Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (c) 2012, Microsoft Corporation.
   3 *
   4 * Author:
   5 *   K. Y. Srinivasan <kys@microsoft.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms of the GNU General Public License version 2 as published
   9 * by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful, but
  12 * WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 * NON INFRINGEMENT.  See the GNU General Public License for more
  15 * details.
  16 *
  17 */
  18
  19#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20
  21#include <linux/kernel.h>
  22#include <linux/jiffies.h>
  23#include <linux/mman.h>
  24#include <linux/delay.h>
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/kthread.h>
  29#include <linux/completion.h>
  30#include <linux/memory_hotplug.h>
  31#include <linux/memory.h>
  32#include <linux/notifier.h>
  33#include <linux/percpu_counter.h>
 
  34
  35#include <linux/hyperv.h>
 
 
 
 
 
 
  36
  37/*
  38 * We begin with definitions supporting the Dynamic Memory protocol
  39 * with the host.
  40 *
  41 * Begin protocol definitions.
  42 */
  43
  44
  45
  46/*
  47 * Protocol versions. The low word is the minor version, the high word the major
  48 * version.
  49 *
  50 * History:
  51 * Initial version 1.0
  52 * Changed to 0.1 on 2009/03/25
  53 * Changes to 0.2 on 2009/05/14
  54 * Changes to 0.3 on 2009/12/03
  55 * Changed to 1.0 on 2011/04/05
  56 */
  57
  58#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  59#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  60#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  61
  62enum {
  63	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  64	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  65	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  66
  67	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  68	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  69	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  70
  71	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  72};
  73
  74
  75
  76/*
  77 * Message Types
  78 */
  79
  80enum dm_message_type {
  81	/*
  82	 * Version 0.3
  83	 */
  84	DM_ERROR			= 0,
  85	DM_VERSION_REQUEST		= 1,
  86	DM_VERSION_RESPONSE		= 2,
  87	DM_CAPABILITIES_REPORT		= 3,
  88	DM_CAPABILITIES_RESPONSE	= 4,
  89	DM_STATUS_REPORT		= 5,
  90	DM_BALLOON_REQUEST		= 6,
  91	DM_BALLOON_RESPONSE		= 7,
  92	DM_UNBALLOON_REQUEST		= 8,
  93	DM_UNBALLOON_RESPONSE		= 9,
  94	DM_MEM_HOT_ADD_REQUEST		= 10,
  95	DM_MEM_HOT_ADD_RESPONSE		= 11,
  96	DM_VERSION_03_MAX		= 11,
  97	/*
  98	 * Version 1.0.
  99	 */
 100	DM_INFO_MESSAGE			= 12,
 101	DM_VERSION_1_MAX		= 12
 102};
 103
 104
 105/*
 106 * Structures defining the dynamic memory management
 107 * protocol.
 108 */
 109
 110union dm_version {
 111	struct {
 112		__u16 minor_version;
 113		__u16 major_version;
 114	};
 115	__u32 version;
 116} __packed;
 117
 118
 119union dm_caps {
 120	struct {
 121		__u64 balloon:1;
 122		__u64 hot_add:1;
 123		/*
 124		 * To support guests that may have alignment
 125		 * limitations on hot-add, the guest can specify
 126		 * its alignment requirements; a value of n
 127		 * represents an alignment of 2^n in mega bytes.
 128		 */
 129		__u64 hot_add_alignment:4;
 130		__u64 reservedz:58;
 131	} cap_bits;
 132	__u64 caps;
 133} __packed;
 134
 135union dm_mem_page_range {
 136	struct  {
 137		/*
 138		 * The PFN number of the first page in the range.
 139		 * 40 bits is the architectural limit of a PFN
 140		 * number for AMD64.
 141		 */
 142		__u64 start_page:40;
 143		/*
 144		 * The number of pages in the range.
 145		 */
 146		__u64 page_cnt:24;
 147	} finfo;
 148	__u64  page_range;
 149} __packed;
 150
 151
 152
 153/*
 154 * The header for all dynamic memory messages:
 155 *
 156 * type: Type of the message.
 157 * size: Size of the message in bytes; including the header.
 158 * trans_id: The guest is responsible for manufacturing this ID.
 159 */
 160
 161struct dm_header {
 162	__u16 type;
 163	__u16 size;
 164	__u32 trans_id;
 165} __packed;
 166
 167/*
 168 * A generic message format for dynamic memory.
 169 * Specific message formats are defined later in the file.
 170 */
 171
 172struct dm_message {
 173	struct dm_header hdr;
 174	__u8 data[]; /* enclosed message */
 175} __packed;
 176
 177
 178/*
 179 * Specific message types supporting the dynamic memory protocol.
 180 */
 181
 182/*
 183 * Version negotiation message. Sent from the guest to the host.
 184 * The guest is free to try different versions until the host
 185 * accepts the version.
 186 *
 187 * dm_version: The protocol version requested.
 188 * is_last_attempt: If TRUE, this is the last version guest will request.
 189 * reservedz: Reserved field, set to zero.
 190 */
 191
 192struct dm_version_request {
 193	struct dm_header hdr;
 194	union dm_version version;
 195	__u32 is_last_attempt:1;
 196	__u32 reservedz:31;
 197} __packed;
 198
 199/*
 200 * Version response message; Host to Guest and indicates
 201 * if the host has accepted the version sent by the guest.
 202 *
 203 * is_accepted: If TRUE, host has accepted the version and the guest
 204 * should proceed to the next stage of the protocol. FALSE indicates that
 205 * guest should re-try with a different version.
 206 *
 207 * reservedz: Reserved field, set to zero.
 208 */
 209
 210struct dm_version_response {
 211	struct dm_header hdr;
 212	__u64 is_accepted:1;
 213	__u64 reservedz:63;
 214} __packed;
 215
 216/*
 217 * Message reporting capabilities. This is sent from the guest to the
 218 * host.
 219 */
 220
 221struct dm_capabilities {
 222	struct dm_header hdr;
 223	union dm_caps caps;
 224	__u64 min_page_cnt;
 225	__u64 max_page_number;
 226} __packed;
 227
 228/*
 229 * Response to the capabilities message. This is sent from the host to the
 230 * guest. This message notifies if the host has accepted the guest's
 231 * capabilities. If the host has not accepted, the guest must shutdown
 232 * the service.
 233 *
 234 * is_accepted: Indicates if the host has accepted guest's capabilities.
 235 * reservedz: Must be 0.
 236 */
 237
 238struct dm_capabilities_resp_msg {
 239	struct dm_header hdr;
 240	__u64 is_accepted:1;
 241	__u64 reservedz:63;
 242} __packed;
 243
 244/*
 245 * This message is used to report memory pressure from the guest.
 246 * This message is not part of any transaction and there is no
 247 * response to this message.
 248 *
 249 * num_avail: Available memory in pages.
 250 * num_committed: Committed memory in pages.
 251 * page_file_size: The accumulated size of all page files
 252 *		   in the system in pages.
 253 * zero_free: The nunber of zero and free pages.
 254 * page_file_writes: The writes to the page file in pages.
 255 * io_diff: An indicator of file cache efficiency or page file activity,
 256 *	    calculated as File Cache Page Fault Count - Page Read Count.
 257 *	    This value is in pages.
 258 *
 259 * Some of these metrics are Windows specific and fortunately
 260 * the algorithm on the host side that computes the guest memory
 261 * pressure only uses num_committed value.
 262 */
 263
 264struct dm_status {
 265	struct dm_header hdr;
 266	__u64 num_avail;
 267	__u64 num_committed;
 268	__u64 page_file_size;
 269	__u64 zero_free;
 270	__u32 page_file_writes;
 271	__u32 io_diff;
 272} __packed;
 273
 274
 275/*
 276 * Message to ask the guest to allocate memory - balloon up message.
 277 * This message is sent from the host to the guest. The guest may not be
 278 * able to allocate as much memory as requested.
 279 *
 280 * num_pages: number of pages to allocate.
 281 */
 282
 283struct dm_balloon {
 284	struct dm_header hdr;
 285	__u32 num_pages;
 286	__u32 reservedz;
 287} __packed;
 288
 289
 290/*
 291 * Balloon response message; this message is sent from the guest
 292 * to the host in response to the balloon message.
 293 *
 294 * reservedz: Reserved; must be set to zero.
 295 * more_pages: If FALSE, this is the last message of the transaction.
 296 * if TRUE there will atleast one more message from the guest.
 297 *
 298 * range_count: The number of ranges in the range array.
 299 *
 300 * range_array: An array of page ranges returned to the host.
 301 *
 302 */
 303
 304struct dm_balloon_response {
 305	struct dm_header hdr;
 306	__u32 reservedz;
 307	__u32 more_pages:1;
 308	__u32 range_count:31;
 309	union dm_mem_page_range range_array[];
 310} __packed;
 311
 312/*
 313 * Un-balloon message; this message is sent from the host
 314 * to the guest to give guest more memory.
 315 *
 316 * more_pages: If FALSE, this is the last message of the transaction.
 317 * if TRUE there will atleast one more message from the guest.
 318 *
 319 * reservedz: Reserved; must be set to zero.
 320 *
 321 * range_count: The number of ranges in the range array.
 322 *
 323 * range_array: An array of page ranges returned to the host.
 324 *
 325 */
 326
 327struct dm_unballoon_request {
 328	struct dm_header hdr;
 329	__u32 more_pages:1;
 330	__u32 reservedz:31;
 331	__u32 range_count;
 332	union dm_mem_page_range range_array[];
 333} __packed;
 334
 335/*
 336 * Un-balloon response message; this message is sent from the guest
 337 * to the host in response to an unballoon request.
 338 *
 339 */
 340
 341struct dm_unballoon_response {
 342	struct dm_header hdr;
 343} __packed;
 344
 345
 346/*
 347 * Hot add request message. Message sent from the host to the guest.
 348 *
 349 * mem_range: Memory range to hot add.
 350 *
 351 * On Linux we currently don't support this since we cannot hot add
 352 * arbitrary granularity of memory.
 353 */
 354
 355struct dm_hot_add {
 356	struct dm_header hdr;
 357	union dm_mem_page_range range;
 358} __packed;
 359
 360/*
 361 * Hot add response message.
 362 * This message is sent by the guest to report the status of a hot add request.
 363 * If page_count is less than the requested page count, then the host should
 364 * assume all further hot add requests will fail, since this indicates that
 365 * the guest has hit an upper physical memory barrier.
 366 *
 367 * Hot adds may also fail due to low resources; in this case, the guest must
 368 * not complete this message until the hot add can succeed, and the host must
 369 * not send a new hot add request until the response is sent.
 370 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 371 * times it fails the request.
 372 *
 373 *
 374 * page_count: number of pages that were successfully hot added.
 375 *
 376 * result: result of the operation 1: success, 0: failure.
 377 *
 378 */
 379
 380struct dm_hot_add_response {
 381	struct dm_header hdr;
 382	__u32 page_count;
 383	__u32 result;
 384} __packed;
 385
 386/*
 387 * Types of information sent from host to the guest.
 388 */
 389
 390enum dm_info_type {
 391	INFO_TYPE_MAX_PAGE_CNT = 0,
 392	MAX_INFO_TYPE
 393};
 394
 395
 396/*
 397 * Header for the information message.
 398 */
 399
 400struct dm_info_header {
 401	enum dm_info_type type;
 402	__u32 data_size;
 403} __packed;
 404
 405/*
 406 * This message is sent from the host to the guest to pass
 407 * some relevant information (win8 addition).
 408 *
 409 * reserved: no used.
 410 * info_size: size of the information blob.
 411 * info: information blob.
 412 */
 413
 414struct dm_info_msg {
 415	struct dm_header hdr;
 416	__u32 reserved;
 417	__u32 info_size;
 418	__u8  info[];
 419};
 420
 421/*
 422 * End protocol definitions.
 423 */
 424
 425/*
 426 * State to manage hot adding memory into the guest.
 427 * The range start_pfn : end_pfn specifies the range
 428 * that the host has asked us to hot add. The range
 429 * start_pfn : ha_end_pfn specifies the range that we have
 430 * currently hot added. We hot add in multiples of 128M
 431 * chunks; it is possible that we may not be able to bring
 432 * online all the pages in the region. The range
 433 * covered_end_pfn defines the pages that can
 434 * be brough online.
 435 */
 436
 437struct hv_hotadd_state {
 438	struct list_head list;
 439	unsigned long start_pfn;
 
 440	unsigned long covered_end_pfn;
 441	unsigned long ha_end_pfn;
 442	unsigned long end_pfn;
 
 
 
 
 
 
 
 
 
 
 443};
 444
 445struct balloon_state {
 446	__u32 num_pages;
 447	struct work_struct wrk;
 448};
 449
 450struct hot_add_wrk {
 451	union dm_mem_page_range ha_page_range;
 452	union dm_mem_page_range ha_region_range;
 453	struct work_struct wrk;
 454};
 455
 
 456static bool hot_add = true;
 457static bool do_hot_add;
 458/*
 459 * Delay reporting memory pressure by
 460 * the specified number of seconds.
 461 */
 462static uint pressure_report_delay = 45;
 463
 464/*
 465 * The last time we posted a pressure report to host.
 466 */
 467static unsigned long last_post_time;
 468
 469module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
 470MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 471
 472module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
 473MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 474static atomic_t trans_id = ATOMIC_INIT(0);
 475
 476static int dm_ring_size = (5 * PAGE_SIZE);
 477
 478/*
 479 * Driver specific state.
 480 */
 481
 482enum hv_dm_state {
 483	DM_INITIALIZING = 0,
 484	DM_INITIALIZED,
 485	DM_BALLOON_UP,
 486	DM_BALLOON_DOWN,
 487	DM_HOT_ADD,
 488	DM_INIT_ERROR
 489};
 490
 491
 492static __u8 recv_buffer[PAGE_SIZE];
 493static __u8 *send_buffer;
 494#define PAGES_IN_2M	512
 495#define HA_CHUNK (32 * 1024)
 496
 497struct hv_dynmem_device {
 498	struct hv_device *dev;
 499	enum hv_dm_state state;
 500	struct completion host_event;
 501	struct completion config_event;
 502
 503	/*
 504	 * Number of pages we have currently ballooned out.
 505	 */
 506	unsigned int num_pages_ballooned;
 507	unsigned int num_pages_onlined;
 508	unsigned int num_pages_added;
 509
 510	/*
 511	 * State to manage the ballooning (up) operation.
 512	 */
 513	struct balloon_state balloon_wrk;
 514
 515	/*
 516	 * State to execute the "hot-add" operation.
 517	 */
 518	struct hot_add_wrk ha_wrk;
 519
 520	/*
 521	 * This state tracks if the host has specified a hot-add
 522	 * region.
 523	 */
 524	bool host_specified_ha_region;
 525
 526	/*
 527	 * State to synchronize hot-add.
 528	 */
 529	struct completion  ol_waitevent;
 530	bool ha_waiting;
 531	/*
 532	 * This thread handles hot-add
 533	 * requests from the host as well as notifying
 534	 * the host with regards to memory pressure in
 535	 * the guest.
 536	 */
 537	struct task_struct *thread;
 538
 539	struct mutex ha_region_mutex;
 
 
 
 
 540
 541	/*
 542	 * A list of hot-add regions.
 543	 */
 544	struct list_head ha_region_list;
 545
 546	/*
 547	 * We start with the highest version we can support
 548	 * and downgrade based on the host; we save here the
 549	 * next version to try.
 550	 */
 551	__u32 next_version;
 
 
 
 
 
 
 
 552};
 553
 554static struct hv_dynmem_device dm_device;
 555
 556static void post_status(struct hv_dynmem_device *dm);
 557
 558#ifdef CONFIG_MEMORY_HOTPLUG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 560			      void *v)
 561{
 562	struct memory_notify *mem = (struct memory_notify *)v;
 
 563
 564	switch (val) {
 565	case MEM_GOING_ONLINE:
 566		mutex_lock(&dm_device.ha_region_mutex);
 567		break;
 568
 569	case MEM_ONLINE:
 570		dm_device.num_pages_onlined += mem->nr_pages;
 571	case MEM_CANCEL_ONLINE:
 572		if (val == MEM_ONLINE ||
 573		    mutex_is_locked(&dm_device.ha_region_mutex))
 574			mutex_unlock(&dm_device.ha_region_mutex);
 575		if (dm_device.ha_waiting) {
 576			dm_device.ha_waiting = false;
 577			complete(&dm_device.ol_waitevent);
 578		}
 579		break;
 580
 581	case MEM_OFFLINE:
 582		mutex_lock(&dm_device.ha_region_mutex);
 583		dm_device.num_pages_onlined -= mem->nr_pages;
 584		mutex_unlock(&dm_device.ha_region_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 585		break;
 
 586	case MEM_GOING_OFFLINE:
 587	case MEM_CANCEL_OFFLINE:
 588		break;
 589	}
 590	return NOTIFY_OK;
 591}
 592
 593static struct notifier_block hv_memory_nb = {
 594	.notifier_call = hv_memory_notifier,
 595	.priority = 0
 596};
 597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598
 599static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
 
 600{
 601	int i;
 602
 603	for (i = 0; i < size; i++) {
 604		struct page *pg;
 605		pg = pfn_to_page(start_pfn + i);
 606		__online_page_set_limits(pg);
 607		__online_page_increment_counters(pg);
 608		__online_page_free(pg);
 609	}
 610}
 611
 612static void hv_mem_hot_add(unsigned long start, unsigned long size,
 613				unsigned long pfn_count,
 614				struct hv_hotadd_state *has)
 615{
 616	int ret = 0;
 617	int i, nid;
 618	unsigned long start_pfn;
 619	unsigned long processed_pfn;
 620	unsigned long total_pfn = pfn_count;
 
 621
 622	for (i = 0; i < (size/HA_CHUNK); i++) {
 623		start_pfn = start + (i * HA_CHUNK);
 
 
 624		has->ha_end_pfn +=  HA_CHUNK;
 625
 626		if (total_pfn > HA_CHUNK) {
 627			processed_pfn = HA_CHUNK;
 628			total_pfn -= HA_CHUNK;
 629		} else {
 630			processed_pfn = total_pfn;
 631			total_pfn = 0;
 632		}
 633
 634		has->covered_end_pfn +=  processed_pfn;
 
 635
 636		init_completion(&dm_device.ol_waitevent);
 637		dm_device.ha_waiting = true;
 638
 639		mutex_unlock(&dm_device.ha_region_mutex);
 640		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 641		ret = add_memory(nid, PFN_PHYS((start_pfn)),
 642				(HA_CHUNK << PAGE_SHIFT));
 643
 644		if (ret) {
 645			pr_info("hot_add memory failed error is %d\n", ret);
 646			if (ret == -EEXIST) {
 647				/*
 648				 * This error indicates that the error
 649				 * is not a transient failure. This is the
 650				 * case where the guest's physical address map
 651				 * precludes hot adding memory. Stop all further
 652				 * memory hot-add.
 653				 */
 654				do_hot_add = false;
 655			}
 
 656			has->ha_end_pfn -= HA_CHUNK;
 657			has->covered_end_pfn -=  processed_pfn;
 658			mutex_lock(&dm_device.ha_region_mutex);
 659			break;
 660		}
 661
 662		/*
 663		 * Wait for the memory block to be onlined.
 664		 * Since the hot add has succeeded, it is ok to
 665		 * proceed even if the pages in the hot added region
 666		 * have not been "onlined" within the allowed time.
 
 
 667		 */
 668		wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
 669		mutex_lock(&dm_device.ha_region_mutex);
 670		post_status(&dm_device);
 671	}
 672
 673	return;
 674}
 675
 676static void hv_online_page(struct page *pg)
 677{
 678	struct list_head *cur;
 679	struct hv_hotadd_state *has;
 680	unsigned long cur_start_pgp;
 681	unsigned long cur_end_pgp;
 682
 683	list_for_each(cur, &dm_device.ha_region_list) {
 684		has = list_entry(cur, struct hv_hotadd_state, list);
 685		cur_start_pgp = (unsigned long)pfn_to_page(has->start_pfn);
 686		cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
 
 
 687
 688		if (((unsigned long)pg >= cur_start_pgp) &&
 689			((unsigned long)pg < cur_end_pgp)) {
 690			/*
 691			 * This frame is currently backed; online the
 692			 * page.
 693			 */
 694			__online_page_set_limits(pg);
 695			__online_page_increment_counters(pg);
 696			__online_page_free(pg);
 697		}
 698	}
 
 699}
 700
 701static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 702{
 703	struct list_head *cur;
 704	struct hv_hotadd_state *has;
 
 705	unsigned long residual, new_inc;
 
 
 706
 707	if (list_empty(&dm_device.ha_region_list))
 708		return false;
 709
 710	list_for_each(cur, &dm_device.ha_region_list) {
 711		has = list_entry(cur, struct hv_hotadd_state, list);
 712
 713		/*
 714		 * If the pfn range we are dealing with is not in the current
 715		 * "hot add block", move on.
 716		 */
 717		if ((start_pfn >= has->end_pfn))
 718			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719		/*
 720		 * If the current hot add-request extends beyond
 721		 * our current limit; extend it.
 722		 */
 723		if ((start_pfn + pfn_cnt) > has->end_pfn) {
 724			residual = (start_pfn + pfn_cnt - has->end_pfn);
 725			/*
 726			 * Extend the region by multiples of HA_CHUNK.
 727			 */
 728			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
 729			if (residual % HA_CHUNK)
 730				new_inc += HA_CHUNK;
 731
 732			has->end_pfn += new_inc;
 733		}
 734
 735		/*
 736		 * If the current start pfn is not where the covered_end
 737		 * is, update it.
 738		 */
 739
 740		if (has->covered_end_pfn != start_pfn)
 741			has->covered_end_pfn = start_pfn;
 742
 743		return true;
 744
 745	}
 
 746
 747	return false;
 748}
 749
 750static unsigned long handle_pg_range(unsigned long pg_start,
 751					unsigned long pg_count)
 752{
 753	unsigned long start_pfn = pg_start;
 754	unsigned long pfn_cnt = pg_count;
 755	unsigned long size;
 756	struct list_head *cur;
 757	struct hv_hotadd_state *has;
 758	unsigned long pgs_ol = 0;
 759	unsigned long old_covered_state;
 
 760
 761	if (list_empty(&dm_device.ha_region_list))
 762		return 0;
 763
 764	list_for_each(cur, &dm_device.ha_region_list) {
 765		has = list_entry(cur, struct hv_hotadd_state, list);
 766
 
 
 767		/*
 768		 * If the pfn range we are dealing with is not in the current
 769		 * "hot add block", move on.
 770		 */
 771		if ((start_pfn >= has->end_pfn))
 772			continue;
 773
 774		old_covered_state = has->covered_end_pfn;
 775
 776		if (start_pfn < has->ha_end_pfn) {
 777			/*
 778			 * This is the case where we are backing pages
 779			 * in an already hot added region. Bring
 780			 * these pages online first.
 781			 */
 782			pgs_ol = has->ha_end_pfn - start_pfn;
 783			if (pgs_ol > pfn_cnt)
 784				pgs_ol = pfn_cnt;
 785
 
 
 786			/*
 787			 * Check if the corresponding memory block is already
 788			 * online by checking its last previously backed page.
 789			 * In case it is we need to bring rest (which was not
 790			 * backed previously) online too.
 
 
 791			 */
 792			if (start_pfn > has->start_pfn &&
 793			    !PageReserved(pfn_to_page(start_pfn - 1)))
 794				hv_bring_pgs_online(start_pfn, pgs_ol);
 795
 796			has->covered_end_pfn +=  pgs_ol;
 797			pfn_cnt -= pgs_ol;
 798		}
 799
 800		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
 801			/*
 802			 * We have some residual hot add range
 803			 * that needs to be hot added; hot add
 804			 * it now. Hot add a multiple of
 805			 * of HA_CHUNK that fully covers the pages
 806			 * we have.
 807			 */
 808			size = (has->end_pfn - has->ha_end_pfn);
 809			if (pfn_cnt <= size) {
 810				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
 811				if (pfn_cnt % HA_CHUNK)
 812					size += HA_CHUNK;
 813			} else {
 814				pfn_cnt = size;
 815			}
 
 816			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 
 817		}
 818		/*
 819		 * If we managed to online any pages that were given to us,
 820		 * we declare success.
 821		 */
 822		return has->covered_end_pfn - old_covered_state;
 823
 824	}
 
 825
 826	return 0;
 827}
 828
 829static unsigned long process_hot_add(unsigned long pg_start,
 830					unsigned long pfn_cnt,
 831					unsigned long rg_start,
 832					unsigned long rg_size)
 833{
 834	struct hv_hotadd_state *ha_region = NULL;
 
 
 835
 836	if (pfn_cnt == 0)
 837		return 0;
 838
 839	if (!dm_device.host_specified_ha_region)
 840		if (pfn_covered(pg_start, pfn_cnt))
 
 
 
 
 841			goto do_pg_range;
 
 842
 843	/*
 844	 * If the host has specified a hot-add range; deal with it first.
 845	 */
 846
 847	if (rg_size != 0) {
 848		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 849		if (!ha_region)
 850			return 0;
 851
 852		INIT_LIST_HEAD(&ha_region->list);
 
 853
 854		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 855		ha_region->start_pfn = rg_start;
 856		ha_region->ha_end_pfn = rg_start;
 
 857		ha_region->covered_end_pfn = pg_start;
 858		ha_region->end_pfn = rg_start + rg_size;
 
 
 
 
 859	}
 860
 861do_pg_range:
 862	/*
 863	 * Process the page range specified; bringing them
 864	 * online if possible.
 865	 */
 866	return handle_pg_range(pg_start, pfn_cnt);
 867}
 868
 869#endif
 870
 871static void hot_add_req(struct work_struct *dummy)
 872{
 873	struct dm_hot_add_response resp;
 874#ifdef CONFIG_MEMORY_HOTPLUG
 875	unsigned long pg_start, pfn_cnt;
 876	unsigned long rg_start, rg_sz;
 877#endif
 878	struct hv_dynmem_device *dm = &dm_device;
 879
 880	memset(&resp, 0, sizeof(struct dm_hot_add_response));
 881	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
 882	resp.hdr.size = sizeof(struct dm_hot_add_response);
 883
 884#ifdef CONFIG_MEMORY_HOTPLUG
 885	mutex_lock(&dm_device.ha_region_mutex);
 886	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
 887	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
 888
 889	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
 890	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
 891
 892	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
 893		unsigned long region_size;
 894		unsigned long region_start;
 895
 896		/*
 897		 * The host has not specified the hot-add region.
 898		 * Based on the hot-add page range being specified,
 899		 * compute a hot-add region that can cover the pages
 900		 * that need to be hot-added while ensuring the alignment
 901		 * and size requirements of Linux as it relates to hot-add.
 902		 */
 903		region_start = pg_start;
 904		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
 905		if (pfn_cnt % HA_CHUNK)
 906			region_size += HA_CHUNK;
 907
 908		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
 909
 910		rg_start = region_start;
 911		rg_sz = region_size;
 912	}
 913
 914	if (do_hot_add)
 915		resp.page_count = process_hot_add(pg_start, pfn_cnt,
 916						rg_start, rg_sz);
 917
 918	dm->num_pages_added += resp.page_count;
 919	mutex_unlock(&dm_device.ha_region_mutex);
 920#endif
 921	/*
 922	 * The result field of the response structure has the
 923	 * following semantics:
 924	 *
 925	 * 1. If all or some pages hot-added: Guest should return success.
 926	 *
 927	 * 2. If no pages could be hot-added:
 928	 *
 929	 * If the guest returns success, then the host
 930	 * will not attempt any further hot-add operations. This
 931	 * signifies a permanent failure.
 932	 *
 933	 * If the guest returns failure, then this failure will be
 934	 * treated as a transient failure and the host may retry the
 935	 * hot-add operation after some delay.
 936	 */
 937	if (resp.page_count > 0)
 938		resp.result = 1;
 939	else if (!do_hot_add)
 940		resp.result = 1;
 941	else
 942		resp.result = 0;
 943
 944	if (!do_hot_add || (resp.page_count == 0))
 945		pr_info("Memory hot add failed\n");
 
 
 
 
 946
 947	dm->state = DM_INITIALIZED;
 948	resp.hdr.trans_id = atomic_inc_return(&trans_id);
 949	vmbus_sendpacket(dm->dev->channel, &resp,
 950			sizeof(struct dm_hot_add_response),
 951			(unsigned long)NULL,
 952			VM_PKT_DATA_INBAND, 0);
 953}
 954
 955static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
 956{
 957	struct dm_info_header *info_hdr;
 958
 959	info_hdr = (struct dm_info_header *)msg->info;
 960
 961	switch (info_hdr->type) {
 962	case INFO_TYPE_MAX_PAGE_CNT:
 963		pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
 964		pr_info("Data Size is %d\n", info_hdr->data_size);
 
 
 
 
 
 965		break;
 966	default:
 967		pr_info("Received Unknown type: %d\n", info_hdr->type);
 968	}
 969}
 970
 971static unsigned long compute_balloon_floor(void)
 972{
 973	unsigned long min_pages;
 
 974#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
 975	/* Simple continuous piecewiese linear function:
 976	 *  max MiB -> min MiB  gradient
 977	 *       0         0
 978	 *      16        16
 979	 *      32        24
 980	 *     128        72    (1/2)
 981	 *     512       168    (1/4)
 982	 *    2048       360    (1/8)
 983	 *    8192       744    (1/16)
 984	 *   32768      1512	(1/32)
 985	 */
 986	if (totalram_pages < MB2PAGES(128))
 987		min_pages = MB2PAGES(8) + (totalram_pages >> 1);
 988	else if (totalram_pages < MB2PAGES(512))
 989		min_pages = MB2PAGES(40) + (totalram_pages >> 2);
 990	else if (totalram_pages < MB2PAGES(2048))
 991		min_pages = MB2PAGES(104) + (totalram_pages >> 3);
 992	else if (totalram_pages < MB2PAGES(8192))
 993		min_pages = MB2PAGES(232) + (totalram_pages >> 4);
 994	else
 995		min_pages = MB2PAGES(488) + (totalram_pages >> 5);
 996#undef MB2PAGES
 997	return min_pages;
 998}
 999
1000/*
1001 * Post our status as it relates memory pressure to the
1002 * host. Host expects the guests to post this status
1003 * periodically at 1 second intervals.
1004 *
1005 * The metrics specified in this protocol are very Windows
1006 * specific and so we cook up numbers here to convey our memory
1007 * pressure.
1008 */
1009
1010static void post_status(struct hv_dynmem_device *dm)
1011{
1012	struct dm_status status;
1013	struct sysinfo val;
1014	unsigned long now = jiffies;
1015	unsigned long last_post = last_post_time;
1016
1017	if (pressure_report_delay > 0) {
1018		--pressure_report_delay;
1019		return;
1020	}
1021
1022	if (!time_after(now, (last_post_time + HZ)))
1023		return;
1024
1025	si_meminfo(&val);
1026	memset(&status, 0, sizeof(struct dm_status));
1027	status.hdr.type = DM_STATUS_REPORT;
1028	status.hdr.size = sizeof(struct dm_status);
1029	status.hdr.trans_id = atomic_inc_return(&trans_id);
1030
1031	/*
1032	 * The host expects the guest to report free and committed memory.
1033	 * Furthermore, the host expects the pressure information to include
1034	 * the ballooned out pages. For a given amount of memory that we are
1035	 * managing we need to compute a floor below which we should not
1036	 * balloon. Compute this and add it to the pressure report.
1037	 * We also need to report all offline pages (num_pages_added -
1038	 * num_pages_onlined) as committed to the host, otherwise it can try
1039	 * asking us to balloon them out.
1040	 */
1041	status.num_avail = val.freeram;
1042	status.num_committed = vm_memory_committed() +
1043		dm->num_pages_ballooned +
1044		(dm->num_pages_added > dm->num_pages_onlined ?
1045		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1046		compute_balloon_floor();
1047
 
 
 
1048	/*
1049	 * If our transaction ID is no longer current, just don't
1050	 * send the status. This can happen if we were interrupted
1051	 * after we picked our transaction ID.
1052	 */
1053	if (status.hdr.trans_id != atomic_read(&trans_id))
1054		return;
1055
1056	/*
1057	 * If the last post time that we sampled has changed,
1058	 * we have raced, don't post the status.
1059	 */
1060	if (last_post != last_post_time)
1061		return;
1062
1063	last_post_time = jiffies;
1064	vmbus_sendpacket(dm->dev->channel, &status,
1065				sizeof(struct dm_status),
1066				(unsigned long)NULL,
1067				VM_PKT_DATA_INBAND, 0);
1068
1069}
1070
1071static void free_balloon_pages(struct hv_dynmem_device *dm,
1072			 union dm_mem_page_range *range_array)
1073{
1074	int num_pages = range_array->finfo.page_cnt;
1075	__u64 start_frame = range_array->finfo.start_page;
1076	struct page *pg;
1077	int i;
1078
1079	for (i = 0; i < num_pages; i++) {
1080		pg = pfn_to_page(i + start_frame);
 
1081		__free_page(pg);
1082		dm->num_pages_ballooned--;
 
1083	}
1084}
1085
1086
1087
1088static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1089					unsigned int num_pages,
1090					struct dm_balloon_response *bl_resp,
1091					int alloc_unit)
1092{
1093	unsigned int i = 0;
1094	struct page *pg;
1095
1096	if (num_pages < alloc_unit)
1097		return 0;
1098
1099	for (i = 0; (i * alloc_unit) < num_pages; i++) {
1100		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1101			PAGE_SIZE)
1102			return i * alloc_unit;
1103
1104		/*
1105		 * We execute this code in a thread context. Furthermore,
1106		 * we don't want the kernel to try too hard.
1107		 */
1108		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1109				__GFP_NOMEMALLOC | __GFP_NOWARN,
1110				get_order(alloc_unit << PAGE_SHIFT));
1111
1112		if (!pg)
1113			return i * alloc_unit;
1114
1115		dm->num_pages_ballooned += alloc_unit;
1116
1117		/*
1118		 * If we allocatted 2M pages; split them so we
1119		 * can free them in any order we get.
1120		 */
1121
1122		if (alloc_unit != 1)
1123			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1124
 
 
 
 
 
 
1125		bl_resp->range_count++;
1126		bl_resp->range_array[i].finfo.start_page =
1127			page_to_pfn(pg);
1128		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1129		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1130
1131	}
1132
1133	return num_pages;
1134}
1135
1136
1137
1138static void balloon_up(struct work_struct *dummy)
1139{
1140	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1141	unsigned int num_ballooned = 0;
1142	struct dm_balloon_response *bl_resp;
1143	int alloc_unit;
1144	int ret;
1145	bool done = false;
1146	int i;
1147	struct sysinfo val;
1148	unsigned long floor;
1149
1150	/* The host balloons pages in 2M granularity. */
1151	WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1152
1153	/*
1154	 * We will attempt 2M allocations. However, if we fail to
1155	 * allocate 2M chunks, we will go back to 4k allocations.
1156	 */
1157	alloc_unit = 512;
1158
1159	si_meminfo(&val);
1160	floor = compute_balloon_floor();
1161
1162	/* Refuse to balloon below the floor, keep the 2M granularity. */
1163	if (val.freeram < num_pages || val.freeram - num_pages < floor) {
1164		num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1165		num_pages -= num_pages % PAGES_IN_2M;
 
 
 
1166	}
1167
1168	while (!done) {
1169		bl_resp = (struct dm_balloon_response *)send_buffer;
1170		memset(send_buffer, 0, PAGE_SIZE);
1171		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1172		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1173		bl_resp->more_pages = 1;
1174
1175
1176		num_pages -= num_ballooned;
1177		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1178						    bl_resp, alloc_unit);
1179
1180		if (alloc_unit != 1 && num_ballooned == 0) {
1181			alloc_unit = 1;
1182			continue;
1183		}
1184
1185		if (num_ballooned == 0 || num_ballooned == num_pages) {
 
 
 
1186			bl_resp->more_pages = 0;
1187			done = true;
1188			dm_device.state = DM_INITIALIZED;
1189		}
1190
1191		/*
1192		 * We are pushing a lot of data through the channel;
1193		 * deal with transient failures caused because of the
1194		 * lack of space in the ring buffer.
1195		 */
1196
1197		do {
1198			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1199			ret = vmbus_sendpacket(dm_device.dev->channel,
1200						bl_resp,
1201						bl_resp->hdr.size,
1202						(unsigned long)NULL,
1203						VM_PKT_DATA_INBAND, 0);
1204
1205			if (ret == -EAGAIN)
1206				msleep(20);
1207			post_status(&dm_device);
1208		} while (ret == -EAGAIN);
1209
1210		if (ret) {
1211			/*
1212			 * Free up the memory we allocatted.
1213			 */
1214			pr_info("Balloon response failed\n");
1215
1216			for (i = 0; i < bl_resp->range_count; i++)
1217				free_balloon_pages(&dm_device,
1218						 &bl_resp->range_array[i]);
1219
1220			done = true;
1221		}
1222	}
1223
1224}
1225
1226static void balloon_down(struct hv_dynmem_device *dm,
1227			struct dm_unballoon_request *req)
1228{
1229	union dm_mem_page_range *range_array = req->range_array;
1230	int range_count = req->range_count;
1231	struct dm_unballoon_response resp;
1232	int i;
 
1233
1234	for (i = 0; i < range_count; i++) {
1235		free_balloon_pages(dm, &range_array[i]);
1236		complete(&dm_device.config_event);
1237	}
1238
 
 
 
1239	if (req->more_pages == 1)
1240		return;
1241
1242	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1243	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1244	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1245	resp.hdr.size = sizeof(struct dm_unballoon_response);
1246
1247	vmbus_sendpacket(dm_device.dev->channel, &resp,
1248				sizeof(struct dm_unballoon_response),
1249				(unsigned long)NULL,
1250				VM_PKT_DATA_INBAND, 0);
1251
1252	dm->state = DM_INITIALIZED;
1253}
1254
1255static void balloon_onchannelcallback(void *context);
1256
1257static int dm_thread_func(void *dm_dev)
1258{
1259	struct hv_dynmem_device *dm = dm_dev;
1260
1261	while (!kthread_should_stop()) {
1262		wait_for_completion_interruptible_timeout(
1263						&dm_device.config_event, 1*HZ);
1264		/*
1265		 * The host expects us to post information on the memory
1266		 * pressure every second.
1267		 */
1268		reinit_completion(&dm_device.config_event);
1269		post_status(dm);
1270	}
1271
1272	return 0;
1273}
1274
1275
1276static void version_resp(struct hv_dynmem_device *dm,
1277			struct dm_version_response *vresp)
1278{
1279	struct dm_version_request version_req;
1280	int ret;
1281
1282	if (vresp->is_accepted) {
1283		/*
1284		 * We are done; wakeup the
1285		 * context waiting for version
1286		 * negotiation.
1287		 */
1288		complete(&dm->host_event);
1289		return;
1290	}
1291	/*
1292	 * If there are more versions to try, continue
1293	 * with negotiations; if not
1294	 * shutdown the service since we are not able
1295	 * to negotiate a suitable version number
1296	 * with the host.
1297	 */
1298	if (dm->next_version == 0)
1299		goto version_error;
1300
1301	memset(&version_req, 0, sizeof(struct dm_version_request));
1302	version_req.hdr.type = DM_VERSION_REQUEST;
1303	version_req.hdr.size = sizeof(struct dm_version_request);
1304	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1305	version_req.version.version = dm->next_version;
 
1306
1307	/*
1308	 * Set the next version to try in case current version fails.
1309	 * Win7 protocol ought to be the last one to try.
1310	 */
1311	switch (version_req.version.version) {
1312	case DYNMEM_PROTOCOL_VERSION_WIN8:
1313		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1314		version_req.is_last_attempt = 0;
1315		break;
1316	default:
1317		dm->next_version = 0;
1318		version_req.is_last_attempt = 1;
1319	}
1320
1321	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1322				sizeof(struct dm_version_request),
1323				(unsigned long)NULL,
1324				VM_PKT_DATA_INBAND, 0);
1325
1326	if (ret)
1327		goto version_error;
1328
1329	return;
1330
1331version_error:
1332	dm->state = DM_INIT_ERROR;
1333	complete(&dm->host_event);
1334}
1335
1336static void cap_resp(struct hv_dynmem_device *dm,
1337			struct dm_capabilities_resp_msg *cap_resp)
1338{
1339	if (!cap_resp->is_accepted) {
1340		pr_info("Capabilities not accepted by host\n");
1341		dm->state = DM_INIT_ERROR;
1342	}
1343	complete(&dm->host_event);
1344}
1345
1346static void balloon_onchannelcallback(void *context)
1347{
1348	struct hv_device *dev = context;
1349	u32 recvlen;
1350	u64 requestid;
1351	struct dm_message *dm_msg;
1352	struct dm_header *dm_hdr;
1353	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1354	struct dm_balloon *bal_msg;
1355	struct dm_hot_add *ha_msg;
1356	union dm_mem_page_range *ha_pg_range;
1357	union dm_mem_page_range *ha_region;
1358
1359	memset(recv_buffer, 0, sizeof(recv_buffer));
1360	vmbus_recvpacket(dev->channel, recv_buffer,
1361			 PAGE_SIZE, &recvlen, &requestid);
1362
1363	if (recvlen > 0) {
1364		dm_msg = (struct dm_message *)recv_buffer;
1365		dm_hdr = &dm_msg->hdr;
1366
1367		switch (dm_hdr->type) {
1368		case DM_VERSION_RESPONSE:
1369			version_resp(dm,
1370				 (struct dm_version_response *)dm_msg);
1371			break;
1372
1373		case DM_CAPABILITIES_RESPONSE:
1374			cap_resp(dm,
1375				 (struct dm_capabilities_resp_msg *)dm_msg);
1376			break;
1377
1378		case DM_BALLOON_REQUEST:
 
 
 
 
 
1379			if (dm->state == DM_BALLOON_UP)
1380				pr_warn("Currently ballooning\n");
1381			bal_msg = (struct dm_balloon *)recv_buffer;
1382			dm->state = DM_BALLOON_UP;
1383			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1384			schedule_work(&dm_device.balloon_wrk.wrk);
1385			break;
1386
1387		case DM_UNBALLOON_REQUEST:
 
 
 
 
 
1388			dm->state = DM_BALLOON_DOWN;
1389			balloon_down(dm,
1390				 (struct dm_unballoon_request *)recv_buffer);
1391			break;
1392
1393		case DM_MEM_HOT_ADD_REQUEST:
1394			if (dm->state == DM_HOT_ADD)
1395				pr_warn("Currently hot-adding\n");
1396			dm->state = DM_HOT_ADD;
1397			ha_msg = (struct dm_hot_add *)recv_buffer;
1398			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1399				/*
1400				 * This is a normal hot-add request specifying
1401				 * hot-add memory.
1402				 */
 
1403				ha_pg_range = &ha_msg->range;
1404				dm->ha_wrk.ha_page_range = *ha_pg_range;
1405				dm->ha_wrk.ha_region_range.page_range = 0;
1406			} else {
1407				/*
1408				 * Host is specifying that we first hot-add
1409				 * a region and then partially populate this
1410				 * region.
1411				 */
1412				dm->host_specified_ha_region = true;
1413				ha_pg_range = &ha_msg->range;
1414				ha_region = &ha_pg_range[1];
1415				dm->ha_wrk.ha_page_range = *ha_pg_range;
1416				dm->ha_wrk.ha_region_range = *ha_region;
1417			}
1418			schedule_work(&dm_device.ha_wrk.wrk);
1419			break;
1420
1421		case DM_INFO_MESSAGE:
1422			process_info(dm, (struct dm_info_msg *)dm_msg);
1423			break;
1424
1425		default:
1426			pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1427
1428		}
1429	}
1430
1431}
1432
1433static int balloon_probe(struct hv_device *dev,
1434			const struct hv_vmbus_device_id *dev_id)
 
 
 
1435{
1436	int ret;
1437	unsigned long t;
1438	struct dm_version_request version_req;
1439	struct dm_capabilities cap_msg;
 
1440
1441	do_hot_add = hot_add;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	/*
1444	 * First allocate a send buffer.
1445	 */
1446
1447	send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1448	if (!send_buffer)
1449		return -ENOMEM;
1450
1451	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1452			balloon_onchannelcallback, dev);
 
 
 
1453
1454	if (ret)
1455		goto probe_error0;
 
 
1456
1457	dm_device.dev = dev;
1458	dm_device.state = DM_INITIALIZING;
1459	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1460	init_completion(&dm_device.host_event);
1461	init_completion(&dm_device.config_event);
1462	INIT_LIST_HEAD(&dm_device.ha_region_list);
1463	mutex_init(&dm_device.ha_region_mutex);
1464	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1465	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1466	dm_device.host_specified_ha_region = false;
1467
1468	dm_device.thread =
1469		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1470	if (IS_ERR(dm_device.thread)) {
1471		ret = PTR_ERR(dm_device.thread);
1472		goto probe_error1;
1473	}
 
1474
1475#ifdef CONFIG_MEMORY_HOTPLUG
1476	set_online_page_callback(&hv_online_page);
1477	register_memory_notifier(&hv_memory_nb);
1478#endif
 
 
 
 
 
 
 
1479
1480	hv_set_drvdata(dev, &dm_device);
1481	/*
1482	 * Initiate the hand shake with the host and negotiate
1483	 * a version that the host can support. We start with the
1484	 * highest version number and go down if the host cannot
1485	 * support it.
1486	 */
1487	memset(&version_req, 0, sizeof(struct dm_version_request));
1488	version_req.hdr.type = DM_VERSION_REQUEST;
1489	version_req.hdr.size = sizeof(struct dm_version_request);
1490	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1491	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1492	version_req.is_last_attempt = 0;
 
1493
1494	ret = vmbus_sendpacket(dev->channel, &version_req,
1495				sizeof(struct dm_version_request),
1496				(unsigned long)NULL,
1497				VM_PKT_DATA_INBAND, 0);
1498	if (ret)
1499		goto probe_error2;
1500
1501	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1502	if (t == 0) {
1503		ret = -ETIMEDOUT;
1504		goto probe_error2;
1505	}
1506
1507	/*
1508	 * If we could not negotiate a compatible version with the host
1509	 * fail the probe function.
1510	 */
1511	if (dm_device.state == DM_INIT_ERROR) {
1512		ret = -ETIMEDOUT;
1513		goto probe_error2;
1514	}
 
 
 
 
 
1515	/*
1516	 * Now submit our capabilities to the host.
1517	 */
1518	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1519	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1520	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1521	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1522
 
 
 
 
 
1523	cap_msg.caps.cap_bits.balloon = 1;
1524	cap_msg.caps.cap_bits.hot_add = 1;
1525
1526	/*
1527	 * Specify our alignment requirements as it relates
1528	 * memory hot-add. Specify 128MB alignment.
1529	 */
1530	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1531
1532	/*
1533	 * Currently the host does not use these
1534	 * values and we set them to what is done in the
1535	 * Windows driver.
1536	 */
1537	cap_msg.min_page_cnt = 0;
1538	cap_msg.max_page_number = -1;
1539
1540	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1541				sizeof(struct dm_capabilities),
1542				(unsigned long)NULL,
1543				VM_PKT_DATA_INBAND, 0);
1544	if (ret)
1545		goto probe_error2;
1546
1547	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1548	if (t == 0) {
1549		ret = -ETIMEDOUT;
1550		goto probe_error2;
1551	}
1552
1553	/*
1554	 * If the host does not like our capabilities,
1555	 * fail the probe function.
1556	 */
1557	if (dm_device.state == DM_INIT_ERROR) {
1558		ret = -ETIMEDOUT;
1559		goto probe_error2;
1560	}
1561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562	dm_device.state = DM_INITIALIZED;
1563
 
 
 
 
 
 
 
1564	return 0;
1565
1566probe_error2:
 
 
 
 
1567#ifdef CONFIG_MEMORY_HOTPLUG
 
1568	restore_online_page_callback(&hv_online_page);
1569#endif
1570	kthread_stop(dm_device.thread);
1571
1572probe_error1:
1573	vmbus_close(dev->channel);
1574probe_error0:
1575	kfree(send_buffer);
1576	return ret;
1577}
1578
1579static int balloon_remove(struct hv_device *dev)
1580{
1581	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1582	struct list_head *cur, *tmp;
1583	struct hv_hotadd_state *has;
 
1584
1585	if (dm->num_pages_ballooned != 0)
1586		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1587
1588	cancel_work_sync(&dm->balloon_wrk.wrk);
1589	cancel_work_sync(&dm->ha_wrk.wrk);
1590
1591	vmbus_close(dev->channel);
1592	kthread_stop(dm->thread);
1593	kfree(send_buffer);
 
1594#ifdef CONFIG_MEMORY_HOTPLUG
1595	restore_online_page_callback(&hv_online_page);
1596	unregister_memory_notifier(&hv_memory_nb);
 
1597#endif
1598	list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1599		has = list_entry(cur, struct hv_hotadd_state, list);
 
 
 
 
1600		list_del(&has->list);
1601		kfree(has);
1602	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603
1604	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605}
1606
1607static const struct hv_vmbus_device_id id_table[] = {
1608	/* Dynamic Memory Class ID */
1609	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1610	{ HV_DM_GUID, },
1611	{ },
1612};
1613
1614MODULE_DEVICE_TABLE(vmbus, id_table);
1615
1616static  struct hv_driver balloon_drv = {
1617	.name = "hv_balloon",
1618	.id_table = id_table,
1619	.probe =  balloon_probe,
1620	.remove =  balloon_remove,
 
 
 
 
 
1621};
1622
1623static int __init init_balloon_drv(void)
1624{
1625
1626	return vmbus_driver_register(&balloon_drv);
1627}
1628
1629module_init(init_balloon_drv);
1630
1631MODULE_DESCRIPTION("Hyper-V Balloon");
1632MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2012, Microsoft Corporation.
   4 *
   5 * Author:
   6 *   K. Y. Srinivasan <kys@microsoft.com>
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/jiffies.h>
  13#include <linux/mman.h>
  14#include <linux/delay.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/kthread.h>
  19#include <linux/completion.h>
  20#include <linux/memory_hotplug.h>
  21#include <linux/memory.h>
  22#include <linux/notifier.h>
  23#include <linux/percpu_counter.h>
  24#include <linux/page_reporting.h>
  25
  26#include <linux/hyperv.h>
  27#include <asm/hyperv-tlfs.h>
  28
  29#include <asm/mshyperv.h>
  30
  31#define CREATE_TRACE_POINTS
  32#include "hv_trace_balloon.h"
  33
  34/*
  35 * We begin with definitions supporting the Dynamic Memory protocol
  36 * with the host.
  37 *
  38 * Begin protocol definitions.
  39 */
  40
  41
  42
  43/*
  44 * Protocol versions. The low word is the minor version, the high word the major
  45 * version.
  46 *
  47 * History:
  48 * Initial version 1.0
  49 * Changed to 0.1 on 2009/03/25
  50 * Changes to 0.2 on 2009/05/14
  51 * Changes to 0.3 on 2009/12/03
  52 * Changed to 1.0 on 2011/04/05
  53 */
  54
  55#define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
  56#define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
  57#define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
  58
  59enum {
  60	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
  61	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
  62	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
  63
  64	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
  65	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
  66	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
  67
  68	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
  69};
  70
  71
  72
  73/*
  74 * Message Types
  75 */
  76
  77enum dm_message_type {
  78	/*
  79	 * Version 0.3
  80	 */
  81	DM_ERROR			= 0,
  82	DM_VERSION_REQUEST		= 1,
  83	DM_VERSION_RESPONSE		= 2,
  84	DM_CAPABILITIES_REPORT		= 3,
  85	DM_CAPABILITIES_RESPONSE	= 4,
  86	DM_STATUS_REPORT		= 5,
  87	DM_BALLOON_REQUEST		= 6,
  88	DM_BALLOON_RESPONSE		= 7,
  89	DM_UNBALLOON_REQUEST		= 8,
  90	DM_UNBALLOON_RESPONSE		= 9,
  91	DM_MEM_HOT_ADD_REQUEST		= 10,
  92	DM_MEM_HOT_ADD_RESPONSE		= 11,
  93	DM_VERSION_03_MAX		= 11,
  94	/*
  95	 * Version 1.0.
  96	 */
  97	DM_INFO_MESSAGE			= 12,
  98	DM_VERSION_1_MAX		= 12
  99};
 100
 101
 102/*
 103 * Structures defining the dynamic memory management
 104 * protocol.
 105 */
 106
 107union dm_version {
 108	struct {
 109		__u16 minor_version;
 110		__u16 major_version;
 111	};
 112	__u32 version;
 113} __packed;
 114
 115
 116union dm_caps {
 117	struct {
 118		__u64 balloon:1;
 119		__u64 hot_add:1;
 120		/*
 121		 * To support guests that may have alignment
 122		 * limitations on hot-add, the guest can specify
 123		 * its alignment requirements; a value of n
 124		 * represents an alignment of 2^n in mega bytes.
 125		 */
 126		__u64 hot_add_alignment:4;
 127		__u64 reservedz:58;
 128	} cap_bits;
 129	__u64 caps;
 130} __packed;
 131
 132union dm_mem_page_range {
 133	struct  {
 134		/*
 135		 * The PFN number of the first page in the range.
 136		 * 40 bits is the architectural limit of a PFN
 137		 * number for AMD64.
 138		 */
 139		__u64 start_page:40;
 140		/*
 141		 * The number of pages in the range.
 142		 */
 143		__u64 page_cnt:24;
 144	} finfo;
 145	__u64  page_range;
 146} __packed;
 147
 148
 149
 150/*
 151 * The header for all dynamic memory messages:
 152 *
 153 * type: Type of the message.
 154 * size: Size of the message in bytes; including the header.
 155 * trans_id: The guest is responsible for manufacturing this ID.
 156 */
 157
 158struct dm_header {
 159	__u16 type;
 160	__u16 size;
 161	__u32 trans_id;
 162} __packed;
 163
 164/*
 165 * A generic message format for dynamic memory.
 166 * Specific message formats are defined later in the file.
 167 */
 168
 169struct dm_message {
 170	struct dm_header hdr;
 171	__u8 data[]; /* enclosed message */
 172} __packed;
 173
 174
 175/*
 176 * Specific message types supporting the dynamic memory protocol.
 177 */
 178
 179/*
 180 * Version negotiation message. Sent from the guest to the host.
 181 * The guest is free to try different versions until the host
 182 * accepts the version.
 183 *
 184 * dm_version: The protocol version requested.
 185 * is_last_attempt: If TRUE, this is the last version guest will request.
 186 * reservedz: Reserved field, set to zero.
 187 */
 188
 189struct dm_version_request {
 190	struct dm_header hdr;
 191	union dm_version version;
 192	__u32 is_last_attempt:1;
 193	__u32 reservedz:31;
 194} __packed;
 195
 196/*
 197 * Version response message; Host to Guest and indicates
 198 * if the host has accepted the version sent by the guest.
 199 *
 200 * is_accepted: If TRUE, host has accepted the version and the guest
 201 * should proceed to the next stage of the protocol. FALSE indicates that
 202 * guest should re-try with a different version.
 203 *
 204 * reservedz: Reserved field, set to zero.
 205 */
 206
 207struct dm_version_response {
 208	struct dm_header hdr;
 209	__u64 is_accepted:1;
 210	__u64 reservedz:63;
 211} __packed;
 212
 213/*
 214 * Message reporting capabilities. This is sent from the guest to the
 215 * host.
 216 */
 217
 218struct dm_capabilities {
 219	struct dm_header hdr;
 220	union dm_caps caps;
 221	__u64 min_page_cnt;
 222	__u64 max_page_number;
 223} __packed;
 224
 225/*
 226 * Response to the capabilities message. This is sent from the host to the
 227 * guest. This message notifies if the host has accepted the guest's
 228 * capabilities. If the host has not accepted, the guest must shutdown
 229 * the service.
 230 *
 231 * is_accepted: Indicates if the host has accepted guest's capabilities.
 232 * reservedz: Must be 0.
 233 */
 234
 235struct dm_capabilities_resp_msg {
 236	struct dm_header hdr;
 237	__u64 is_accepted:1;
 238	__u64 reservedz:63;
 239} __packed;
 240
 241/*
 242 * This message is used to report memory pressure from the guest.
 243 * This message is not part of any transaction and there is no
 244 * response to this message.
 245 *
 246 * num_avail: Available memory in pages.
 247 * num_committed: Committed memory in pages.
 248 * page_file_size: The accumulated size of all page files
 249 *		   in the system in pages.
 250 * zero_free: The nunber of zero and free pages.
 251 * page_file_writes: The writes to the page file in pages.
 252 * io_diff: An indicator of file cache efficiency or page file activity,
 253 *	    calculated as File Cache Page Fault Count - Page Read Count.
 254 *	    This value is in pages.
 255 *
 256 * Some of these metrics are Windows specific and fortunately
 257 * the algorithm on the host side that computes the guest memory
 258 * pressure only uses num_committed value.
 259 */
 260
 261struct dm_status {
 262	struct dm_header hdr;
 263	__u64 num_avail;
 264	__u64 num_committed;
 265	__u64 page_file_size;
 266	__u64 zero_free;
 267	__u32 page_file_writes;
 268	__u32 io_diff;
 269} __packed;
 270
 271
 272/*
 273 * Message to ask the guest to allocate memory - balloon up message.
 274 * This message is sent from the host to the guest. The guest may not be
 275 * able to allocate as much memory as requested.
 276 *
 277 * num_pages: number of pages to allocate.
 278 */
 279
 280struct dm_balloon {
 281	struct dm_header hdr;
 282	__u32 num_pages;
 283	__u32 reservedz;
 284} __packed;
 285
 286
 287/*
 288 * Balloon response message; this message is sent from the guest
 289 * to the host in response to the balloon message.
 290 *
 291 * reservedz: Reserved; must be set to zero.
 292 * more_pages: If FALSE, this is the last message of the transaction.
 293 * if TRUE there will atleast one more message from the guest.
 294 *
 295 * range_count: The number of ranges in the range array.
 296 *
 297 * range_array: An array of page ranges returned to the host.
 298 *
 299 */
 300
 301struct dm_balloon_response {
 302	struct dm_header hdr;
 303	__u32 reservedz;
 304	__u32 more_pages:1;
 305	__u32 range_count:31;
 306	union dm_mem_page_range range_array[];
 307} __packed;
 308
 309/*
 310 * Un-balloon message; this message is sent from the host
 311 * to the guest to give guest more memory.
 312 *
 313 * more_pages: If FALSE, this is the last message of the transaction.
 314 * if TRUE there will atleast one more message from the guest.
 315 *
 316 * reservedz: Reserved; must be set to zero.
 317 *
 318 * range_count: The number of ranges in the range array.
 319 *
 320 * range_array: An array of page ranges returned to the host.
 321 *
 322 */
 323
 324struct dm_unballoon_request {
 325	struct dm_header hdr;
 326	__u32 more_pages:1;
 327	__u32 reservedz:31;
 328	__u32 range_count;
 329	union dm_mem_page_range range_array[];
 330} __packed;
 331
 332/*
 333 * Un-balloon response message; this message is sent from the guest
 334 * to the host in response to an unballoon request.
 335 *
 336 */
 337
 338struct dm_unballoon_response {
 339	struct dm_header hdr;
 340} __packed;
 341
 342
 343/*
 344 * Hot add request message. Message sent from the host to the guest.
 345 *
 346 * mem_range: Memory range to hot add.
 347 *
 
 
 348 */
 349
 350struct dm_hot_add {
 351	struct dm_header hdr;
 352	union dm_mem_page_range range;
 353} __packed;
 354
 355/*
 356 * Hot add response message.
 357 * This message is sent by the guest to report the status of a hot add request.
 358 * If page_count is less than the requested page count, then the host should
 359 * assume all further hot add requests will fail, since this indicates that
 360 * the guest has hit an upper physical memory barrier.
 361 *
 362 * Hot adds may also fail due to low resources; in this case, the guest must
 363 * not complete this message until the hot add can succeed, and the host must
 364 * not send a new hot add request until the response is sent.
 365 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
 366 * times it fails the request.
 367 *
 368 *
 369 * page_count: number of pages that were successfully hot added.
 370 *
 371 * result: result of the operation 1: success, 0: failure.
 372 *
 373 */
 374
 375struct dm_hot_add_response {
 376	struct dm_header hdr;
 377	__u32 page_count;
 378	__u32 result;
 379} __packed;
 380
 381/*
 382 * Types of information sent from host to the guest.
 383 */
 384
 385enum dm_info_type {
 386	INFO_TYPE_MAX_PAGE_CNT = 0,
 387	MAX_INFO_TYPE
 388};
 389
 390
 391/*
 392 * Header for the information message.
 393 */
 394
 395struct dm_info_header {
 396	enum dm_info_type type;
 397	__u32 data_size;
 398} __packed;
 399
 400/*
 401 * This message is sent from the host to the guest to pass
 402 * some relevant information (win8 addition).
 403 *
 404 * reserved: no used.
 405 * info_size: size of the information blob.
 406 * info: information blob.
 407 */
 408
 409struct dm_info_msg {
 410	struct dm_header hdr;
 411	__u32 reserved;
 412	__u32 info_size;
 413	__u8  info[];
 414};
 415
 416/*
 417 * End protocol definitions.
 418 */
 419
 420/*
 421 * State to manage hot adding memory into the guest.
 422 * The range start_pfn : end_pfn specifies the range
 423 * that the host has asked us to hot add. The range
 424 * start_pfn : ha_end_pfn specifies the range that we have
 425 * currently hot added. We hot add in multiples of 128M
 426 * chunks; it is possible that we may not be able to bring
 427 * online all the pages in the region. The range
 428 * covered_start_pfn:covered_end_pfn defines the pages that can
 429 * be brough online.
 430 */
 431
 432struct hv_hotadd_state {
 433	struct list_head list;
 434	unsigned long start_pfn;
 435	unsigned long covered_start_pfn;
 436	unsigned long covered_end_pfn;
 437	unsigned long ha_end_pfn;
 438	unsigned long end_pfn;
 439	/*
 440	 * A list of gaps.
 441	 */
 442	struct list_head gap_list;
 443};
 444
 445struct hv_hotadd_gap {
 446	struct list_head list;
 447	unsigned long start_pfn;
 448	unsigned long end_pfn;
 449};
 450
 451struct balloon_state {
 452	__u32 num_pages;
 453	struct work_struct wrk;
 454};
 455
 456struct hot_add_wrk {
 457	union dm_mem_page_range ha_page_range;
 458	union dm_mem_page_range ha_region_range;
 459	struct work_struct wrk;
 460};
 461
 462static bool allow_hibernation;
 463static bool hot_add = true;
 464static bool do_hot_add;
 465/*
 466 * Delay reporting memory pressure by
 467 * the specified number of seconds.
 468 */
 469static uint pressure_report_delay = 45;
 470
 471/*
 472 * The last time we posted a pressure report to host.
 473 */
 474static unsigned long last_post_time;
 475
 476module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
 477MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
 478
 479module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
 480MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
 481static atomic_t trans_id = ATOMIC_INIT(0);
 482
 483static int dm_ring_size = 20 * 1024;
 484
 485/*
 486 * Driver specific state.
 487 */
 488
 489enum hv_dm_state {
 490	DM_INITIALIZING = 0,
 491	DM_INITIALIZED,
 492	DM_BALLOON_UP,
 493	DM_BALLOON_DOWN,
 494	DM_HOT_ADD,
 495	DM_INIT_ERROR
 496};
 497
 498
 499static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
 500static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
 501#define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
 502#define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
 503
 504struct hv_dynmem_device {
 505	struct hv_device *dev;
 506	enum hv_dm_state state;
 507	struct completion host_event;
 508	struct completion config_event;
 509
 510	/*
 511	 * Number of pages we have currently ballooned out.
 512	 */
 513	unsigned int num_pages_ballooned;
 514	unsigned int num_pages_onlined;
 515	unsigned int num_pages_added;
 516
 517	/*
 518	 * State to manage the ballooning (up) operation.
 519	 */
 520	struct balloon_state balloon_wrk;
 521
 522	/*
 523	 * State to execute the "hot-add" operation.
 524	 */
 525	struct hot_add_wrk ha_wrk;
 526
 527	/*
 528	 * This state tracks if the host has specified a hot-add
 529	 * region.
 530	 */
 531	bool host_specified_ha_region;
 532
 533	/*
 534	 * State to synchronize hot-add.
 535	 */
 536	struct completion  ol_waitevent;
 
 537	/*
 538	 * This thread handles hot-add
 539	 * requests from the host as well as notifying
 540	 * the host with regards to memory pressure in
 541	 * the guest.
 542	 */
 543	struct task_struct *thread;
 544
 545	/*
 546	 * Protects ha_region_list, num_pages_onlined counter and individual
 547	 * regions from ha_region_list.
 548	 */
 549	spinlock_t ha_lock;
 550
 551	/*
 552	 * A list of hot-add regions.
 553	 */
 554	struct list_head ha_region_list;
 555
 556	/*
 557	 * We start with the highest version we can support
 558	 * and downgrade based on the host; we save here the
 559	 * next version to try.
 560	 */
 561	__u32 next_version;
 562
 563	/*
 564	 * The negotiated version agreed by host.
 565	 */
 566	__u32 version;
 567
 568	struct page_reporting_dev_info pr_dev_info;
 569};
 570
 571static struct hv_dynmem_device dm_device;
 572
 573static void post_status(struct hv_dynmem_device *dm);
 574
 575#ifdef CONFIG_MEMORY_HOTPLUG
 576static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
 577				     unsigned long pfn)
 578{
 579	struct hv_hotadd_gap *gap;
 580
 581	/* The page is not backed. */
 582	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
 583		return false;
 584
 585	/* Check for gaps. */
 586	list_for_each_entry(gap, &has->gap_list, list) {
 587		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
 588			return false;
 589	}
 590
 591	return true;
 592}
 593
 594static unsigned long hv_page_offline_check(unsigned long start_pfn,
 595					   unsigned long nr_pages)
 596{
 597	unsigned long pfn = start_pfn, count = 0;
 598	struct hv_hotadd_state *has;
 599	bool found;
 600
 601	while (pfn < start_pfn + nr_pages) {
 602		/*
 603		 * Search for HAS which covers the pfn and when we find one
 604		 * count how many consequitive PFNs are covered.
 605		 */
 606		found = false;
 607		list_for_each_entry(has, &dm_device.ha_region_list, list) {
 608			while ((pfn >= has->start_pfn) &&
 609			       (pfn < has->end_pfn) &&
 610			       (pfn < start_pfn + nr_pages)) {
 611				found = true;
 612				if (has_pfn_is_backed(has, pfn))
 613					count++;
 614				pfn++;
 615			}
 616		}
 617
 618		/*
 619		 * This PFN is not in any HAS (e.g. we're offlining a region
 620		 * which was present at boot), no need to account for it. Go
 621		 * to the next one.
 622		 */
 623		if (!found)
 624			pfn++;
 625	}
 626
 627	return count;
 628}
 629
 630static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
 631			      void *v)
 632{
 633	struct memory_notify *mem = (struct memory_notify *)v;
 634	unsigned long flags, pfn_count;
 635
 636	switch (val) {
 
 
 
 
 637	case MEM_ONLINE:
 
 638	case MEM_CANCEL_ONLINE:
 639		complete(&dm_device.ol_waitevent);
 
 
 
 
 
 
 640		break;
 641
 642	case MEM_OFFLINE:
 643		spin_lock_irqsave(&dm_device.ha_lock, flags);
 644		pfn_count = hv_page_offline_check(mem->start_pfn,
 645						  mem->nr_pages);
 646		if (pfn_count <= dm_device.num_pages_onlined) {
 647			dm_device.num_pages_onlined -= pfn_count;
 648		} else {
 649			/*
 650			 * We're offlining more pages than we managed to online.
 651			 * This is unexpected. In any case don't let
 652			 * num_pages_onlined wrap around zero.
 653			 */
 654			WARN_ON_ONCE(1);
 655			dm_device.num_pages_onlined = 0;
 656		}
 657		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 658		break;
 659	case MEM_GOING_ONLINE:
 660	case MEM_GOING_OFFLINE:
 661	case MEM_CANCEL_OFFLINE:
 662		break;
 663	}
 664	return NOTIFY_OK;
 665}
 666
 667static struct notifier_block hv_memory_nb = {
 668	.notifier_call = hv_memory_notifier,
 669	.priority = 0
 670};
 671
 672/* Check if the particular page is backed and can be onlined and online it. */
 673static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
 674{
 675	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
 676		if (!PageOffline(pg))
 677			__SetPageOffline(pg);
 678		return;
 679	}
 680	if (PageOffline(pg))
 681		__ClearPageOffline(pg);
 682
 683	/* This frame is currently backed; online the page. */
 684	generic_online_page(pg, 0);
 685
 686	lockdep_assert_held(&dm_device.ha_lock);
 687	dm_device.num_pages_onlined++;
 688}
 689
 690static void hv_bring_pgs_online(struct hv_hotadd_state *has,
 691				unsigned long start_pfn, unsigned long size)
 692{
 693	int i;
 694
 695	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
 696	for (i = 0; i < size; i++)
 697		hv_page_online_one(has, pfn_to_page(start_pfn + i));
 
 
 
 
 698}
 699
 700static void hv_mem_hot_add(unsigned long start, unsigned long size,
 701				unsigned long pfn_count,
 702				struct hv_hotadd_state *has)
 703{
 704	int ret = 0;
 705	int i, nid;
 706	unsigned long start_pfn;
 707	unsigned long processed_pfn;
 708	unsigned long total_pfn = pfn_count;
 709	unsigned long flags;
 710
 711	for (i = 0; i < (size/HA_CHUNK); i++) {
 712		start_pfn = start + (i * HA_CHUNK);
 713
 714		spin_lock_irqsave(&dm_device.ha_lock, flags);
 715		has->ha_end_pfn +=  HA_CHUNK;
 716
 717		if (total_pfn > HA_CHUNK) {
 718			processed_pfn = HA_CHUNK;
 719			total_pfn -= HA_CHUNK;
 720		} else {
 721			processed_pfn = total_pfn;
 722			total_pfn = 0;
 723		}
 724
 725		has->covered_end_pfn +=  processed_pfn;
 726		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 727
 728		reinit_completion(&dm_device.ol_waitevent);
 
 729
 
 730		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
 731		ret = add_memory(nid, PFN_PHYS((start_pfn)),
 732				(HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
 733
 734		if (ret) {
 735			pr_err("hot_add memory failed error is %d\n", ret);
 736			if (ret == -EEXIST) {
 737				/*
 738				 * This error indicates that the error
 739				 * is not a transient failure. This is the
 740				 * case where the guest's physical address map
 741				 * precludes hot adding memory. Stop all further
 742				 * memory hot-add.
 743				 */
 744				do_hot_add = false;
 745			}
 746			spin_lock_irqsave(&dm_device.ha_lock, flags);
 747			has->ha_end_pfn -= HA_CHUNK;
 748			has->covered_end_pfn -=  processed_pfn;
 749			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 750			break;
 751		}
 752
 753		/*
 754		 * Wait for memory to get onlined. If the kernel onlined the
 755		 * memory when adding it, this will return directly. Otherwise,
 756		 * it will wait for user space to online the memory. This helps
 757		 * to avoid adding memory faster than it is getting onlined. As
 758		 * adding succeeded, it is ok to proceed even if the memory was
 759		 * not onlined in time.
 760		 */
 761		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
 
 762		post_status(&dm_device);
 763	}
 
 
 764}
 765
 766static void hv_online_page(struct page *pg, unsigned int order)
 767{
 
 768	struct hv_hotadd_state *has;
 769	unsigned long flags;
 770	unsigned long pfn = page_to_pfn(pg);
 771
 772	spin_lock_irqsave(&dm_device.ha_lock, flags);
 773	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 774		/* The page belongs to a different HAS. */
 775		if ((pfn < has->start_pfn) ||
 776				(pfn + (1UL << order) > has->end_pfn))
 777			continue;
 778
 779		hv_bring_pgs_online(has, pfn, 1UL << order);
 780		break;
 
 
 
 
 
 
 
 
 781	}
 782	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 783}
 784
 785static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
 786{
 
 787	struct hv_hotadd_state *has;
 788	struct hv_hotadd_gap *gap;
 789	unsigned long residual, new_inc;
 790	int ret = 0;
 791	unsigned long flags;
 792
 793	spin_lock_irqsave(&dm_device.ha_lock, flags);
 794	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 
 
 
 
 795		/*
 796		 * If the pfn range we are dealing with is not in the current
 797		 * "hot add block", move on.
 798		 */
 799		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 800			continue;
 801
 802		/*
 803		 * If the current start pfn is not where the covered_end
 804		 * is, create a gap and update covered_end_pfn.
 805		 */
 806		if (has->covered_end_pfn != start_pfn) {
 807			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
 808			if (!gap) {
 809				ret = -ENOMEM;
 810				break;
 811			}
 812
 813			INIT_LIST_HEAD(&gap->list);
 814			gap->start_pfn = has->covered_end_pfn;
 815			gap->end_pfn = start_pfn;
 816			list_add_tail(&gap->list, &has->gap_list);
 817
 818			has->covered_end_pfn = start_pfn;
 819		}
 820
 821		/*
 822		 * If the current hot add-request extends beyond
 823		 * our current limit; extend it.
 824		 */
 825		if ((start_pfn + pfn_cnt) > has->end_pfn) {
 826			residual = (start_pfn + pfn_cnt - has->end_pfn);
 827			/*
 828			 * Extend the region by multiples of HA_CHUNK.
 829			 */
 830			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
 831			if (residual % HA_CHUNK)
 832				new_inc += HA_CHUNK;
 833
 834			has->end_pfn += new_inc;
 835		}
 836
 837		ret = 1;
 838		break;
 
 
 
 
 
 
 
 
 839	}
 840	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 841
 842	return ret;
 843}
 844
 845static unsigned long handle_pg_range(unsigned long pg_start,
 846					unsigned long pg_count)
 847{
 848	unsigned long start_pfn = pg_start;
 849	unsigned long pfn_cnt = pg_count;
 850	unsigned long size;
 
 851	struct hv_hotadd_state *has;
 852	unsigned long pgs_ol = 0;
 853	unsigned long old_covered_state;
 854	unsigned long res = 0, flags;
 855
 856	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
 857		pg_start);
 
 
 
 858
 859	spin_lock_irqsave(&dm_device.ha_lock, flags);
 860	list_for_each_entry(has, &dm_device.ha_region_list, list) {
 861		/*
 862		 * If the pfn range we are dealing with is not in the current
 863		 * "hot add block", move on.
 864		 */
 865		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
 866			continue;
 867
 868		old_covered_state = has->covered_end_pfn;
 869
 870		if (start_pfn < has->ha_end_pfn) {
 871			/*
 872			 * This is the case where we are backing pages
 873			 * in an already hot added region. Bring
 874			 * these pages online first.
 875			 */
 876			pgs_ol = has->ha_end_pfn - start_pfn;
 877			if (pgs_ol > pfn_cnt)
 878				pgs_ol = pfn_cnt;
 879
 880			has->covered_end_pfn +=  pgs_ol;
 881			pfn_cnt -= pgs_ol;
 882			/*
 883			 * Check if the corresponding memory block is already
 884			 * online. It is possible to observe struct pages still
 885			 * being uninitialized here so check section instead.
 886			 * In case the section is online we need to bring the
 887			 * rest of pfns (which were not backed previously)
 888			 * online too.
 889			 */
 890			if (start_pfn > has->start_pfn &&
 891			    online_section_nr(pfn_to_section_nr(start_pfn)))
 892				hv_bring_pgs_online(has, start_pfn, pgs_ol);
 893
 
 
 894		}
 895
 896		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
 897			/*
 898			 * We have some residual hot add range
 899			 * that needs to be hot added; hot add
 900			 * it now. Hot add a multiple of
 901			 * of HA_CHUNK that fully covers the pages
 902			 * we have.
 903			 */
 904			size = (has->end_pfn - has->ha_end_pfn);
 905			if (pfn_cnt <= size) {
 906				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
 907				if (pfn_cnt % HA_CHUNK)
 908					size += HA_CHUNK;
 909			} else {
 910				pfn_cnt = size;
 911			}
 912			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 913			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
 914			spin_lock_irqsave(&dm_device.ha_lock, flags);
 915		}
 916		/*
 917		 * If we managed to online any pages that were given to us,
 918		 * we declare success.
 919		 */
 920		res = has->covered_end_pfn - old_covered_state;
 921		break;
 922	}
 923	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 924
 925	return res;
 926}
 927
 928static unsigned long process_hot_add(unsigned long pg_start,
 929					unsigned long pfn_cnt,
 930					unsigned long rg_start,
 931					unsigned long rg_size)
 932{
 933	struct hv_hotadd_state *ha_region = NULL;
 934	int covered;
 935	unsigned long flags;
 936
 937	if (pfn_cnt == 0)
 938		return 0;
 939
 940	if (!dm_device.host_specified_ha_region) {
 941		covered = pfn_covered(pg_start, pfn_cnt);
 942		if (covered < 0)
 943			return 0;
 944
 945		if (covered)
 946			goto do_pg_range;
 947	}
 948
 949	/*
 950	 * If the host has specified a hot-add range; deal with it first.
 951	 */
 952
 953	if (rg_size != 0) {
 954		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
 955		if (!ha_region)
 956			return 0;
 957
 958		INIT_LIST_HEAD(&ha_region->list);
 959		INIT_LIST_HEAD(&ha_region->gap_list);
 960
 
 961		ha_region->start_pfn = rg_start;
 962		ha_region->ha_end_pfn = rg_start;
 963		ha_region->covered_start_pfn = pg_start;
 964		ha_region->covered_end_pfn = pg_start;
 965		ha_region->end_pfn = rg_start + rg_size;
 966
 967		spin_lock_irqsave(&dm_device.ha_lock, flags);
 968		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
 969		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
 970	}
 971
 972do_pg_range:
 973	/*
 974	 * Process the page range specified; bringing them
 975	 * online if possible.
 976	 */
 977	return handle_pg_range(pg_start, pfn_cnt);
 978}
 979
 980#endif
 981
 982static void hot_add_req(struct work_struct *dummy)
 983{
 984	struct dm_hot_add_response resp;
 985#ifdef CONFIG_MEMORY_HOTPLUG
 986	unsigned long pg_start, pfn_cnt;
 987	unsigned long rg_start, rg_sz;
 988#endif
 989	struct hv_dynmem_device *dm = &dm_device;
 990
 991	memset(&resp, 0, sizeof(struct dm_hot_add_response));
 992	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
 993	resp.hdr.size = sizeof(struct dm_hot_add_response);
 994
 995#ifdef CONFIG_MEMORY_HOTPLUG
 
 996	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
 997	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
 998
 999	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1000	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1001
1002	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1003		unsigned long region_size;
1004		unsigned long region_start;
1005
1006		/*
1007		 * The host has not specified the hot-add region.
1008		 * Based on the hot-add page range being specified,
1009		 * compute a hot-add region that can cover the pages
1010		 * that need to be hot-added while ensuring the alignment
1011		 * and size requirements of Linux as it relates to hot-add.
1012		 */
 
1013		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1014		if (pfn_cnt % HA_CHUNK)
1015			region_size += HA_CHUNK;
1016
1017		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1018
1019		rg_start = region_start;
1020		rg_sz = region_size;
1021	}
1022
1023	if (do_hot_add)
1024		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1025						rg_start, rg_sz);
1026
1027	dm->num_pages_added += resp.page_count;
 
1028#endif
1029	/*
1030	 * The result field of the response structure has the
1031	 * following semantics:
1032	 *
1033	 * 1. If all or some pages hot-added: Guest should return success.
1034	 *
1035	 * 2. If no pages could be hot-added:
1036	 *
1037	 * If the guest returns success, then the host
1038	 * will not attempt any further hot-add operations. This
1039	 * signifies a permanent failure.
1040	 *
1041	 * If the guest returns failure, then this failure will be
1042	 * treated as a transient failure and the host may retry the
1043	 * hot-add operation after some delay.
1044	 */
1045	if (resp.page_count > 0)
1046		resp.result = 1;
1047	else if (!do_hot_add)
1048		resp.result = 1;
1049	else
1050		resp.result = 0;
1051
1052	if (!do_hot_add || resp.page_count == 0) {
1053		if (!allow_hibernation)
1054			pr_err("Memory hot add failed\n");
1055		else
1056			pr_info("Ignore hot-add request!\n");
1057	}
1058
1059	dm->state = DM_INITIALIZED;
1060	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1061	vmbus_sendpacket(dm->dev->channel, &resp,
1062			sizeof(struct dm_hot_add_response),
1063			(unsigned long)NULL,
1064			VM_PKT_DATA_INBAND, 0);
1065}
1066
1067static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1068{
1069	struct dm_info_header *info_hdr;
1070
1071	info_hdr = (struct dm_info_header *)msg->info;
1072
1073	switch (info_hdr->type) {
1074	case INFO_TYPE_MAX_PAGE_CNT:
1075		if (info_hdr->data_size == sizeof(__u64)) {
1076			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1077
1078			pr_info("Max. dynamic memory size: %llu MB\n",
1079				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1080		}
1081
1082		break;
1083	default:
1084		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1085	}
1086}
1087
1088static unsigned long compute_balloon_floor(void)
1089{
1090	unsigned long min_pages;
1091	unsigned long nr_pages = totalram_pages();
1092#define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1093	/* Simple continuous piecewiese linear function:
1094	 *  max MiB -> min MiB  gradient
1095	 *       0         0
1096	 *      16        16
1097	 *      32        24
1098	 *     128        72    (1/2)
1099	 *     512       168    (1/4)
1100	 *    2048       360    (1/8)
1101	 *    8192       744    (1/16)
1102	 *   32768      1512	(1/32)
1103	 */
1104	if (nr_pages < MB2PAGES(128))
1105		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1106	else if (nr_pages < MB2PAGES(512))
1107		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1108	else if (nr_pages < MB2PAGES(2048))
1109		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1110	else if (nr_pages < MB2PAGES(8192))
1111		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1112	else
1113		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1114#undef MB2PAGES
1115	return min_pages;
1116}
1117
1118/*
1119 * Post our status as it relates memory pressure to the
1120 * host. Host expects the guests to post this status
1121 * periodically at 1 second intervals.
1122 *
1123 * The metrics specified in this protocol are very Windows
1124 * specific and so we cook up numbers here to convey our memory
1125 * pressure.
1126 */
1127
1128static void post_status(struct hv_dynmem_device *dm)
1129{
1130	struct dm_status status;
 
1131	unsigned long now = jiffies;
1132	unsigned long last_post = last_post_time;
1133
1134	if (pressure_report_delay > 0) {
1135		--pressure_report_delay;
1136		return;
1137	}
1138
1139	if (!time_after(now, (last_post_time + HZ)))
1140		return;
1141
 
1142	memset(&status, 0, sizeof(struct dm_status));
1143	status.hdr.type = DM_STATUS_REPORT;
1144	status.hdr.size = sizeof(struct dm_status);
1145	status.hdr.trans_id = atomic_inc_return(&trans_id);
1146
1147	/*
1148	 * The host expects the guest to report free and committed memory.
1149	 * Furthermore, the host expects the pressure information to include
1150	 * the ballooned out pages. For a given amount of memory that we are
1151	 * managing we need to compute a floor below which we should not
1152	 * balloon. Compute this and add it to the pressure report.
1153	 * We also need to report all offline pages (num_pages_added -
1154	 * num_pages_onlined) as committed to the host, otherwise it can try
1155	 * asking us to balloon them out.
1156	 */
1157	status.num_avail = si_mem_available();
1158	status.num_committed = vm_memory_committed() +
1159		dm->num_pages_ballooned +
1160		(dm->num_pages_added > dm->num_pages_onlined ?
1161		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1162		compute_balloon_floor();
1163
1164	trace_balloon_status(status.num_avail, status.num_committed,
1165			     vm_memory_committed(), dm->num_pages_ballooned,
1166			     dm->num_pages_added, dm->num_pages_onlined);
1167	/*
1168	 * If our transaction ID is no longer current, just don't
1169	 * send the status. This can happen if we were interrupted
1170	 * after we picked our transaction ID.
1171	 */
1172	if (status.hdr.trans_id != atomic_read(&trans_id))
1173		return;
1174
1175	/*
1176	 * If the last post time that we sampled has changed,
1177	 * we have raced, don't post the status.
1178	 */
1179	if (last_post != last_post_time)
1180		return;
1181
1182	last_post_time = jiffies;
1183	vmbus_sendpacket(dm->dev->channel, &status,
1184				sizeof(struct dm_status),
1185				(unsigned long)NULL,
1186				VM_PKT_DATA_INBAND, 0);
1187
1188}
1189
1190static void free_balloon_pages(struct hv_dynmem_device *dm,
1191			 union dm_mem_page_range *range_array)
1192{
1193	int num_pages = range_array->finfo.page_cnt;
1194	__u64 start_frame = range_array->finfo.start_page;
1195	struct page *pg;
1196	int i;
1197
1198	for (i = 0; i < num_pages; i++) {
1199		pg = pfn_to_page(i + start_frame);
1200		__ClearPageOffline(pg);
1201		__free_page(pg);
1202		dm->num_pages_ballooned--;
1203		adjust_managed_page_count(pg, 1);
1204	}
1205}
1206
1207
1208
1209static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1210					unsigned int num_pages,
1211					struct dm_balloon_response *bl_resp,
1212					int alloc_unit)
1213{
1214	unsigned int i, j;
1215	struct page *pg;
1216
1217	for (i = 0; i < num_pages / alloc_unit; i++) {
 
 
 
1218		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1219			HV_HYP_PAGE_SIZE)
1220			return i * alloc_unit;
1221
1222		/*
1223		 * We execute this code in a thread context. Furthermore,
1224		 * we don't want the kernel to try too hard.
1225		 */
1226		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1227				__GFP_NOMEMALLOC | __GFP_NOWARN,
1228				get_order(alloc_unit << PAGE_SHIFT));
1229
1230		if (!pg)
1231			return i * alloc_unit;
1232
1233		dm->num_pages_ballooned += alloc_unit;
1234
1235		/*
1236		 * If we allocatted 2M pages; split them so we
1237		 * can free them in any order we get.
1238		 */
1239
1240		if (alloc_unit != 1)
1241			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1242
1243		/* mark all pages offline */
1244		for (j = 0; j < alloc_unit; j++) {
1245			__SetPageOffline(pg + j);
1246			adjust_managed_page_count(pg + j, -1);
1247		}
1248
1249		bl_resp->range_count++;
1250		bl_resp->range_array[i].finfo.start_page =
1251			page_to_pfn(pg);
1252		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1253		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1254
1255	}
1256
1257	return i * alloc_unit;
1258}
1259
 
 
1260static void balloon_up(struct work_struct *dummy)
1261{
1262	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1263	unsigned int num_ballooned = 0;
1264	struct dm_balloon_response *bl_resp;
1265	int alloc_unit;
1266	int ret;
1267	bool done = false;
1268	int i;
1269	long avail_pages;
1270	unsigned long floor;
1271
 
 
 
1272	/*
1273	 * We will attempt 2M allocations. However, if we fail to
1274	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1275	 */
1276	alloc_unit = PAGES_IN_2M;
1277
1278	avail_pages = si_mem_available();
1279	floor = compute_balloon_floor();
1280
1281	/* Refuse to balloon below the floor. */
1282	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1283		pr_info("Balloon request will be partially fulfilled. %s\n",
1284			avail_pages < num_pages ? "Not enough memory." :
1285			"Balloon floor reached.");
1286
1287		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1288	}
1289
1290	while (!done) {
1291		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1292		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1293		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1294		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1295		bl_resp->more_pages = 1;
1296
 
1297		num_pages -= num_ballooned;
1298		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1299						    bl_resp, alloc_unit);
1300
1301		if (alloc_unit != 1 && num_ballooned == 0) {
1302			alloc_unit = 1;
1303			continue;
1304		}
1305
1306		if (num_ballooned == 0 || num_ballooned == num_pages) {
1307			pr_debug("Ballooned %u out of %u requested pages.\n",
1308				num_pages, dm_device.balloon_wrk.num_pages);
1309
1310			bl_resp->more_pages = 0;
1311			done = true;
1312			dm_device.state = DM_INITIALIZED;
1313		}
1314
1315		/*
1316		 * We are pushing a lot of data through the channel;
1317		 * deal with transient failures caused because of the
1318		 * lack of space in the ring buffer.
1319		 */
1320
1321		do {
1322			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1323			ret = vmbus_sendpacket(dm_device.dev->channel,
1324						bl_resp,
1325						bl_resp->hdr.size,
1326						(unsigned long)NULL,
1327						VM_PKT_DATA_INBAND, 0);
1328
1329			if (ret == -EAGAIN)
1330				msleep(20);
1331			post_status(&dm_device);
1332		} while (ret == -EAGAIN);
1333
1334		if (ret) {
1335			/*
1336			 * Free up the memory we allocatted.
1337			 */
1338			pr_err("Balloon response failed\n");
1339
1340			for (i = 0; i < bl_resp->range_count; i++)
1341				free_balloon_pages(&dm_device,
1342						 &bl_resp->range_array[i]);
1343
1344			done = true;
1345		}
1346	}
1347
1348}
1349
1350static void balloon_down(struct hv_dynmem_device *dm,
1351			struct dm_unballoon_request *req)
1352{
1353	union dm_mem_page_range *range_array = req->range_array;
1354	int range_count = req->range_count;
1355	struct dm_unballoon_response resp;
1356	int i;
1357	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1358
1359	for (i = 0; i < range_count; i++) {
1360		free_balloon_pages(dm, &range_array[i]);
1361		complete(&dm_device.config_event);
1362	}
1363
1364	pr_debug("Freed %u ballooned pages.\n",
1365		prev_pages_ballooned - dm->num_pages_ballooned);
1366
1367	if (req->more_pages == 1)
1368		return;
1369
1370	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1371	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1372	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1373	resp.hdr.size = sizeof(struct dm_unballoon_response);
1374
1375	vmbus_sendpacket(dm_device.dev->channel, &resp,
1376				sizeof(struct dm_unballoon_response),
1377				(unsigned long)NULL,
1378				VM_PKT_DATA_INBAND, 0);
1379
1380	dm->state = DM_INITIALIZED;
1381}
1382
1383static void balloon_onchannelcallback(void *context);
1384
1385static int dm_thread_func(void *dm_dev)
1386{
1387	struct hv_dynmem_device *dm = dm_dev;
1388
1389	while (!kthread_should_stop()) {
1390		wait_for_completion_interruptible_timeout(
1391						&dm_device.config_event, 1*HZ);
1392		/*
1393		 * The host expects us to post information on the memory
1394		 * pressure every second.
1395		 */
1396		reinit_completion(&dm_device.config_event);
1397		post_status(dm);
1398	}
1399
1400	return 0;
1401}
1402
1403
1404static void version_resp(struct hv_dynmem_device *dm,
1405			struct dm_version_response *vresp)
1406{
1407	struct dm_version_request version_req;
1408	int ret;
1409
1410	if (vresp->is_accepted) {
1411		/*
1412		 * We are done; wakeup the
1413		 * context waiting for version
1414		 * negotiation.
1415		 */
1416		complete(&dm->host_event);
1417		return;
1418	}
1419	/*
1420	 * If there are more versions to try, continue
1421	 * with negotiations; if not
1422	 * shutdown the service since we are not able
1423	 * to negotiate a suitable version number
1424	 * with the host.
1425	 */
1426	if (dm->next_version == 0)
1427		goto version_error;
1428
1429	memset(&version_req, 0, sizeof(struct dm_version_request));
1430	version_req.hdr.type = DM_VERSION_REQUEST;
1431	version_req.hdr.size = sizeof(struct dm_version_request);
1432	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1433	version_req.version.version = dm->next_version;
1434	dm->version = version_req.version.version;
1435
1436	/*
1437	 * Set the next version to try in case current version fails.
1438	 * Win7 protocol ought to be the last one to try.
1439	 */
1440	switch (version_req.version.version) {
1441	case DYNMEM_PROTOCOL_VERSION_WIN8:
1442		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1443		version_req.is_last_attempt = 0;
1444		break;
1445	default:
1446		dm->next_version = 0;
1447		version_req.is_last_attempt = 1;
1448	}
1449
1450	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1451				sizeof(struct dm_version_request),
1452				(unsigned long)NULL,
1453				VM_PKT_DATA_INBAND, 0);
1454
1455	if (ret)
1456		goto version_error;
1457
1458	return;
1459
1460version_error:
1461	dm->state = DM_INIT_ERROR;
1462	complete(&dm->host_event);
1463}
1464
1465static void cap_resp(struct hv_dynmem_device *dm,
1466			struct dm_capabilities_resp_msg *cap_resp)
1467{
1468	if (!cap_resp->is_accepted) {
1469		pr_err("Capabilities not accepted by host\n");
1470		dm->state = DM_INIT_ERROR;
1471	}
1472	complete(&dm->host_event);
1473}
1474
1475static void balloon_onchannelcallback(void *context)
1476{
1477	struct hv_device *dev = context;
1478	u32 recvlen;
1479	u64 requestid;
1480	struct dm_message *dm_msg;
1481	struct dm_header *dm_hdr;
1482	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1483	struct dm_balloon *bal_msg;
1484	struct dm_hot_add *ha_msg;
1485	union dm_mem_page_range *ha_pg_range;
1486	union dm_mem_page_range *ha_region;
1487
1488	memset(recv_buffer, 0, sizeof(recv_buffer));
1489	vmbus_recvpacket(dev->channel, recv_buffer,
1490			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1491
1492	if (recvlen > 0) {
1493		dm_msg = (struct dm_message *)recv_buffer;
1494		dm_hdr = &dm_msg->hdr;
1495
1496		switch (dm_hdr->type) {
1497		case DM_VERSION_RESPONSE:
1498			version_resp(dm,
1499				 (struct dm_version_response *)dm_msg);
1500			break;
1501
1502		case DM_CAPABILITIES_RESPONSE:
1503			cap_resp(dm,
1504				 (struct dm_capabilities_resp_msg *)dm_msg);
1505			break;
1506
1507		case DM_BALLOON_REQUEST:
1508			if (allow_hibernation) {
1509				pr_info("Ignore balloon-up request!\n");
1510				break;
1511			}
1512
1513			if (dm->state == DM_BALLOON_UP)
1514				pr_warn("Currently ballooning\n");
1515			bal_msg = (struct dm_balloon *)recv_buffer;
1516			dm->state = DM_BALLOON_UP;
1517			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1518			schedule_work(&dm_device.balloon_wrk.wrk);
1519			break;
1520
1521		case DM_UNBALLOON_REQUEST:
1522			if (allow_hibernation) {
1523				pr_info("Ignore balloon-down request!\n");
1524				break;
1525			}
1526
1527			dm->state = DM_BALLOON_DOWN;
1528			balloon_down(dm,
1529				 (struct dm_unballoon_request *)recv_buffer);
1530			break;
1531
1532		case DM_MEM_HOT_ADD_REQUEST:
1533			if (dm->state == DM_HOT_ADD)
1534				pr_warn("Currently hot-adding\n");
1535			dm->state = DM_HOT_ADD;
1536			ha_msg = (struct dm_hot_add *)recv_buffer;
1537			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1538				/*
1539				 * This is a normal hot-add request specifying
1540				 * hot-add memory.
1541				 */
1542				dm->host_specified_ha_region = false;
1543				ha_pg_range = &ha_msg->range;
1544				dm->ha_wrk.ha_page_range = *ha_pg_range;
1545				dm->ha_wrk.ha_region_range.page_range = 0;
1546			} else {
1547				/*
1548				 * Host is specifying that we first hot-add
1549				 * a region and then partially populate this
1550				 * region.
1551				 */
1552				dm->host_specified_ha_region = true;
1553				ha_pg_range = &ha_msg->range;
1554				ha_region = &ha_pg_range[1];
1555				dm->ha_wrk.ha_page_range = *ha_pg_range;
1556				dm->ha_wrk.ha_region_range = *ha_region;
1557			}
1558			schedule_work(&dm_device.ha_wrk.wrk);
1559			break;
1560
1561		case DM_INFO_MESSAGE:
1562			process_info(dm, (struct dm_info_msg *)dm_msg);
1563			break;
1564
1565		default:
1566			pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1567
1568		}
1569	}
1570
1571}
1572
1573/* Hyper-V only supports reporting 2MB pages or higher */
1574#define HV_MIN_PAGE_REPORTING_ORDER	9
1575#define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1576static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1577		    struct scatterlist *sgl, unsigned int nents)
1578{
1579	unsigned long flags;
1580	struct hv_memory_hint *hint;
1581	int i;
1582	u64 status;
1583	struct scatterlist *sg;
1584
1585	WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1586	WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1587	local_irq_save(flags);
1588	hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1589	if (!hint) {
1590		local_irq_restore(flags);
1591		return -ENOSPC;
1592	}
1593
1594	hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1595	hint->reserved = 0;
1596	for_each_sg(sgl, sg, nents, i) {
1597		union hv_gpa_page_range *range;
1598
1599		range = &hint->ranges[i];
1600		range->address_space = 0;
1601		/* page reporting only reports 2MB pages or higher */
1602		range->page.largepage = 1;
1603		range->page.additional_pages =
1604			(sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1605		range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1606		range->base_large_pfn =
1607			page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1608	}
1609
1610	status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1611				     hint, NULL);
1612	local_irq_restore(flags);
1613	if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1614		pr_err("Cold memory discard hypercall failed with status %llx\n",
1615			status);
1616		return -EINVAL;
1617	}
1618
1619	return 0;
1620}
 
1621
1622static void enable_page_reporting(void)
1623{
1624	int ret;
1625
1626	/* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1627	if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1628		pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1629		return;
1630	}
1631
1632	if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1633		pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1634		return;
1635	}
1636
1637	BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1638	dm_device.pr_dev_info.report = hv_free_page_report;
1639	ret = page_reporting_register(&dm_device.pr_dev_info);
1640	if (ret < 0) {
1641		dm_device.pr_dev_info.report = NULL;
1642		pr_err("Failed to enable cold memory discard: %d\n", ret);
1643	} else {
1644		pr_info("Cold memory discard hint enabled\n");
1645	}
1646}
1647
1648static void disable_page_reporting(void)
1649{
1650	if (dm_device.pr_dev_info.report) {
1651		page_reporting_unregister(&dm_device.pr_dev_info);
1652		dm_device.pr_dev_info.report = NULL;
1653	}
1654}
1655
1656static int balloon_connect_vsp(struct hv_device *dev)
1657{
1658	struct dm_version_request version_req;
1659	struct dm_capabilities cap_msg;
1660	unsigned long t;
1661	int ret;
1662
1663	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1664			 balloon_onchannelcallback, dev);
1665	if (ret)
1666		return ret;
1667
 
1668	/*
1669	 * Initiate the hand shake with the host and negotiate
1670	 * a version that the host can support. We start with the
1671	 * highest version number and go down if the host cannot
1672	 * support it.
1673	 */
1674	memset(&version_req, 0, sizeof(struct dm_version_request));
1675	version_req.hdr.type = DM_VERSION_REQUEST;
1676	version_req.hdr.size = sizeof(struct dm_version_request);
1677	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1678	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1679	version_req.is_last_attempt = 0;
1680	dm_device.version = version_req.version.version;
1681
1682	ret = vmbus_sendpacket(dev->channel, &version_req,
1683			       sizeof(struct dm_version_request),
1684			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
 
1685	if (ret)
1686		goto out;
1687
1688	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1689	if (t == 0) {
1690		ret = -ETIMEDOUT;
1691		goto out;
1692	}
1693
1694	/*
1695	 * If we could not negotiate a compatible version with the host
1696	 * fail the probe function.
1697	 */
1698	if (dm_device.state == DM_INIT_ERROR) {
1699		ret = -EPROTO;
1700		goto out;
1701	}
1702
1703	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1704		DYNMEM_MAJOR_VERSION(dm_device.version),
1705		DYNMEM_MINOR_VERSION(dm_device.version));
1706
1707	/*
1708	 * Now submit our capabilities to the host.
1709	 */
1710	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1711	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1712	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1713	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1714
1715	/*
1716	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1717	 * currently still requires the bits to be set, so we have to add code
1718	 * to fail the host's hot-add and balloon up/down requests, if any.
1719	 */
1720	cap_msg.caps.cap_bits.balloon = 1;
1721	cap_msg.caps.cap_bits.hot_add = 1;
1722
1723	/*
1724	 * Specify our alignment requirements as it relates
1725	 * memory hot-add. Specify 128MB alignment.
1726	 */
1727	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1728
1729	/*
1730	 * Currently the host does not use these
1731	 * values and we set them to what is done in the
1732	 * Windows driver.
1733	 */
1734	cap_msg.min_page_cnt = 0;
1735	cap_msg.max_page_number = -1;
1736
1737	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1738			       sizeof(struct dm_capabilities),
1739			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
 
1740	if (ret)
1741		goto out;
1742
1743	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1744	if (t == 0) {
1745		ret = -ETIMEDOUT;
1746		goto out;
1747	}
1748
1749	/*
1750	 * If the host does not like our capabilities,
1751	 * fail the probe function.
1752	 */
1753	if (dm_device.state == DM_INIT_ERROR) {
1754		ret = -EPROTO;
1755		goto out;
1756	}
1757
1758	return 0;
1759out:
1760	vmbus_close(dev->channel);
1761	return ret;
1762}
1763
1764static int balloon_probe(struct hv_device *dev,
1765			 const struct hv_vmbus_device_id *dev_id)
1766{
1767	int ret;
1768
1769	allow_hibernation = hv_is_hibernation_supported();
1770	if (allow_hibernation)
1771		hot_add = false;
1772
1773#ifdef CONFIG_MEMORY_HOTPLUG
1774	do_hot_add = hot_add;
1775#else
1776	do_hot_add = false;
1777#endif
1778	dm_device.dev = dev;
1779	dm_device.state = DM_INITIALIZING;
1780	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1781	init_completion(&dm_device.host_event);
1782	init_completion(&dm_device.config_event);
1783	INIT_LIST_HEAD(&dm_device.ha_region_list);
1784	spin_lock_init(&dm_device.ha_lock);
1785	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1786	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1787	dm_device.host_specified_ha_region = false;
1788
1789#ifdef CONFIG_MEMORY_HOTPLUG
1790	set_online_page_callback(&hv_online_page);
1791	init_completion(&dm_device.ol_waitevent);
1792	register_memory_notifier(&hv_memory_nb);
1793#endif
1794
1795	hv_set_drvdata(dev, &dm_device);
1796
1797	ret = balloon_connect_vsp(dev);
1798	if (ret != 0)
1799		return ret;
1800
1801	enable_page_reporting();
1802	dm_device.state = DM_INITIALIZED;
1803
1804	dm_device.thread =
1805		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1806	if (IS_ERR(dm_device.thread)) {
1807		ret = PTR_ERR(dm_device.thread);
1808		goto probe_error;
1809	}
1810
1811	return 0;
1812
1813probe_error:
1814	dm_device.state = DM_INIT_ERROR;
1815	dm_device.thread  = NULL;
1816	disable_page_reporting();
1817	vmbus_close(dev->channel);
1818#ifdef CONFIG_MEMORY_HOTPLUG
1819	unregister_memory_notifier(&hv_memory_nb);
1820	restore_online_page_callback(&hv_online_page);
1821#endif
 
 
 
 
 
 
1822	return ret;
1823}
1824
1825static int balloon_remove(struct hv_device *dev)
1826{
1827	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1828	struct hv_hotadd_state *has, *tmp;
1829	struct hv_hotadd_gap *gap, *tmp_gap;
1830	unsigned long flags;
1831
1832	if (dm->num_pages_ballooned != 0)
1833		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1834
1835	cancel_work_sync(&dm->balloon_wrk.wrk);
1836	cancel_work_sync(&dm->ha_wrk.wrk);
1837
 
1838	kthread_stop(dm->thread);
1839	disable_page_reporting();
1840	vmbus_close(dev->channel);
1841#ifdef CONFIG_MEMORY_HOTPLUG
 
1842	unregister_memory_notifier(&hv_memory_nb);
1843	restore_online_page_callback(&hv_online_page);
1844#endif
1845	spin_lock_irqsave(&dm_device.ha_lock, flags);
1846	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1847		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1848			list_del(&gap->list);
1849			kfree(gap);
1850		}
1851		list_del(&has->list);
1852		kfree(has);
1853	}
1854	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1855
1856	return 0;
1857}
1858
1859static int balloon_suspend(struct hv_device *hv_dev)
1860{
1861	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
1862
1863	tasklet_disable(&hv_dev->channel->callback_event);
1864
1865	cancel_work_sync(&dm->balloon_wrk.wrk);
1866	cancel_work_sync(&dm->ha_wrk.wrk);
1867
1868	if (dm->thread) {
1869		kthread_stop(dm->thread);
1870		dm->thread = NULL;
1871		vmbus_close(hv_dev->channel);
1872	}
1873
1874	tasklet_enable(&hv_dev->channel->callback_event);
1875
1876	return 0;
1877
1878}
1879
1880static int balloon_resume(struct hv_device *dev)
1881{
1882	int ret;
1883
1884	dm_device.state = DM_INITIALIZING;
1885
1886	ret = balloon_connect_vsp(dev);
1887
1888	if (ret != 0)
1889		goto out;
1890
1891	dm_device.thread =
1892		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1893	if (IS_ERR(dm_device.thread)) {
1894		ret = PTR_ERR(dm_device.thread);
1895		dm_device.thread = NULL;
1896		goto close_channel;
1897	}
1898
1899	dm_device.state = DM_INITIALIZED;
1900	return 0;
1901close_channel:
1902	vmbus_close(dev->channel);
1903out:
1904	dm_device.state = DM_INIT_ERROR;
1905#ifdef CONFIG_MEMORY_HOTPLUG
1906	unregister_memory_notifier(&hv_memory_nb);
1907	restore_online_page_callback(&hv_online_page);
1908#endif
1909	return ret;
1910}
1911
1912static const struct hv_vmbus_device_id id_table[] = {
1913	/* Dynamic Memory Class ID */
1914	/* 525074DC-8985-46e2-8057-A307DC18A502 */
1915	{ HV_DM_GUID, },
1916	{ },
1917};
1918
1919MODULE_DEVICE_TABLE(vmbus, id_table);
1920
1921static  struct hv_driver balloon_drv = {
1922	.name = "hv_balloon",
1923	.id_table = id_table,
1924	.probe =  balloon_probe,
1925	.remove =  balloon_remove,
1926	.suspend = balloon_suspend,
1927	.resume = balloon_resume,
1928	.driver = {
1929		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1930	},
1931};
1932
1933static int __init init_balloon_drv(void)
1934{
1935
1936	return vmbus_driver_register(&balloon_drv);
1937}
1938
1939module_init(init_balloon_drv);
1940
1941MODULE_DESCRIPTION("Hyper-V Balloon");
1942MODULE_LICENSE("GPL");