Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
   4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
   5 */
   6
   7#include <linux/atomic.h>
   8#include <linux/coresight.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/iommu.h>
  11#include <linux/idr.h>
  12#include <linux/mutex.h>
  13#include <linux/refcount.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/vmalloc.h>
  17#include "coresight-catu.h"
  18#include "coresight-etm-perf.h"
  19#include "coresight-priv.h"
  20#include "coresight-tmc.h"
  21
  22struct etr_flat_buf {
  23	struct device	*dev;
  24	dma_addr_t	daddr;
  25	void		*vaddr;
  26	size_t		size;
  27};
  28
  29/*
  30 * etr_perf_buffer - Perf buffer used for ETR
  31 * @drvdata		- The ETR drvdaga this buffer has been allocated for.
  32 * @etr_buf		- Actual buffer used by the ETR
  33 * @pid			- The PID this etr_perf_buffer belongs to.
  34 * @snaphost		- Perf session mode
  35 * @head		- handle->head at the beginning of the session.
  36 * @nr_pages		- Number of pages in the ring buffer.
  37 * @pages		- Array of Pages in the ring buffer.
  38 */
  39struct etr_perf_buffer {
  40	struct tmc_drvdata	*drvdata;
  41	struct etr_buf		*etr_buf;
  42	pid_t			pid;
  43	bool			snapshot;
  44	unsigned long		head;
  45	int			nr_pages;
  46	void			**pages;
  47};
  48
  49/* Convert the perf index to an offset within the ETR buffer */
  50#define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
  51
  52/* Lower limit for ETR hardware buffer */
  53#define TMC_ETR_PERF_MIN_BUF_SIZE	SZ_1M
  54
  55/*
  56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
  57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
  58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
  59 * contain more than one SG buffer and tables.
  60 *
  61 * A table entry has the following format:
  62 *
  63 * ---Bit31------------Bit4-------Bit1-----Bit0--
  64 * |     Address[39:12]    | SBZ |  Entry Type  |
  65 * ----------------------------------------------
  66 *
  67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
  68 *	    always zero.
  69 *
  70 * Entry type:
  71 *	b00 - Reserved.
  72 *	b01 - Last entry in the tables, points to 4K page buffer.
  73 *	b10 - Normal entry, points to 4K page buffer.
  74 *	b11 - Link. The address points to the base of next table.
  75 */
  76
  77typedef u32 sgte_t;
  78
  79#define ETR_SG_PAGE_SHIFT		12
  80#define ETR_SG_PAGE_SIZE		(1UL << ETR_SG_PAGE_SHIFT)
  81#define ETR_SG_PAGES_PER_SYSPAGE	(PAGE_SIZE / ETR_SG_PAGE_SIZE)
  82#define ETR_SG_PTRS_PER_PAGE		(ETR_SG_PAGE_SIZE / sizeof(sgte_t))
  83#define ETR_SG_PTRS_PER_SYSPAGE		(PAGE_SIZE / sizeof(sgte_t))
  84
  85#define ETR_SG_ET_MASK			0x3
  86#define ETR_SG_ET_LAST			0x1
  87#define ETR_SG_ET_NORMAL		0x2
  88#define ETR_SG_ET_LINK			0x3
  89
  90#define ETR_SG_ADDR_SHIFT		4
  91
  92#define ETR_SG_ENTRY(addr, type) \
  93	(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
  94		 (type & ETR_SG_ET_MASK))
  95
  96#define ETR_SG_ADDR(entry) \
  97	(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
  98#define ETR_SG_ET(entry)		((entry) & ETR_SG_ET_MASK)
  99
 100/*
 101 * struct etr_sg_table : ETR SG Table
 102 * @sg_table:		Generic SG Table holding the data/table pages.
 103 * @hwaddr:		hwaddress used by the TMC, which is the base
 104 *			address of the table.
 105 */
 106struct etr_sg_table {
 107	struct tmc_sg_table	*sg_table;
 108	dma_addr_t		hwaddr;
 109};
 110
 111/*
 112 * tmc_etr_sg_table_entries: Total number of table entries required to map
 113 * @nr_pages system pages.
 114 *
 115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
 116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
 117 * with the last entry pointing to another page of table entries.
 118 * If we spill over to a new page for mapping 1 entry, we could as
 119 * well replace the link entry of the previous page with the last entry.
 120 */
 121static inline unsigned long __attribute_const__
 122tmc_etr_sg_table_entries(int nr_pages)
 123{
 124	unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
 125	unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
 126	/*
 127	 * If we spill over to a new page for 1 entry, we could as well
 128	 * make it the LAST entry in the previous page, skipping the Link
 129	 * address.
 130	 */
 131	if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
 132		nr_sglinks--;
 133	return nr_sgpages + nr_sglinks;
 134}
 135
 136/*
 137 * tmc_pages_get_offset:  Go through all the pages in the tmc_pages
 138 * and map the device address @addr to an offset within the virtual
 139 * contiguous buffer.
 140 */
 141static long
 142tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
 143{
 144	int i;
 145	dma_addr_t page_start;
 146
 147	for (i = 0; i < tmc_pages->nr_pages; i++) {
 148		page_start = tmc_pages->daddrs[i];
 149		if (addr >= page_start && addr < (page_start + PAGE_SIZE))
 150			return i * PAGE_SIZE + (addr - page_start);
 151	}
 152
 153	return -EINVAL;
 154}
 155
 156/*
 157 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
 158 * If the pages were not allocated in tmc_pages_alloc(), we would
 159 * simply drop the refcount.
 160 */
 161static void tmc_pages_free(struct tmc_pages *tmc_pages,
 162			   struct device *dev, enum dma_data_direction dir)
 163{
 164	int i;
 165	struct device *real_dev = dev->parent;
 166
 167	for (i = 0; i < tmc_pages->nr_pages; i++) {
 168		if (tmc_pages->daddrs && tmc_pages->daddrs[i])
 169			dma_unmap_page(real_dev, tmc_pages->daddrs[i],
 170					 PAGE_SIZE, dir);
 171		if (tmc_pages->pages && tmc_pages->pages[i])
 172			__free_page(tmc_pages->pages[i]);
 173	}
 174
 175	kfree(tmc_pages->pages);
 176	kfree(tmc_pages->daddrs);
 177	tmc_pages->pages = NULL;
 178	tmc_pages->daddrs = NULL;
 179	tmc_pages->nr_pages = 0;
 180}
 181
 182/*
 183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
 184 * If @pages is not NULL, the list of page virtual addresses are
 185 * used as the data pages. The pages are then dma_map'ed for @dev
 186 * with dma_direction @dir.
 187 *
 188 * Returns 0 upon success, else the error number.
 189 */
 190static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
 191			   struct device *dev, int node,
 192			   enum dma_data_direction dir, void **pages)
 193{
 194	int i, nr_pages;
 195	dma_addr_t paddr;
 196	struct page *page;
 197	struct device *real_dev = dev->parent;
 198
 199	nr_pages = tmc_pages->nr_pages;
 200	tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
 201					 GFP_KERNEL);
 202	if (!tmc_pages->daddrs)
 203		return -ENOMEM;
 204	tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
 205					 GFP_KERNEL);
 206	if (!tmc_pages->pages) {
 207		kfree(tmc_pages->daddrs);
 208		tmc_pages->daddrs = NULL;
 209		return -ENOMEM;
 210	}
 211
 212	for (i = 0; i < nr_pages; i++) {
 213		if (pages && pages[i]) {
 214			page = virt_to_page(pages[i]);
 215			/* Hold a refcount on the page */
 216			get_page(page);
 217		} else {
 218			page = alloc_pages_node(node,
 219						GFP_KERNEL | __GFP_ZERO, 0);
 220			if (!page)
 221				goto err;
 222		}
 223		paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
 224		if (dma_mapping_error(real_dev, paddr))
 225			goto err;
 226		tmc_pages->daddrs[i] = paddr;
 227		tmc_pages->pages[i] = page;
 228	}
 229	return 0;
 230err:
 231	tmc_pages_free(tmc_pages, dev, dir);
 232	return -ENOMEM;
 233}
 234
 235static inline long
 236tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
 237{
 238	return tmc_pages_get_offset(&sg_table->data_pages, addr);
 239}
 240
 241static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
 242{
 243	if (sg_table->table_vaddr)
 244		vunmap(sg_table->table_vaddr);
 245	tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
 246}
 247
 248static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
 249{
 250	if (sg_table->data_vaddr)
 251		vunmap(sg_table->data_vaddr);
 252	tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
 253}
 254
 255void tmc_free_sg_table(struct tmc_sg_table *sg_table)
 256{
 257	tmc_free_table_pages(sg_table);
 258	tmc_free_data_pages(sg_table);
 259}
 260EXPORT_SYMBOL_GPL(tmc_free_sg_table);
 261
 262/*
 263 * Alloc pages for the table. Since this will be used by the device,
 264 * allocate the pages closer to the device (i.e, dev_to_node(dev)
 265 * rather than the CPU node).
 266 */
 267static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
 268{
 269	int rc;
 270	struct tmc_pages *table_pages = &sg_table->table_pages;
 271
 272	rc = tmc_pages_alloc(table_pages, sg_table->dev,
 273			     dev_to_node(sg_table->dev),
 274			     DMA_TO_DEVICE, NULL);
 275	if (rc)
 276		return rc;
 277	sg_table->table_vaddr = vmap(table_pages->pages,
 278				     table_pages->nr_pages,
 279				     VM_MAP,
 280				     PAGE_KERNEL);
 281	if (!sg_table->table_vaddr)
 282		rc = -ENOMEM;
 283	else
 284		sg_table->table_daddr = table_pages->daddrs[0];
 285	return rc;
 286}
 287
 288static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
 289{
 290	int rc;
 291
 292	/* Allocate data pages on the node requested by the caller */
 293	rc = tmc_pages_alloc(&sg_table->data_pages,
 294			     sg_table->dev, sg_table->node,
 295			     DMA_FROM_DEVICE, pages);
 296	if (!rc) {
 297		sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
 298					    sg_table->data_pages.nr_pages,
 299					    VM_MAP,
 300					    PAGE_KERNEL);
 301		if (!sg_table->data_vaddr)
 302			rc = -ENOMEM;
 303	}
 304	return rc;
 305}
 306
 307/*
 308 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
 309 * and data buffers. TMC writes to the data buffers and reads from the SG
 310 * Table pages.
 311 *
 312 * @dev		- Coresight device to which page should be DMA mapped.
 313 * @node	- Numa node for mem allocations
 314 * @nr_tpages	- Number of pages for the table entries.
 315 * @nr_dpages	- Number of pages for Data buffer.
 316 * @pages	- Optional list of virtual address of pages.
 317 */
 318struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
 319					int node,
 320					int nr_tpages,
 321					int nr_dpages,
 322					void **pages)
 323{
 324	long rc;
 325	struct tmc_sg_table *sg_table;
 326
 327	sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
 328	if (!sg_table)
 329		return ERR_PTR(-ENOMEM);
 330	sg_table->data_pages.nr_pages = nr_dpages;
 331	sg_table->table_pages.nr_pages = nr_tpages;
 332	sg_table->node = node;
 333	sg_table->dev = dev;
 334
 335	rc  = tmc_alloc_data_pages(sg_table, pages);
 336	if (!rc)
 337		rc = tmc_alloc_table_pages(sg_table);
 338	if (rc) {
 339		tmc_free_sg_table(sg_table);
 340		kfree(sg_table);
 341		return ERR_PTR(rc);
 342	}
 343
 344	return sg_table;
 345}
 346EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
 347
 348/*
 349 * tmc_sg_table_sync_data_range: Sync the data buffer written
 350 * by the device from @offset upto a @size bytes.
 351 */
 352void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
 353				  u64 offset, u64 size)
 354{
 355	int i, index, start;
 356	int npages = DIV_ROUND_UP(size, PAGE_SIZE);
 357	struct device *real_dev = table->dev->parent;
 358	struct tmc_pages *data = &table->data_pages;
 359
 360	start = offset >> PAGE_SHIFT;
 361	for (i = start; i < (start + npages); i++) {
 362		index = i % data->nr_pages;
 363		dma_sync_single_for_cpu(real_dev, data->daddrs[index],
 364					PAGE_SIZE, DMA_FROM_DEVICE);
 365	}
 366}
 367EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
 368
 369/* tmc_sg_sync_table: Sync the page table */
 370void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
 371{
 372	int i;
 373	struct device *real_dev = sg_table->dev->parent;
 374	struct tmc_pages *table_pages = &sg_table->table_pages;
 375
 376	for (i = 0; i < table_pages->nr_pages; i++)
 377		dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
 378					   PAGE_SIZE, DMA_TO_DEVICE);
 379}
 380EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
 381
 382/*
 383 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
 384 * in the SG buffer. The @bufpp is updated to point to the buffer.
 385 * Returns :
 386 *	the length of linear data available at @offset.
 387 *	or
 388 *	<= 0 if no data is available.
 389 */
 390ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
 391			      u64 offset, size_t len, char **bufpp)
 392{
 393	size_t size;
 394	int pg_idx = offset >> PAGE_SHIFT;
 395	int pg_offset = offset & (PAGE_SIZE - 1);
 396	struct tmc_pages *data_pages = &sg_table->data_pages;
 397
 398	size = tmc_sg_table_buf_size(sg_table);
 399	if (offset >= size)
 400		return -EINVAL;
 401
 402	/* Make sure we don't go beyond the end */
 403	len = (len < (size - offset)) ? len : size - offset;
 404	/* Respect the page boundaries */
 405	len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
 406	if (len > 0)
 407		*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
 408	return len;
 409}
 410EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
 411
 412#ifdef ETR_SG_DEBUG
 413/* Map a dma address to virtual address */
 414static unsigned long
 415tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
 416		      dma_addr_t addr, bool table)
 417{
 418	long offset;
 419	unsigned long base;
 420	struct tmc_pages *tmc_pages;
 421
 422	if (table) {
 423		tmc_pages = &sg_table->table_pages;
 424		base = (unsigned long)sg_table->table_vaddr;
 425	} else {
 426		tmc_pages = &sg_table->data_pages;
 427		base = (unsigned long)sg_table->data_vaddr;
 428	}
 429
 430	offset = tmc_pages_get_offset(tmc_pages, addr);
 431	if (offset < 0)
 432		return 0;
 433	return base + offset;
 434}
 435
 436/* Dump the given sg_table */
 437static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
 438{
 439	sgte_t *ptr;
 440	int i = 0;
 441	dma_addr_t addr;
 442	struct tmc_sg_table *sg_table = etr_table->sg_table;
 443
 444	ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
 445					      etr_table->hwaddr, true);
 446	while (ptr) {
 447		addr = ETR_SG_ADDR(*ptr);
 448		switch (ETR_SG_ET(*ptr)) {
 449		case ETR_SG_ET_NORMAL:
 450			dev_dbg(sg_table->dev,
 451				"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
 452			ptr++;
 453			break;
 454		case ETR_SG_ET_LINK:
 455			dev_dbg(sg_table->dev,
 456				"%05d: *** %p\t:{L} 0x%llx ***\n",
 457				 i, ptr, addr);
 458			ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
 459							      addr, true);
 460			break;
 461		case ETR_SG_ET_LAST:
 462			dev_dbg(sg_table->dev,
 463				"%05d: ### %p\t:[L] 0x%llx ###\n",
 464				 i, ptr, addr);
 465			return;
 466		default:
 467			dev_dbg(sg_table->dev,
 468				"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
 469				 i, ptr, addr);
 470			return;
 471		}
 472		i++;
 473	}
 474	dev_dbg(sg_table->dev, "******* End of Table *****\n");
 475}
 476#else
 477static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
 478#endif
 479
 480/*
 481 * Populate the SG Table page table entries from table/data
 482 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
 483 * So does a Table page. So we keep track of indices of the tables
 484 * in each system page and move the pointers accordingly.
 485 */
 486#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
 487static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
 488{
 489	dma_addr_t paddr;
 490	int i, type, nr_entries;
 491	int tpidx = 0; /* index to the current system table_page */
 492	int sgtidx = 0;	/* index to the sg_table within the current syspage */
 493	int sgtentry = 0; /* the entry within the sg_table */
 494	int dpidx = 0; /* index to the current system data_page */
 495	int spidx = 0; /* index to the SG page within the current data page */
 496	sgte_t *ptr; /* pointer to the table entry to fill */
 497	struct tmc_sg_table *sg_table = etr_table->sg_table;
 498	dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
 499	dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
 500
 501	nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
 502	/*
 503	 * Use the contiguous virtual address of the table to update entries.
 504	 */
 505	ptr = sg_table->table_vaddr;
 506	/*
 507	 * Fill all the entries, except the last entry to avoid special
 508	 * checks within the loop.
 509	 */
 510	for (i = 0; i < nr_entries - 1; i++) {
 511		if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
 512			/*
 513			 * Last entry in a sg_table page is a link address to
 514			 * the next table page. If this sg_table is the last
 515			 * one in the system page, it links to the first
 516			 * sg_table in the next system page. Otherwise, it
 517			 * links to the next sg_table page within the system
 518			 * page.
 519			 */
 520			if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
 521				paddr = table_daddrs[tpidx + 1];
 522			} else {
 523				paddr = table_daddrs[tpidx] +
 524					(ETR_SG_PAGE_SIZE * (sgtidx + 1));
 525			}
 526			type = ETR_SG_ET_LINK;
 527		} else {
 528			/*
 529			 * Update the indices to the data_pages to point to the
 530			 * next sg_page in the data buffer.
 531			 */
 532			type = ETR_SG_ET_NORMAL;
 533			paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
 534			if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
 535				dpidx++;
 536		}
 537		*ptr++ = ETR_SG_ENTRY(paddr, type);
 538		/*
 539		 * Move to the next table pointer, moving the table page index
 540		 * if necessary
 541		 */
 542		if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
 543			if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
 544				tpidx++;
 545		}
 546	}
 547
 548	/* Set up the last entry, which is always a data pointer */
 549	paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
 550	*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
 551}
 552
 553/*
 554 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
 555 * populate the table.
 556 *
 557 * @dev		- Device pointer for the TMC
 558 * @node	- NUMA node where the memory should be allocated
 559 * @size	- Total size of the data buffer
 560 * @pages	- Optional list of page virtual address
 561 */
 562static struct etr_sg_table *
 563tmc_init_etr_sg_table(struct device *dev, int node,
 564		      unsigned long size, void **pages)
 565{
 566	int nr_entries, nr_tpages;
 567	int nr_dpages = size >> PAGE_SHIFT;
 568	struct tmc_sg_table *sg_table;
 569	struct etr_sg_table *etr_table;
 570
 571	etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
 572	if (!etr_table)
 573		return ERR_PTR(-ENOMEM);
 574	nr_entries = tmc_etr_sg_table_entries(nr_dpages);
 575	nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
 576
 577	sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
 578	if (IS_ERR(sg_table)) {
 579		kfree(etr_table);
 580		return ERR_CAST(sg_table);
 581	}
 582
 583	etr_table->sg_table = sg_table;
 584	/* TMC should use table base address for DBA */
 585	etr_table->hwaddr = sg_table->table_daddr;
 586	tmc_etr_sg_table_populate(etr_table);
 587	/* Sync the table pages for the HW */
 588	tmc_sg_table_sync_table(sg_table);
 589	tmc_etr_sg_table_dump(etr_table);
 590
 591	return etr_table;
 592}
 593
 594/*
 595 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
 596 */
 597static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
 598				  struct etr_buf *etr_buf, int node,
 599				  void **pages)
 600{
 601	struct etr_flat_buf *flat_buf;
 602	struct device *real_dev = drvdata->csdev->dev.parent;
 603
 604	/* We cannot reuse existing pages for flat buf */
 605	if (pages)
 606		return -EINVAL;
 607
 608	flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
 609	if (!flat_buf)
 610		return -ENOMEM;
 611
 612	flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
 613					     &flat_buf->daddr, GFP_KERNEL);
 614	if (!flat_buf->vaddr) {
 615		kfree(flat_buf);
 616		return -ENOMEM;
 617	}
 618
 619	flat_buf->size = etr_buf->size;
 620	flat_buf->dev = &drvdata->csdev->dev;
 621	etr_buf->hwaddr = flat_buf->daddr;
 622	etr_buf->mode = ETR_MODE_FLAT;
 623	etr_buf->private = flat_buf;
 624	return 0;
 625}
 626
 627static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
 628{
 629	struct etr_flat_buf *flat_buf = etr_buf->private;
 630
 631	if (flat_buf && flat_buf->daddr) {
 632		struct device *real_dev = flat_buf->dev->parent;
 633
 634		dma_free_coherent(real_dev, flat_buf->size,
 635				  flat_buf->vaddr, flat_buf->daddr);
 636	}
 637	kfree(flat_buf);
 638}
 639
 640static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
 641{
 642	/*
 643	 * Adjust the buffer to point to the beginning of the trace data
 644	 * and update the available trace data.
 645	 */
 646	etr_buf->offset = rrp - etr_buf->hwaddr;
 647	if (etr_buf->full)
 648		etr_buf->len = etr_buf->size;
 649	else
 650		etr_buf->len = rwp - rrp;
 651}
 652
 653static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
 654					 u64 offset, size_t len, char **bufpp)
 655{
 656	struct etr_flat_buf *flat_buf = etr_buf->private;
 657
 658	*bufpp = (char *)flat_buf->vaddr + offset;
 659	/*
 660	 * tmc_etr_buf_get_data already adjusts the length to handle
 661	 * buffer wrapping around.
 662	 */
 663	return len;
 664}
 665
 666static const struct etr_buf_operations etr_flat_buf_ops = {
 667	.alloc = tmc_etr_alloc_flat_buf,
 668	.free = tmc_etr_free_flat_buf,
 669	.sync = tmc_etr_sync_flat_buf,
 670	.get_data = tmc_etr_get_data_flat_buf,
 671};
 672
 673/*
 674 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
 675 * appropriately.
 676 */
 677static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
 678				struct etr_buf *etr_buf, int node,
 679				void **pages)
 680{
 681	struct etr_sg_table *etr_table;
 682	struct device *dev = &drvdata->csdev->dev;
 683
 684	etr_table = tmc_init_etr_sg_table(dev, node,
 685					  etr_buf->size, pages);
 686	if (IS_ERR(etr_table))
 687		return -ENOMEM;
 688	etr_buf->hwaddr = etr_table->hwaddr;
 689	etr_buf->mode = ETR_MODE_ETR_SG;
 690	etr_buf->private = etr_table;
 691	return 0;
 692}
 693
 694static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
 695{
 696	struct etr_sg_table *etr_table = etr_buf->private;
 697
 698	if (etr_table) {
 699		tmc_free_sg_table(etr_table->sg_table);
 700		kfree(etr_table);
 701	}
 702}
 703
 704static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
 705				       size_t len, char **bufpp)
 706{
 707	struct etr_sg_table *etr_table = etr_buf->private;
 708
 709	return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
 710}
 711
 712static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
 713{
 714	long r_offset, w_offset;
 715	struct etr_sg_table *etr_table = etr_buf->private;
 716	struct tmc_sg_table *table = etr_table->sg_table;
 717
 718	/* Convert hw address to offset in the buffer */
 719	r_offset = tmc_sg_get_data_page_offset(table, rrp);
 720	if (r_offset < 0) {
 721		dev_warn(table->dev,
 722			 "Unable to map RRP %llx to offset\n", rrp);
 723		etr_buf->len = 0;
 724		return;
 725	}
 726
 727	w_offset = tmc_sg_get_data_page_offset(table, rwp);
 728	if (w_offset < 0) {
 729		dev_warn(table->dev,
 730			 "Unable to map RWP %llx to offset\n", rwp);
 731		etr_buf->len = 0;
 732		return;
 733	}
 734
 735	etr_buf->offset = r_offset;
 736	if (etr_buf->full)
 737		etr_buf->len = etr_buf->size;
 738	else
 739		etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
 740				w_offset - r_offset;
 741	tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
 742}
 743
 744static const struct etr_buf_operations etr_sg_buf_ops = {
 745	.alloc = tmc_etr_alloc_sg_buf,
 746	.free = tmc_etr_free_sg_buf,
 747	.sync = tmc_etr_sync_sg_buf,
 748	.get_data = tmc_etr_get_data_sg_buf,
 749};
 750
 751/*
 752 * TMC ETR could be connected to a CATU device, which can provide address
 753 * translation service. This is represented by the Output port of the TMC
 754 * (ETR) connected to the input port of the CATU.
 755 *
 756 * Returns	: coresight_device ptr for the CATU device if a CATU is found.
 757 *		: NULL otherwise.
 758 */
 759struct coresight_device *
 760tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
 761{
 762	int i;
 763	struct coresight_device *tmp, *etr = drvdata->csdev;
 764
 765	if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
 766		return NULL;
 767
 768	for (i = 0; i < etr->pdata->nr_outport; i++) {
 769		tmp = etr->pdata->conns[i].child_dev;
 770		if (tmp && coresight_is_catu_device(tmp))
 771			return tmp;
 772	}
 773
 774	return NULL;
 775}
 776EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
 777
 778static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
 779				      struct etr_buf *etr_buf)
 780{
 781	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
 782
 783	if (catu && helper_ops(catu)->enable)
 784		return helper_ops(catu)->enable(catu, etr_buf);
 785	return 0;
 786}
 787
 788static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
 789{
 790	struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
 791
 792	if (catu && helper_ops(catu)->disable)
 793		helper_ops(catu)->disable(catu, drvdata->etr_buf);
 794}
 795
 796static const struct etr_buf_operations *etr_buf_ops[] = {
 797	[ETR_MODE_FLAT] = &etr_flat_buf_ops,
 798	[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
 799	[ETR_MODE_CATU] = NULL,
 800};
 801
 802void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
 803{
 804	etr_buf_ops[ETR_MODE_CATU] = catu;
 805}
 806EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
 807
 808void tmc_etr_remove_catu_ops(void)
 809{
 810	etr_buf_ops[ETR_MODE_CATU] = NULL;
 811}
 812EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
 813
 814static inline int tmc_etr_mode_alloc_buf(int mode,
 815					 struct tmc_drvdata *drvdata,
 816					 struct etr_buf *etr_buf, int node,
 817					 void **pages)
 818{
 819	int rc = -EINVAL;
 820
 821	switch (mode) {
 822	case ETR_MODE_FLAT:
 823	case ETR_MODE_ETR_SG:
 824	case ETR_MODE_CATU:
 825		if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
 826			rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
 827						      node, pages);
 828		if (!rc)
 829			etr_buf->ops = etr_buf_ops[mode];
 830		return rc;
 831	default:
 832		return -EINVAL;
 833	}
 834}
 835
 836/*
 837 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
 838 * @drvdata	: ETR device details.
 839 * @size	: size of the requested buffer.
 840 * @flags	: Required properties for the buffer.
 841 * @node	: Node for memory allocations.
 842 * @pages	: An optional list of pages.
 843 */
 844static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
 845					 ssize_t size, int flags,
 846					 int node, void **pages)
 847{
 848	int rc = -ENOMEM;
 849	bool has_etr_sg, has_iommu;
 850	bool has_sg, has_catu;
 851	struct etr_buf *etr_buf;
 852	struct device *dev = &drvdata->csdev->dev;
 853
 854	has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
 855	has_iommu = iommu_get_domain_for_dev(dev->parent);
 856	has_catu = !!tmc_etr_get_catu_device(drvdata);
 857
 858	has_sg = has_catu || has_etr_sg;
 859
 860	etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
 861	if (!etr_buf)
 862		return ERR_PTR(-ENOMEM);
 863
 864	etr_buf->size = size;
 865
 866	/*
 867	 * If we have to use an existing list of pages, we cannot reliably
 868	 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
 869	 * we use the contiguous DMA memory if at least one of the following
 870	 * conditions is true:
 871	 *  a) The ETR cannot use Scatter-Gather.
 872	 *  b) we have a backing IOMMU
 873	 *  c) The requested memory size is smaller (< 1M).
 874	 *
 875	 * Fallback to available mechanisms.
 876	 *
 877	 */
 878	if (!pages &&
 879	    (!has_sg || has_iommu || size < SZ_1M))
 880		rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
 881					    etr_buf, node, pages);
 882	if (rc && has_etr_sg)
 883		rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
 884					    etr_buf, node, pages);
 885	if (rc && has_catu)
 886		rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
 887					    etr_buf, node, pages);
 888	if (rc) {
 889		kfree(etr_buf);
 890		return ERR_PTR(rc);
 891	}
 892
 893	refcount_set(&etr_buf->refcount, 1);
 894	dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
 895		(unsigned long)size >> 10, etr_buf->mode);
 896	return etr_buf;
 897}
 898
 899static void tmc_free_etr_buf(struct etr_buf *etr_buf)
 900{
 901	WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
 902	etr_buf->ops->free(etr_buf);
 903	kfree(etr_buf);
 904}
 905
 906/*
 907 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
 908 * with a maximum of @len bytes.
 909 * Returns: The size of the linear data available @pos, with *bufpp
 910 * updated to point to the buffer.
 911 */
 912static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
 913				    u64 offset, size_t len, char **bufpp)
 914{
 915	/* Adjust the length to limit this transaction to end of buffer */
 916	len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
 917
 918	return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
 919}
 920
 921static inline s64
 922tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
 923{
 924	ssize_t len;
 925	char *bufp;
 926
 927	len = tmc_etr_buf_get_data(etr_buf, offset,
 928				   CORESIGHT_BARRIER_PKT_SIZE, &bufp);
 929	if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
 930		return -EINVAL;
 931	coresight_insert_barrier_packet(bufp);
 932	return offset + CORESIGHT_BARRIER_PKT_SIZE;
 933}
 934
 935/*
 936 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
 937 * Makes sure the trace data is synced to the memory for consumption.
 938 * @etr_buf->offset will hold the offset to the beginning of the trace data
 939 * within the buffer, with @etr_buf->len bytes to consume.
 940 */
 941static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
 942{
 943	struct etr_buf *etr_buf = drvdata->etr_buf;
 944	u64 rrp, rwp;
 945	u32 status;
 946
 947	rrp = tmc_read_rrp(drvdata);
 948	rwp = tmc_read_rwp(drvdata);
 949	status = readl_relaxed(drvdata->base + TMC_STS);
 950
 951	/*
 952	 * If there were memory errors in the session, truncate the
 953	 * buffer.
 954	 */
 955	if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
 956		dev_dbg(&drvdata->csdev->dev,
 957			"tmc memory error detected, truncating buffer\n");
 958		etr_buf->len = 0;
 959		etr_buf->full = false;
 960		return;
 961	}
 962
 963	etr_buf->full = !!(status & TMC_STS_FULL);
 964
 965	WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
 966
 967	etr_buf->ops->sync(etr_buf, rrp, rwp);
 968}
 969
 970static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
 971{
 972	u32 axictl, sts;
 973	struct etr_buf *etr_buf = drvdata->etr_buf;
 974
 975	CS_UNLOCK(drvdata->base);
 976
 977	/* Wait for TMCSReady bit to be set */
 978	tmc_wait_for_tmcready(drvdata);
 979
 980	writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
 981	writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
 982
 983	axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
 984	axictl &= ~TMC_AXICTL_CLEAR_MASK;
 985	axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
 986	axictl |= TMC_AXICTL_AXCACHE_OS;
 987
 988	if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
 989		axictl &= ~TMC_AXICTL_ARCACHE_MASK;
 990		axictl |= TMC_AXICTL_ARCACHE_OS;
 991	}
 992
 993	if (etr_buf->mode == ETR_MODE_ETR_SG)
 994		axictl |= TMC_AXICTL_SCT_GAT_MODE;
 995
 996	writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
 997	tmc_write_dba(drvdata, etr_buf->hwaddr);
 998	/*
 999	 * If the TMC pointers must be programmed before the session,
1000	 * we have to set it properly (i.e, RRP/RWP to base address and
1001	 * STS to "not full").
1002	 */
1003	if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1004		tmc_write_rrp(drvdata, etr_buf->hwaddr);
1005		tmc_write_rwp(drvdata, etr_buf->hwaddr);
1006		sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1007		writel_relaxed(sts, drvdata->base + TMC_STS);
1008	}
1009
1010	writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1011		       TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1012		       TMC_FFCR_TRIGON_TRIGIN,
1013		       drvdata->base + TMC_FFCR);
1014	writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1015	tmc_enable_hw(drvdata);
1016
1017	CS_LOCK(drvdata->base);
1018}
1019
1020static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1021			     struct etr_buf *etr_buf)
1022{
1023	int rc;
1024
1025	/* Callers should provide an appropriate buffer for use */
1026	if (WARN_ON(!etr_buf))
1027		return -EINVAL;
1028
1029	if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1030	    WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1031		return -EINVAL;
1032
1033	if (WARN_ON(drvdata->etr_buf))
1034		return -EBUSY;
1035
1036	/*
1037	 * If this ETR is connected to a CATU, enable it before we turn
1038	 * this on.
1039	 */
1040	rc = tmc_etr_enable_catu(drvdata, etr_buf);
1041	if (rc)
1042		return rc;
1043	rc = coresight_claim_device(drvdata->csdev);
1044	if (!rc) {
1045		drvdata->etr_buf = etr_buf;
1046		__tmc_etr_enable_hw(drvdata);
1047	}
1048
1049	return rc;
1050}
1051
1052/*
1053 * Return the available trace data in the buffer (starts at etr_buf->offset,
1054 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1055 * also updating the @bufpp on where to find it. Since the trace data
1056 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1057 * @len returned to handle buffer wrapping around.
1058 *
1059 * We are protected here by drvdata->reading != 0, which ensures the
1060 * sysfs_buf stays alive.
1061 */
1062ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1063				loff_t pos, size_t len, char **bufpp)
1064{
1065	s64 offset;
1066	ssize_t actual = len;
1067	struct etr_buf *etr_buf = drvdata->sysfs_buf;
1068
1069	if (pos + actual > etr_buf->len)
1070		actual = etr_buf->len - pos;
1071	if (actual <= 0)
1072		return actual;
1073
1074	/* Compute the offset from which we read the data */
1075	offset = etr_buf->offset + pos;
1076	if (offset >= etr_buf->size)
1077		offset -= etr_buf->size;
1078	return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1079}
1080
1081static struct etr_buf *
1082tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1083{
1084	return tmc_alloc_etr_buf(drvdata, drvdata->size,
1085				 0, cpu_to_node(0), NULL);
1086}
1087
1088static void
1089tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1090{
1091	if (buf)
1092		tmc_free_etr_buf(buf);
1093}
1094
1095static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1096{
1097	struct etr_buf *etr_buf = drvdata->etr_buf;
1098
1099	if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1100		tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1101		drvdata->sysfs_buf = NULL;
1102	} else {
1103		tmc_sync_etr_buf(drvdata);
1104		/*
1105		 * Insert barrier packets at the beginning, if there was
1106		 * an overflow.
1107		 */
1108		if (etr_buf->full)
1109			tmc_etr_buf_insert_barrier_packet(etr_buf,
1110							  etr_buf->offset);
1111	}
1112}
1113
1114static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1115{
1116	CS_UNLOCK(drvdata->base);
1117
1118	tmc_flush_and_stop(drvdata);
1119	/*
1120	 * When operating in sysFS mode the content of the buffer needs to be
1121	 * read before the TMC is disabled.
1122	 */
1123	if (drvdata->mode == CS_MODE_SYSFS)
1124		tmc_etr_sync_sysfs_buf(drvdata);
1125
1126	tmc_disable_hw(drvdata);
1127
1128	CS_LOCK(drvdata->base);
1129
1130}
1131
1132void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1133{
1134	__tmc_etr_disable_hw(drvdata);
1135	/* Disable CATU device if this ETR is connected to one */
1136	tmc_etr_disable_catu(drvdata);
1137	coresight_disclaim_device(drvdata->csdev);
1138	/* Reset the ETR buf used by hardware */
1139	drvdata->etr_buf = NULL;
1140}
1141
1142static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1143{
1144	int ret = 0;
1145	unsigned long flags;
1146	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1147	struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1148
1149	/*
1150	 * If we are enabling the ETR from disabled state, we need to make
1151	 * sure we have a buffer with the right size. The etr_buf is not reset
1152	 * immediately after we stop the tracing in SYSFS mode as we wait for
1153	 * the user to collect the data. We may be able to reuse the existing
1154	 * buffer, provided the size matches. Any allocation has to be done
1155	 * with the lock released.
1156	 */
1157	spin_lock_irqsave(&drvdata->spinlock, flags);
1158	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1159	if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1160		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1161
1162		/* Allocate memory with the locks released */
1163		free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1164		if (IS_ERR(new_buf))
1165			return PTR_ERR(new_buf);
1166
1167		/* Let's try again */
1168		spin_lock_irqsave(&drvdata->spinlock, flags);
1169	}
1170
1171	if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1172		ret = -EBUSY;
1173		goto out;
1174	}
1175
1176	/*
1177	 * In sysFS mode we can have multiple writers per sink.  Since this
1178	 * sink is already enabled no memory is needed and the HW need not be
1179	 * touched, even if the buffer size has changed.
1180	 */
1181	if (drvdata->mode == CS_MODE_SYSFS) {
1182		atomic_inc(csdev->refcnt);
1183		goto out;
1184	}
1185
1186	/*
1187	 * If we don't have a buffer or it doesn't match the requested size,
1188	 * use the buffer allocated above. Otherwise reuse the existing buffer.
1189	 */
1190	sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1191	if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1192		free_buf = sysfs_buf;
1193		drvdata->sysfs_buf = new_buf;
1194	}
1195
1196	ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1197	if (!ret) {
1198		drvdata->mode = CS_MODE_SYSFS;
1199		atomic_inc(csdev->refcnt);
1200	}
1201out:
1202	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1203
1204	/* Free memory outside the spinlock if need be */
1205	if (free_buf)
1206		tmc_etr_free_sysfs_buf(free_buf);
1207
1208	if (!ret)
1209		dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1210
1211	return ret;
1212}
1213
1214/*
1215 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1216 * The size of the hardware buffer is dependent on the size configured
1217 * via sysfs and the perf ring buffer size. We prefer to allocate the
1218 * largest possible size, scaling down the size by half until it
1219 * reaches a minimum limit (1M), beyond which we give up.
1220 */
1221static struct etr_buf *
1222alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1223	      int nr_pages, void **pages, bool snapshot)
1224{
1225	int node;
1226	struct etr_buf *etr_buf;
1227	unsigned long size;
1228
1229	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1230	/*
1231	 * Try to match the perf ring buffer size if it is larger
1232	 * than the size requested via sysfs.
1233	 */
1234	if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1235		etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1236					    0, node, NULL);
1237		if (!IS_ERR(etr_buf))
1238			goto done;
1239	}
1240
1241	/*
1242	 * Else switch to configured size for this ETR
1243	 * and scale down until we hit the minimum limit.
1244	 */
1245	size = drvdata->size;
1246	do {
1247		etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1248		if (!IS_ERR(etr_buf))
1249			goto done;
1250		size /= 2;
1251	} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1252
1253	return ERR_PTR(-ENOMEM);
1254
1255done:
1256	return etr_buf;
1257}
1258
1259static struct etr_buf *
1260get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1261			  struct perf_event *event, int nr_pages,
1262			  void **pages, bool snapshot)
1263{
1264	int ret;
1265	pid_t pid = task_pid_nr(event->owner);
1266	struct etr_buf *etr_buf;
1267
1268retry:
1269	/*
1270	 * An etr_perf_buffer is associated with an event and holds a reference
1271	 * to the AUX ring buffer that was created for that event.  In CPU-wide
1272	 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1273	 * buffer, share a sink.  As such an etr_perf_buffer is created for each
1274	 * event but a single etr_buf associated with the ETR is shared between
1275	 * them.  The last event in a trace session will copy the content of the
1276	 * etr_buf to its AUX ring buffer.  Ring buffer associated to other
1277	 * events are simply not used an freed as events are destoyed.  We still
1278	 * need to allocate a ring buffer for each event since we don't know
1279	 * which event will be last.
1280	 */
1281
1282	/*
1283	 * The first thing to do here is check if an etr_buf has already been
1284	 * allocated for this session.  If so it is shared with this event,
1285	 * otherwise it is created.
1286	 */
1287	mutex_lock(&drvdata->idr_mutex);
1288	etr_buf = idr_find(&drvdata->idr, pid);
1289	if (etr_buf) {
1290		refcount_inc(&etr_buf->refcount);
1291		mutex_unlock(&drvdata->idr_mutex);
1292		return etr_buf;
1293	}
1294
1295	/* If we made it here no buffer has been allocated, do so now. */
1296	mutex_unlock(&drvdata->idr_mutex);
1297
1298	etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1299	if (IS_ERR(etr_buf))
1300		return etr_buf;
1301
1302	/* Now that we have a buffer, add it to the IDR. */
1303	mutex_lock(&drvdata->idr_mutex);
1304	ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1305	mutex_unlock(&drvdata->idr_mutex);
1306
1307	/* Another event with this session ID has allocated this buffer. */
1308	if (ret == -ENOSPC) {
1309		tmc_free_etr_buf(etr_buf);
1310		goto retry;
1311	}
1312
1313	/* The IDR can't allocate room for a new session, abandon ship. */
1314	if (ret == -ENOMEM) {
1315		tmc_free_etr_buf(etr_buf);
1316		return ERR_PTR(ret);
1317	}
1318
1319
1320	return etr_buf;
1321}
1322
1323static struct etr_buf *
1324get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1325			    struct perf_event *event, int nr_pages,
1326			    void **pages, bool snapshot)
1327{
1328	/*
1329	 * In per-thread mode the etr_buf isn't shared, so just go ahead
1330	 * with memory allocation.
1331	 */
1332	return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1333}
1334
1335static struct etr_buf *
1336get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1337		 int nr_pages, void **pages, bool snapshot)
1338{
1339	if (event->cpu == -1)
1340		return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1341						   pages, snapshot);
1342
1343	return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1344					 pages, snapshot);
1345}
1346
1347static struct etr_perf_buffer *
1348tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1349		       int nr_pages, void **pages, bool snapshot)
1350{
1351	int node;
1352	struct etr_buf *etr_buf;
1353	struct etr_perf_buffer *etr_perf;
1354
1355	node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1356
1357	etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1358	if (!etr_perf)
1359		return ERR_PTR(-ENOMEM);
1360
1361	etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1362	if (!IS_ERR(etr_buf))
1363		goto done;
1364
1365	kfree(etr_perf);
1366	return ERR_PTR(-ENOMEM);
1367
1368done:
1369	/*
1370	 * Keep a reference to the ETR this buffer has been allocated for
1371	 * in order to have access to the IDR in tmc_free_etr_buffer().
1372	 */
1373	etr_perf->drvdata = drvdata;
1374	etr_perf->etr_buf = etr_buf;
1375
1376	return etr_perf;
1377}
1378
1379
1380static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1381				  struct perf_event *event, void **pages,
1382				  int nr_pages, bool snapshot)
1383{
1384	struct etr_perf_buffer *etr_perf;
1385	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1386
1387	etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1388					  nr_pages, pages, snapshot);
1389	if (IS_ERR(etr_perf)) {
1390		dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1391		return NULL;
1392	}
1393
1394	etr_perf->pid = task_pid_nr(event->owner);
1395	etr_perf->snapshot = snapshot;
1396	etr_perf->nr_pages = nr_pages;
1397	etr_perf->pages = pages;
1398
1399	return etr_perf;
1400}
1401
1402static void tmc_free_etr_buffer(void *config)
1403{
1404	struct etr_perf_buffer *etr_perf = config;
1405	struct tmc_drvdata *drvdata = etr_perf->drvdata;
1406	struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1407
1408	if (!etr_buf)
1409		goto free_etr_perf_buffer;
1410
1411	mutex_lock(&drvdata->idr_mutex);
1412	/* If we are not the last one to use the buffer, don't touch it. */
1413	if (!refcount_dec_and_test(&etr_buf->refcount)) {
1414		mutex_unlock(&drvdata->idr_mutex);
1415		goto free_etr_perf_buffer;
1416	}
1417
1418	/* We are the last one, remove from the IDR and free the buffer. */
1419	buf = idr_remove(&drvdata->idr, etr_perf->pid);
1420	mutex_unlock(&drvdata->idr_mutex);
1421
1422	/*
1423	 * Something went very wrong if the buffer associated with this ID
1424	 * is not the same in the IDR.  Leak to avoid use after free.
1425	 */
1426	if (buf && WARN_ON(buf != etr_buf))
1427		goto free_etr_perf_buffer;
1428
1429	tmc_free_etr_buf(etr_perf->etr_buf);
1430
1431free_etr_perf_buffer:
1432	kfree(etr_perf);
1433}
1434
1435/*
1436 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1437 * buffer to the perf ring buffer.
1438 */
1439static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1440				     unsigned long src_offset,
1441				     unsigned long to_copy)
1442{
1443	long bytes;
1444	long pg_idx, pg_offset;
1445	unsigned long head = etr_perf->head;
1446	char **dst_pages, *src_buf;
1447	struct etr_buf *etr_buf = etr_perf->etr_buf;
1448
1449	head = etr_perf->head;
1450	pg_idx = head >> PAGE_SHIFT;
1451	pg_offset = head & (PAGE_SIZE - 1);
1452	dst_pages = (char **)etr_perf->pages;
1453
1454	while (to_copy > 0) {
1455		/*
1456		 * In one iteration, we can copy minimum of :
1457		 *  1) what is available in the source buffer,
1458		 *  2) what is available in the source buffer, before it
1459		 *     wraps around.
1460		 *  3) what is available in the destination page.
1461		 * in one iteration.
1462		 */
1463		if (src_offset >= etr_buf->size)
1464			src_offset -= etr_buf->size;
1465		bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1466					     &src_buf);
1467		if (WARN_ON_ONCE(bytes <= 0))
1468			break;
1469		bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1470
1471		memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1472
1473		to_copy -= bytes;
1474
1475		/* Move destination pointers */
1476		pg_offset += bytes;
1477		if (pg_offset == PAGE_SIZE) {
1478			pg_offset = 0;
1479			if (++pg_idx == etr_perf->nr_pages)
1480				pg_idx = 0;
1481		}
1482
1483		/* Move source pointers */
1484		src_offset += bytes;
1485	}
1486}
1487
1488/*
1489 * tmc_update_etr_buffer : Update the perf ring buffer with the
1490 * available trace data. We use software double buffering at the moment.
1491 *
1492 * TODO: Add support for reusing the perf ring buffer.
1493 */
1494static unsigned long
1495tmc_update_etr_buffer(struct coresight_device *csdev,
1496		      struct perf_output_handle *handle,
1497		      void *config)
1498{
1499	bool lost = false;
1500	unsigned long flags, offset, size = 0;
1501	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1502	struct etr_perf_buffer *etr_perf = config;
1503	struct etr_buf *etr_buf = etr_perf->etr_buf;
1504
1505	spin_lock_irqsave(&drvdata->spinlock, flags);
1506
1507	/* Don't do anything if another tracer is using this sink */
1508	if (atomic_read(csdev->refcnt) != 1) {
1509		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1510		goto out;
1511	}
1512
1513	if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1514		lost = true;
1515		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1516		goto out;
1517	}
1518
1519	CS_UNLOCK(drvdata->base);
1520
1521	tmc_flush_and_stop(drvdata);
1522	tmc_sync_etr_buf(drvdata);
1523
1524	CS_LOCK(drvdata->base);
1525	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1526
1527	lost = etr_buf->full;
1528	offset = etr_buf->offset;
1529	size = etr_buf->len;
1530
1531	/*
1532	 * The ETR buffer may be bigger than the space available in the
1533	 * perf ring buffer (handle->size).  If so advance the offset so that we
1534	 * get the latest trace data.  In snapshot mode none of that matters
1535	 * since we are expected to clobber stale data in favour of the latest
1536	 * traces.
1537	 */
1538	if (!etr_perf->snapshot && size > handle->size) {
1539		u32 mask = tmc_get_memwidth_mask(drvdata);
1540
1541		/*
1542		 * Make sure the new size is aligned in accordance with the
1543		 * requirement explained in function tmc_get_memwidth_mask().
1544		 */
1545		size = handle->size & mask;
1546		offset = etr_buf->offset + etr_buf->len - size;
1547
1548		if (offset >= etr_buf->size)
1549			offset -= etr_buf->size;
1550		lost = true;
1551	}
1552
1553	/* Insert barrier packets at the beginning, if there was an overflow */
1554	if (lost)
1555		tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1556	tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1557
1558	/*
1559	 * In snapshot mode we simply increment the head by the number of byte
1560	 * that were written.  User space function  cs_etm_find_snapshot() will
1561	 * figure out how many bytes to get from the AUX buffer based on the
1562	 * position of the head.
1563	 */
1564	if (etr_perf->snapshot)
1565		handle->head += size;
1566out:
1567	/*
1568	 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1569	 * captured buffer is expected to be truncated and 2) a full buffer
1570	 * prevents the event from being re-enabled by the perf core,
1571	 * resulting in stale data being send to user space.
1572	 */
1573	if (!etr_perf->snapshot && lost)
1574		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1575	return size;
1576}
1577
1578static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1579{
1580	int rc = 0;
1581	pid_t pid;
1582	unsigned long flags;
1583	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1584	struct perf_output_handle *handle = data;
1585	struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1586
1587	spin_lock_irqsave(&drvdata->spinlock, flags);
1588	 /* Don't use this sink if it is already claimed by sysFS */
1589	if (drvdata->mode == CS_MODE_SYSFS) {
1590		rc = -EBUSY;
1591		goto unlock_out;
1592	}
1593
1594	if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1595		rc = -EINVAL;
1596		goto unlock_out;
1597	}
1598
1599	/* Get a handle on the pid of the process to monitor */
1600	pid = etr_perf->pid;
1601
1602	/* Do not proceed if this device is associated with another session */
1603	if (drvdata->pid != -1 && drvdata->pid != pid) {
1604		rc = -EBUSY;
1605		goto unlock_out;
1606	}
1607
1608	etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1609
1610	/*
1611	 * No HW configuration is needed if the sink is already in
1612	 * use for this session.
1613	 */
1614	if (drvdata->pid == pid) {
1615		atomic_inc(csdev->refcnt);
1616		goto unlock_out;
1617	}
1618
1619	rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1620	if (!rc) {
1621		/* Associate with monitored process. */
1622		drvdata->pid = pid;
1623		drvdata->mode = CS_MODE_PERF;
1624		drvdata->perf_buf = etr_perf->etr_buf;
1625		atomic_inc(csdev->refcnt);
1626	}
1627
1628unlock_out:
1629	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1630	return rc;
1631}
1632
1633static int tmc_enable_etr_sink(struct coresight_device *csdev,
1634			       u32 mode, void *data)
1635{
1636	switch (mode) {
1637	case CS_MODE_SYSFS:
1638		return tmc_enable_etr_sink_sysfs(csdev);
1639	case CS_MODE_PERF:
1640		return tmc_enable_etr_sink_perf(csdev, data);
1641	}
1642
1643	/* We shouldn't be here */
1644	return -EINVAL;
1645}
1646
1647static int tmc_disable_etr_sink(struct coresight_device *csdev)
1648{
1649	unsigned long flags;
1650	struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1651
1652	spin_lock_irqsave(&drvdata->spinlock, flags);
1653
1654	if (drvdata->reading) {
1655		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1656		return -EBUSY;
1657	}
1658
1659	if (atomic_dec_return(csdev->refcnt)) {
1660		spin_unlock_irqrestore(&drvdata->spinlock, flags);
1661		return -EBUSY;
1662	}
1663
1664	/* Complain if we (somehow) got out of sync */
1665	WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1666	tmc_etr_disable_hw(drvdata);
1667	/* Dissociate from monitored process. */
1668	drvdata->pid = -1;
1669	drvdata->mode = CS_MODE_DISABLED;
1670	/* Reset perf specific data */
1671	drvdata->perf_buf = NULL;
1672
1673	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1674
1675	dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1676	return 0;
1677}
1678
1679static const struct coresight_ops_sink tmc_etr_sink_ops = {
1680	.enable		= tmc_enable_etr_sink,
1681	.disable	= tmc_disable_etr_sink,
1682	.alloc_buffer	= tmc_alloc_etr_buffer,
1683	.update_buffer	= tmc_update_etr_buffer,
1684	.free_buffer	= tmc_free_etr_buffer,
1685};
1686
1687const struct coresight_ops tmc_etr_cs_ops = {
1688	.sink_ops	= &tmc_etr_sink_ops,
1689};
1690
1691int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1692{
1693	int ret = 0;
1694	unsigned long flags;
1695
1696	/* config types are set a boot time and never change */
1697	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1698		return -EINVAL;
1699
1700	spin_lock_irqsave(&drvdata->spinlock, flags);
1701	if (drvdata->reading) {
1702		ret = -EBUSY;
1703		goto out;
1704	}
1705
1706	/*
1707	 * We can safely allow reads even if the ETR is operating in PERF mode,
1708	 * since the sysfs session is captured in mode specific data.
1709	 * If drvdata::sysfs_data is NULL the trace data has been read already.
1710	 */
1711	if (!drvdata->sysfs_buf) {
1712		ret = -EINVAL;
1713		goto out;
1714	}
1715
1716	/* Disable the TMC if we are trying to read from a running session. */
1717	if (drvdata->mode == CS_MODE_SYSFS)
1718		__tmc_etr_disable_hw(drvdata);
1719
1720	drvdata->reading = true;
1721out:
1722	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1723
1724	return ret;
1725}
1726
1727int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1728{
1729	unsigned long flags;
1730	struct etr_buf *sysfs_buf = NULL;
1731
1732	/* config types are set a boot time and never change */
1733	if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1734		return -EINVAL;
1735
1736	spin_lock_irqsave(&drvdata->spinlock, flags);
1737
1738	/* RE-enable the TMC if need be */
1739	if (drvdata->mode == CS_MODE_SYSFS) {
1740		/*
1741		 * The trace run will continue with the same allocated trace
1742		 * buffer. Since the tracer is still enabled drvdata::buf can't
1743		 * be NULL.
1744		 */
1745		__tmc_etr_enable_hw(drvdata);
1746	} else {
1747		/*
1748		 * The ETR is not tracing and the buffer was just read.
1749		 * As such prepare to free the trace buffer.
1750		 */
1751		sysfs_buf = drvdata->sysfs_buf;
1752		drvdata->sysfs_buf = NULL;
1753	}
1754
1755	drvdata->reading = false;
1756	spin_unlock_irqrestore(&drvdata->spinlock, flags);
1757
1758	/* Free allocated memory out side of the spinlock */
1759	if (sysfs_buf)
1760		tmc_etr_free_sysfs_buf(sysfs_buf);
1761
1762	return 0;
1763}