
 924	struct vmbus_channel *channel = nvchan->channel;
 925	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 926	struct sk_buff *skb;
 927	struct netvsc_stats *rx_stats = &nvchan->rx_stats;
 928	struct xdp_buff xdp;
 929	u32 act;
 930
 931	if (net->reg_state != NETREG_REGISTERED)
 
 932		return NVSP_STAT_FAIL;
 933
 934	act = netvsc_run_xdp(net, nvchan, &xdp);
 935
 936	if (act != XDP_PASS && act != XDP_TX) {
 937		u64_stats_update_begin(&rx_stats->syncp);
 938		rx_stats->xdp_drop++;
 939		u64_stats_update_end(&rx_stats->syncp);
 940
 941		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 942	}
 
 
 943
 944	/* Allocate a skb - TODO direct I/O to pages? */
 945	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 946
 947	if (unlikely(!skb)) {
 948		++net_device_ctx->eth_stats.rx_no_memory;
 949		return NVSP_STAT_FAIL;
 950	}
 951
 952	skb_record_rx_queue(skb, q_idx);
 953
 954	/*
 955	 * Even if injecting the packet, record the statistics
 956	 * on the synthetic device because modifying the VF device
 957	 * statistics will not work correctly.
 958	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959	u64_stats_update_begin(&rx_stats->syncp);
 960	rx_stats->packets++;
 961	rx_stats->bytes += nvchan->rsc.pktlen;
 962
 963	if (skb->pkt_type == PACKET_BROADCAST)
 964		++rx_stats->broadcast;
 965	else if (skb->pkt_type == PACKET_MULTICAST)
 966		++rx_stats->multicast;
 967	u64_stats_update_end(&rx_stats->syncp);
 968
 969	if (act == XDP_TX) {
 970		netvsc_xdp_xmit(skb, net);
 971		return NVSP_STAT_SUCCESS;
 972	}
 
 
 973
 974	napi_gro_receive(&nvchan->napi, skb);
 975	return NVSP_STAT_SUCCESS;
 976}
 977
 978static void netvsc_get_drvinfo(struct net_device *net,
 979			       struct ethtool_drvinfo *info)
 980{
 981	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 982	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 983}
 984
 985static void netvsc_get_channels(struct net_device *net,
 986				struct ethtool_channels *channel)
 987{
 988	struct net_device_context *net_device_ctx = netdev_priv(net);
 989	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 
 990
 991	if (nvdev) {
 992		channel->max_combined	= nvdev->max_chn;
 993		channel->combined_count = nvdev->num_chn;
 994	}
 995}
 996
 997/* Alloc struct netvsc_device_info, and initialize it from either existing
 998 * struct netvsc_device, or from default values.
 999 */
1000static
1001struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1002{
1003	struct netvsc_device_info *dev_info;
1004	struct bpf_prog *prog;
 
 
 
 
 
 
1005
1006	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 
 
 
 
1007
1008	if (!dev_info)
1009		return NULL;
 
 
1010
1011	if (nvdev) {
1012		ASSERT_RTNL();
 
 
 
 
 
1013
1014		dev_info->num_chn = nvdev->num_chn;
1015		dev_info->send_sections = nvdev->send_section_cnt;
1016		dev_info->send_section_size = nvdev->send_section_size;
1017		dev_info->recv_sections = nvdev->recv_section_cnt;
1018		dev_info->recv_section_size = nvdev->recv_section_size;
1019
1020		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1021		       NETVSC_HASH_KEYLEN);
1022
1023		prog = netvsc_xdp_get(nvdev);
1024		if (prog) {
1025			bpf_prog_inc(prog);
1026			dev_info->bprog = prog;
1027		}
1028	} else {
1029		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1030		dev_info->send_sections = NETVSC_DEFAULT_TX;
1031		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1032		dev_info->recv_sections = NETVSC_DEFAULT_RX;
1033		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1034	}
1035
1036	return dev_info;
1037}
 
1038
1039/* Free struct netvsc_device_info */
1040static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1041{
1042	if (dev_info->bprog) {
1043		ASSERT_RTNL();
1044		bpf_prog_put(dev_info->bprog);
1045	}
1046
1047	kfree(dev_info);
1048}
1049
1050static int netvsc_detach(struct net_device *ndev,
1051			 struct netvsc_device *nvdev)
1052{
1053	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054	struct hv_device *hdev = ndev_ctx->device_ctx;
1055	int ret;
1056
1057	/* Don't try continuing to try and setup sub channels */
1058	if (cancel_work_sync(&nvdev->subchan_work))
1059		nvdev->num_chn = 1;
1060
1061	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1062
1063	/* If device was up (receiving) then shutdown */
1064	if (netif_running(ndev)) {
1065		netvsc_tx_disable(nvdev, ndev);
1066
1067		ret = rndis_filter_close(nvdev);
1068		if (ret) {
1069			netdev_err(ndev,
1070				   "unable to close device (ret %d).\n", ret);
1071			return ret;
1072		}
1073
1074		ret = netvsc_wait_until_empty(nvdev);
1075		if (ret) {
1076			netdev_err(ndev,
1077				   "Ring buffer not empty after closing rndis\n");
1078			return ret;
1079		}
 
1080	}
1081
1082	netif_device_detach(ndev);
1083
1084	rndis_filter_device_remove(hdev, nvdev);
1085
1086	return 0;
1087}
1088
1089static int netvsc_attach(struct net_device *ndev,
1090			 struct netvsc_device_info *dev_info)
1091{
1092	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1093	struct hv_device *hdev = ndev_ctx->device_ctx;
1094	struct netvsc_device *nvdev;
1095	struct rndis_device *rdev;
1096	struct bpf_prog *prog;
1097	int ret = 0;
1098
1099	nvdev = rndis_filter_device_add(hdev, dev_info);
1100	if (IS_ERR(nvdev))
1101		return PTR_ERR(nvdev);
1102
1103	if (nvdev->num_chn > 1) {
1104		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1105
1106		/* if unavailable, just proceed with one queue */
1107		if (ret) {
1108			nvdev->max_chn = 1;
1109			nvdev->num_chn = 1;
1110		}
 
1111	}
1112
1113	prog = dev_info->bprog;
1114	if (prog) {
1115		bpf_prog_inc(prog);
1116		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1117		if (ret) {
1118			bpf_prog_put(prog);
1119			goto err1;
1120		}
 
1121	}
1122
1123	/* In any case device is now ready */
1124	nvdev->tx_disable = false;
1125	netif_device_attach(ndev);
1126
1127	/* Note: enable and attach happen when sub-channels setup */
1128	netif_carrier_off(ndev);
1129
1130	if (netif_running(ndev)) {
1131		ret = rndis_filter_open(nvdev);
1132		if (ret)
1133			goto err2;
1134
1135		rdev = nvdev->extension;
1136		if (!rdev->link_state)
1137			netif_carrier_on(ndev);
1138	}
1139
1140	return 0;
1141
1142err2:
1143	netif_device_detach(ndev);
1144
1145err1:
1146	rndis_filter_device_remove(hdev, nvdev);
1147
1148	return ret;
1149}
1150
1151static int netvsc_set_channels(struct net_device *net,
1152			       struct ethtool_channels *channels)
1153{
1154	struct net_device_context *net_device_ctx = netdev_priv(net);
1155	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1156	unsigned int orig, count = channels->combined_count;
1157	struct netvsc_device_info *device_info;
1158	int ret;
1159
1160	/* We do not support separate count for rx, tx, or other */
1161	if (count == 0 ||
1162	    channels->rx_count || channels->tx_count || channels->other_count)
1163		return -EINVAL;
 
 
 
 
 
 
 
 
 
1164
1165	if (!nvdev || nvdev->destroy)
1166		return -ENODEV;
1167
1168	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1169		return -EINVAL;
1170
1171	if (count > nvdev->max_chn)
1172		return -EINVAL;
1173
1174	orig = nvdev->num_chn;
1175
1176	device_info = netvsc_devinfo_get(nvdev);
1177
1178	if (!device_info)
1179		return -ENOMEM;
1180
1181	device_info->num_chn = count;
1182
1183	ret = netvsc_detach(net, nvdev);
1184	if (ret)
1185		goto out;
1186
1187	ret = netvsc_attach(net, device_info);
1188	if (ret) {
1189		device_info->num_chn = orig;
1190		if (netvsc_attach(net, device_info))
1191			netdev_err(net, "restoring channel setting failed\n");
1192	}
1193
1194out:
1195	netvsc_devinfo_put(device_info);
1196	return ret;
1197}
1198
1199static void netvsc_init_settings(struct net_device *dev)
1200{
1201	struct net_device_context *ndc = netdev_priv(dev);
1202
1203	ndc->l4_hash = HV_DEFAULT_L4HASH;
1204
1205	ndc->speed = SPEED_UNKNOWN;
1206	ndc->duplex = DUPLEX_FULL;
1207
1208	dev->features = NETIF_F_LRO;
1209}
1210
1211static int netvsc_get_link_ksettings(struct net_device *dev,
1212				     struct ethtool_link_ksettings *cmd)
1213{
1214	struct net_device_context *ndc = netdev_priv(dev);
1215	struct net_device *vf_netdev;
1216
1217	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1218
1219	if (vf_netdev)
1220		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1221
1222	cmd->base.speed = ndc->speed;
1223	cmd->base.duplex = ndc->duplex;
1224	cmd->base.port = PORT_OTHER;
1225
1226	return 0;
1227}
1228
1229static int netvsc_set_link_ksettings(struct net_device *dev,
1230				     const struct ethtool_link_ksettings *cmd)
1231{
1232	struct net_device_context *ndc = netdev_priv(dev);
1233	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234
1235	if (vf_netdev) {
1236		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1237			return -EOPNOTSUPP;
 
 
1238
1239		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1240								  cmd);
1241	}
1242
1243	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1244						  &ndc->speed, &ndc->duplex);
1245}
1246
1247static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1248{
1249	struct net_device_context *ndevctx = netdev_priv(ndev);
1250	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1251	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1252	int orig_mtu = ndev->mtu;
1253	struct netvsc_device_info *device_info;
 
1254	int ret = 0;
1255
1256	if (!nvdev || nvdev->destroy)
1257		return -ENODEV;
1258
1259	device_info = netvsc_devinfo_get(nvdev);
 
1260
1261	if (!device_info)
1262		return -ENOMEM;
1263
1264	/* Change MTU of underlying VF netdev first. */
1265	if (vf_netdev) {
1266		ret = dev_set_mtu(vf_netdev, mtu);
1267		if (ret)
1268			goto out;
1269	}
1270
1271	ret = netvsc_detach(ndev, nvdev);
1272	if (ret)
1273		goto rollback_vf;
1274
1275	ndev->mtu = mtu;
1276
1277	ret = netvsc_attach(ndev, device_info);
1278	if (!ret)
1279		goto out;
1280
1281	/* Attempt rollback to original MTU */
1282	ndev->mtu = orig_mtu;
1283
1284	if (netvsc_attach(ndev, device_info))
1285		netdev_err(ndev, "restoring mtu failed\n");
1286rollback_vf:
1287	if (vf_netdev)
1288		dev_set_mtu(vf_netdev, orig_mtu);
1289
1290out:
1291	netvsc_devinfo_put(device_info);
1292	return ret;
1293}
1294
1295static void netvsc_get_vf_stats(struct net_device *net,
1296				struct netvsc_vf_pcpu_stats *tot)
1297{
1298	struct net_device_context *ndev_ctx = netdev_priv(net);
1299	int i;
1300
1301	memset(tot, 0, sizeof(*tot));
 
 
 
 
1302
1303	for_each_possible_cpu(i) {
1304		const struct netvsc_vf_pcpu_stats *stats
1305			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1306		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1307		unsigned int start;
1308
1309		do {
1310			start = u64_stats_fetch_begin_irq(&stats->syncp);
1311			rx_packets = stats->rx_packets;
1312			tx_packets = stats->tx_packets;
1313			rx_bytes = stats->rx_bytes;
1314			tx_bytes = stats->tx_bytes;
1315		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1316
1317		tot->rx_packets += rx_packets;
1318		tot->tx_packets += tx_packets;
1319		tot->rx_bytes   += rx_bytes;
1320		tot->tx_bytes   += tx_bytes;
1321		tot->tx_dropped += stats->tx_dropped;
1322	}
1323}
1324
1325static void netvsc_get_pcpu_stats(struct net_device *net,
1326				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1327{
1328	struct net_device_context *ndev_ctx = netdev_priv(net);
1329	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1330	int i;
1331
1332	/* fetch percpu stats of vf */
1333	for_each_possible_cpu(i) {
1334		const struct netvsc_vf_pcpu_stats *stats =
1335			per_cpu_ptr(ndev_ctx->vf_stats, i);
1336		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
 
1337		unsigned int start;
1338
1339		do {
1340			start = u64_stats_fetch_begin_irq(&stats->syncp);
1341			this_tot->vf_rx_packets = stats->rx_packets;
1342			this_tot->vf_tx_packets = stats->tx_packets;
1343			this_tot->vf_rx_bytes = stats->rx_bytes;
1344			this_tot->vf_tx_bytes = stats->tx_bytes;
1345		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1346		this_tot->rx_packets = this_tot->vf_rx_packets;
1347		this_tot->tx_packets = this_tot->vf_tx_packets;
1348		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1349		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1350	}
1351
1352	/* fetch percpu stats of netvsc */
1353	for (i = 0; i < nvdev->num_chn; i++) {
1354		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1355		const struct netvsc_stats *stats;
1356		struct netvsc_ethtool_pcpu_stats *this_tot =
1357			&pcpu_tot[nvchan->channel->target_cpu];
1358		u64 packets, bytes;
1359		unsigned int start;
1360
1361		stats = &nvchan->tx_stats;
1362		do {
1363			start = u64_stats_fetch_begin_irq(&stats->syncp);
1364			packets = stats->packets;
1365			bytes = stats->bytes;
1366		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1367
1368		this_tot->tx_bytes	+= bytes;
1369		this_tot->tx_packets	+= packets;
1370
1371		stats = &nvchan->rx_stats;
1372		do {
1373			start = u64_stats_fetch_begin_irq(&stats->syncp);
1374			packets = stats->packets;
1375			bytes = stats->bytes;
1376		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1377
1378		this_tot->rx_bytes	+= bytes;
1379		this_tot->rx_packets	+= packets;
1380	}
1381}
1382
1383static void netvsc_get_stats64(struct net_device *net,
1384			       struct rtnl_link_stats64 *t)
1385{
1386	struct net_device_context *ndev_ctx = netdev_priv(net);
1387	struct netvsc_device *nvdev;
1388	struct netvsc_vf_pcpu_stats vf_tot;
1389	int i;
1390
1391	rcu_read_lock();
1392
1393	nvdev = rcu_dereference(ndev_ctx->nvdev);
1394	if (!nvdev)
1395		goto out;
1396
1397	netdev_stats_to_stats64(t, &net->stats);
1398
1399	netvsc_get_vf_stats(net, &vf_tot);
1400	t->rx_packets += vf_tot.rx_packets;
1401	t->tx_packets += vf_tot.tx_packets;
1402	t->rx_bytes   += vf_tot.rx_bytes;
1403	t->tx_bytes   += vf_tot.tx_bytes;
1404	t->tx_dropped += vf_tot.tx_dropped;
1405
1406	for (i = 0; i < nvdev->num_chn; i++) {
1407		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1408		const struct netvsc_stats *stats;
1409		u64 packets, bytes, multicast;
1410		unsigned int start;
1411
1412		stats = &nvchan->tx_stats;
1413		do {
1414			start = u64_stats_fetch_begin_irq(&stats->syncp);
1415			packets = stats->packets;
1416			bytes = stats->bytes;
1417		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1418
1419		t->tx_bytes	+= bytes;
1420		t->tx_packets	+= packets;
1421
1422		stats = &nvchan->rx_stats;
1423		do {
1424			start = u64_stats_fetch_begin_irq(&stats->syncp);
1425			packets = stats->packets;
1426			bytes = stats->bytes;
1427			multicast = stats->multicast + stats->broadcast;
1428		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1429
1430		t->rx_bytes	+= bytes;
1431		t->rx_packets	+= packets;
1432		t->multicast	+= multicast;
1433	}
1434out:
1435	rcu_read_unlock();
1436}
1437
1438static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1439{
1440	struct net_device_context *ndc = netdev_priv(ndev);
1441	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1442	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1443	struct sockaddr *addr = p;
 
 
1444	int err;
1445
1446	err = eth_prepare_mac_addr_change(ndev, p);
1447	if (err)
 
 
 
1448		return err;
1449
1450	if (!nvdev)
1451		return -ENODEV;
1452
1453	if (vf_netdev) {
1454		err = dev_set_mac_address(vf_netdev, addr, NULL);
1455		if (err)
1456			return err;
1457	}
1458
1459	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1460	if (!err) {
1461		eth_commit_mac_addr_change(ndev, p);
1462	} else if (vf_netdev) {
1463		/* rollback change on VF */
1464		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1465		dev_set_mac_address(vf_netdev, addr, NULL);
1466	}
1467
1468	return err;
1469}
1470
1471static const struct {
1472	char name[ETH_GSTRING_LEN];
1473	u16 offset;
1474} netvsc_stats[] = {
1475	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1476	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1477	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1478	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1479	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1480	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1481	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1482	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1483	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1484	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1485	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1486}, pcpu_stats[] = {
1487	{ "cpu%u_rx_packets",
1488		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1489	{ "cpu%u_rx_bytes",
1490		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1491	{ "cpu%u_tx_packets",
1492		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1493	{ "cpu%u_tx_bytes",
1494		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1495	{ "cpu%u_vf_rx_packets",
1496		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1497	{ "cpu%u_vf_rx_bytes",
1498		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1499	{ "cpu%u_vf_tx_packets",
1500		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1501	{ "cpu%u_vf_tx_bytes",
1502		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1503}, vf_stats[] = {
1504	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1505	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1506	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1507	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1508	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1509};
1510
1511#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1512#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1513
1514/* statistics per queue (rx/tx packets/bytes) */
1515#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1516
1517/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1518#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1519
1520static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1521{
1522	struct net_device_context *ndc = netdev_priv(dev);
1523	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1524
1525	if (!nvdev)
1526		return -ENODEV;
1527
1528	switch (string_set) {
1529	case ETH_SS_STATS:
1530		return NETVSC_GLOBAL_STATS_LEN
1531			+ NETVSC_VF_STATS_LEN
1532			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1533			+ NETVSC_PCPU_STATS_LEN;
1534	default:
1535		return -EINVAL;
1536	}
1537}
1538
1539static void netvsc_get_ethtool_stats(struct net_device *dev,
1540				     struct ethtool_stats *stats, u64 *data)
1541{
1542	struct net_device_context *ndc = netdev_priv(dev);
1543	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1544	const void *nds = &ndc->eth_stats;
1545	const struct netvsc_stats *qstats;
1546	struct netvsc_vf_pcpu_stats sum;
1547	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1548	unsigned int start;
1549	u64 packets, bytes;
1550	u64 xdp_drop;
1551	int i, j, cpu;
1552
1553	if (!nvdev)
1554		return;
1555
1556	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1557		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1558
1559	netvsc_get_vf_stats(dev, &sum);
1560	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1561		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1562
1563	for (j = 0; j < nvdev->num_chn; j++) {
1564		qstats = &nvdev->chan_table[j].tx_stats;
1565
1566		do {
1567			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1568			packets = qstats->packets;
1569			bytes = qstats->bytes;
1570		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1571		data[i++] = packets;
1572		data[i++] = bytes;
1573
1574		qstats = &nvdev->chan_table[j].rx_stats;
1575		do {
1576			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1577			packets = qstats->packets;
1578			bytes = qstats->bytes;
1579			xdp_drop = qstats->xdp_drop;
1580		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1581		data[i++] = packets;
1582		data[i++] = bytes;
1583		data[i++] = xdp_drop;
1584	}
1585
1586	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1587				  sizeof(struct netvsc_ethtool_pcpu_stats),
1588				  GFP_KERNEL);
1589	netvsc_get_pcpu_stats(dev, pcpu_sum);
1590	for_each_present_cpu(cpu) {
1591		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1592
1593		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1594			data[i++] = *(u64 *)((void *)this_sum
1595					     + pcpu_stats[j].offset);
1596	}
1597	kvfree(pcpu_sum);
1598}
1599
1600static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1601{
1602	struct net_device_context *ndc = netdev_priv(dev);
1603	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1604	u8 *p = data;
1605	int i, cpu;
1606
1607	if (!nvdev)
1608		return;
1609
1610	switch (stringset) {
1611	case ETH_SS_STATS:
1612		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1613			ethtool_sprintf(&p, netvsc_stats[i].name);
1614
1615		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1616			ethtool_sprintf(&p, vf_stats[i].name);
1617
1618		for (i = 0; i < nvdev->num_chn; i++) {
1619			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1620			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1621			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1622			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1623			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1624		}
1625
1626		for_each_present_cpu(cpu) {
1627			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1628				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1629		}
1630
1631		break;
1632	}
1633}
1634
1635static int
1636netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1637			 struct ethtool_rxnfc *info)
1638{
1639	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1640
1641	info->data = RXH_IP_SRC | RXH_IP_DST;
1642
1643	switch (info->flow_type) {
1644	case TCP_V4_FLOW:
1645		if (ndc->l4_hash & HV_TCP4_L4HASH)
1646			info->data |= l4_flag;
1647
1648		break;
1649
1650	case TCP_V6_FLOW:
1651		if (ndc->l4_hash & HV_TCP6_L4HASH)
1652			info->data |= l4_flag;
1653
1654		break;
1655
1656	case UDP_V4_FLOW:
1657		if (ndc->l4_hash & HV_UDP4_L4HASH)
1658			info->data |= l4_flag;
1659
1660		break;
1661
1662	case UDP_V6_FLOW:
1663		if (ndc->l4_hash & HV_UDP6_L4HASH)
1664			info->data |= l4_flag;
1665
1666		break;
1667
1668	case IPV4_FLOW:
1669	case IPV6_FLOW:
1670		break;
1671	default:
1672		info->data = 0;
1673		break;
1674	}
1675
1676	return 0;
1677}
1678
1679static int
1680netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1681		 u32 *rules)
1682{
1683	struct net_device_context *ndc = netdev_priv(dev);
1684	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1685
1686	if (!nvdev)
1687		return -ENODEV;
1688
1689	switch (info->cmd) {
1690	case ETHTOOL_GRXRINGS:
1691		info->data = nvdev->num_chn;
1692		return 0;
1693
1694	case ETHTOOL_GRXFH:
1695		return netvsc_get_rss_hash_opts(ndc, info);
1696	}
1697	return -EOPNOTSUPP;
1698}
1699
1700static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1701				    struct ethtool_rxnfc *info)
1702{
1703	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1704			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1705		switch (info->flow_type) {
1706		case TCP_V4_FLOW:
1707			ndc->l4_hash |= HV_TCP4_L4HASH;
1708			break;
1709
1710		case TCP_V6_FLOW:
1711			ndc->l4_hash |= HV_TCP6_L4HASH;
1712			break;
1713
1714		case UDP_V4_FLOW:
1715			ndc->l4_hash |= HV_UDP4_L4HASH;
1716			break;
1717
1718		case UDP_V6_FLOW:
1719			ndc->l4_hash |= HV_UDP6_L4HASH;
1720			break;
1721
1722		default:
1723			return -EOPNOTSUPP;
1724		}
1725
1726		return 0;
1727	}
1728
1729	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1730		switch (info->flow_type) {
1731		case TCP_V4_FLOW:
1732			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1733			break;
1734
1735		case TCP_V6_FLOW:
1736			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1737			break;
1738
1739		case UDP_V4_FLOW:
1740			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1741			break;
1742
1743		case UDP_V6_FLOW:
1744			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1745			break;
1746
1747		default:
1748			return -EOPNOTSUPP;
1749		}
1750
1751		return 0;
1752	}
1753
1754	return -EOPNOTSUPP;
1755}
1756
1757static int
1758netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1759{
1760	struct net_device_context *ndc = netdev_priv(ndev);
1761
1762	if (info->cmd == ETHTOOL_SRXFH)
1763		return netvsc_set_rss_hash_opts(ndc, info);
1764
1765	return -EOPNOTSUPP;
1766}
1767
1768static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1769{
1770	return NETVSC_HASH_KEYLEN;
1771}
1772
1773static u32 netvsc_rss_indir_size(struct net_device *dev)
1774{
1775	return ITAB_NUM;
1776}
1777
1778static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1779			   u8 *hfunc)
1780{
1781	struct net_device_context *ndc = netdev_priv(dev);
1782	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1783	struct rndis_device *rndis_dev;
1784	int i;
1785
1786	if (!ndev)
1787		return -ENODEV;
1788
1789	if (hfunc)
1790		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1791
1792	rndis_dev = ndev->extension;
1793	if (indir) {
1794		for (i = 0; i < ITAB_NUM; i++)
1795			indir[i] = ndc->rx_table[i];
1796	}
1797
1798	if (key)
1799		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1800
1801	return 0;
1802}
1803
1804static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1805			   const u8 *key, const u8 hfunc)
1806{
1807	struct net_device_context *ndc = netdev_priv(dev);
1808	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1809	struct rndis_device *rndis_dev;
1810	int i;
1811
1812	if (!ndev)
1813		return -ENODEV;
1814
1815	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1816		return -EOPNOTSUPP;
1817
1818	rndis_dev = ndev->extension;
1819	if (indir) {
1820		for (i = 0; i < ITAB_NUM; i++)
1821			if (indir[i] >= ndev->num_chn)
1822				return -EINVAL;
1823
1824		for (i = 0; i < ITAB_NUM; i++)
1825			ndc->rx_table[i] = indir[i];
1826	}
1827
1828	if (!key) {
1829		if (!indir)
1830			return 0;
1831
1832		key = rndis_dev->rss_key;
1833	}
1834
1835	return rndis_filter_set_rss_param(rndis_dev, key);
1836}
1837
1838/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1839 * It does have pre-allocated receive area which is divided into sections.
1840 */
1841static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1842				   struct ethtool_ringparam *ring)
1843{
1844	u32 max_buf_size;
1845
1846	ring->rx_pending = nvdev->recv_section_cnt;
1847	ring->tx_pending = nvdev->send_section_cnt;
1848
1849	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1850		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1851	else
1852		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1853
1854	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1855	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1856		/ nvdev->send_section_size;
1857}
1858
1859static void netvsc_get_ringparam(struct net_device *ndev,
1860				 struct ethtool_ringparam *ring)
1861{
1862	struct net_device_context *ndevctx = netdev_priv(ndev);
1863	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864
1865	if (!nvdev)
1866		return;
1867
1868	__netvsc_get_ringparam(nvdev, ring);
1869}
1870
1871static int netvsc_set_ringparam(struct net_device *ndev,
1872				struct ethtool_ringparam *ring)
1873{
1874	struct net_device_context *ndevctx = netdev_priv(ndev);
1875	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1876	struct netvsc_device_info *device_info;
1877	struct ethtool_ringparam orig;
1878	u32 new_tx, new_rx;
1879	int ret = 0;
1880
1881	if (!nvdev || nvdev->destroy)
1882		return -ENODEV;
1883
1884	memset(&orig, 0, sizeof(orig));
1885	__netvsc_get_ringparam(nvdev, &orig);
1886
1887	new_tx = clamp_t(u32, ring->tx_pending,
1888			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1889	new_rx = clamp_t(u32, ring->rx_pending,
1890			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1891
1892	if (new_tx == orig.tx_pending &&
1893	    new_rx == orig.rx_pending)
1894		return 0;	 /* no change */
1895
1896	device_info = netvsc_devinfo_get(nvdev);
1897
1898	if (!device_info)
1899		return -ENOMEM;
1900
1901	device_info->send_sections = new_tx;
1902	device_info->recv_sections = new_rx;
1903
1904	ret = netvsc_detach(ndev, nvdev);
1905	if (ret)
1906		goto out;
1907
1908	ret = netvsc_attach(ndev, device_info);
1909	if (ret) {
1910		device_info->send_sections = orig.tx_pending;
1911		device_info->recv_sections = orig.rx_pending;
1912
1913		if (netvsc_attach(ndev, device_info))
1914			netdev_err(ndev, "restoring ringparam failed");
1915	}
1916
1917out:
1918	netvsc_devinfo_put(device_info);
1919	return ret;
1920}
1921
1922static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1923					     netdev_features_t features)
1924{
1925	struct net_device_context *ndevctx = netdev_priv(ndev);
1926	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1927
1928	if (!nvdev || nvdev->destroy)
1929		return features;
1930
1931	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1932		features ^= NETIF_F_LRO;
1933		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1934	}
1935
1936	return features;
1937}
1938
1939static int netvsc_set_features(struct net_device *ndev,
1940			       netdev_features_t features)
1941{
1942	netdev_features_t change = features ^ ndev->features;
1943	struct net_device_context *ndevctx = netdev_priv(ndev);
1944	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1945	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1946	struct ndis_offload_params offloads;
1947	int ret = 0;
1948
1949	if (!nvdev || nvdev->destroy)
1950		return -ENODEV;
1951
1952	if (!(change & NETIF_F_LRO))
1953		goto syncvf;
1954
1955	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1956
1957	if (features & NETIF_F_LRO) {
1958		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1959		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1960	} else {
1961		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1962		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1963	}
1964
1965	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1966
1967	if (ret) {
1968		features ^= NETIF_F_LRO;
1969		ndev->features = features;
1970	}
1971
1972syncvf:
1973	if (!vf_netdev)
1974		return ret;
1975
1976	vf_netdev->wanted_features = features;
1977	netdev_update_features(vf_netdev);
1978
1979	return ret;
1980}
1981
1982static int netvsc_get_regs_len(struct net_device *netdev)
1983{
1984	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1985}
1986
1987static void netvsc_get_regs(struct net_device *netdev,
1988			    struct ethtool_regs *regs, void *p)
1989{
1990	struct net_device_context *ndc = netdev_priv(netdev);
1991	u32 *regs_buff = p;
1992
1993	/* increase the version, if buffer format is changed. */
1994	regs->version = 1;
1995
1996	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1997}
1998
1999static u32 netvsc_get_msglevel(struct net_device *ndev)
2000{
2001	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2002
2003	return ndev_ctx->msg_enable;
2004}
2005
2006static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2007{
2008	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2009
2010	ndev_ctx->msg_enable = val;
2011}
 
2012
2013static const struct ethtool_ops ethtool_ops = {
2014	.get_drvinfo	= netvsc_get_drvinfo,
2015	.get_regs_len	= netvsc_get_regs_len,
2016	.get_regs	= netvsc_get_regs,
2017	.get_msglevel	= netvsc_get_msglevel,
2018	.set_msglevel	= netvsc_set_msglevel,
2019	.get_link	= ethtool_op_get_link,
2020	.get_ethtool_stats = netvsc_get_ethtool_stats,
2021	.get_sset_count = netvsc_get_sset_count,
2022	.get_strings	= netvsc_get_strings,
2023	.get_channels   = netvsc_get_channels,
2024	.set_channels   = netvsc_set_channels,
2025	.get_ts_info	= ethtool_op_get_ts_info,
2026	.get_rxnfc	= netvsc_get_rxnfc,
2027	.set_rxnfc	= netvsc_set_rxnfc,
2028	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2029	.get_rxfh_indir_size = netvsc_rss_indir_size,
2030	.get_rxfh	= netvsc_get_rxfh,
2031	.set_rxfh	= netvsc_set_rxfh,
2032	.get_link_ksettings = netvsc_get_link_ksettings,
2033	.set_link_ksettings = netvsc_set_link_ksettings,
2034	.get_ringparam	= netvsc_get_ringparam,
2035	.set_ringparam	= netvsc_set_ringparam,
2036};
2037
2038static const struct net_device_ops device_ops = {
2039	.ndo_open =			netvsc_open,
2040	.ndo_stop =			netvsc_close,
2041	.ndo_start_xmit =		netvsc_start_xmit,
2042	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2043	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2044	.ndo_fix_features =		netvsc_fix_features,
2045	.ndo_set_features =		netvsc_set_features,
2046	.ndo_change_mtu =		netvsc_change_mtu,
2047	.ndo_validate_addr =		eth_validate_addr,
2048	.ndo_set_mac_address =		netvsc_set_mac_addr,
2049	.ndo_select_queue =		netvsc_select_queue,
2050	.ndo_get_stats64 =		netvsc_get_stats64,
2051	.ndo_bpf =			netvsc_bpf,
 
 
2052};
2053
2054/*
2055 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2056 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2057 * present send GARP packet to network peers with netif_notify_peers().
2058 */
2059static void netvsc_link_change(struct work_struct *w)
2060{
2061	struct net_device_context *ndev_ctx =
2062		container_of(w, struct net_device_context, dwork.work);
2063	struct hv_device *device_obj = ndev_ctx->device_ctx;
2064	struct net_device *net = hv_get_drvdata(device_obj);
2065	unsigned long flags, next_reconfig, delay;
2066	struct netvsc_reconfig *event = NULL;
2067	struct netvsc_device *net_device;
2068	struct rndis_device *rdev;
2069	bool reschedule = false;
2070
2071	/* if changes are happening, comeback later */
2072	if (!rtnl_trylock()) {
2073		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2074		return;
2075	}
2076
2077	net_device = rtnl_dereference(ndev_ctx->nvdev);
2078	if (!net_device)
2079		goto out_unlock;
2080
 
 
2081	rdev = net_device->extension;
 
2082
2083	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2084	if (time_is_after_jiffies(next_reconfig)) {
2085		/* link_watch only sends one notification with current state
2086		 * per second, avoid doing reconfig more frequently. Handle
2087		 * wrap around.
2088		 */
2089		delay = next_reconfig - jiffies;
2090		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2091		schedule_delayed_work(&ndev_ctx->dwork, delay);
2092		goto out_unlock;
2093	}
2094	ndev_ctx->last_reconfig = jiffies;
2095
2096	spin_lock_irqsave(&ndev_ctx->lock, flags);
2097	if (!list_empty(&ndev_ctx->reconfig_events)) {
2098		event = list_first_entry(&ndev_ctx->reconfig_events,
2099					 struct netvsc_reconfig, list);
2100		list_del(&event->list);
2101		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2102	}
2103	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2104
2105	if (!event)
2106		goto out_unlock;
 
 
2107
2108	switch (event->event) {
2109		/* Only the following events are possible due to the check in
2110		 * netvsc_linkstatus_callback()
2111		 */
2112	case RNDIS_STATUS_MEDIA_CONNECT:
2113		if (rdev->link_state) {
2114			rdev->link_state = false;
2115			netif_carrier_on(net);
2116			netvsc_tx_enable(net_device, net);
2117		} else {
2118			__netdev_notify_peers(net);
2119		}
2120		kfree(event);
2121		break;
2122	case RNDIS_STATUS_MEDIA_DISCONNECT:
2123		if (!rdev->link_state) {
2124			rdev->link_state = true;
2125			netif_carrier_off(net);
2126			netvsc_tx_disable(net_device, net);
2127		}
2128		kfree(event);
2129		break;
2130	case RNDIS_STATUS_NETWORK_CHANGE:
2131		/* Only makes sense if carrier is present */
2132		if (!rdev->link_state) {
2133			rdev->link_state = true;
2134			netif_carrier_off(net);
2135			netvsc_tx_disable(net_device, net);
2136			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2137			spin_lock_irqsave(&ndev_ctx->lock, flags);
2138			list_add(&event->list, &ndev_ctx->reconfig_events);
2139			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2140			reschedule = true;
2141		}
2142		break;
2143	}
2144
2145	rtnl_unlock();
2146
 
 
 
2147	/* link_watch only sends one notification with current state per
2148	 * second, handle next reconfig event in 2 seconds.
2149	 */
2150	if (reschedule)
2151		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2152
2153	return;
2154
2155out_unlock:
2156	rtnl_unlock();
2157}
2158
2159static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2160{
2161	struct net_device_context *net_device_ctx;
2162	struct net_device *dev;
2163
2164	dev = netdev_master_upper_dev_get(vf_netdev);
2165	if (!dev || dev->netdev_ops != &device_ops)
2166		return NULL;	/* not a netvsc device */
2167
2168	net_device_ctx = netdev_priv(dev);
2169	if (!rtnl_dereference(net_device_ctx->nvdev))
2170		return NULL;	/* device is removed */
2171
2172	return dev;
2173}
2174
2175/* Called when VF is injecting data into network stack.
2176 * Change the associated network device from VF to netvsc.
2177 * note: already called with rcu_read_lock
2178 */
2179static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2180{
2181	struct sk_buff *skb = *pskb;
2182	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2183	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2184	struct netvsc_vf_pcpu_stats *pcpu_stats
2185		 = this_cpu_ptr(ndev_ctx->vf_stats);
2186
2187	skb = skb_share_check(skb, GFP_ATOMIC);
2188	if (unlikely(!skb))
2189		return RX_HANDLER_CONSUMED;
2190
2191	*pskb = skb;
2192
2193	skb->dev = ndev;
2194
2195	u64_stats_update_begin(&pcpu_stats->syncp);
2196	pcpu_stats->rx_packets++;
2197	pcpu_stats->rx_bytes += skb->len;
2198	u64_stats_update_end(&pcpu_stats->syncp);
2199
2200	return RX_HANDLER_ANOTHER;
2201}
2202
2203static int netvsc_vf_join(struct net_device *vf_netdev,
2204			  struct net_device *ndev)
2205{
2206	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2207	int ret;
2208
2209	ret = netdev_rx_handler_register(vf_netdev,
2210					 netvsc_vf_handle_frame, ndev);
2211	if (ret != 0) {
2212		netdev_err(vf_netdev,
2213			   "can not register netvsc VF receive handler (err = %d)\n",
2214			   ret);
2215		goto rx_handler_failed;
2216	}
2217
2218	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2219					   NULL, NULL, NULL);
2220	if (ret != 0) {
2221		netdev_err(vf_netdev,
2222			   "can not set master device %s (err = %d)\n",
2223			   ndev->name, ret);
2224		goto upper_link_failed;
2225	}
2226
2227	/* set slave flag before open to prevent IPv6 addrconf */
2228	vf_netdev->flags |= IFF_SLAVE;
2229
2230	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2231
2232	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2233
2234	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2235	return 0;
2236
2237upper_link_failed:
2238	netdev_rx_handler_unregister(vf_netdev);
2239rx_handler_failed:
2240	return ret;
2241}
2242
2243static void __netvsc_vf_setup(struct net_device *ndev,
2244			      struct net_device *vf_netdev)
2245{
2246	int ret;
2247
2248	/* Align MTU of VF with master */
2249	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2250	if (ret)
2251		netdev_warn(vf_netdev,
2252			    "unable to change mtu to %u\n", ndev->mtu);
2253
2254	/* set multicast etc flags on VF */
2255	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2256
2257	/* sync address list from ndev to VF */
2258	netif_addr_lock_bh(ndev);
2259	dev_uc_sync(vf_netdev, ndev);
2260	dev_mc_sync(vf_netdev, ndev);
2261	netif_addr_unlock_bh(ndev);
2262
2263	if (netif_running(ndev)) {
2264		ret = dev_open(vf_netdev, NULL);
2265		if (ret)
2266			netdev_warn(vf_netdev,
2267				    "unable to open: %d\n", ret);
2268	}
2269}
2270
2271/* Setup VF as slave of the synthetic device.
2272 * Runs in workqueue to avoid recursion in netlink callbacks.
2273 */
2274static void netvsc_vf_setup(struct work_struct *w)
2275{
2276	struct net_device_context *ndev_ctx
2277		= container_of(w, struct net_device_context, vf_takeover.work);
2278	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2279	struct net_device *vf_netdev;
2280
2281	if (!rtnl_trylock()) {
2282		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2283		return;
2284	}
2285
2286	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2287	if (vf_netdev)
2288		__netvsc_vf_setup(ndev, vf_netdev);
2289
2290	rtnl_unlock();
2291}
2292
2293/* Find netvsc by VF serial number.
2294 * The PCI hyperv controller records the serial number as the slot kobj name.
2295 */
2296static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2297{
2298	struct device *parent = vf_netdev->dev.parent;
2299	struct net_device_context *ndev_ctx;
2300	struct net_device *ndev;
2301	struct pci_dev *pdev;
2302	u32 serial;
2303
2304	if (!parent || !dev_is_pci(parent))
2305		return NULL; /* not a PCI device */
2306
2307	pdev = to_pci_dev(parent);
2308	if (!pdev->slot) {
2309		netdev_notice(vf_netdev, "no PCI slot information\n");
2310		return NULL;
2311	}
2312
2313	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2314		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2315			      pci_slot_name(pdev->slot));
2316		return NULL;
2317	}
2318
2319	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320		if (!ndev_ctx->vf_alloc)
2321			continue;
2322
2323		if (ndev_ctx->vf_serial != serial)
2324			continue;
2325
2326		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2327		if (ndev->addr_len != vf_netdev->addr_len ||
2328		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2329			   ndev->addr_len) != 0)
2330			continue;
2331
2332		return ndev;
2333
2334	}
2335
2336	netdev_notice(vf_netdev,
2337		      "no netdev found for vf serial:%u\n", serial);
2338	return NULL;
2339}
2340
2341static int netvsc_register_vf(struct net_device *vf_netdev)
2342{
2343	struct net_device_context *net_device_ctx;
2344	struct netvsc_device *netvsc_dev;
2345	struct bpf_prog *prog;
2346	struct net_device *ndev;
2347	int ret;
2348
2349	if (vf_netdev->addr_len != ETH_ALEN)
2350		return NOTIFY_DONE;
2351
2352	ndev = get_netvsc_byslot(vf_netdev);
2353	if (!ndev)
2354		return NOTIFY_DONE;
2355
2356	net_device_ctx = netdev_priv(ndev);
2357	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2358	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2359		return NOTIFY_DONE;
2360
2361	/* if synthetic interface is a different namespace,
2362	 * then move the VF to that namespace; join will be
2363	 * done again in that context.
2364	 */
2365	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2366		ret = dev_change_net_namespace(vf_netdev,
2367					       dev_net(ndev), "eth%d");
2368		if (ret)
2369			netdev_err(vf_netdev,
2370				   "could not move to same namespace as %s: %d\n",
2371				   ndev->name, ret);
2372		else
2373			netdev_info(vf_netdev,
2374				    "VF moved to namespace with: %s\n",
2375				    ndev->name);
2376		return NOTIFY_DONE;
2377	}
2378
2379	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2380
2381	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2382		return NOTIFY_DONE;
2383
2384	dev_hold(vf_netdev);
2385	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2386
2387	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2388		ndev->needed_headroom = vf_netdev->needed_headroom;
2389
2390	vf_netdev->wanted_features = ndev->features;
2391	netdev_update_features(vf_netdev);
2392
2393	prog = netvsc_xdp_get(netvsc_dev);
2394	netvsc_vf_setxdp(vf_netdev, prog);
2395
2396	return NOTIFY_OK;
2397}
2398
2399/* Change the data path when VF UP/DOWN/CHANGE are detected.
2400 *
2401 * Typically a UP or DOWN event is followed by a CHANGE event, so
2402 * net_device_ctx->data_path_is_vf is used to cache the current data path
2403 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2404 * message.
2405 *
2406 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2407 * interface, there is only the CHANGE event and no UP or DOWN event.
2408 */
2409static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2410{
2411	struct net_device_context *net_device_ctx;
2412	struct netvsc_device *netvsc_dev;
2413	struct net_device *ndev;
2414	bool vf_is_up = false;
2415	int ret;
2416
2417	if (event != NETDEV_GOING_DOWN)
2418		vf_is_up = netif_running(vf_netdev);
2419
2420	ndev = get_netvsc_byref(vf_netdev);
2421	if (!ndev)
2422		return NOTIFY_DONE;
2423
2424	net_device_ctx = netdev_priv(ndev);
2425	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2426	if (!netvsc_dev)
2427		return NOTIFY_DONE;
2428
2429	if (net_device_ctx->data_path_is_vf == vf_is_up)
2430		return NOTIFY_OK;
2431
2432	ret = netvsc_switch_datapath(ndev, vf_is_up);
2433
2434	if (ret) {
2435		netdev_err(ndev,
2436			   "Data path failed to switch %s VF: %s, err: %d\n",
2437			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2438		return NOTIFY_DONE;
2439	} else {
2440		netdev_info(ndev, "Data path switched %s VF: %s\n",
2441			    vf_is_up ? "to" : "from", vf_netdev->name);
2442	}
2443
2444	return NOTIFY_OK;
2445}
2446
2447static int netvsc_unregister_vf(struct net_device *vf_netdev)
2448{
2449	struct net_device *ndev;
2450	struct net_device_context *net_device_ctx;
2451
2452	ndev = get_netvsc_byref(vf_netdev);
2453	if (!ndev)
2454		return NOTIFY_DONE;
2455
2456	net_device_ctx = netdev_priv(ndev);
2457	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2458
2459	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2460
2461	netvsc_vf_setxdp(vf_netdev, NULL);
2462
2463	netdev_rx_handler_unregister(vf_netdev);
2464	netdev_upper_dev_unlink(vf_netdev, ndev);
2465	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2466	dev_put(vf_netdev);
2467
2468	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2469
2470	return NOTIFY_OK;
2471}
2472
2473static int netvsc_probe(struct hv_device *dev,
2474			const struct hv_vmbus_device_id *dev_id)
2475{
2476	struct net_device *net = NULL;
2477	struct net_device_context *net_device_ctx;
2478	struct netvsc_device_info *device_info = NULL;
2479	struct netvsc_device *nvdev;
2480	int ret = -ENOMEM;
2481
2482	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2483				VRSS_CHANNEL_MAX);
2484	if (!net)
2485		goto no_net;
2486
2487	netif_carrier_off(net);
2488
2489	netvsc_init_settings(net);
2490
2491	net_device_ctx = netdev_priv(net);
2492	net_device_ctx->device_ctx = dev;
2493	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2494	if (netif_msg_probe(net_device_ctx))
2495		netdev_dbg(net, "netvsc msg_enable: %d\n",
2496			   net_device_ctx->msg_enable);
2497
 
 
 
 
 
 
 
 
 
 
 
 
2498	hv_set_drvdata(dev, net);
2499
2500	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
 
2501
2502	spin_lock_init(&net_device_ctx->lock);
2503	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2504	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2505
2506	net_device_ctx->vf_stats
2507		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2508	if (!net_device_ctx->vf_stats)
2509		goto no_stats;
2510
2511	net->netdev_ops = &device_ops;
2512	net->ethtool_ops = &ethtool_ops;
2513	SET_NETDEV_DEV(net, &dev->device);
2514
2515	/* We always need headroom for rndis header */
2516	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518	/* Initialize the number of queues to be 1, we may change it if more
2519	 * channels are offered later.
2520	 */
2521	netif_set_real_num_tx_queues(net, 1);
2522	netif_set_real_num_rx_queues(net, 1);
2523
2524	/* Notify the netvsc driver of the new device */
2525	device_info = netvsc_devinfo_get(NULL);
2526
2527	if (!device_info) {
2528		ret = -ENOMEM;
2529		goto devinfo_failed;
2530	}
2531
2532	nvdev = rndis_filter_device_add(dev, device_info);
2533	if (IS_ERR(nvdev)) {
2534		ret = PTR_ERR(nvdev);
2535		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536		goto rndis_failed;
 
 
2537	}
 
2538
2539	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
 
 
2540
2541	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2542	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543	 * all subchannels to show up, but that may not happen because
2544	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546	 * the device lock, so all the subchannels can't be processed --
2547	 * finally netvsc_subchan_work() hangs forever.
2548	 */
2549	rtnl_lock();
2550
2551	if (nvdev->num_chn > 1)
2552		schedule_work(&nvdev->subchan_work);
2553
2554	/* hw_features computed in rndis_netdev_set_hwcaps() */
2555	net->features = net->hw_features |
2556		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557		NETIF_F_HW_VLAN_CTAG_RX;
2558	net->vlan_features = net->features;
2559
2560	netdev_lockdep_set_classes(net);
2561
2562	/* MTU range: 68 - 1500 or 65521 */
2563	net->min_mtu = NETVSC_MTU_MIN;
2564	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566	else
2567		net->max_mtu = ETH_DATA_LEN;
2568
2569	nvdev->tx_disable = false;
2570
2571	ret = register_netdevice(net);
2572	if (ret != 0) {
2573		pr_err("Unable to register netdev.\n");
2574		goto register_failed;
 
2575	}
2576
2577	list_add(&net_device_ctx->list, &netvsc_dev_list);
2578	rtnl_unlock();
2579
2580	netvsc_devinfo_put(device_info);
2581	return 0;
2582
2583register_failed:
2584	rtnl_unlock();
2585	rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
2587	netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589	free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591	hv_set_drvdata(dev, NULL);
2592	free_netdev(net);
2593no_net:
2594	return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
 
2599	struct net_device_context *ndev_ctx;
2600	struct net_device *vf_netdev, *net;
2601	struct netvsc_device *nvdev;
 
 
2602
2603	net = hv_get_drvdata(dev);
2604	if (net == NULL) {
2605		dev_err(&dev->device, "No net device to remove\n");
2606		return 0;
2607	}
2608
 
 
2609	ndev_ctx = netdev_priv(net);
 
 
2610
2611	cancel_delayed_work_sync(&ndev_ctx->dwork);
 
2612
2613	rtnl_lock();
2614	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615	if (nvdev) {
2616		cancel_work_sync(&nvdev->subchan_work);
2617		netvsc_xdp_set(net, NULL, NULL, nvdev);
2618	}
2619
2620	/*
2621	 * Call to the vsc driver to let it know that the device is being
2622	 * removed. Also blocks mtu and channel changes.
2623	 */
2624	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625	if (vf_netdev)
2626		netvsc_unregister_vf(vf_netdev);
2627
2628	if (nvdev)
2629		rndis_filter_device_remove(dev, nvdev);
2630
2631	unregister_netdevice(net);
2632	list_del(&ndev_ctx->list);
2633
2634	rtnl_unlock();
2635
2636	hv_set_drvdata(dev, NULL);
2637
2638	free_percpu(ndev_ctx->vf_stats);
2639	free_netdev(net);
2640	return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645	struct net_device_context *ndev_ctx;
2646	struct netvsc_device *nvdev;
2647	struct net_device *net;
2648	int ret;
2649
2650	net = hv_get_drvdata(dev);
2651
2652	ndev_ctx = netdev_priv(net);
2653	cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655	rtnl_lock();
2656
2657	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658	if (nvdev == NULL) {
2659		ret = -ENODEV;
2660		goto out;
2661	}
2662
2663	/* Save the current config info */
2664	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665
2666	ret = netvsc_detach(net, nvdev);
2667out:
2668	rtnl_unlock();
2669
2670	return ret;
2671}
2672
2673static int netvsc_resume(struct hv_device *dev)
2674{
2675	struct net_device *net = hv_get_drvdata(dev);
2676	struct net_device_context *net_device_ctx;
2677	struct netvsc_device_info *device_info;
2678	int ret;
2679
2680	rtnl_lock();
2681
2682	net_device_ctx = netdev_priv(net);
2683
2684	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2685	 * channel. Later netvsc_netdev_event() will switch the data path to
2686	 * the VF upon the UP or CHANGE event.
2687	 */
2688	net_device_ctx->data_path_is_vf = false;
2689	device_info = net_device_ctx->saved_netvsc_dev_info;
2690
2691	ret = netvsc_attach(net, device_info);
2692
2693	netvsc_devinfo_put(device_info);
2694	net_device_ctx->saved_netvsc_dev_info = NULL;
2695
2696	rtnl_unlock();
2697
2698	return ret;
2699}
2700static const struct hv_vmbus_device_id id_table[] = {
2701	/* Network guid */
2702	{ HV_NIC_GUID, },
2703	{ },
2704};
2705
2706MODULE_DEVICE_TABLE(vmbus, id_table);
2707
2708/* The one and only one */
2709static struct  hv_driver netvsc_drv = {
2710	.name = KBUILD_MODNAME,
2711	.id_table = id_table,
2712	.probe = netvsc_probe,
2713	.remove = netvsc_remove,
2714	.suspend = netvsc_suspend,
2715	.resume = netvsc_resume,
2716	.driver = {
2717		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2718	},
2719};
2720
2721/*
2722 * On Hyper-V, every VF interface is matched with a corresponding
2723 * synthetic interface. The synthetic interface is presented first
2724 * to the guest. When the corresponding VF instance is registered,
2725 * we will take care of switching the data path.
2726 */
2727static int netvsc_netdev_event(struct notifier_block *this,
2728			       unsigned long event, void *ptr)
2729{
2730	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2731
2732	/* Skip our own events */
2733	if (event_dev->netdev_ops == &device_ops)
2734		return NOTIFY_DONE;
2735
2736	/* Avoid non-Ethernet type devices */
2737	if (event_dev->type != ARPHRD_ETHER)
2738		return NOTIFY_DONE;
2739
2740	/* Avoid Vlan dev with same MAC registering as VF */
2741	if (is_vlan_dev(event_dev))
2742		return NOTIFY_DONE;
2743
2744	/* Avoid Bonding master dev with same MAC registering as VF */
2745	if ((event_dev->priv_flags & IFF_BONDING) &&
2746	    (event_dev->flags & IFF_MASTER))
2747		return NOTIFY_DONE;
2748
2749	switch (event) {
2750	case NETDEV_REGISTER:
2751		return netvsc_register_vf(event_dev);
2752	case NETDEV_UNREGISTER:
2753		return netvsc_unregister_vf(event_dev);
2754	case NETDEV_UP:
2755	case NETDEV_DOWN:
2756	case NETDEV_CHANGE:
2757	case NETDEV_GOING_DOWN:
2758		return netvsc_vf_changed(event_dev, event);
2759	default:
2760		return NOTIFY_DONE;
2761	}
2762}
2763
2764static struct notifier_block netvsc_netdev_notifier = {
2765	.notifier_call = netvsc_netdev_event,
2766};
2767
2768static void __exit netvsc_drv_exit(void)
2769{
2770	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2771	vmbus_driver_unregister(&netvsc_drv);
2772}
2773
2774static int __init netvsc_drv_init(void)
2775{
2776	int ret;
2777
2778	if (ring_size < RING_SIZE_MIN) {
2779		ring_size = RING_SIZE_MIN;
2780		pr_info("Increased ring_size to %u (min allowed)\n",
2781			ring_size);
2782	}
2783	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2784
2785	ret = vmbus_driver_register(&netvsc_drv);
2786	if (ret)
2787		return ret;
2788
2789	register_netdevice_notifier(&netvsc_netdev_notifier);
2790	return 0;
2791}
2792
2793MODULE_LICENSE("GPL");
2794MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2795
2796module_init(netvsc_drv_init);
2797module_exit(netvsc_drv_exit);