Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2019 Intel Corporation
  4 */
  5
  6#include "i915_drv.h"
  7
  8#include "intel_breadcrumbs.h"
  9#include "intel_context.h"
 10#include "intel_engine.h"
 11#include "intel_engine_heartbeat.h"
 12#include "intel_engine_pm.h"
 13#include "intel_gt.h"
 14#include "intel_gt_pm.h"
 15#include "intel_rc6.h"
 16#include "intel_ring.h"
 17#include "shmem_utils.h"
 18
 19static void dbg_poison_ce(struct intel_context *ce)
 20{
 21	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
 22		return;
 23
 24	if (ce->state) {
 25		struct drm_i915_gem_object *obj = ce->state->obj;
 26		int type = i915_coherent_map_type(ce->engine->i915, obj, true);
 27		void *map;
 28
 29		if (!i915_gem_object_trylock(obj))
 30			return;
 31
 32		map = i915_gem_object_pin_map(obj, type);
 33		if (!IS_ERR(map)) {
 34			memset(map, CONTEXT_REDZONE, obj->base.size);
 35			i915_gem_object_flush_map(obj);
 36			i915_gem_object_unpin_map(obj);
 37		}
 38		i915_gem_object_unlock(obj);
 39	}
 40}
 41
 42static int __engine_unpark(struct intel_wakeref *wf)
 43{
 44	struct intel_engine_cs *engine =
 45		container_of(wf, typeof(*engine), wakeref);
 46	struct intel_context *ce;
 47
 48	ENGINE_TRACE(engine, "\n");
 49
 50	intel_gt_pm_get(engine->gt);
 51
 52	/* Discard stale context state from across idling */
 53	ce = engine->kernel_context;
 54	if (ce) {
 55		GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags));
 56
 57		/* Flush all pending HW writes before we touch the context */
 58		while (unlikely(intel_context_inflight(ce)))
 59			intel_engine_flush_submission(engine);
 60
 61		/* First poison the image to verify we never fully trust it */
 62		dbg_poison_ce(ce);
 63
 64		/* Scrub the context image after our loss of control */
 65		ce->ops->reset(ce);
 66
 67		CE_TRACE(ce, "reset { seqno:%x, *hwsp:%x, ring:%x }\n",
 68			 ce->timeline->seqno,
 69			 READ_ONCE(*ce->timeline->hwsp_seqno),
 70			 ce->ring->emit);
 71		GEM_BUG_ON(ce->timeline->seqno !=
 72			   READ_ONCE(*ce->timeline->hwsp_seqno));
 73	}
 74
 75	if (engine->unpark)
 76		engine->unpark(engine);
 77
 78	intel_breadcrumbs_unpark(engine->breadcrumbs);
 79	intel_engine_unpark_heartbeat(engine);
 80	return 0;
 81}
 82
 83#if IS_ENABLED(CONFIG_LOCKDEP)
 84
 85static unsigned long __timeline_mark_lock(struct intel_context *ce)
 86{
 87	unsigned long flags;
 88
 89	local_irq_save(flags);
 90	mutex_acquire(&ce->timeline->mutex.dep_map, 2, 0, _THIS_IP_);
 91
 92	return flags;
 93}
 94
 95static void __timeline_mark_unlock(struct intel_context *ce,
 96				   unsigned long flags)
 97{
 98	mutex_release(&ce->timeline->mutex.dep_map, _THIS_IP_);
 99	local_irq_restore(flags);
100}
101
102#else
103
104static unsigned long __timeline_mark_lock(struct intel_context *ce)
105{
106	return 0;
107}
108
109static void __timeline_mark_unlock(struct intel_context *ce,
110				   unsigned long flags)
111{
112}
113
114#endif /* !IS_ENABLED(CONFIG_LOCKDEP) */
115
116static void duration(struct dma_fence *fence, struct dma_fence_cb *cb)
117{
118	struct i915_request *rq = to_request(fence);
119
120	ewma__engine_latency_add(&rq->engine->latency,
121				 ktime_us_delta(rq->fence.timestamp,
122						rq->duration.emitted));
123}
124
125static void
126__queue_and_release_pm(struct i915_request *rq,
127		       struct intel_timeline *tl,
128		       struct intel_engine_cs *engine)
129{
130	struct intel_gt_timelines *timelines = &engine->gt->timelines;
131
132	ENGINE_TRACE(engine, "parking\n");
133
134	/*
135	 * We have to serialise all potential retirement paths with our
136	 * submission, as we don't want to underflow either the
137	 * engine->wakeref.counter or our timeline->active_count.
138	 *
139	 * Equally, we cannot allow a new submission to start until
140	 * after we finish queueing, nor could we allow that submitter
141	 * to retire us before we are ready!
142	 */
143	spin_lock(&timelines->lock);
144
145	/* Let intel_gt_retire_requests() retire us (acquired under lock) */
146	if (!atomic_fetch_inc(&tl->active_count))
147		list_add_tail(&tl->link, &timelines->active_list);
148
149	/* Hand the request over to HW and so engine_retire() */
150	__i915_request_queue_bh(rq);
151
152	/* Let new submissions commence (and maybe retire this timeline) */
153	__intel_wakeref_defer_park(&engine->wakeref);
154
155	spin_unlock(&timelines->lock);
156}
157
158static bool switch_to_kernel_context(struct intel_engine_cs *engine)
159{
160	struct intel_context *ce = engine->kernel_context;
161	struct i915_request *rq;
162	unsigned long flags;
163	bool result = true;
164
165	/* GPU is pointing to the void, as good as in the kernel context. */
166	if (intel_gt_is_wedged(engine->gt))
167		return true;
168
169	GEM_BUG_ON(!intel_context_is_barrier(ce));
170	GEM_BUG_ON(ce->timeline->hwsp_ggtt != engine->status_page.vma);
171
172	/* Already inside the kernel context, safe to power down. */
173	if (engine->wakeref_serial == engine->serial)
174		return true;
175
176	/*
177	 * Note, we do this without taking the timeline->mutex. We cannot
178	 * as we may be called while retiring the kernel context and so
179	 * already underneath the timeline->mutex. Instead we rely on the
180	 * exclusive property of the __engine_park that prevents anyone
181	 * else from creating a request on this engine. This also requires
182	 * that the ring is empty and we avoid any waits while constructing
183	 * the context, as they assume protection by the timeline->mutex.
184	 * This should hold true as we can only park the engine after
185	 * retiring the last request, thus all rings should be empty and
186	 * all timelines idle.
187	 *
188	 * For unlocking, there are 2 other parties and the GPU who have a
189	 * stake here.
190	 *
191	 * A new gpu user will be waiting on the engine-pm to start their
192	 * engine_unpark. New waiters are predicated on engine->wakeref.count
193	 * and so intel_wakeref_defer_park() acts like a mutex_unlock of the
194	 * engine->wakeref.
195	 *
196	 * The other party is intel_gt_retire_requests(), which is walking the
197	 * list of active timelines looking for completions. Meanwhile as soon
198	 * as we call __i915_request_queue(), the GPU may complete our request.
199	 * Ergo, if we put ourselves on the timelines.active_list
200	 * (se intel_timeline_enter()) before we increment the
201	 * engine->wakeref.count, we may see the request completion and retire
202	 * it causing an underflow of the engine->wakeref.
203	 */
204	flags = __timeline_mark_lock(ce);
205	GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0);
206
207	rq = __i915_request_create(ce, GFP_NOWAIT);
208	if (IS_ERR(rq))
209		/* Context switch failed, hope for the best! Maybe reset? */
210		goto out_unlock;
211
212	/* Check again on the next retirement. */
213	engine->wakeref_serial = engine->serial + 1;
214	i915_request_add_active_barriers(rq);
215
216	/* Install ourselves as a preemption barrier */
217	rq->sched.attr.priority = I915_PRIORITY_BARRIER;
218	if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */
219		/*
220		 * Use an interrupt for precise measurement of duration,
221		 * otherwise we rely on someone else retiring all the requests
222		 * which may delay the signaling (i.e. we will likely wait
223		 * until the background request retirement running every
224		 * second or two).
225		 */
226		BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq));
227		dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration);
228		rq->duration.emitted = ktime_get();
229	}
230
231	/* Expose ourselves to the world */
232	__queue_and_release_pm(rq, ce->timeline, engine);
233
234	result = false;
235out_unlock:
236	__timeline_mark_unlock(ce, flags);
237	return result;
238}
239
240static void call_idle_barriers(struct intel_engine_cs *engine)
241{
242	struct llist_node *node, *next;
243
244	llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) {
245		struct dma_fence_cb *cb =
246			container_of((struct list_head *)node,
247				     typeof(*cb), node);
248
249		cb->func(ERR_PTR(-EAGAIN), cb);
250	}
251}
252
253static int __engine_park(struct intel_wakeref *wf)
254{
255	struct intel_engine_cs *engine =
256		container_of(wf, typeof(*engine), wakeref);
257
258	engine->saturated = 0;
259
260	/*
261	 * If one and only one request is completed between pm events,
262	 * we know that we are inside the kernel context and it is
263	 * safe to power down. (We are paranoid in case that runtime
264	 * suspend causes corruption to the active context image, and
265	 * want to avoid that impacting userspace.)
266	 */
267	if (!switch_to_kernel_context(engine))
268		return -EBUSY;
269
270	ENGINE_TRACE(engine, "parked\n");
271
272	call_idle_barriers(engine); /* cleanup after wedging */
273
274	intel_engine_park_heartbeat(engine);
275	intel_breadcrumbs_park(engine->breadcrumbs);
276
277	/* Must be reset upon idling, or we may miss the busy wakeup. */
278	GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
279
280	if (engine->park)
281		engine->park(engine);
282
283	engine->execlists.no_priolist = false;
284
285	/* While gt calls i915_vma_parked(), we have to break the lock cycle */
286	intel_gt_pm_put_async(engine->gt);
287	return 0;
288}
289
290static const struct intel_wakeref_ops wf_ops = {
291	.get = __engine_unpark,
292	.put = __engine_park,
293};
294
295void intel_engine_init__pm(struct intel_engine_cs *engine)
296{
297	struct intel_runtime_pm *rpm = engine->uncore->rpm;
298
299	intel_wakeref_init(&engine->wakeref, rpm, &wf_ops);
300	intel_engine_init_heartbeat(engine);
301}
302
303#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
304#include "selftest_engine_pm.c"
305#endif