Loading...
1/*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9/**
10 * DOC: VC4 plane module
11 *
12 * Each DRM plane is a layer of pixels being scanned out by the HVS.
13 *
14 * At atomic modeset check time, we compute the HVS display element
15 * state that would be necessary for displaying the plane (giving us a
16 * chance to figure out if a plane configuration is invalid), then at
17 * atomic flush time the CRTC will ask us to write our element state
18 * into the region of the HVS that it has allocated for us.
19 */
20
21#include "vc4_drv.h"
22#include "vc4_regs.h"
23#include "drm_atomic_helper.h"
24#include "drm_fb_cma_helper.h"
25#include "drm_plane_helper.h"
26
27enum vc4_scaling_mode {
28 VC4_SCALING_NONE,
29 VC4_SCALING_TPZ,
30 VC4_SCALING_PPF,
31};
32
33struct vc4_plane_state {
34 struct drm_plane_state base;
35 /* System memory copy of the display list for this element, computed
36 * at atomic_check time.
37 */
38 u32 *dlist;
39 u32 dlist_size; /* Number of dwords allocated for the display list */
40 u32 dlist_count; /* Number of used dwords in the display list. */
41
42 /* Offset in the dlist to various words, for pageflip or
43 * cursor updates.
44 */
45 u32 pos0_offset;
46 u32 pos2_offset;
47 u32 ptr0_offset;
48
49 /* Offset where the plane's dlist was last stored in the
50 * hardware at vc4_crtc_atomic_flush() time.
51 */
52 u32 __iomem *hw_dlist;
53
54 /* Clipped coordinates of the plane on the display. */
55 int crtc_x, crtc_y, crtc_w, crtc_h;
56 /* Clipped area being scanned from in the FB. */
57 u32 src_x, src_y;
58
59 u32 src_w[2], src_h[2];
60
61 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
62 enum vc4_scaling_mode x_scaling[2], y_scaling[2];
63 bool is_unity;
64 bool is_yuv;
65
66 /* Offset to start scanning out from the start of the plane's
67 * BO.
68 */
69 u32 offsets[3];
70
71 /* Our allocation in LBM for temporary storage during scaling. */
72 struct drm_mm_node lbm;
73};
74
75static inline struct vc4_plane_state *
76to_vc4_plane_state(struct drm_plane_state *state)
77{
78 return (struct vc4_plane_state *)state;
79}
80
81static const struct hvs_format {
82 u32 drm; /* DRM_FORMAT_* */
83 u32 hvs; /* HVS_FORMAT_* */
84 u32 pixel_order;
85 bool has_alpha;
86 bool flip_cbcr;
87} hvs_formats[] = {
88 {
89 .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
90 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false,
91 },
92 {
93 .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
94 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true,
95 },
96 {
97 .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
98 .pixel_order = HVS_PIXEL_ORDER_XRGB, .has_alpha = false,
99 },
100 {
101 .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
102 .pixel_order = HVS_PIXEL_ORDER_XBGR, .has_alpha = false,
103 },
104 {
105 .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
106 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true,
107 },
108 {
109 .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
110 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false,
111 },
112 {
113 .drm = DRM_FORMAT_YUV422,
114 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
115 },
116 {
117 .drm = DRM_FORMAT_YVU422,
118 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
119 .flip_cbcr = true,
120 },
121 {
122 .drm = DRM_FORMAT_YUV420,
123 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
124 },
125 {
126 .drm = DRM_FORMAT_YVU420,
127 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
128 .flip_cbcr = true,
129 },
130 {
131 .drm = DRM_FORMAT_NV12,
132 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
133 },
134 {
135 .drm = DRM_FORMAT_NV16,
136 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
137 },
138};
139
140static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
141{
142 unsigned i;
143
144 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
145 if (hvs_formats[i].drm == drm_format)
146 return &hvs_formats[i];
147 }
148
149 return NULL;
150}
151
152static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
153{
154 if (dst > src)
155 return VC4_SCALING_PPF;
156 else if (dst < src)
157 return VC4_SCALING_TPZ;
158 else
159 return VC4_SCALING_NONE;
160}
161
162static bool plane_enabled(struct drm_plane_state *state)
163{
164 return state->fb && state->crtc;
165}
166
167static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
168{
169 struct vc4_plane_state *vc4_state;
170
171 if (WARN_ON(!plane->state))
172 return NULL;
173
174 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
175 if (!vc4_state)
176 return NULL;
177
178 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
179
180 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
181
182 if (vc4_state->dlist) {
183 vc4_state->dlist = kmemdup(vc4_state->dlist,
184 vc4_state->dlist_count * 4,
185 GFP_KERNEL);
186 if (!vc4_state->dlist) {
187 kfree(vc4_state);
188 return NULL;
189 }
190 vc4_state->dlist_size = vc4_state->dlist_count;
191 }
192
193 return &vc4_state->base;
194}
195
196static void vc4_plane_destroy_state(struct drm_plane *plane,
197 struct drm_plane_state *state)
198{
199 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
200 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
201
202 if (vc4_state->lbm.allocated) {
203 unsigned long irqflags;
204
205 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
206 drm_mm_remove_node(&vc4_state->lbm);
207 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
208 }
209
210 kfree(vc4_state->dlist);
211 __drm_atomic_helper_plane_destroy_state(plane, &vc4_state->base);
212 kfree(state);
213}
214
215/* Called during init to allocate the plane's atomic state. */
216static void vc4_plane_reset(struct drm_plane *plane)
217{
218 struct vc4_plane_state *vc4_state;
219
220 WARN_ON(plane->state);
221
222 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
223 if (!vc4_state)
224 return;
225
226 plane->state = &vc4_state->base;
227 vc4_state->base.plane = plane;
228}
229
230static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
231{
232 if (vc4_state->dlist_count == vc4_state->dlist_size) {
233 u32 new_size = max(4u, vc4_state->dlist_count * 2);
234 u32 *new_dlist = kmalloc(new_size * 4, GFP_KERNEL);
235
236 if (!new_dlist)
237 return;
238 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
239
240 kfree(vc4_state->dlist);
241 vc4_state->dlist = new_dlist;
242 vc4_state->dlist_size = new_size;
243 }
244
245 vc4_state->dlist[vc4_state->dlist_count++] = val;
246}
247
248/* Returns the scl0/scl1 field based on whether the dimensions need to
249 * be up/down/non-scaled.
250 *
251 * This is a replication of a table from the spec.
252 */
253static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
254{
255 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
256
257 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
258 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
259 return SCALER_CTL0_SCL_H_PPF_V_PPF;
260 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
261 return SCALER_CTL0_SCL_H_TPZ_V_PPF;
262 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
263 return SCALER_CTL0_SCL_H_PPF_V_TPZ;
264 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
265 return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
266 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
267 return SCALER_CTL0_SCL_H_PPF_V_NONE;
268 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
269 return SCALER_CTL0_SCL_H_NONE_V_PPF;
270 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
271 return SCALER_CTL0_SCL_H_NONE_V_TPZ;
272 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
273 return SCALER_CTL0_SCL_H_TPZ_V_NONE;
274 default:
275 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
276 /* The unity case is independently handled by
277 * SCALER_CTL0_UNITY.
278 */
279 return 0;
280 }
281}
282
283static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
284{
285 struct drm_plane *plane = state->plane;
286 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
287 struct drm_framebuffer *fb = state->fb;
288 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
289 u32 subpixel_src_mask = (1 << 16) - 1;
290 u32 format = fb->pixel_format;
291 int num_planes = drm_format_num_planes(format);
292 u32 h_subsample = 1;
293 u32 v_subsample = 1;
294 int i;
295
296 for (i = 0; i < num_planes; i++)
297 vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
298
299 /* We don't support subpixel source positioning for scaling. */
300 if ((state->src_x & subpixel_src_mask) ||
301 (state->src_y & subpixel_src_mask) ||
302 (state->src_w & subpixel_src_mask) ||
303 (state->src_h & subpixel_src_mask)) {
304 return -EINVAL;
305 }
306
307 vc4_state->src_x = state->src_x >> 16;
308 vc4_state->src_y = state->src_y >> 16;
309 vc4_state->src_w[0] = state->src_w >> 16;
310 vc4_state->src_h[0] = state->src_h >> 16;
311
312 vc4_state->crtc_x = state->crtc_x;
313 vc4_state->crtc_y = state->crtc_y;
314 vc4_state->crtc_w = state->crtc_w;
315 vc4_state->crtc_h = state->crtc_h;
316
317 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
318 vc4_state->crtc_w);
319 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
320 vc4_state->crtc_h);
321
322 if (num_planes > 1) {
323 vc4_state->is_yuv = true;
324
325 h_subsample = drm_format_horz_chroma_subsampling(format);
326 v_subsample = drm_format_vert_chroma_subsampling(format);
327 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
328 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
329
330 vc4_state->x_scaling[1] =
331 vc4_get_scaling_mode(vc4_state->src_w[1],
332 vc4_state->crtc_w);
333 vc4_state->y_scaling[1] =
334 vc4_get_scaling_mode(vc4_state->src_h[1],
335 vc4_state->crtc_h);
336
337 /* YUV conversion requires that scaling be enabled,
338 * even on a plane that's otherwise 1:1. Choose TPZ
339 * for simplicity.
340 */
341 if (vc4_state->x_scaling[0] == VC4_SCALING_NONE)
342 vc4_state->x_scaling[0] = VC4_SCALING_TPZ;
343 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE)
344 vc4_state->y_scaling[0] = VC4_SCALING_TPZ;
345 }
346
347 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
348 vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
349 vc4_state->x_scaling[1] == VC4_SCALING_NONE &&
350 vc4_state->y_scaling[1] == VC4_SCALING_NONE);
351
352 /* No configuring scaling on the cursor plane, since it gets
353 non-vblank-synced updates, and scaling requires requires
354 LBM changes which have to be vblank-synced.
355 */
356 if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity)
357 return -EINVAL;
358
359 /* Clamp the on-screen start x/y to 0. The hardware doesn't
360 * support negative y, and negative x wastes bandwidth.
361 */
362 if (vc4_state->crtc_x < 0) {
363 for (i = 0; i < num_planes; i++) {
364 u32 cpp = drm_format_plane_cpp(fb->pixel_format, i);
365 u32 subs = ((i == 0) ? 1 : h_subsample);
366
367 vc4_state->offsets[i] += (cpp *
368 (-vc4_state->crtc_x) / subs);
369 }
370 vc4_state->src_w[0] += vc4_state->crtc_x;
371 vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample;
372 vc4_state->crtc_x = 0;
373 }
374
375 if (vc4_state->crtc_y < 0) {
376 for (i = 0; i < num_planes; i++) {
377 u32 subs = ((i == 0) ? 1 : v_subsample);
378
379 vc4_state->offsets[i] += (fb->pitches[i] *
380 (-vc4_state->crtc_y) / subs);
381 }
382 vc4_state->src_h[0] += vc4_state->crtc_y;
383 vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample;
384 vc4_state->crtc_y = 0;
385 }
386
387 return 0;
388}
389
390static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
391{
392 u32 scale, recip;
393
394 scale = (1 << 16) * src / dst;
395
396 /* The specs note that while the reciprocal would be defined
397 * as (1<<32)/scale, ~0 is close enough.
398 */
399 recip = ~0 / scale;
400
401 vc4_dlist_write(vc4_state,
402 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
403 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
404 vc4_dlist_write(vc4_state,
405 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
406}
407
408static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
409{
410 u32 scale = (1 << 16) * src / dst;
411
412 vc4_dlist_write(vc4_state,
413 SCALER_PPF_AGC |
414 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
415 VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
416}
417
418static u32 vc4_lbm_size(struct drm_plane_state *state)
419{
420 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
421 /* This is the worst case number. One of the two sizes will
422 * be used depending on the scaling configuration.
423 */
424 u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
425 u32 lbm;
426
427 if (!vc4_state->is_yuv) {
428 if (vc4_state->is_unity)
429 return 0;
430 else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
431 lbm = pix_per_line * 8;
432 else {
433 /* In special cases, this multiplier might be 12. */
434 lbm = pix_per_line * 16;
435 }
436 } else {
437 /* There are cases for this going down to a multiplier
438 * of 2, but according to the firmware source, the
439 * table in the docs is somewhat wrong.
440 */
441 lbm = pix_per_line * 16;
442 }
443
444 lbm = roundup(lbm, 32);
445
446 return lbm;
447}
448
449static void vc4_write_scaling_parameters(struct drm_plane_state *state,
450 int channel)
451{
452 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
453
454 /* Ch0 H-PPF Word 0: Scaling Parameters */
455 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
456 vc4_write_ppf(vc4_state,
457 vc4_state->src_w[channel], vc4_state->crtc_w);
458 }
459
460 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
461 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
462 vc4_write_ppf(vc4_state,
463 vc4_state->src_h[channel], vc4_state->crtc_h);
464 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
465 }
466
467 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
468 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
469 vc4_write_tpz(vc4_state,
470 vc4_state->src_w[channel], vc4_state->crtc_w);
471 }
472
473 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
474 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
475 vc4_write_tpz(vc4_state,
476 vc4_state->src_h[channel], vc4_state->crtc_h);
477 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
478 }
479}
480
481/* Writes out a full display list for an active plane to the plane's
482 * private dlist state.
483 */
484static int vc4_plane_mode_set(struct drm_plane *plane,
485 struct drm_plane_state *state)
486{
487 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
488 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
489 struct drm_framebuffer *fb = state->fb;
490 u32 ctl0_offset = vc4_state->dlist_count;
491 const struct hvs_format *format = vc4_get_hvs_format(fb->pixel_format);
492 int num_planes = drm_format_num_planes(format->drm);
493 u32 scl0, scl1;
494 u32 lbm_size;
495 unsigned long irqflags;
496 int ret, i;
497
498 ret = vc4_plane_setup_clipping_and_scaling(state);
499 if (ret)
500 return ret;
501
502 /* Allocate the LBM memory that the HVS will use for temporary
503 * storage due to our scaling/format conversion.
504 */
505 lbm_size = vc4_lbm_size(state);
506 if (lbm_size) {
507 if (!vc4_state->lbm.allocated) {
508 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
509 ret = drm_mm_insert_node(&vc4->hvs->lbm_mm,
510 &vc4_state->lbm,
511 lbm_size, 32, 0);
512 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
513 } else {
514 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
515 }
516 }
517
518 if (ret)
519 return ret;
520
521 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
522 * and 4:4:4, scl1 should be set to scl0 so both channels of
523 * the scaler do the same thing. For YUV, the Y plane needs
524 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
525 * the scl fields here.
526 */
527 if (num_planes == 1) {
528 scl0 = vc4_get_scl_field(state, 1);
529 scl1 = scl0;
530 } else {
531 scl0 = vc4_get_scl_field(state, 1);
532 scl1 = vc4_get_scl_field(state, 0);
533 }
534
535 /* Control word */
536 vc4_dlist_write(vc4_state,
537 SCALER_CTL0_VALID |
538 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
539 (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
540 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
541 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
542 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
543
544 /* Position Word 0: Image Positions and Alpha Value */
545 vc4_state->pos0_offset = vc4_state->dlist_count;
546 vc4_dlist_write(vc4_state,
547 VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) |
548 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
549 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
550
551 /* Position Word 1: Scaled Image Dimensions. */
552 if (!vc4_state->is_unity) {
553 vc4_dlist_write(vc4_state,
554 VC4_SET_FIELD(vc4_state->crtc_w,
555 SCALER_POS1_SCL_WIDTH) |
556 VC4_SET_FIELD(vc4_state->crtc_h,
557 SCALER_POS1_SCL_HEIGHT));
558 }
559
560 /* Position Word 2: Source Image Size, Alpha Mode */
561 vc4_state->pos2_offset = vc4_state->dlist_count;
562 vc4_dlist_write(vc4_state,
563 VC4_SET_FIELD(format->has_alpha ?
564 SCALER_POS2_ALPHA_MODE_PIPELINE :
565 SCALER_POS2_ALPHA_MODE_FIXED,
566 SCALER_POS2_ALPHA_MODE) |
567 VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
568 VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
569
570 /* Position Word 3: Context. Written by the HVS. */
571 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
572
573
574 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
575 *
576 * The pointers may be any byte address.
577 */
578 vc4_state->ptr0_offset = vc4_state->dlist_count;
579 if (!format->flip_cbcr) {
580 for (i = 0; i < num_planes; i++)
581 vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
582 } else {
583 WARN_ON_ONCE(num_planes != 3);
584 vc4_dlist_write(vc4_state, vc4_state->offsets[0]);
585 vc4_dlist_write(vc4_state, vc4_state->offsets[2]);
586 vc4_dlist_write(vc4_state, vc4_state->offsets[1]);
587 }
588
589 /* Pointer Context Word 0/1/2: Written by the HVS */
590 for (i = 0; i < num_planes; i++)
591 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
592
593 /* Pitch word 0/1/2 */
594 for (i = 0; i < num_planes; i++) {
595 vc4_dlist_write(vc4_state,
596 VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH));
597 }
598
599 /* Colorspace conversion words */
600 if (vc4_state->is_yuv) {
601 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
602 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
603 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
604 }
605
606 if (!vc4_state->is_unity) {
607 /* LBM Base Address. */
608 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
609 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
610 vc4_dlist_write(vc4_state, vc4_state->lbm.start);
611 }
612
613 if (num_planes > 1) {
614 /* Emit Cb/Cr as channel 0 and Y as channel
615 * 1. This matches how we set up scl0/scl1
616 * above.
617 */
618 vc4_write_scaling_parameters(state, 1);
619 }
620 vc4_write_scaling_parameters(state, 0);
621
622 /* If any PPF setup was done, then all the kernel
623 * pointers get uploaded.
624 */
625 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
626 vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
627 vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
628 vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
629 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
630 SCALER_PPF_KERNEL_OFFSET);
631
632 /* HPPF plane 0 */
633 vc4_dlist_write(vc4_state, kernel);
634 /* VPPF plane 0 */
635 vc4_dlist_write(vc4_state, kernel);
636 /* HPPF plane 1 */
637 vc4_dlist_write(vc4_state, kernel);
638 /* VPPF plane 1 */
639 vc4_dlist_write(vc4_state, kernel);
640 }
641 }
642
643 vc4_state->dlist[ctl0_offset] |=
644 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
645
646 return 0;
647}
648
649/* If a modeset involves changing the setup of a plane, the atomic
650 * infrastructure will call this to validate a proposed plane setup.
651 * However, if a plane isn't getting updated, this (and the
652 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
653 * compute the dlist here and have all active plane dlists get updated
654 * in the CRTC's flush.
655 */
656static int vc4_plane_atomic_check(struct drm_plane *plane,
657 struct drm_plane_state *state)
658{
659 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
660
661 vc4_state->dlist_count = 0;
662
663 if (plane_enabled(state))
664 return vc4_plane_mode_set(plane, state);
665 else
666 return 0;
667}
668
669static void vc4_plane_atomic_update(struct drm_plane *plane,
670 struct drm_plane_state *old_state)
671{
672 /* No contents here. Since we don't know where in the CRTC's
673 * dlist we should be stored, our dlist is uploaded to the
674 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
675 * time.
676 */
677}
678
679u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
680{
681 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
682 int i;
683
684 vc4_state->hw_dlist = dlist;
685
686 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
687 for (i = 0; i < vc4_state->dlist_count; i++)
688 writel(vc4_state->dlist[i], &dlist[i]);
689
690 return vc4_state->dlist_count;
691}
692
693u32 vc4_plane_dlist_size(struct drm_plane_state *state)
694{
695 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
696
697 return vc4_state->dlist_count;
698}
699
700/* Updates the plane to immediately (well, once the FIFO needs
701 * refilling) scan out from at a new framebuffer.
702 */
703void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
704{
705 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
706 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
707 uint32_t addr;
708
709 /* We're skipping the address adjustment for negative origin,
710 * because this is only called on the primary plane.
711 */
712 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
713 addr = bo->paddr + fb->offsets[0];
714
715 /* Write the new address into the hardware immediately. The
716 * scanout will start from this address as soon as the FIFO
717 * needs to refill with pixels.
718 */
719 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
720
721 /* Also update the CPU-side dlist copy, so that any later
722 * atomic updates that don't do a new modeset on our plane
723 * also use our updated address.
724 */
725 vc4_state->dlist[vc4_state->ptr0_offset] = addr;
726}
727
728static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
729 .prepare_fb = NULL,
730 .cleanup_fb = NULL,
731 .atomic_check = vc4_plane_atomic_check,
732 .atomic_update = vc4_plane_atomic_update,
733};
734
735static void vc4_plane_destroy(struct drm_plane *plane)
736{
737 drm_plane_helper_disable(plane);
738 drm_plane_cleanup(plane);
739}
740
741/* Implements immediate (non-vblank-synced) updates of the cursor
742 * position, or falls back to the atomic helper otherwise.
743 */
744static int
745vc4_update_plane(struct drm_plane *plane,
746 struct drm_crtc *crtc,
747 struct drm_framebuffer *fb,
748 int crtc_x, int crtc_y,
749 unsigned int crtc_w, unsigned int crtc_h,
750 uint32_t src_x, uint32_t src_y,
751 uint32_t src_w, uint32_t src_h)
752{
753 struct drm_plane_state *plane_state;
754 struct vc4_plane_state *vc4_state;
755
756 if (plane != crtc->cursor)
757 goto out;
758
759 plane_state = plane->state;
760 vc4_state = to_vc4_plane_state(plane_state);
761
762 if (!plane_state)
763 goto out;
764
765 /* If we're changing the cursor contents, do that in the
766 * normal vblank-synced atomic path.
767 */
768 if (fb != plane_state->fb)
769 goto out;
770
771 /* No configuring new scaling in the fast path. */
772 if (crtc_w != plane_state->crtc_w ||
773 crtc_h != plane_state->crtc_h ||
774 src_w != plane_state->src_w ||
775 src_h != plane_state->src_h) {
776 goto out;
777 }
778
779 /* Set the cursor's position on the screen. This is the
780 * expected change from the drm_mode_cursor_universal()
781 * helper.
782 */
783 plane_state->crtc_x = crtc_x;
784 plane_state->crtc_y = crtc_y;
785
786 /* Allow changing the start position within the cursor BO, if
787 * that matters.
788 */
789 plane_state->src_x = src_x;
790 plane_state->src_y = src_y;
791
792 /* Update the display list based on the new crtc_x/y. */
793 vc4_plane_atomic_check(plane, plane_state);
794
795 /* Note that we can't just call vc4_plane_write_dlist()
796 * because that would smash the context data that the HVS is
797 * currently using.
798 */
799 writel(vc4_state->dlist[vc4_state->pos0_offset],
800 &vc4_state->hw_dlist[vc4_state->pos0_offset]);
801 writel(vc4_state->dlist[vc4_state->pos2_offset],
802 &vc4_state->hw_dlist[vc4_state->pos2_offset]);
803 writel(vc4_state->dlist[vc4_state->ptr0_offset],
804 &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
805
806 return 0;
807
808out:
809 return drm_atomic_helper_update_plane(plane, crtc, fb,
810 crtc_x, crtc_y,
811 crtc_w, crtc_h,
812 src_x, src_y,
813 src_w, src_h);
814}
815
816static const struct drm_plane_funcs vc4_plane_funcs = {
817 .update_plane = vc4_update_plane,
818 .disable_plane = drm_atomic_helper_disable_plane,
819 .destroy = vc4_plane_destroy,
820 .set_property = NULL,
821 .reset = vc4_plane_reset,
822 .atomic_duplicate_state = vc4_plane_duplicate_state,
823 .atomic_destroy_state = vc4_plane_destroy_state,
824};
825
826struct drm_plane *vc4_plane_init(struct drm_device *dev,
827 enum drm_plane_type type)
828{
829 struct drm_plane *plane = NULL;
830 struct vc4_plane *vc4_plane;
831 u32 formats[ARRAY_SIZE(hvs_formats)];
832 u32 num_formats = 0;
833 int ret = 0;
834 unsigned i;
835
836 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
837 GFP_KERNEL);
838 if (!vc4_plane) {
839 ret = -ENOMEM;
840 goto fail;
841 }
842
843 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
844 /* Don't allow YUV in cursor planes, since that means
845 * tuning on the scaler, which we don't allow for the
846 * cursor.
847 */
848 if (type != DRM_PLANE_TYPE_CURSOR ||
849 hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) {
850 formats[num_formats++] = hvs_formats[i].drm;
851 }
852 }
853 plane = &vc4_plane->base;
854 ret = drm_universal_plane_init(dev, plane, 0xff,
855 &vc4_plane_funcs,
856 formats, num_formats,
857 type, NULL);
858
859 drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
860
861 return plane;
862fail:
863 if (plane)
864 vc4_plane_destroy(plane);
865
866 return ERR_PTR(ret);
867}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 plane module
8 *
9 * Each DRM plane is a layer of pixels being scanned out by the HVS.
10 *
11 * At atomic modeset check time, we compute the HVS display element
12 * state that would be necessary for displaying the plane (giving us a
13 * chance to figure out if a plane configuration is invalid), then at
14 * atomic flush time the CRTC will ask us to write our element state
15 * into the region of the HVS that it has allocated for us.
16 */
17
18#include <drm/drm_atomic.h>
19#include <drm/drm_atomic_helper.h>
20#include <drm/drm_atomic_uapi.h>
21#include <drm/drm_fb_cma_helper.h>
22#include <drm/drm_fourcc.h>
23#include <drm/drm_gem_atomic_helper.h>
24#include <drm/drm_plane_helper.h>
25
26#include "uapi/drm/vc4_drm.h"
27
28#include "vc4_drv.h"
29#include "vc4_regs.h"
30
31static const struct hvs_format {
32 u32 drm; /* DRM_FORMAT_* */
33 u32 hvs; /* HVS_FORMAT_* */
34 u32 pixel_order;
35 u32 pixel_order_hvs5;
36} hvs_formats[] = {
37 {
38 .drm = DRM_FORMAT_XRGB8888,
39 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
40 .pixel_order = HVS_PIXEL_ORDER_ABGR,
41 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
42 },
43 {
44 .drm = DRM_FORMAT_ARGB8888,
45 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
46 .pixel_order = HVS_PIXEL_ORDER_ABGR,
47 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
48 },
49 {
50 .drm = DRM_FORMAT_ABGR8888,
51 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
52 .pixel_order = HVS_PIXEL_ORDER_ARGB,
53 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
54 },
55 {
56 .drm = DRM_FORMAT_XBGR8888,
57 .hvs = HVS_PIXEL_FORMAT_RGBA8888,
58 .pixel_order = HVS_PIXEL_ORDER_ARGB,
59 .pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
60 },
61 {
62 .drm = DRM_FORMAT_RGB565,
63 .hvs = HVS_PIXEL_FORMAT_RGB565,
64 .pixel_order = HVS_PIXEL_ORDER_XRGB,
65 },
66 {
67 .drm = DRM_FORMAT_BGR565,
68 .hvs = HVS_PIXEL_FORMAT_RGB565,
69 .pixel_order = HVS_PIXEL_ORDER_XBGR,
70 },
71 {
72 .drm = DRM_FORMAT_ARGB1555,
73 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
74 .pixel_order = HVS_PIXEL_ORDER_ABGR,
75 },
76 {
77 .drm = DRM_FORMAT_XRGB1555,
78 .hvs = HVS_PIXEL_FORMAT_RGBA5551,
79 .pixel_order = HVS_PIXEL_ORDER_ABGR,
80 },
81 {
82 .drm = DRM_FORMAT_RGB888,
83 .hvs = HVS_PIXEL_FORMAT_RGB888,
84 .pixel_order = HVS_PIXEL_ORDER_XRGB,
85 },
86 {
87 .drm = DRM_FORMAT_BGR888,
88 .hvs = HVS_PIXEL_FORMAT_RGB888,
89 .pixel_order = HVS_PIXEL_ORDER_XBGR,
90 },
91 {
92 .drm = DRM_FORMAT_YUV422,
93 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
94 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
95 },
96 {
97 .drm = DRM_FORMAT_YVU422,
98 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
99 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
100 },
101 {
102 .drm = DRM_FORMAT_YUV420,
103 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
104 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
105 },
106 {
107 .drm = DRM_FORMAT_YVU420,
108 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
109 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
110 },
111 {
112 .drm = DRM_FORMAT_NV12,
113 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
114 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
115 },
116 {
117 .drm = DRM_FORMAT_NV21,
118 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
119 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
120 },
121 {
122 .drm = DRM_FORMAT_NV16,
123 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
124 .pixel_order = HVS_PIXEL_ORDER_XYCBCR,
125 },
126 {
127 .drm = DRM_FORMAT_NV61,
128 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
129 .pixel_order = HVS_PIXEL_ORDER_XYCRCB,
130 },
131};
132
133static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
134{
135 unsigned i;
136
137 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
138 if (hvs_formats[i].drm == drm_format)
139 return &hvs_formats[i];
140 }
141
142 return NULL;
143}
144
145static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
146{
147 if (dst == src)
148 return VC4_SCALING_NONE;
149 if (3 * dst >= 2 * src)
150 return VC4_SCALING_PPF;
151 else
152 return VC4_SCALING_TPZ;
153}
154
155static bool plane_enabled(struct drm_plane_state *state)
156{
157 return state->fb && !WARN_ON(!state->crtc);
158}
159
160static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
161{
162 struct vc4_plane_state *vc4_state;
163
164 if (WARN_ON(!plane->state))
165 return NULL;
166
167 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
168 if (!vc4_state)
169 return NULL;
170
171 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
172 vc4_state->dlist_initialized = 0;
173
174 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
175
176 if (vc4_state->dlist) {
177 vc4_state->dlist = kmemdup(vc4_state->dlist,
178 vc4_state->dlist_count * 4,
179 GFP_KERNEL);
180 if (!vc4_state->dlist) {
181 kfree(vc4_state);
182 return NULL;
183 }
184 vc4_state->dlist_size = vc4_state->dlist_count;
185 }
186
187 return &vc4_state->base;
188}
189
190static void vc4_plane_destroy_state(struct drm_plane *plane,
191 struct drm_plane_state *state)
192{
193 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
194 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
195
196 if (drm_mm_node_allocated(&vc4_state->lbm)) {
197 unsigned long irqflags;
198
199 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
200 drm_mm_remove_node(&vc4_state->lbm);
201 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
202 }
203
204 kfree(vc4_state->dlist);
205 __drm_atomic_helper_plane_destroy_state(&vc4_state->base);
206 kfree(state);
207}
208
209/* Called during init to allocate the plane's atomic state. */
210static void vc4_plane_reset(struct drm_plane *plane)
211{
212 struct vc4_plane_state *vc4_state;
213
214 WARN_ON(plane->state);
215
216 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
217 if (!vc4_state)
218 return;
219
220 __drm_atomic_helper_plane_reset(plane, &vc4_state->base);
221}
222
223static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
224{
225 if (vc4_state->dlist_count == vc4_state->dlist_size) {
226 u32 new_size = max(4u, vc4_state->dlist_count * 2);
227 u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
228
229 if (!new_dlist)
230 return;
231 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
232
233 kfree(vc4_state->dlist);
234 vc4_state->dlist = new_dlist;
235 vc4_state->dlist_size = new_size;
236 }
237
238 vc4_state->dlist_count++;
239}
240
241static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
242{
243 unsigned int idx = vc4_state->dlist_count;
244
245 vc4_dlist_counter_increment(vc4_state);
246 vc4_state->dlist[idx] = val;
247}
248
249/* Returns the scl0/scl1 field based on whether the dimensions need to
250 * be up/down/non-scaled.
251 *
252 * This is a replication of a table from the spec.
253 */
254static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
255{
256 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
257
258 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
259 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
260 return SCALER_CTL0_SCL_H_PPF_V_PPF;
261 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
262 return SCALER_CTL0_SCL_H_TPZ_V_PPF;
263 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
264 return SCALER_CTL0_SCL_H_PPF_V_TPZ;
265 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
266 return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
267 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
268 return SCALER_CTL0_SCL_H_PPF_V_NONE;
269 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
270 return SCALER_CTL0_SCL_H_NONE_V_PPF;
271 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
272 return SCALER_CTL0_SCL_H_NONE_V_TPZ;
273 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
274 return SCALER_CTL0_SCL_H_TPZ_V_NONE;
275 default:
276 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
277 /* The unity case is independently handled by
278 * SCALER_CTL0_UNITY.
279 */
280 return 0;
281 }
282}
283
284static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
285{
286 struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
287 unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
288 struct drm_crtc_state *crtc_state;
289
290 crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
291 pstate->crtc);
292
293 vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
294 if (!left && !right && !top && !bottom)
295 return 0;
296
297 if (left + right >= crtc_state->mode.hdisplay ||
298 top + bottom >= crtc_state->mode.vdisplay)
299 return -EINVAL;
300
301 adjhdisplay = crtc_state->mode.hdisplay - (left + right);
302 vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
303 adjhdisplay,
304 crtc_state->mode.hdisplay);
305 vc4_pstate->crtc_x += left;
306 if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - left)
307 vc4_pstate->crtc_x = crtc_state->mode.hdisplay - left;
308
309 adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
310 vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
311 adjvdisplay,
312 crtc_state->mode.vdisplay);
313 vc4_pstate->crtc_y += top;
314 if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - top)
315 vc4_pstate->crtc_y = crtc_state->mode.vdisplay - top;
316
317 vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
318 adjhdisplay,
319 crtc_state->mode.hdisplay);
320 vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
321 adjvdisplay,
322 crtc_state->mode.vdisplay);
323
324 if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
325 return -EINVAL;
326
327 return 0;
328}
329
330static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
331{
332 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
333 struct drm_framebuffer *fb = state->fb;
334 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
335 u32 subpixel_src_mask = (1 << 16) - 1;
336 int num_planes = fb->format->num_planes;
337 struct drm_crtc_state *crtc_state;
338 u32 h_subsample = fb->format->hsub;
339 u32 v_subsample = fb->format->vsub;
340 int i, ret;
341
342 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
343 state->crtc);
344 if (!crtc_state) {
345 DRM_DEBUG_KMS("Invalid crtc state\n");
346 return -EINVAL;
347 }
348
349 ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
350 INT_MAX, true, true);
351 if (ret)
352 return ret;
353
354 for (i = 0; i < num_planes; i++)
355 vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
356
357 /* We don't support subpixel source positioning for scaling. */
358 if ((state->src.x1 & subpixel_src_mask) ||
359 (state->src.x2 & subpixel_src_mask) ||
360 (state->src.y1 & subpixel_src_mask) ||
361 (state->src.y2 & subpixel_src_mask)) {
362 return -EINVAL;
363 }
364
365 vc4_state->src_x = state->src.x1 >> 16;
366 vc4_state->src_y = state->src.y1 >> 16;
367 vc4_state->src_w[0] = (state->src.x2 - state->src.x1) >> 16;
368 vc4_state->src_h[0] = (state->src.y2 - state->src.y1) >> 16;
369
370 vc4_state->crtc_x = state->dst.x1;
371 vc4_state->crtc_y = state->dst.y1;
372 vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
373 vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
374
375 ret = vc4_plane_margins_adj(state);
376 if (ret)
377 return ret;
378
379 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
380 vc4_state->crtc_w);
381 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
382 vc4_state->crtc_h);
383
384 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
385 vc4_state->y_scaling[0] == VC4_SCALING_NONE);
386
387 if (num_planes > 1) {
388 vc4_state->is_yuv = true;
389
390 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
391 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
392
393 vc4_state->x_scaling[1] =
394 vc4_get_scaling_mode(vc4_state->src_w[1],
395 vc4_state->crtc_w);
396 vc4_state->y_scaling[1] =
397 vc4_get_scaling_mode(vc4_state->src_h[1],
398 vc4_state->crtc_h);
399
400 /* YUV conversion requires that horizontal scaling be enabled
401 * on the UV plane even if vc4_get_scaling_mode() returned
402 * VC4_SCALING_NONE (which can happen when the down-scaling
403 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
404 * case.
405 */
406 if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
407 vc4_state->x_scaling[1] = VC4_SCALING_PPF;
408 } else {
409 vc4_state->is_yuv = false;
410 vc4_state->x_scaling[1] = VC4_SCALING_NONE;
411 vc4_state->y_scaling[1] = VC4_SCALING_NONE;
412 }
413
414 return 0;
415}
416
417static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
418{
419 u32 scale, recip;
420
421 scale = (1 << 16) * src / dst;
422
423 /* The specs note that while the reciprocal would be defined
424 * as (1<<32)/scale, ~0 is close enough.
425 */
426 recip = ~0 / scale;
427
428 vc4_dlist_write(vc4_state,
429 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
430 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
431 vc4_dlist_write(vc4_state,
432 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
433}
434
435static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
436{
437 u32 scale = (1 << 16) * src / dst;
438
439 vc4_dlist_write(vc4_state,
440 SCALER_PPF_AGC |
441 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
442 VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
443}
444
445static u32 vc4_lbm_size(struct drm_plane_state *state)
446{
447 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
448 struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
449 u32 pix_per_line;
450 u32 lbm;
451
452 /* LBM is not needed when there's no vertical scaling. */
453 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
454 vc4_state->y_scaling[1] == VC4_SCALING_NONE)
455 return 0;
456
457 /*
458 * This can be further optimized in the RGB/YUV444 case if the PPF
459 * decimation factor is between 0.5 and 1.0 by using crtc_w.
460 *
461 * It's not an issue though, since in that case since src_w[0] is going
462 * to be greater than or equal to crtc_w.
463 */
464 if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
465 pix_per_line = vc4_state->crtc_w;
466 else
467 pix_per_line = vc4_state->src_w[0];
468
469 if (!vc4_state->is_yuv) {
470 if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
471 lbm = pix_per_line * 8;
472 else {
473 /* In special cases, this multiplier might be 12. */
474 lbm = pix_per_line * 16;
475 }
476 } else {
477 /* There are cases for this going down to a multiplier
478 * of 2, but according to the firmware source, the
479 * table in the docs is somewhat wrong.
480 */
481 lbm = pix_per_line * 16;
482 }
483
484 /* Align it to 64 or 128 (hvs5) bytes */
485 lbm = roundup(lbm, vc4->hvs->hvs5 ? 128 : 64);
486
487 /* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
488 lbm /= vc4->hvs->hvs5 ? 4 : 2;
489
490 return lbm;
491}
492
493static void vc4_write_scaling_parameters(struct drm_plane_state *state,
494 int channel)
495{
496 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
497
498 /* Ch0 H-PPF Word 0: Scaling Parameters */
499 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
500 vc4_write_ppf(vc4_state,
501 vc4_state->src_w[channel], vc4_state->crtc_w);
502 }
503
504 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
505 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
506 vc4_write_ppf(vc4_state,
507 vc4_state->src_h[channel], vc4_state->crtc_h);
508 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
509 }
510
511 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
512 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
513 vc4_write_tpz(vc4_state,
514 vc4_state->src_w[channel], vc4_state->crtc_w);
515 }
516
517 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
518 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
519 vc4_write_tpz(vc4_state,
520 vc4_state->src_h[channel], vc4_state->crtc_h);
521 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
522 }
523}
524
525static void vc4_plane_calc_load(struct drm_plane_state *state)
526{
527 unsigned int hvs_load_shift, vrefresh, i;
528 struct drm_framebuffer *fb = state->fb;
529 struct vc4_plane_state *vc4_state;
530 struct drm_crtc_state *crtc_state;
531 unsigned int vscale_factor;
532 struct vc4_dev *vc4;
533
534 vc4 = to_vc4_dev(state->plane->dev);
535 if (!vc4->load_tracker_available)
536 return;
537
538 vc4_state = to_vc4_plane_state(state);
539 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
540 state->crtc);
541 vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
542
543 /* The HVS is able to process 2 pixels/cycle when scaling the source,
544 * 4 pixels/cycle otherwise.
545 * Alpha blending step seems to be pipelined and it's always operating
546 * at 4 pixels/cycle, so the limiting aspect here seems to be the
547 * scaler block.
548 * HVS load is expressed in clk-cycles/sec (AKA Hz).
549 */
550 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
551 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
552 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
553 vc4_state->y_scaling[1] != VC4_SCALING_NONE)
554 hvs_load_shift = 1;
555 else
556 hvs_load_shift = 2;
557
558 vc4_state->membus_load = 0;
559 vc4_state->hvs_load = 0;
560 for (i = 0; i < fb->format->num_planes; i++) {
561 /* Even if the bandwidth/plane required for a single frame is
562 *
563 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
564 *
565 * when downscaling, we have to read more pixels per line in
566 * the time frame reserved for a single line, so the bandwidth
567 * demand can be punctually higher. To account for that, we
568 * calculate the down-scaling factor and multiply the plane
569 * load by this number. We're likely over-estimating the read
570 * demand, but that's better than under-estimating it.
571 */
572 vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
573 vc4_state->crtc_h);
574 vc4_state->membus_load += vc4_state->src_w[i] *
575 vc4_state->src_h[i] * vscale_factor *
576 fb->format->cpp[i];
577 vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
578 }
579
580 vc4_state->hvs_load *= vrefresh;
581 vc4_state->hvs_load >>= hvs_load_shift;
582 vc4_state->membus_load *= vrefresh;
583}
584
585static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
586{
587 struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
588 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
589 unsigned long irqflags;
590 u32 lbm_size;
591
592 lbm_size = vc4_lbm_size(state);
593 if (!lbm_size)
594 return 0;
595
596 if (WARN_ON(!vc4_state->lbm_offset))
597 return -EINVAL;
598
599 /* Allocate the LBM memory that the HVS will use for temporary
600 * storage due to our scaling/format conversion.
601 */
602 if (!drm_mm_node_allocated(&vc4_state->lbm)) {
603 int ret;
604
605 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
606 ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
607 &vc4_state->lbm,
608 lbm_size,
609 vc4->hvs->hvs5 ? 64 : 32,
610 0, 0);
611 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
612
613 if (ret)
614 return ret;
615 } else {
616 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
617 }
618
619 vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
620
621 return 0;
622}
623
624/* Writes out a full display list for an active plane to the plane's
625 * private dlist state.
626 */
627static int vc4_plane_mode_set(struct drm_plane *plane,
628 struct drm_plane_state *state)
629{
630 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
631 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
632 struct drm_framebuffer *fb = state->fb;
633 u32 ctl0_offset = vc4_state->dlist_count;
634 const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
635 u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
636 int num_planes = fb->format->num_planes;
637 u32 h_subsample = fb->format->hsub;
638 u32 v_subsample = fb->format->vsub;
639 bool mix_plane_alpha;
640 bool covers_screen;
641 u32 scl0, scl1, pitch0;
642 u32 tiling, src_y;
643 u32 hvs_format = format->hvs;
644 unsigned int rotation;
645 int ret, i;
646
647 if (vc4_state->dlist_initialized)
648 return 0;
649
650 ret = vc4_plane_setup_clipping_and_scaling(state);
651 if (ret)
652 return ret;
653
654 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
655 * and 4:4:4, scl1 should be set to scl0 so both channels of
656 * the scaler do the same thing. For YUV, the Y plane needs
657 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
658 * the scl fields here.
659 */
660 if (num_planes == 1) {
661 scl0 = vc4_get_scl_field(state, 0);
662 scl1 = scl0;
663 } else {
664 scl0 = vc4_get_scl_field(state, 1);
665 scl1 = vc4_get_scl_field(state, 0);
666 }
667
668 rotation = drm_rotation_simplify(state->rotation,
669 DRM_MODE_ROTATE_0 |
670 DRM_MODE_REFLECT_X |
671 DRM_MODE_REFLECT_Y);
672
673 /* We must point to the last line when Y reflection is enabled. */
674 src_y = vc4_state->src_y;
675 if (rotation & DRM_MODE_REFLECT_Y)
676 src_y += vc4_state->src_h[0] - 1;
677
678 switch (base_format_mod) {
679 case DRM_FORMAT_MOD_LINEAR:
680 tiling = SCALER_CTL0_TILING_LINEAR;
681 pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
682
683 /* Adjust the base pointer to the first pixel to be scanned
684 * out.
685 */
686 for (i = 0; i < num_planes; i++) {
687 vc4_state->offsets[i] += src_y /
688 (i ? v_subsample : 1) *
689 fb->pitches[i];
690
691 vc4_state->offsets[i] += vc4_state->src_x /
692 (i ? h_subsample : 1) *
693 fb->format->cpp[i];
694 }
695
696 break;
697
698 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
699 u32 tile_size_shift = 12; /* T tiles are 4kb */
700 /* Whole-tile offsets, mostly for setting the pitch. */
701 u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
702 u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
703 u32 tile_w_mask = (1 << tile_w_shift) - 1;
704 /* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
705 * the height (in pixels) of a 4k tile.
706 */
707 u32 tile_h_mask = (2 << tile_h_shift) - 1;
708 /* For T-tiled, the FB pitch is "how many bytes from one row to
709 * the next, such that
710 *
711 * pitch * tile_h == tile_size * tiles_per_row
712 */
713 u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
714 u32 tiles_l = vc4_state->src_x >> tile_w_shift;
715 u32 tiles_r = tiles_w - tiles_l;
716 u32 tiles_t = src_y >> tile_h_shift;
717 /* Intra-tile offsets, which modify the base address (the
718 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
719 * base address).
720 */
721 u32 tile_y = (src_y >> 4) & 1;
722 u32 subtile_y = (src_y >> 2) & 3;
723 u32 utile_y = src_y & 3;
724 u32 x_off = vc4_state->src_x & tile_w_mask;
725 u32 y_off = src_y & tile_h_mask;
726
727 /* When Y reflection is requested we must set the
728 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
729 * after the initial one should be fetched in descending order,
730 * which makes sense since we start from the last line and go
731 * backward.
732 * Don't know why we need y_off = max_y_off - y_off, but it's
733 * definitely required (I guess it's also related to the "going
734 * backward" situation).
735 */
736 if (rotation & DRM_MODE_REFLECT_Y) {
737 y_off = tile_h_mask - y_off;
738 pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
739 } else {
740 pitch0 = 0;
741 }
742
743 tiling = SCALER_CTL0_TILING_256B_OR_T;
744 pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
745 VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
746 VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
747 VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
748 vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
749 vc4_state->offsets[0] += subtile_y << 8;
750 vc4_state->offsets[0] += utile_y << 4;
751
752 /* Rows of tiles alternate left-to-right and right-to-left. */
753 if (tiles_t & 1) {
754 pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
755 vc4_state->offsets[0] += (tiles_w - tiles_l) <<
756 tile_size_shift;
757 vc4_state->offsets[0] -= (1 + !tile_y) << 10;
758 } else {
759 vc4_state->offsets[0] += tiles_l << tile_size_shift;
760 vc4_state->offsets[0] += tile_y << 10;
761 }
762
763 break;
764 }
765
766 case DRM_FORMAT_MOD_BROADCOM_SAND64:
767 case DRM_FORMAT_MOD_BROADCOM_SAND128:
768 case DRM_FORMAT_MOD_BROADCOM_SAND256: {
769 uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
770 u32 tile_w, tile, x_off, pix_per_tile;
771
772 hvs_format = HVS_PIXEL_FORMAT_H264;
773
774 switch (base_format_mod) {
775 case DRM_FORMAT_MOD_BROADCOM_SAND64:
776 tiling = SCALER_CTL0_TILING_64B;
777 tile_w = 64;
778 break;
779 case DRM_FORMAT_MOD_BROADCOM_SAND128:
780 tiling = SCALER_CTL0_TILING_128B;
781 tile_w = 128;
782 break;
783 case DRM_FORMAT_MOD_BROADCOM_SAND256:
784 tiling = SCALER_CTL0_TILING_256B_OR_T;
785 tile_w = 256;
786 break;
787 default:
788 break;
789 }
790
791 if (param > SCALER_TILE_HEIGHT_MASK) {
792 DRM_DEBUG_KMS("SAND height too large (%d)\n", param);
793 return -EINVAL;
794 }
795
796 pix_per_tile = tile_w / fb->format->cpp[0];
797 tile = vc4_state->src_x / pix_per_tile;
798 x_off = vc4_state->src_x % pix_per_tile;
799
800 /* Adjust the base pointer to the first pixel to be scanned
801 * out.
802 */
803 for (i = 0; i < num_planes; i++) {
804 vc4_state->offsets[i] += param * tile_w * tile;
805 vc4_state->offsets[i] += src_y /
806 (i ? v_subsample : 1) *
807 tile_w;
808 vc4_state->offsets[i] += x_off /
809 (i ? h_subsample : 1) *
810 fb->format->cpp[i];
811 }
812
813 pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
814 break;
815 }
816
817 default:
818 DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
819 (long long)fb->modifier);
820 return -EINVAL;
821 }
822
823 /* Don't waste cycles mixing with plane alpha if the set alpha
824 * is opaque or there is no per-pixel alpha information.
825 * In any case we use the alpha property value as the fixed alpha.
826 */
827 mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
828 fb->format->has_alpha;
829
830 if (!vc4->hvs->hvs5) {
831 /* Control word */
832 vc4_dlist_write(vc4_state,
833 SCALER_CTL0_VALID |
834 (rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
835 (rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
836 VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
837 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
838 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
839 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
840 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
841 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
842 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
843
844 /* Position Word 0: Image Positions and Alpha Value */
845 vc4_state->pos0_offset = vc4_state->dlist_count;
846 vc4_dlist_write(vc4_state,
847 VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
848 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
849 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
850
851 /* Position Word 1: Scaled Image Dimensions. */
852 if (!vc4_state->is_unity) {
853 vc4_dlist_write(vc4_state,
854 VC4_SET_FIELD(vc4_state->crtc_w,
855 SCALER_POS1_SCL_WIDTH) |
856 VC4_SET_FIELD(vc4_state->crtc_h,
857 SCALER_POS1_SCL_HEIGHT));
858 }
859
860 /* Position Word 2: Source Image Size, Alpha */
861 vc4_state->pos2_offset = vc4_state->dlist_count;
862 vc4_dlist_write(vc4_state,
863 VC4_SET_FIELD(fb->format->has_alpha ?
864 SCALER_POS2_ALPHA_MODE_PIPELINE :
865 SCALER_POS2_ALPHA_MODE_FIXED,
866 SCALER_POS2_ALPHA_MODE) |
867 (mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
868 (fb->format->has_alpha ?
869 SCALER_POS2_ALPHA_PREMULT : 0) |
870 VC4_SET_FIELD(vc4_state->src_w[0],
871 SCALER_POS2_WIDTH) |
872 VC4_SET_FIELD(vc4_state->src_h[0],
873 SCALER_POS2_HEIGHT));
874
875 /* Position Word 3: Context. Written by the HVS. */
876 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
877
878 } else {
879 u32 hvs_pixel_order = format->pixel_order;
880
881 if (format->pixel_order_hvs5)
882 hvs_pixel_order = format->pixel_order_hvs5;
883
884 /* Control word */
885 vc4_dlist_write(vc4_state,
886 SCALER_CTL0_VALID |
887 (hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
888 (hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
889 VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
890 (vc4_state->is_unity ?
891 SCALER5_CTL0_UNITY : 0) |
892 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
893 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
894 SCALER5_CTL0_ALPHA_EXPAND |
895 SCALER5_CTL0_RGB_EXPAND);
896
897 /* Position Word 0: Image Positions and Alpha Value */
898 vc4_state->pos0_offset = vc4_state->dlist_count;
899 vc4_dlist_write(vc4_state,
900 (rotation & DRM_MODE_REFLECT_Y ?
901 SCALER5_POS0_VFLIP : 0) |
902 VC4_SET_FIELD(vc4_state->crtc_x,
903 SCALER_POS0_START_X) |
904 (rotation & DRM_MODE_REFLECT_X ?
905 SCALER5_POS0_HFLIP : 0) |
906 VC4_SET_FIELD(vc4_state->crtc_y,
907 SCALER5_POS0_START_Y)
908 );
909
910 /* Control Word 2 */
911 vc4_dlist_write(vc4_state,
912 VC4_SET_FIELD(state->alpha >> 4,
913 SCALER5_CTL2_ALPHA) |
914 (fb->format->has_alpha ?
915 SCALER5_CTL2_ALPHA_PREMULT : 0) |
916 (mix_plane_alpha ?
917 SCALER5_CTL2_ALPHA_MIX : 0) |
918 VC4_SET_FIELD(fb->format->has_alpha ?
919 SCALER5_CTL2_ALPHA_MODE_PIPELINE :
920 SCALER5_CTL2_ALPHA_MODE_FIXED,
921 SCALER5_CTL2_ALPHA_MODE)
922 );
923
924 /* Position Word 1: Scaled Image Dimensions. */
925 if (!vc4_state->is_unity) {
926 vc4_dlist_write(vc4_state,
927 VC4_SET_FIELD(vc4_state->crtc_w,
928 SCALER5_POS1_SCL_WIDTH) |
929 VC4_SET_FIELD(vc4_state->crtc_h,
930 SCALER5_POS1_SCL_HEIGHT));
931 }
932
933 /* Position Word 2: Source Image Size */
934 vc4_state->pos2_offset = vc4_state->dlist_count;
935 vc4_dlist_write(vc4_state,
936 VC4_SET_FIELD(vc4_state->src_w[0],
937 SCALER5_POS2_WIDTH) |
938 VC4_SET_FIELD(vc4_state->src_h[0],
939 SCALER5_POS2_HEIGHT));
940
941 /* Position Word 3: Context. Written by the HVS. */
942 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
943 }
944
945
946 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
947 *
948 * The pointers may be any byte address.
949 */
950 vc4_state->ptr0_offset = vc4_state->dlist_count;
951 for (i = 0; i < num_planes; i++)
952 vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
953
954 /* Pointer Context Word 0/1/2: Written by the HVS */
955 for (i = 0; i < num_planes; i++)
956 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
957
958 /* Pitch word 0 */
959 vc4_dlist_write(vc4_state, pitch0);
960
961 /* Pitch word 1/2 */
962 for (i = 1; i < num_planes; i++) {
963 if (hvs_format != HVS_PIXEL_FORMAT_H264) {
964 vc4_dlist_write(vc4_state,
965 VC4_SET_FIELD(fb->pitches[i],
966 SCALER_SRC_PITCH));
967 } else {
968 vc4_dlist_write(vc4_state, pitch0);
969 }
970 }
971
972 /* Colorspace conversion words */
973 if (vc4_state->is_yuv) {
974 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
975 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
976 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
977 }
978
979 vc4_state->lbm_offset = 0;
980
981 if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
982 vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
983 vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
984 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
985 /* Reserve a slot for the LBM Base Address. The real value will
986 * be set when calling vc4_plane_allocate_lbm().
987 */
988 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
989 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
990 vc4_state->lbm_offset = vc4_state->dlist_count;
991 vc4_dlist_counter_increment(vc4_state);
992 }
993
994 if (num_planes > 1) {
995 /* Emit Cb/Cr as channel 0 and Y as channel
996 * 1. This matches how we set up scl0/scl1
997 * above.
998 */
999 vc4_write_scaling_parameters(state, 1);
1000 }
1001 vc4_write_scaling_parameters(state, 0);
1002
1003 /* If any PPF setup was done, then all the kernel
1004 * pointers get uploaded.
1005 */
1006 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1007 vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1008 vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1009 vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1010 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1011 SCALER_PPF_KERNEL_OFFSET);
1012
1013 /* HPPF plane 0 */
1014 vc4_dlist_write(vc4_state, kernel);
1015 /* VPPF plane 0 */
1016 vc4_dlist_write(vc4_state, kernel);
1017 /* HPPF plane 1 */
1018 vc4_dlist_write(vc4_state, kernel);
1019 /* VPPF plane 1 */
1020 vc4_dlist_write(vc4_state, kernel);
1021 }
1022 }
1023
1024 vc4_state->dlist[ctl0_offset] |=
1025 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1026
1027 /* crtc_* are already clipped coordinates. */
1028 covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1029 vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1030 vc4_state->crtc_h == state->crtc->mode.vdisplay;
1031 /* Background fill might be necessary when the plane has per-pixel
1032 * alpha content or a non-opaque plane alpha and could blend from the
1033 * background or does not cover the entire screen.
1034 */
1035 vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1036 state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1037
1038 /* Flag the dlist as initialized to avoid checking it twice in case
1039 * the async update check already called vc4_plane_mode_set() and
1040 * decided to fallback to sync update because async update was not
1041 * possible.
1042 */
1043 vc4_state->dlist_initialized = 1;
1044
1045 vc4_plane_calc_load(state);
1046
1047 return 0;
1048}
1049
1050/* If a modeset involves changing the setup of a plane, the atomic
1051 * infrastructure will call this to validate a proposed plane setup.
1052 * However, if a plane isn't getting updated, this (and the
1053 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
1054 * compute the dlist here and have all active plane dlists get updated
1055 * in the CRTC's flush.
1056 */
1057static int vc4_plane_atomic_check(struct drm_plane *plane,
1058 struct drm_atomic_state *state)
1059{
1060 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1061 plane);
1062 struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
1063 int ret;
1064
1065 vc4_state->dlist_count = 0;
1066
1067 if (!plane_enabled(new_plane_state))
1068 return 0;
1069
1070 ret = vc4_plane_mode_set(plane, new_plane_state);
1071 if (ret)
1072 return ret;
1073
1074 return vc4_plane_allocate_lbm(new_plane_state);
1075}
1076
1077static void vc4_plane_atomic_update(struct drm_plane *plane,
1078 struct drm_atomic_state *state)
1079{
1080 /* No contents here. Since we don't know where in the CRTC's
1081 * dlist we should be stored, our dlist is uploaded to the
1082 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1083 * time.
1084 */
1085}
1086
1087u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1088{
1089 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1090 int i;
1091
1092 vc4_state->hw_dlist = dlist;
1093
1094 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
1095 for (i = 0; i < vc4_state->dlist_count; i++)
1096 writel(vc4_state->dlist[i], &dlist[i]);
1097
1098 return vc4_state->dlist_count;
1099}
1100
1101u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1102{
1103 const struct vc4_plane_state *vc4_state =
1104 container_of(state, typeof(*vc4_state), base);
1105
1106 return vc4_state->dlist_count;
1107}
1108
1109/* Updates the plane to immediately (well, once the FIFO needs
1110 * refilling) scan out from at a new framebuffer.
1111 */
1112void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1113{
1114 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1115 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
1116 uint32_t addr;
1117
1118 /* We're skipping the address adjustment for negative origin,
1119 * because this is only called on the primary plane.
1120 */
1121 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1122 addr = bo->paddr + fb->offsets[0];
1123
1124 /* Write the new address into the hardware immediately. The
1125 * scanout will start from this address as soon as the FIFO
1126 * needs to refill with pixels.
1127 */
1128 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1129
1130 /* Also update the CPU-side dlist copy, so that any later
1131 * atomic updates that don't do a new modeset on our plane
1132 * also use our updated address.
1133 */
1134 vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1135}
1136
1137static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1138 struct drm_atomic_state *state)
1139{
1140 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1141 plane);
1142 struct vc4_plane_state *vc4_state, *new_vc4_state;
1143
1144 swap(plane->state->fb, new_plane_state->fb);
1145 plane->state->crtc_x = new_plane_state->crtc_x;
1146 plane->state->crtc_y = new_plane_state->crtc_y;
1147 plane->state->crtc_w = new_plane_state->crtc_w;
1148 plane->state->crtc_h = new_plane_state->crtc_h;
1149 plane->state->src_x = new_plane_state->src_x;
1150 plane->state->src_y = new_plane_state->src_y;
1151 plane->state->src_w = new_plane_state->src_w;
1152 plane->state->src_h = new_plane_state->src_h;
1153 plane->state->alpha = new_plane_state->alpha;
1154 plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
1155 plane->state->rotation = new_plane_state->rotation;
1156 plane->state->zpos = new_plane_state->zpos;
1157 plane->state->normalized_zpos = new_plane_state->normalized_zpos;
1158 plane->state->color_encoding = new_plane_state->color_encoding;
1159 plane->state->color_range = new_plane_state->color_range;
1160 plane->state->src = new_plane_state->src;
1161 plane->state->dst = new_plane_state->dst;
1162 plane->state->visible = new_plane_state->visible;
1163
1164 new_vc4_state = to_vc4_plane_state(new_plane_state);
1165 vc4_state = to_vc4_plane_state(plane->state);
1166
1167 vc4_state->crtc_x = new_vc4_state->crtc_x;
1168 vc4_state->crtc_y = new_vc4_state->crtc_y;
1169 vc4_state->crtc_h = new_vc4_state->crtc_h;
1170 vc4_state->crtc_w = new_vc4_state->crtc_w;
1171 vc4_state->src_x = new_vc4_state->src_x;
1172 vc4_state->src_y = new_vc4_state->src_y;
1173 memcpy(vc4_state->src_w, new_vc4_state->src_w,
1174 sizeof(vc4_state->src_w));
1175 memcpy(vc4_state->src_h, new_vc4_state->src_h,
1176 sizeof(vc4_state->src_h));
1177 memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1178 sizeof(vc4_state->x_scaling));
1179 memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1180 sizeof(vc4_state->y_scaling));
1181 vc4_state->is_unity = new_vc4_state->is_unity;
1182 vc4_state->is_yuv = new_vc4_state->is_yuv;
1183 memcpy(vc4_state->offsets, new_vc4_state->offsets,
1184 sizeof(vc4_state->offsets));
1185 vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1186
1187 /* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1188 vc4_state->dlist[vc4_state->pos0_offset] =
1189 new_vc4_state->dlist[vc4_state->pos0_offset];
1190 vc4_state->dlist[vc4_state->pos2_offset] =
1191 new_vc4_state->dlist[vc4_state->pos2_offset];
1192 vc4_state->dlist[vc4_state->ptr0_offset] =
1193 new_vc4_state->dlist[vc4_state->ptr0_offset];
1194
1195 /* Note that we can't just call vc4_plane_write_dlist()
1196 * because that would smash the context data that the HVS is
1197 * currently using.
1198 */
1199 writel(vc4_state->dlist[vc4_state->pos0_offset],
1200 &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1201 writel(vc4_state->dlist[vc4_state->pos2_offset],
1202 &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1203 writel(vc4_state->dlist[vc4_state->ptr0_offset],
1204 &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1205}
1206
1207static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1208 struct drm_atomic_state *state)
1209{
1210 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1211 plane);
1212 struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1213 int ret;
1214 u32 i;
1215
1216 ret = vc4_plane_mode_set(plane, new_plane_state);
1217 if (ret)
1218 return ret;
1219
1220 old_vc4_state = to_vc4_plane_state(plane->state);
1221 new_vc4_state = to_vc4_plane_state(new_plane_state);
1222 if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1223 old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1224 old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1225 old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1226 vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
1227 return -EINVAL;
1228
1229 /* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1230 * if anything else has changed, fallback to a sync update.
1231 */
1232 for (i = 0; i < new_vc4_state->dlist_count; i++) {
1233 if (i == new_vc4_state->pos0_offset ||
1234 i == new_vc4_state->pos2_offset ||
1235 i == new_vc4_state->ptr0_offset ||
1236 (new_vc4_state->lbm_offset &&
1237 i == new_vc4_state->lbm_offset))
1238 continue;
1239
1240 if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1241 return -EINVAL;
1242 }
1243
1244 return 0;
1245}
1246
1247static int vc4_prepare_fb(struct drm_plane *plane,
1248 struct drm_plane_state *state)
1249{
1250 struct vc4_bo *bo;
1251 int ret;
1252
1253 if (!state->fb)
1254 return 0;
1255
1256 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1257
1258 drm_gem_plane_helper_prepare_fb(plane, state);
1259
1260 if (plane->state->fb == state->fb)
1261 return 0;
1262
1263 ret = vc4_bo_inc_usecnt(bo);
1264 if (ret)
1265 return ret;
1266
1267 return 0;
1268}
1269
1270static void vc4_cleanup_fb(struct drm_plane *plane,
1271 struct drm_plane_state *state)
1272{
1273 struct vc4_bo *bo;
1274
1275 if (plane->state->fb == state->fb || !state->fb)
1276 return;
1277
1278 bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base);
1279 vc4_bo_dec_usecnt(bo);
1280}
1281
1282static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1283 .atomic_check = vc4_plane_atomic_check,
1284 .atomic_update = vc4_plane_atomic_update,
1285 .prepare_fb = vc4_prepare_fb,
1286 .cleanup_fb = vc4_cleanup_fb,
1287 .atomic_async_check = vc4_plane_atomic_async_check,
1288 .atomic_async_update = vc4_plane_atomic_async_update,
1289};
1290
1291static bool vc4_format_mod_supported(struct drm_plane *plane,
1292 uint32_t format,
1293 uint64_t modifier)
1294{
1295 /* Support T_TILING for RGB formats only. */
1296 switch (format) {
1297 case DRM_FORMAT_XRGB8888:
1298 case DRM_FORMAT_ARGB8888:
1299 case DRM_FORMAT_ABGR8888:
1300 case DRM_FORMAT_XBGR8888:
1301 case DRM_FORMAT_RGB565:
1302 case DRM_FORMAT_BGR565:
1303 case DRM_FORMAT_ARGB1555:
1304 case DRM_FORMAT_XRGB1555:
1305 switch (fourcc_mod_broadcom_mod(modifier)) {
1306 case DRM_FORMAT_MOD_LINEAR:
1307 case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1308 return true;
1309 default:
1310 return false;
1311 }
1312 case DRM_FORMAT_NV12:
1313 case DRM_FORMAT_NV21:
1314 switch (fourcc_mod_broadcom_mod(modifier)) {
1315 case DRM_FORMAT_MOD_LINEAR:
1316 case DRM_FORMAT_MOD_BROADCOM_SAND64:
1317 case DRM_FORMAT_MOD_BROADCOM_SAND128:
1318 case DRM_FORMAT_MOD_BROADCOM_SAND256:
1319 return true;
1320 default:
1321 return false;
1322 }
1323 case DRM_FORMAT_RGBX1010102:
1324 case DRM_FORMAT_BGRX1010102:
1325 case DRM_FORMAT_RGBA1010102:
1326 case DRM_FORMAT_BGRA1010102:
1327 case DRM_FORMAT_YUV422:
1328 case DRM_FORMAT_YVU422:
1329 case DRM_FORMAT_YUV420:
1330 case DRM_FORMAT_YVU420:
1331 case DRM_FORMAT_NV16:
1332 case DRM_FORMAT_NV61:
1333 default:
1334 return (modifier == DRM_FORMAT_MOD_LINEAR);
1335 }
1336}
1337
1338static const struct drm_plane_funcs vc4_plane_funcs = {
1339 .update_plane = drm_atomic_helper_update_plane,
1340 .disable_plane = drm_atomic_helper_disable_plane,
1341 .destroy = drm_plane_cleanup,
1342 .set_property = NULL,
1343 .reset = vc4_plane_reset,
1344 .atomic_duplicate_state = vc4_plane_duplicate_state,
1345 .atomic_destroy_state = vc4_plane_destroy_state,
1346 .format_mod_supported = vc4_format_mod_supported,
1347};
1348
1349struct drm_plane *vc4_plane_init(struct drm_device *dev,
1350 enum drm_plane_type type)
1351{
1352 struct drm_plane *plane = NULL;
1353 struct vc4_plane *vc4_plane;
1354 u32 formats[ARRAY_SIZE(hvs_formats)];
1355 int ret = 0;
1356 unsigned i;
1357 static const uint64_t modifiers[] = {
1358 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1359 DRM_FORMAT_MOD_BROADCOM_SAND128,
1360 DRM_FORMAT_MOD_BROADCOM_SAND64,
1361 DRM_FORMAT_MOD_BROADCOM_SAND256,
1362 DRM_FORMAT_MOD_LINEAR,
1363 DRM_FORMAT_MOD_INVALID
1364 };
1365
1366 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
1367 GFP_KERNEL);
1368 if (!vc4_plane)
1369 return ERR_PTR(-ENOMEM);
1370
1371 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++)
1372 formats[i] = hvs_formats[i].drm;
1373
1374 plane = &vc4_plane->base;
1375 ret = drm_universal_plane_init(dev, plane, 0,
1376 &vc4_plane_funcs,
1377 formats, ARRAY_SIZE(formats),
1378 modifiers, type, NULL);
1379 if (ret)
1380 return ERR_PTR(ret);
1381
1382 drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1383
1384 drm_plane_create_alpha_property(plane);
1385 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1386 DRM_MODE_ROTATE_0 |
1387 DRM_MODE_ROTATE_180 |
1388 DRM_MODE_REFLECT_X |
1389 DRM_MODE_REFLECT_Y);
1390
1391 return plane;
1392}
1393
1394int vc4_plane_create_additional_planes(struct drm_device *drm)
1395{
1396 struct drm_plane *cursor_plane;
1397 struct drm_crtc *crtc;
1398 unsigned int i;
1399
1400 /* Set up some arbitrary number of planes. We're not limited
1401 * by a set number of physical registers, just the space in
1402 * the HVS (16k) and how small an plane can be (28 bytes).
1403 * However, each plane we set up takes up some memory, and
1404 * increases the cost of looping over planes, which atomic
1405 * modesetting does quite a bit. As a result, we pick a
1406 * modest number of planes to expose, that should hopefully
1407 * still cover any sane usecase.
1408 */
1409 for (i = 0; i < 16; i++) {
1410 struct drm_plane *plane =
1411 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1412
1413 if (IS_ERR(plane))
1414 continue;
1415
1416 plane->possible_crtcs =
1417 GENMASK(drm->mode_config.num_crtc - 1, 0);
1418 }
1419
1420 drm_for_each_crtc(crtc, drm) {
1421 /* Set up the legacy cursor after overlay initialization,
1422 * since we overlay planes on the CRTC in the order they were
1423 * initialized.
1424 */
1425 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1426 if (!IS_ERR(cursor_plane)) {
1427 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1428 crtc->cursor = cursor_plane;
1429 }
1430 }
1431
1432 return 0;
1433}