Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1/*
  2 * SPDX-License-Identifier: MIT
  3 *
  4 * Copyright © 2018 Intel Corporation
  5 */
  6
  7#include <linux/mutex.h>
  8
  9#include "i915_drv.h"
 10#include "i915_globals.h"
 11#include "i915_request.h"
 12#include "i915_scheduler.h"
 13
 14static struct i915_global_scheduler {
 15	struct i915_global base;
 16	struct kmem_cache *slab_dependencies;
 17	struct kmem_cache *slab_priorities;
 18} global;
 19
 20static DEFINE_SPINLOCK(schedule_lock);
 21
 22static const struct i915_request *
 23node_to_request(const struct i915_sched_node *node)
 24{
 25	return container_of(node, const struct i915_request, sched);
 26}
 27
 28static inline bool node_started(const struct i915_sched_node *node)
 29{
 30	return i915_request_started(node_to_request(node));
 31}
 32
 33static inline bool node_signaled(const struct i915_sched_node *node)
 34{
 35	return i915_request_completed(node_to_request(node));
 36}
 37
 38static inline struct i915_priolist *to_priolist(struct rb_node *rb)
 39{
 40	return rb_entry(rb, struct i915_priolist, node);
 41}
 42
 43static void assert_priolists(struct intel_engine_execlists * const execlists)
 44{
 45	struct rb_node *rb;
 46	long last_prio;
 47
 48	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
 49		return;
 50
 51	GEM_BUG_ON(rb_first_cached(&execlists->queue) !=
 52		   rb_first(&execlists->queue.rb_root));
 53
 54	last_prio = INT_MAX;
 55	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
 56		const struct i915_priolist *p = to_priolist(rb);
 57
 58		GEM_BUG_ON(p->priority > last_prio);
 59		last_prio = p->priority;
 60	}
 61}
 62
 63struct list_head *
 64i915_sched_lookup_priolist(struct intel_engine_cs *engine, int prio)
 65{
 66	struct intel_engine_execlists * const execlists = &engine->execlists;
 67	struct i915_priolist *p;
 68	struct rb_node **parent, *rb;
 69	bool first = true;
 70
 71	lockdep_assert_held(&engine->active.lock);
 72	assert_priolists(execlists);
 73
 74	if (unlikely(execlists->no_priolist))
 75		prio = I915_PRIORITY_NORMAL;
 76
 77find_priolist:
 78	/* most positive priority is scheduled first, equal priorities fifo */
 79	rb = NULL;
 80	parent = &execlists->queue.rb_root.rb_node;
 81	while (*parent) {
 82		rb = *parent;
 83		p = to_priolist(rb);
 84		if (prio > p->priority) {
 85			parent = &rb->rb_left;
 86		} else if (prio < p->priority) {
 87			parent = &rb->rb_right;
 88			first = false;
 89		} else {
 90			return &p->requests;
 91		}
 92	}
 93
 94	if (prio == I915_PRIORITY_NORMAL) {
 95		p = &execlists->default_priolist;
 96	} else {
 97		p = kmem_cache_alloc(global.slab_priorities, GFP_ATOMIC);
 98		/* Convert an allocation failure to a priority bump */
 99		if (unlikely(!p)) {
100			prio = I915_PRIORITY_NORMAL; /* recurses just once */
101
102			/* To maintain ordering with all rendering, after an
103			 * allocation failure we have to disable all scheduling.
104			 * Requests will then be executed in fifo, and schedule
105			 * will ensure that dependencies are emitted in fifo.
106			 * There will be still some reordering with existing
107			 * requests, so if userspace lied about their
108			 * dependencies that reordering may be visible.
109			 */
110			execlists->no_priolist = true;
111			goto find_priolist;
112		}
113	}
114
115	p->priority = prio;
116	INIT_LIST_HEAD(&p->requests);
117
118	rb_link_node(&p->node, rb, parent);
119	rb_insert_color_cached(&p->node, &execlists->queue, first);
120
121	return &p->requests;
122}
123
124void __i915_priolist_free(struct i915_priolist *p)
125{
126	kmem_cache_free(global.slab_priorities, p);
127}
128
129struct sched_cache {
130	struct list_head *priolist;
131};
132
133static struct intel_engine_cs *
134sched_lock_engine(const struct i915_sched_node *node,
135		  struct intel_engine_cs *locked,
136		  struct sched_cache *cache)
137{
138	const struct i915_request *rq = node_to_request(node);
139	struct intel_engine_cs *engine;
140
141	GEM_BUG_ON(!locked);
142
143	/*
144	 * Virtual engines complicate acquiring the engine timeline lock,
145	 * as their rq->engine pointer is not stable until under that
146	 * engine lock. The simple ploy we use is to take the lock then
147	 * check that the rq still belongs to the newly locked engine.
148	 */
149	while (locked != (engine = READ_ONCE(rq->engine))) {
150		spin_unlock(&locked->active.lock);
151		memset(cache, 0, sizeof(*cache));
152		spin_lock(&engine->active.lock);
153		locked = engine;
154	}
155
156	GEM_BUG_ON(locked != engine);
157	return locked;
158}
159
160static inline int rq_prio(const struct i915_request *rq)
161{
162	return rq->sched.attr.priority;
163}
164
165static inline bool need_preempt(int prio, int active)
166{
167	/*
168	 * Allow preemption of low -> normal -> high, but we do
169	 * not allow low priority tasks to preempt other low priority
170	 * tasks under the impression that latency for low priority
171	 * tasks does not matter (as much as background throughput),
172	 * so kiss.
173	 */
174	return prio >= max(I915_PRIORITY_NORMAL, active);
175}
176
177static void kick_submission(struct intel_engine_cs *engine,
178			    const struct i915_request *rq,
179			    int prio)
180{
181	const struct i915_request *inflight;
182
183	/*
184	 * We only need to kick the tasklet once for the high priority
185	 * new context we add into the queue.
186	 */
187	if (prio <= engine->execlists.queue_priority_hint)
188		return;
189
190	rcu_read_lock();
191
192	/* Nothing currently active? We're overdue for a submission! */
193	inflight = execlists_active(&engine->execlists);
194	if (!inflight)
195		goto unlock;
196
197	/*
198	 * If we are already the currently executing context, don't
199	 * bother evaluating if we should preempt ourselves.
200	 */
201	if (inflight->context == rq->context)
202		goto unlock;
203
204	ENGINE_TRACE(engine,
205		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
206		     prio,
207		     rq->fence.context, rq->fence.seqno,
208		     inflight->fence.context, inflight->fence.seqno,
209		     inflight->sched.attr.priority);
210
211	engine->execlists.queue_priority_hint = prio;
212	if (need_preempt(prio, rq_prio(inflight)))
213		tasklet_hi_schedule(&engine->execlists.tasklet);
214
215unlock:
216	rcu_read_unlock();
217}
218
219static void __i915_schedule(struct i915_sched_node *node,
220			    const struct i915_sched_attr *attr)
221{
222	const int prio = max(attr->priority, node->attr.priority);
223	struct intel_engine_cs *engine;
224	struct i915_dependency *dep, *p;
225	struct i915_dependency stack;
226	struct sched_cache cache;
227	LIST_HEAD(dfs);
228
229	/* Needed in order to use the temporary link inside i915_dependency */
230	lockdep_assert_held(&schedule_lock);
231	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
232
233	if (node_signaled(node))
234		return;
235
236	stack.signaler = node;
237	list_add(&stack.dfs_link, &dfs);
238
239	/*
240	 * Recursively bump all dependent priorities to match the new request.
241	 *
242	 * A naive approach would be to use recursion:
243	 * static void update_priorities(struct i915_sched_node *node, prio) {
244	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
245	 *		update_priorities(dep->signal, prio)
246	 *	queue_request(node);
247	 * }
248	 * but that may have unlimited recursion depth and so runs a very
249	 * real risk of overunning the kernel stack. Instead, we build
250	 * a flat list of all dependencies starting with the current request.
251	 * As we walk the list of dependencies, we add all of its dependencies
252	 * to the end of the list (this may include an already visited
253	 * request) and continue to walk onwards onto the new dependencies. The
254	 * end result is a topological list of requests in reverse order, the
255	 * last element in the list is the request we must execute first.
256	 */
257	list_for_each_entry(dep, &dfs, dfs_link) {
258		struct i915_sched_node *node = dep->signaler;
259
260		/* If we are already flying, we know we have no signalers */
261		if (node_started(node))
262			continue;
263
264		/*
265		 * Within an engine, there can be no cycle, but we may
266		 * refer to the same dependency chain multiple times
267		 * (redundant dependencies are not eliminated) and across
268		 * engines.
269		 */
270		list_for_each_entry(p, &node->signalers_list, signal_link) {
271			GEM_BUG_ON(p == dep); /* no cycles! */
272
273			if (node_signaled(p->signaler))
274				continue;
275
276			if (prio > READ_ONCE(p->signaler->attr.priority))
277				list_move_tail(&p->dfs_link, &dfs);
278		}
279	}
280
281	/*
282	 * If we didn't need to bump any existing priorities, and we haven't
283	 * yet submitted this request (i.e. there is no potential race with
284	 * execlists_submit_request()), we can set our own priority and skip
285	 * acquiring the engine locks.
286	 */
287	if (node->attr.priority == I915_PRIORITY_INVALID) {
288		GEM_BUG_ON(!list_empty(&node->link));
289		node->attr = *attr;
290
291		if (stack.dfs_link.next == stack.dfs_link.prev)
292			return;
293
294		__list_del_entry(&stack.dfs_link);
295	}
296
297	memset(&cache, 0, sizeof(cache));
298	engine = node_to_request(node)->engine;
299	spin_lock(&engine->active.lock);
300
301	/* Fifo and depth-first replacement ensure our deps execute before us */
302	engine = sched_lock_engine(node, engine, &cache);
303	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
304		INIT_LIST_HEAD(&dep->dfs_link);
305
306		node = dep->signaler;
307		engine = sched_lock_engine(node, engine, &cache);
308		lockdep_assert_held(&engine->active.lock);
309
310		/* Recheck after acquiring the engine->timeline.lock */
311		if (prio <= node->attr.priority || node_signaled(node))
312			continue;
313
314		GEM_BUG_ON(node_to_request(node)->engine != engine);
315
316		WRITE_ONCE(node->attr.priority, prio);
317
318		/*
319		 * Once the request is ready, it will be placed into the
320		 * priority lists and then onto the HW runlist. Before the
321		 * request is ready, it does not contribute to our preemption
322		 * decisions and we can safely ignore it, as it will, and
323		 * any preemption required, be dealt with upon submission.
324		 * See engine->submit_request()
325		 */
326		if (list_empty(&node->link))
327			continue;
328
329		if (i915_request_in_priority_queue(node_to_request(node))) {
330			if (!cache.priolist)
331				cache.priolist =
332					i915_sched_lookup_priolist(engine,
333								   prio);
334			list_move_tail(&node->link, cache.priolist);
335		}
336
337		/* Defer (tasklet) submission until after all of our updates. */
338		kick_submission(engine, node_to_request(node), prio);
339	}
340
341	spin_unlock(&engine->active.lock);
342}
343
344void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
345{
346	spin_lock_irq(&schedule_lock);
347	__i915_schedule(&rq->sched, attr);
348	spin_unlock_irq(&schedule_lock);
349}
350
351void i915_sched_node_init(struct i915_sched_node *node)
352{
353	INIT_LIST_HEAD(&node->signalers_list);
354	INIT_LIST_HEAD(&node->waiters_list);
355	INIT_LIST_HEAD(&node->link);
356
357	i915_sched_node_reinit(node);
358}
359
360void i915_sched_node_reinit(struct i915_sched_node *node)
361{
362	node->attr.priority = I915_PRIORITY_INVALID;
363	node->semaphores = 0;
364	node->flags = 0;
365
366	GEM_BUG_ON(!list_empty(&node->signalers_list));
367	GEM_BUG_ON(!list_empty(&node->waiters_list));
368	GEM_BUG_ON(!list_empty(&node->link));
369}
370
371static struct i915_dependency *
372i915_dependency_alloc(void)
373{
374	return kmem_cache_alloc(global.slab_dependencies, GFP_KERNEL);
375}
376
377static void
378i915_dependency_free(struct i915_dependency *dep)
379{
380	kmem_cache_free(global.slab_dependencies, dep);
381}
382
383bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
384				      struct i915_sched_node *signal,
385				      struct i915_dependency *dep,
386				      unsigned long flags)
387{
388	bool ret = false;
389
390	spin_lock_irq(&schedule_lock);
391
392	if (!node_signaled(signal)) {
393		INIT_LIST_HEAD(&dep->dfs_link);
394		dep->signaler = signal;
395		dep->waiter = node;
396		dep->flags = flags;
397
398		/* All set, now publish. Beware the lockless walkers. */
399		list_add_rcu(&dep->signal_link, &node->signalers_list);
400		list_add_rcu(&dep->wait_link, &signal->waiters_list);
401
402		/* Propagate the chains */
403		node->flags |= signal->flags;
404		ret = true;
405	}
406
407	spin_unlock_irq(&schedule_lock);
408
409	return ret;
410}
411
412int i915_sched_node_add_dependency(struct i915_sched_node *node,
413				   struct i915_sched_node *signal,
414				   unsigned long flags)
415{
416	struct i915_dependency *dep;
417
418	dep = i915_dependency_alloc();
419	if (!dep)
420		return -ENOMEM;
421
422	if (!__i915_sched_node_add_dependency(node, signal, dep,
423					      flags | I915_DEPENDENCY_ALLOC))
424		i915_dependency_free(dep);
425
426	return 0;
427}
428
429void i915_sched_node_fini(struct i915_sched_node *node)
430{
431	struct i915_dependency *dep, *tmp;
432
433	spin_lock_irq(&schedule_lock);
434
435	/*
436	 * Everyone we depended upon (the fences we wait to be signaled)
437	 * should retire before us and remove themselves from our list.
438	 * However, retirement is run independently on each timeline and
439	 * so we may be called out-of-order.
440	 */
441	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
442		GEM_BUG_ON(!list_empty(&dep->dfs_link));
443
444		list_del_rcu(&dep->wait_link);
445		if (dep->flags & I915_DEPENDENCY_ALLOC)
446			i915_dependency_free(dep);
447	}
448	INIT_LIST_HEAD(&node->signalers_list);
449
450	/* Remove ourselves from everyone who depends upon us */
451	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
452		GEM_BUG_ON(dep->signaler != node);
453		GEM_BUG_ON(!list_empty(&dep->dfs_link));
454
455		list_del_rcu(&dep->signal_link);
456		if (dep->flags & I915_DEPENDENCY_ALLOC)
457			i915_dependency_free(dep);
458	}
459	INIT_LIST_HEAD(&node->waiters_list);
460
461	spin_unlock_irq(&schedule_lock);
462}
463
464void i915_request_show_with_schedule(struct drm_printer *m,
465				     const struct i915_request *rq,
466				     const char *prefix,
467				     int indent)
468{
469	struct i915_dependency *dep;
470
471	i915_request_show(m, rq, prefix, indent);
472	if (i915_request_completed(rq))
473		return;
474
475	rcu_read_lock();
476	for_each_signaler(dep, rq) {
477		const struct i915_request *signaler =
478			node_to_request(dep->signaler);
479
480		/* Dependencies along the same timeline are expected. */
481		if (signaler->timeline == rq->timeline)
482			continue;
483
484		if (__i915_request_is_complete(signaler))
485			continue;
486
487		i915_request_show(m, signaler, prefix, indent + 2);
488	}
489	rcu_read_unlock();
490}
491
492static void i915_global_scheduler_shrink(void)
493{
494	kmem_cache_shrink(global.slab_dependencies);
495	kmem_cache_shrink(global.slab_priorities);
496}
497
498static void i915_global_scheduler_exit(void)
499{
500	kmem_cache_destroy(global.slab_dependencies);
501	kmem_cache_destroy(global.slab_priorities);
502}
503
504static struct i915_global_scheduler global = { {
505	.shrink = i915_global_scheduler_shrink,
506	.exit = i915_global_scheduler_exit,
507} };
508
509int __init i915_global_scheduler_init(void)
510{
511	global.slab_dependencies = KMEM_CACHE(i915_dependency,
512					      SLAB_HWCACHE_ALIGN |
513					      SLAB_TYPESAFE_BY_RCU);
514	if (!global.slab_dependencies)
515		return -ENOMEM;
516
517	global.slab_priorities = KMEM_CACHE(i915_priolist, 0);
518	if (!global.slab_priorities)
519		goto err_priorities;
520
521	i915_global_register(&global.base);
522	return 0;
523
524err_priorities:
525	kmem_cache_destroy(global.slab_priorities);
526	return -ENOMEM;
527}