Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Device probing and sysfs code.
   3 *
   4 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/ctype.h>
  23#include <linux/delay.h>
  24#include <linux/device.h>
  25#include <linux/errno.h>
  26#include <linux/firewire.h>
  27#include <linux/firewire-constants.h>
  28#include <linux/idr.h>
  29#include <linux/jiffies.h>
  30#include <linux/kobject.h>
  31#include <linux/list.h>
  32#include <linux/mod_devicetable.h>
  33#include <linux/module.h>
  34#include <linux/mutex.h>
  35#include <linux/random.h>
  36#include <linux/rwsem.h>
  37#include <linux/slab.h>
  38#include <linux/spinlock.h>
  39#include <linux/string.h>
  40#include <linux/workqueue.h>
  41
  42#include <linux/atomic.h>
  43#include <asm/byteorder.h>
  44
  45#include "core.h"
  46
  47void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  48{
  49	ci->p = p + 1;
  50	ci->end = ci->p + (p[0] >> 16);
  51}
  52EXPORT_SYMBOL(fw_csr_iterator_init);
  53
  54int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  55{
  56	*key = *ci->p >> 24;
  57	*value = *ci->p & 0xffffff;
  58
  59	return ci->p++ < ci->end;
  60}
  61EXPORT_SYMBOL(fw_csr_iterator_next);
  62
  63static const u32 *search_leaf(const u32 *directory, int search_key)
  64{
  65	struct fw_csr_iterator ci;
  66	int last_key = 0, key, value;
  67
  68	fw_csr_iterator_init(&ci, directory);
  69	while (fw_csr_iterator_next(&ci, &key, &value)) {
  70		if (last_key == search_key &&
  71		    key == (CSR_DESCRIPTOR | CSR_LEAF))
  72			return ci.p - 1 + value;
  73
  74		last_key = key;
  75	}
  76
  77	return NULL;
  78}
  79
  80static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  81{
  82	unsigned int quadlets, i;
  83	char c;
  84
  85	if (!size || !buf)
  86		return -EINVAL;
  87
  88	quadlets = min(block[0] >> 16, 256U);
  89	if (quadlets < 2)
  90		return -ENODATA;
  91
  92	if (block[1] != 0 || block[2] != 0)
  93		/* unknown language/character set */
  94		return -ENODATA;
  95
  96	block += 3;
  97	quadlets -= 2;
  98	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  99		c = block[i / 4] >> (24 - 8 * (i % 4));
 100		if (c == '\0')
 101			break;
 102		buf[i] = c;
 103	}
 104	buf[i] = '\0';
 105
 106	return i;
 107}
 108
 109/**
 110 * fw_csr_string() - reads a string from the configuration ROM
 111 * @directory:	e.g. root directory or unit directory
 112 * @key:	the key of the preceding directory entry
 113 * @buf:	where to put the string
 114 * @size:	size of @buf, in bytes
 115 *
 116 * The string is taken from a minimal ASCII text descriptor leaf after
 117 * the immediate entry with @key.  The string is zero-terminated.
 118 * An overlong string is silently truncated such that it and the
 119 * zero byte fit into @size.
 120 *
 121 * Returns strlen(buf) or a negative error code.
 122 */
 123int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
 124{
 125	const u32 *leaf = search_leaf(directory, key);
 126	if (!leaf)
 127		return -ENOENT;
 128
 129	return textual_leaf_to_string(leaf, buf, size);
 130}
 131EXPORT_SYMBOL(fw_csr_string);
 132
 133static void get_ids(const u32 *directory, int *id)
 134{
 135	struct fw_csr_iterator ci;
 136	int key, value;
 137
 138	fw_csr_iterator_init(&ci, directory);
 139	while (fw_csr_iterator_next(&ci, &key, &value)) {
 140		switch (key) {
 141		case CSR_VENDOR:	id[0] = value; break;
 142		case CSR_MODEL:		id[1] = value; break;
 143		case CSR_SPECIFIER_ID:	id[2] = value; break;
 144		case CSR_VERSION:	id[3] = value; break;
 145		}
 146	}
 147}
 148
 149static void get_modalias_ids(struct fw_unit *unit, int *id)
 150{
 151	get_ids(&fw_parent_device(unit)->config_rom[5], id);
 152	get_ids(unit->directory, id);
 153}
 154
 155static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
 156{
 157	int match = 0;
 158
 159	if (id[0] == id_table->vendor_id)
 160		match |= IEEE1394_MATCH_VENDOR_ID;
 161	if (id[1] == id_table->model_id)
 162		match |= IEEE1394_MATCH_MODEL_ID;
 163	if (id[2] == id_table->specifier_id)
 164		match |= IEEE1394_MATCH_SPECIFIER_ID;
 165	if (id[3] == id_table->version)
 166		match |= IEEE1394_MATCH_VERSION;
 167
 168	return (match & id_table->match_flags) == id_table->match_flags;
 169}
 170
 171static const struct ieee1394_device_id *unit_match(struct device *dev,
 172						   struct device_driver *drv)
 173{
 174	const struct ieee1394_device_id *id_table =
 175			container_of(drv, struct fw_driver, driver)->id_table;
 176	int id[] = {0, 0, 0, 0};
 177
 178	get_modalias_ids(fw_unit(dev), id);
 179
 180	for (; id_table->match_flags != 0; id_table++)
 181		if (match_ids(id_table, id))
 182			return id_table;
 183
 184	return NULL;
 185}
 186
 187static bool is_fw_unit(struct device *dev);
 188
 189static int fw_unit_match(struct device *dev, struct device_driver *drv)
 190{
 191	/* We only allow binding to fw_units. */
 192	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
 193}
 194
 195static int fw_unit_probe(struct device *dev)
 196{
 197	struct fw_driver *driver =
 198			container_of(dev->driver, struct fw_driver, driver);
 199
 200	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
 201}
 202
 203static int fw_unit_remove(struct device *dev)
 204{
 205	struct fw_driver *driver =
 206			container_of(dev->driver, struct fw_driver, driver);
 207
 208	return driver->remove(fw_unit(dev)), 0;
 
 
 209}
 210
 211static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
 212{
 213	int id[] = {0, 0, 0, 0};
 214
 215	get_modalias_ids(unit, id);
 216
 217	return snprintf(buffer, buffer_size,
 218			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
 219			id[0], id[1], id[2], id[3]);
 220}
 221
 222static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
 223{
 224	struct fw_unit *unit = fw_unit(dev);
 225	char modalias[64];
 226
 227	get_modalias(unit, modalias, sizeof(modalias));
 228
 229	if (add_uevent_var(env, "MODALIAS=%s", modalias))
 230		return -ENOMEM;
 231
 232	return 0;
 233}
 234
 235struct bus_type fw_bus_type = {
 236	.name = "firewire",
 237	.match = fw_unit_match,
 238	.probe = fw_unit_probe,
 239	.remove = fw_unit_remove,
 240};
 241EXPORT_SYMBOL(fw_bus_type);
 242
 243int fw_device_enable_phys_dma(struct fw_device *device)
 244{
 245	int generation = device->generation;
 246
 247	/* device->node_id, accessed below, must not be older than generation */
 248	smp_rmb();
 249
 250	return device->card->driver->enable_phys_dma(device->card,
 251						     device->node_id,
 252						     generation);
 253}
 254EXPORT_SYMBOL(fw_device_enable_phys_dma);
 255
 256struct config_rom_attribute {
 257	struct device_attribute attr;
 258	u32 key;
 259};
 260
 261static ssize_t show_immediate(struct device *dev,
 262			      struct device_attribute *dattr, char *buf)
 263{
 264	struct config_rom_attribute *attr =
 265		container_of(dattr, struct config_rom_attribute, attr);
 266	struct fw_csr_iterator ci;
 267	const u32 *dir;
 268	int key, value, ret = -ENOENT;
 269
 270	down_read(&fw_device_rwsem);
 271
 272	if (is_fw_unit(dev))
 273		dir = fw_unit(dev)->directory;
 274	else
 275		dir = fw_device(dev)->config_rom + 5;
 276
 277	fw_csr_iterator_init(&ci, dir);
 278	while (fw_csr_iterator_next(&ci, &key, &value))
 279		if (attr->key == key) {
 280			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
 281				       "0x%06x\n", value);
 282			break;
 283		}
 284
 285	up_read(&fw_device_rwsem);
 286
 287	return ret;
 288}
 289
 290#define IMMEDIATE_ATTR(name, key)				\
 291	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
 292
 293static ssize_t show_text_leaf(struct device *dev,
 294			      struct device_attribute *dattr, char *buf)
 295{
 296	struct config_rom_attribute *attr =
 297		container_of(dattr, struct config_rom_attribute, attr);
 298	const u32 *dir;
 299	size_t bufsize;
 300	char dummy_buf[2];
 301	int ret;
 302
 303	down_read(&fw_device_rwsem);
 304
 305	if (is_fw_unit(dev))
 306		dir = fw_unit(dev)->directory;
 307	else
 308		dir = fw_device(dev)->config_rom + 5;
 309
 310	if (buf) {
 311		bufsize = PAGE_SIZE - 1;
 312	} else {
 313		buf = dummy_buf;
 314		bufsize = 1;
 315	}
 316
 317	ret = fw_csr_string(dir, attr->key, buf, bufsize);
 318
 319	if (ret >= 0) {
 320		/* Strip trailing whitespace and add newline. */
 321		while (ret > 0 && isspace(buf[ret - 1]))
 322			ret--;
 323		strcpy(buf + ret, "\n");
 324		ret++;
 325	}
 326
 327	up_read(&fw_device_rwsem);
 328
 329	return ret;
 330}
 331
 332#define TEXT_LEAF_ATTR(name, key)				\
 333	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
 334
 335static struct config_rom_attribute config_rom_attributes[] = {
 336	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
 337	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
 338	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
 339	IMMEDIATE_ATTR(version, CSR_VERSION),
 340	IMMEDIATE_ATTR(model, CSR_MODEL),
 341	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
 342	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
 343	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
 344};
 345
 346static void init_fw_attribute_group(struct device *dev,
 347				    struct device_attribute *attrs,
 348				    struct fw_attribute_group *group)
 349{
 350	struct device_attribute *attr;
 351	int i, j;
 352
 353	for (j = 0; attrs[j].attr.name != NULL; j++)
 354		group->attrs[j] = &attrs[j].attr;
 355
 356	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
 357		attr = &config_rom_attributes[i].attr;
 358		if (attr->show(dev, attr, NULL) < 0)
 359			continue;
 360		group->attrs[j++] = &attr->attr;
 361	}
 362
 363	group->attrs[j] = NULL;
 364	group->groups[0] = &group->group;
 365	group->groups[1] = NULL;
 366	group->group.attrs = group->attrs;
 367	dev->groups = (const struct attribute_group **) group->groups;
 368}
 369
 370static ssize_t modalias_show(struct device *dev,
 371			     struct device_attribute *attr, char *buf)
 372{
 373	struct fw_unit *unit = fw_unit(dev);
 374	int length;
 375
 376	length = get_modalias(unit, buf, PAGE_SIZE);
 377	strcpy(buf + length, "\n");
 378
 379	return length + 1;
 380}
 381
 382static ssize_t rom_index_show(struct device *dev,
 383			      struct device_attribute *attr, char *buf)
 384{
 385	struct fw_device *device = fw_device(dev->parent);
 386	struct fw_unit *unit = fw_unit(dev);
 387
 388	return snprintf(buf, PAGE_SIZE, "%d\n",
 389			(int)(unit->directory - device->config_rom));
 390}
 391
 392static struct device_attribute fw_unit_attributes[] = {
 393	__ATTR_RO(modalias),
 394	__ATTR_RO(rom_index),
 395	__ATTR_NULL,
 396};
 397
 398static ssize_t config_rom_show(struct device *dev,
 399			       struct device_attribute *attr, char *buf)
 400{
 401	struct fw_device *device = fw_device(dev);
 402	size_t length;
 403
 404	down_read(&fw_device_rwsem);
 405	length = device->config_rom_length * 4;
 406	memcpy(buf, device->config_rom, length);
 407	up_read(&fw_device_rwsem);
 408
 409	return length;
 410}
 411
 412static ssize_t guid_show(struct device *dev,
 413			 struct device_attribute *attr, char *buf)
 414{
 415	struct fw_device *device = fw_device(dev);
 416	int ret;
 417
 418	down_read(&fw_device_rwsem);
 419	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
 420		       device->config_rom[3], device->config_rom[4]);
 421	up_read(&fw_device_rwsem);
 422
 423	return ret;
 424}
 425
 426static ssize_t is_local_show(struct device *dev,
 427			     struct device_attribute *attr, char *buf)
 428{
 429	struct fw_device *device = fw_device(dev);
 430
 431	return sprintf(buf, "%u\n", device->is_local);
 432}
 433
 434static int units_sprintf(char *buf, const u32 *directory)
 435{
 436	struct fw_csr_iterator ci;
 437	int key, value;
 438	int specifier_id = 0;
 439	int version = 0;
 440
 441	fw_csr_iterator_init(&ci, directory);
 442	while (fw_csr_iterator_next(&ci, &key, &value)) {
 443		switch (key) {
 444		case CSR_SPECIFIER_ID:
 445			specifier_id = value;
 446			break;
 447		case CSR_VERSION:
 448			version = value;
 449			break;
 450		}
 451	}
 452
 453	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
 454}
 455
 456static ssize_t units_show(struct device *dev,
 457			  struct device_attribute *attr, char *buf)
 458{
 459	struct fw_device *device = fw_device(dev);
 460	struct fw_csr_iterator ci;
 461	int key, value, i = 0;
 462
 463	down_read(&fw_device_rwsem);
 464	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 465	while (fw_csr_iterator_next(&ci, &key, &value)) {
 466		if (key != (CSR_UNIT | CSR_DIRECTORY))
 467			continue;
 468		i += units_sprintf(&buf[i], ci.p + value - 1);
 469		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
 470			break;
 471	}
 472	up_read(&fw_device_rwsem);
 473
 474	if (i)
 475		buf[i - 1] = '\n';
 476
 477	return i;
 478}
 479
 480static struct device_attribute fw_device_attributes[] = {
 481	__ATTR_RO(config_rom),
 482	__ATTR_RO(guid),
 483	__ATTR_RO(is_local),
 484	__ATTR_RO(units),
 485	__ATTR_NULL,
 486};
 487
 488static int read_rom(struct fw_device *device,
 489		    int generation, int index, u32 *data)
 490{
 491	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
 492	int i, rcode;
 493
 494	/* device->node_id, accessed below, must not be older than generation */
 495	smp_rmb();
 496
 497	for (i = 10; i < 100; i += 10) {
 498		rcode = fw_run_transaction(device->card,
 499				TCODE_READ_QUADLET_REQUEST, device->node_id,
 500				generation, device->max_speed, offset, data, 4);
 501		if (rcode != RCODE_BUSY)
 502			break;
 503		msleep(i);
 504	}
 505	be32_to_cpus(data);
 506
 507	return rcode;
 508}
 509
 510#define MAX_CONFIG_ROM_SIZE 256
 511
 512/*
 513 * Read the bus info block, perform a speed probe, and read all of the rest of
 514 * the config ROM.  We do all this with a cached bus generation.  If the bus
 515 * generation changes under us, read_config_rom will fail and get retried.
 516 * It's better to start all over in this case because the node from which we
 517 * are reading the ROM may have changed the ROM during the reset.
 518 * Returns either a result code or a negative error code.
 519 */
 520static int read_config_rom(struct fw_device *device, int generation)
 521{
 522	struct fw_card *card = device->card;
 523	const u32 *old_rom, *new_rom;
 524	u32 *rom, *stack;
 525	u32 sp, key;
 526	int i, end, length, ret;
 527
 528	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
 529		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
 530	if (rom == NULL)
 531		return -ENOMEM;
 532
 533	stack = &rom[MAX_CONFIG_ROM_SIZE];
 534	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
 535
 536	device->max_speed = SCODE_100;
 537
 538	/* First read the bus info block. */
 539	for (i = 0; i < 5; i++) {
 540		ret = read_rom(device, generation, i, &rom[i]);
 541		if (ret != RCODE_COMPLETE)
 542			goto out;
 543		/*
 544		 * As per IEEE1212 7.2, during initialization, devices can
 545		 * reply with a 0 for the first quadlet of the config
 546		 * rom to indicate that they are booting (for example,
 547		 * if the firmware is on the disk of a external
 548		 * harddisk).  In that case we just fail, and the
 549		 * retry mechanism will try again later.
 550		 */
 551		if (i == 0 && rom[i] == 0) {
 552			ret = RCODE_BUSY;
 553			goto out;
 554		}
 555	}
 556
 557	device->max_speed = device->node->max_speed;
 558
 559	/*
 560	 * Determine the speed of
 561	 *   - devices with link speed less than PHY speed,
 562	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
 563	 *   - all devices if there are 1394b repeaters.
 564	 * Note, we cannot use the bus info block's link_spd as starting point
 565	 * because some buggy firmwares set it lower than necessary and because
 566	 * 1394-1995 nodes do not have the field.
 567	 */
 568	if ((rom[2] & 0x7) < device->max_speed ||
 569	    device->max_speed == SCODE_BETA ||
 570	    card->beta_repeaters_present) {
 571		u32 dummy;
 572
 573		/* for S1600 and S3200 */
 574		if (device->max_speed == SCODE_BETA)
 575			device->max_speed = card->link_speed;
 576
 577		while (device->max_speed > SCODE_100) {
 578			if (read_rom(device, generation, 0, &dummy) ==
 579			    RCODE_COMPLETE)
 580				break;
 581			device->max_speed--;
 582		}
 583	}
 584
 585	/*
 586	 * Now parse the config rom.  The config rom is a recursive
 587	 * directory structure so we parse it using a stack of
 588	 * references to the blocks that make up the structure.  We
 589	 * push a reference to the root directory on the stack to
 590	 * start things off.
 591	 */
 592	length = i;
 593	sp = 0;
 594	stack[sp++] = 0xc0000005;
 595	while (sp > 0) {
 596		/*
 597		 * Pop the next block reference of the stack.  The
 598		 * lower 24 bits is the offset into the config rom,
 599		 * the upper 8 bits are the type of the reference the
 600		 * block.
 601		 */
 602		key = stack[--sp];
 603		i = key & 0xffffff;
 604		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
 605			ret = -ENXIO;
 606			goto out;
 607		}
 608
 609		/* Read header quadlet for the block to get the length. */
 610		ret = read_rom(device, generation, i, &rom[i]);
 611		if (ret != RCODE_COMPLETE)
 612			goto out;
 613		end = i + (rom[i] >> 16) + 1;
 614		if (end > MAX_CONFIG_ROM_SIZE) {
 615			/*
 616			 * This block extends outside the config ROM which is
 617			 * a firmware bug.  Ignore this whole block, i.e.
 618			 * simply set a fake block length of 0.
 619			 */
 620			fw_err(card, "skipped invalid ROM block %x at %llx\n",
 621			       rom[i],
 622			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 623			rom[i] = 0;
 624			end = i;
 625		}
 626		i++;
 627
 628		/*
 629		 * Now read in the block.  If this is a directory
 630		 * block, check the entries as we read them to see if
 631		 * it references another block, and push it in that case.
 632		 */
 633		for (; i < end; i++) {
 634			ret = read_rom(device, generation, i, &rom[i]);
 635			if (ret != RCODE_COMPLETE)
 636				goto out;
 637
 638			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
 639				continue;
 640			/*
 641			 * Offset points outside the ROM.  May be a firmware
 642			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
 643			 * 7.7.18).  Simply overwrite this pointer here by a
 644			 * fake immediate entry so that later iterators over
 645			 * the ROM don't have to check offsets all the time.
 646			 */
 647			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
 648				fw_err(card,
 649				       "skipped unsupported ROM entry %x at %llx\n",
 650				       rom[i],
 651				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 652				rom[i] = 0;
 653				continue;
 654			}
 655			stack[sp++] = i + rom[i];
 656		}
 657		if (length < i)
 658			length = i;
 659	}
 660
 661	old_rom = device->config_rom;
 662	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
 663	if (new_rom == NULL) {
 664		ret = -ENOMEM;
 665		goto out;
 666	}
 667
 668	down_write(&fw_device_rwsem);
 669	device->config_rom = new_rom;
 670	device->config_rom_length = length;
 671	up_write(&fw_device_rwsem);
 672
 673	kfree(old_rom);
 674	ret = RCODE_COMPLETE;
 675	device->max_rec	= rom[2] >> 12 & 0xf;
 676	device->cmc	= rom[2] >> 30 & 1;
 677	device->irmc	= rom[2] >> 31 & 1;
 678 out:
 679	kfree(rom);
 680
 681	return ret;
 682}
 683
 684static void fw_unit_release(struct device *dev)
 685{
 686	struct fw_unit *unit = fw_unit(dev);
 687
 688	fw_device_put(fw_parent_device(unit));
 689	kfree(unit);
 690}
 691
 692static struct device_type fw_unit_type = {
 693	.uevent		= fw_unit_uevent,
 694	.release	= fw_unit_release,
 695};
 696
 697static bool is_fw_unit(struct device *dev)
 698{
 699	return dev->type == &fw_unit_type;
 700}
 701
 702static void create_units(struct fw_device *device)
 703{
 704	struct fw_csr_iterator ci;
 705	struct fw_unit *unit;
 706	int key, value, i;
 707
 708	i = 0;
 709	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 710	while (fw_csr_iterator_next(&ci, &key, &value)) {
 711		if (key != (CSR_UNIT | CSR_DIRECTORY))
 712			continue;
 713
 714		/*
 715		 * Get the address of the unit directory and try to
 716		 * match the drivers id_tables against it.
 717		 */
 718		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
 719		if (unit == NULL)
 720			continue;
 721
 722		unit->directory = ci.p + value - 1;
 723		unit->device.bus = &fw_bus_type;
 724		unit->device.type = &fw_unit_type;
 725		unit->device.parent = &device->device;
 726		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
 727
 728		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
 729				ARRAY_SIZE(fw_unit_attributes) +
 730				ARRAY_SIZE(config_rom_attributes));
 731		init_fw_attribute_group(&unit->device,
 732					fw_unit_attributes,
 733					&unit->attribute_group);
 734
 735		if (device_register(&unit->device) < 0)
 736			goto skip_unit;
 737
 738		fw_device_get(device);
 739		continue;
 740
 741	skip_unit:
 742		kfree(unit);
 743	}
 744}
 745
 746static int shutdown_unit(struct device *device, void *data)
 747{
 748	device_unregister(device);
 749
 750	return 0;
 751}
 752
 753/*
 754 * fw_device_rwsem acts as dual purpose mutex:
 755 *   - serializes accesses to fw_device_idr,
 756 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 757 *     fw_unit.directory, unless those accesses happen at safe occasions
 758 */
 759DECLARE_RWSEM(fw_device_rwsem);
 760
 761DEFINE_IDR(fw_device_idr);
 762int fw_cdev_major;
 763
 764struct fw_device *fw_device_get_by_devt(dev_t devt)
 765{
 766	struct fw_device *device;
 767
 768	down_read(&fw_device_rwsem);
 769	device = idr_find(&fw_device_idr, MINOR(devt));
 770	if (device)
 771		fw_device_get(device);
 772	up_read(&fw_device_rwsem);
 773
 774	return device;
 775}
 776
 777struct workqueue_struct *fw_workqueue;
 778EXPORT_SYMBOL(fw_workqueue);
 779
 780static void fw_schedule_device_work(struct fw_device *device,
 781				    unsigned long delay)
 782{
 783	queue_delayed_work(fw_workqueue, &device->work, delay);
 784}
 785
 786/*
 787 * These defines control the retry behavior for reading the config
 788 * rom.  It shouldn't be necessary to tweak these; if the device
 789 * doesn't respond to a config rom read within 10 seconds, it's not
 790 * going to respond at all.  As for the initial delay, a lot of
 791 * devices will be able to respond within half a second after bus
 792 * reset.  On the other hand, it's not really worth being more
 793 * aggressive than that, since it scales pretty well; if 10 devices
 794 * are plugged in, they're all getting read within one second.
 795 */
 796
 797#define MAX_RETRIES	10
 798#define RETRY_DELAY	(3 * HZ)
 799#define INITIAL_DELAY	(HZ / 2)
 800#define SHUTDOWN_DELAY	(2 * HZ)
 801
 802static void fw_device_shutdown(struct work_struct *work)
 803{
 804	struct fw_device *device =
 805		container_of(work, struct fw_device, work.work);
 806	int minor = MINOR(device->device.devt);
 807
 808	if (time_before64(get_jiffies_64(),
 809			  device->card->reset_jiffies + SHUTDOWN_DELAY)
 810	    && !list_empty(&device->card->link)) {
 811		fw_schedule_device_work(device, SHUTDOWN_DELAY);
 812		return;
 813	}
 814
 815	if (atomic_cmpxchg(&device->state,
 816			   FW_DEVICE_GONE,
 817			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
 818		return;
 819
 820	fw_device_cdev_remove(device);
 821	device_for_each_child(&device->device, NULL, shutdown_unit);
 822	device_unregister(&device->device);
 823
 824	down_write(&fw_device_rwsem);
 825	idr_remove(&fw_device_idr, minor);
 826	up_write(&fw_device_rwsem);
 827
 828	fw_device_put(device);
 829}
 830
 831static void fw_device_release(struct device *dev)
 832{
 833	struct fw_device *device = fw_device(dev);
 834	struct fw_card *card = device->card;
 835	unsigned long flags;
 836
 837	/*
 838	 * Take the card lock so we don't set this to NULL while a
 839	 * FW_NODE_UPDATED callback is being handled or while the
 840	 * bus manager work looks at this node.
 841	 */
 842	spin_lock_irqsave(&card->lock, flags);
 843	device->node->data = NULL;
 844	spin_unlock_irqrestore(&card->lock, flags);
 845
 846	fw_node_put(device->node);
 847	kfree(device->config_rom);
 848	kfree(device);
 849	fw_card_put(card);
 850}
 851
 852static struct device_type fw_device_type = {
 853	.release = fw_device_release,
 854};
 855
 856static bool is_fw_device(struct device *dev)
 857{
 858	return dev->type == &fw_device_type;
 859}
 860
 861static int update_unit(struct device *dev, void *data)
 862{
 863	struct fw_unit *unit = fw_unit(dev);
 864	struct fw_driver *driver = (struct fw_driver *)dev->driver;
 865
 866	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
 867		device_lock(dev);
 868		driver->update(unit);
 869		device_unlock(dev);
 870	}
 871
 872	return 0;
 873}
 874
 875static void fw_device_update(struct work_struct *work)
 876{
 877	struct fw_device *device =
 878		container_of(work, struct fw_device, work.work);
 879
 880	fw_device_cdev_update(device);
 881	device_for_each_child(&device->device, NULL, update_unit);
 882}
 883
 884/*
 885 * If a device was pending for deletion because its node went away but its
 886 * bus info block and root directory header matches that of a newly discovered
 887 * device, revive the existing fw_device.
 888 * The newly allocated fw_device becomes obsolete instead.
 889 */
 890static int lookup_existing_device(struct device *dev, void *data)
 891{
 892	struct fw_device *old = fw_device(dev);
 893	struct fw_device *new = data;
 894	struct fw_card *card = new->card;
 895	int match = 0;
 896
 897	if (!is_fw_device(dev))
 898		return 0;
 899
 900	down_read(&fw_device_rwsem); /* serialize config_rom access */
 901	spin_lock_irq(&card->lock);  /* serialize node access */
 902
 903	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
 904	    atomic_cmpxchg(&old->state,
 905			   FW_DEVICE_GONE,
 906			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
 907		struct fw_node *current_node = new->node;
 908		struct fw_node *obsolete_node = old->node;
 909
 910		new->node = obsolete_node;
 911		new->node->data = new;
 912		old->node = current_node;
 913		old->node->data = old;
 914
 915		old->max_speed = new->max_speed;
 916		old->node_id = current_node->node_id;
 917		smp_wmb();  /* update node_id before generation */
 918		old->generation = card->generation;
 919		old->config_rom_retries = 0;
 920		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
 921
 922		old->workfn = fw_device_update;
 923		fw_schedule_device_work(old, 0);
 924
 925		if (current_node == card->root_node)
 926			fw_schedule_bm_work(card, 0);
 927
 928		match = 1;
 929	}
 930
 931	spin_unlock_irq(&card->lock);
 932	up_read(&fw_device_rwsem);
 933
 934	return match;
 935}
 936
 937enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
 938
 939static void set_broadcast_channel(struct fw_device *device, int generation)
 940{
 941	struct fw_card *card = device->card;
 942	__be32 data;
 943	int rcode;
 944
 945	if (!card->broadcast_channel_allocated)
 946		return;
 947
 948	/*
 949	 * The Broadcast_Channel Valid bit is required by nodes which want to
 950	 * transmit on this channel.  Such transmissions are practically
 951	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
 952	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
 953	 * to narrow down to which nodes we send Broadcast_Channel updates.
 954	 */
 955	if (!device->irmc || device->max_rec < 8)
 956		return;
 957
 958	/*
 959	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
 960	 * Perform a read test first.
 961	 */
 962	if (device->bc_implemented == BC_UNKNOWN) {
 963		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
 964				device->node_id, generation, device->max_speed,
 965				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 966				&data, 4);
 967		switch (rcode) {
 968		case RCODE_COMPLETE:
 969			if (data & cpu_to_be32(1 << 31)) {
 970				device->bc_implemented = BC_IMPLEMENTED;
 971				break;
 972			}
 973			/* else fall through to case address error */
 974		case RCODE_ADDRESS_ERROR:
 975			device->bc_implemented = BC_UNIMPLEMENTED;
 976		}
 977	}
 978
 979	if (device->bc_implemented == BC_IMPLEMENTED) {
 980		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
 981				   BROADCAST_CHANNEL_VALID);
 982		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 983				device->node_id, generation, device->max_speed,
 984				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 985				&data, 4);
 986	}
 987}
 988
 989int fw_device_set_broadcast_channel(struct device *dev, void *gen)
 990{
 991	if (is_fw_device(dev))
 992		set_broadcast_channel(fw_device(dev), (long)gen);
 993
 994	return 0;
 995}
 996
 997static void fw_device_init(struct work_struct *work)
 998{
 999	struct fw_device *device =
1000		container_of(work, struct fw_device, work.work);
1001	struct fw_card *card = device->card;
1002	struct device *revived_dev;
1003	int minor, ret;
1004
1005	/*
1006	 * All failure paths here set node->data to NULL, so that we
1007	 * don't try to do device_for_each_child() on a kfree()'d
1008	 * device.
1009	 */
1010
1011	ret = read_config_rom(device, device->generation);
1012	if (ret != RCODE_COMPLETE) {
1013		if (device->config_rom_retries < MAX_RETRIES &&
1014		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1015			device->config_rom_retries++;
1016			fw_schedule_device_work(device, RETRY_DELAY);
1017		} else {
1018			if (device->node->link_on)
1019				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1020					  device->node_id,
1021					  fw_rcode_string(ret));
1022			if (device->node == card->root_node)
1023				fw_schedule_bm_work(card, 0);
1024			fw_device_release(&device->device);
1025		}
1026		return;
1027	}
1028
1029	revived_dev = device_find_child(card->device,
1030					device, lookup_existing_device);
1031	if (revived_dev) {
1032		put_device(revived_dev);
1033		fw_device_release(&device->device);
1034
1035		return;
1036	}
1037
1038	device_initialize(&device->device);
1039
1040	fw_device_get(device);
1041	down_write(&fw_device_rwsem);
1042	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1043			GFP_KERNEL);
1044	up_write(&fw_device_rwsem);
1045
1046	if (minor < 0)
1047		goto error;
1048
1049	device->device.bus = &fw_bus_type;
1050	device->device.type = &fw_device_type;
1051	device->device.parent = card->device;
1052	device->device.devt = MKDEV(fw_cdev_major, minor);
1053	dev_set_name(&device->device, "fw%d", minor);
1054
1055	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1056			ARRAY_SIZE(fw_device_attributes) +
1057			ARRAY_SIZE(config_rom_attributes));
1058	init_fw_attribute_group(&device->device,
1059				fw_device_attributes,
1060				&device->attribute_group);
1061
1062	if (device_add(&device->device)) {
1063		fw_err(card, "failed to add device\n");
1064		goto error_with_cdev;
1065	}
1066
1067	create_units(device);
1068
1069	/*
1070	 * Transition the device to running state.  If it got pulled
1071	 * out from under us while we did the intialization work, we
1072	 * have to shut down the device again here.  Normally, though,
1073	 * fw_node_event will be responsible for shutting it down when
1074	 * necessary.  We have to use the atomic cmpxchg here to avoid
1075	 * racing with the FW_NODE_DESTROYED case in
1076	 * fw_node_event().
1077	 */
1078	if (atomic_cmpxchg(&device->state,
1079			   FW_DEVICE_INITIALIZING,
1080			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1081		device->workfn = fw_device_shutdown;
1082		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1083	} else {
1084		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1085			  dev_name(&device->device),
1086			  device->config_rom[3], device->config_rom[4],
1087			  1 << device->max_speed);
1088		device->config_rom_retries = 0;
1089
1090		set_broadcast_channel(device, device->generation);
1091
1092		add_device_randomness(&device->config_rom[3], 8);
1093	}
1094
1095	/*
1096	 * Reschedule the IRM work if we just finished reading the
1097	 * root node config rom.  If this races with a bus reset we
1098	 * just end up running the IRM work a couple of extra times -
1099	 * pretty harmless.
1100	 */
1101	if (device->node == card->root_node)
1102		fw_schedule_bm_work(card, 0);
1103
1104	return;
1105
1106 error_with_cdev:
1107	down_write(&fw_device_rwsem);
1108	idr_remove(&fw_device_idr, minor);
1109	up_write(&fw_device_rwsem);
1110 error:
1111	fw_device_put(device);		/* fw_device_idr's reference */
1112
1113	put_device(&device->device);	/* our reference */
1114}
1115
1116/* Reread and compare bus info block and header of root directory */
1117static int reread_config_rom(struct fw_device *device, int generation,
1118			     bool *changed)
1119{
1120	u32 q;
1121	int i, rcode;
1122
1123	for (i = 0; i < 6; i++) {
1124		rcode = read_rom(device, generation, i, &q);
1125		if (rcode != RCODE_COMPLETE)
1126			return rcode;
1127
1128		if (i == 0 && q == 0)
1129			/* inaccessible (see read_config_rom); retry later */
1130			return RCODE_BUSY;
1131
1132		if (q != device->config_rom[i]) {
1133			*changed = true;
1134			return RCODE_COMPLETE;
1135		}
1136	}
1137
1138	*changed = false;
1139	return RCODE_COMPLETE;
1140}
1141
1142static void fw_device_refresh(struct work_struct *work)
1143{
1144	struct fw_device *device =
1145		container_of(work, struct fw_device, work.work);
1146	struct fw_card *card = device->card;
1147	int ret, node_id = device->node_id;
1148	bool changed;
1149
1150	ret = reread_config_rom(device, device->generation, &changed);
1151	if (ret != RCODE_COMPLETE)
1152		goto failed_config_rom;
1153
1154	if (!changed) {
1155		if (atomic_cmpxchg(&device->state,
1156				   FW_DEVICE_INITIALIZING,
1157				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1158			goto gone;
1159
1160		fw_device_update(work);
1161		device->config_rom_retries = 0;
1162		goto out;
1163	}
1164
1165	/*
1166	 * Something changed.  We keep things simple and don't investigate
1167	 * further.  We just destroy all previous units and create new ones.
1168	 */
1169	device_for_each_child(&device->device, NULL, shutdown_unit);
1170
1171	ret = read_config_rom(device, device->generation);
1172	if (ret != RCODE_COMPLETE)
1173		goto failed_config_rom;
1174
1175	fw_device_cdev_update(device);
1176	create_units(device);
1177
1178	/* Userspace may want to re-read attributes. */
1179	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1180
1181	if (atomic_cmpxchg(&device->state,
1182			   FW_DEVICE_INITIALIZING,
1183			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1184		goto gone;
1185
1186	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1187	device->config_rom_retries = 0;
1188	goto out;
1189
1190 failed_config_rom:
1191	if (device->config_rom_retries < MAX_RETRIES &&
1192	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1193		device->config_rom_retries++;
1194		fw_schedule_device_work(device, RETRY_DELAY);
1195		return;
1196	}
1197
1198	fw_notice(card, "giving up on refresh of device %s: %s\n",
1199		  dev_name(&device->device), fw_rcode_string(ret));
1200 gone:
1201	atomic_set(&device->state, FW_DEVICE_GONE);
1202	device->workfn = fw_device_shutdown;
1203	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1204 out:
1205	if (node_id == card->root_node->node_id)
1206		fw_schedule_bm_work(card, 0);
1207}
1208
1209static void fw_device_workfn(struct work_struct *work)
1210{
1211	struct fw_device *device = container_of(to_delayed_work(work),
1212						struct fw_device, work);
1213	device->workfn(work);
1214}
1215
1216void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1217{
1218	struct fw_device *device;
1219
1220	switch (event) {
1221	case FW_NODE_CREATED:
1222		/*
1223		 * Attempt to scan the node, regardless whether its self ID has
1224		 * the L (link active) flag set or not.  Some broken devices
1225		 * send L=0 but have an up-and-running link; others send L=1
1226		 * without actually having a link.
1227		 */
1228 create:
1229		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1230		if (device == NULL)
1231			break;
1232
1233		/*
1234		 * Do minimal intialization of the device here, the
1235		 * rest will happen in fw_device_init().
1236		 *
1237		 * Attention:  A lot of things, even fw_device_get(),
1238		 * cannot be done before fw_device_init() finished!
1239		 * You can basically just check device->state and
1240		 * schedule work until then, but only while holding
1241		 * card->lock.
1242		 */
1243		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1244		device->card = fw_card_get(card);
1245		device->node = fw_node_get(node);
1246		device->node_id = node->node_id;
1247		device->generation = card->generation;
1248		device->is_local = node == card->local_node;
1249		mutex_init(&device->client_list_mutex);
1250		INIT_LIST_HEAD(&device->client_list);
1251
1252		/*
1253		 * Set the node data to point back to this device so
1254		 * FW_NODE_UPDATED callbacks can update the node_id
1255		 * and generation for the device.
1256		 */
1257		node->data = device;
1258
1259		/*
1260		 * Many devices are slow to respond after bus resets,
1261		 * especially if they are bus powered and go through
1262		 * power-up after getting plugged in.  We schedule the
1263		 * first config rom scan half a second after bus reset.
1264		 */
1265		device->workfn = fw_device_init;
1266		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1267		fw_schedule_device_work(device, INITIAL_DELAY);
1268		break;
1269
1270	case FW_NODE_INITIATED_RESET:
1271	case FW_NODE_LINK_ON:
1272		device = node->data;
1273		if (device == NULL)
1274			goto create;
1275
1276		device->node_id = node->node_id;
1277		smp_wmb();  /* update node_id before generation */
1278		device->generation = card->generation;
1279		if (atomic_cmpxchg(&device->state,
1280			    FW_DEVICE_RUNNING,
1281			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1282			device->workfn = fw_device_refresh;
1283			fw_schedule_device_work(device,
1284				device->is_local ? 0 : INITIAL_DELAY);
1285		}
1286		break;
1287
1288	case FW_NODE_UPDATED:
1289		device = node->data;
1290		if (device == NULL)
1291			break;
1292
1293		device->node_id = node->node_id;
1294		smp_wmb();  /* update node_id before generation */
1295		device->generation = card->generation;
1296		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1297			device->workfn = fw_device_update;
1298			fw_schedule_device_work(device, 0);
1299		}
1300		break;
1301
1302	case FW_NODE_DESTROYED:
1303	case FW_NODE_LINK_OFF:
1304		if (!node->data)
1305			break;
1306
1307		/*
1308		 * Destroy the device associated with the node.  There
1309		 * are two cases here: either the device is fully
1310		 * initialized (FW_DEVICE_RUNNING) or we're in the
1311		 * process of reading its config rom
1312		 * (FW_DEVICE_INITIALIZING).  If it is fully
1313		 * initialized we can reuse device->work to schedule a
1314		 * full fw_device_shutdown().  If not, there's work
1315		 * scheduled to read it's config rom, and we just put
1316		 * the device in shutdown state to have that code fail
1317		 * to create the device.
1318		 */
1319		device = node->data;
1320		if (atomic_xchg(&device->state,
1321				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1322			device->workfn = fw_device_shutdown;
1323			fw_schedule_device_work(device,
1324				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1325		}
1326		break;
1327	}
1328}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Device probing and sysfs code.
   4 *
   5 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/ctype.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/errno.h>
  13#include <linux/firewire.h>
  14#include <linux/firewire-constants.h>
  15#include <linux/idr.h>
  16#include <linux/jiffies.h>
  17#include <linux/kobject.h>
  18#include <linux/list.h>
  19#include <linux/mod_devicetable.h>
  20#include <linux/module.h>
  21#include <linux/mutex.h>
  22#include <linux/random.h>
  23#include <linux/rwsem.h>
  24#include <linux/slab.h>
  25#include <linux/spinlock.h>
  26#include <linux/string.h>
  27#include <linux/workqueue.h>
  28
  29#include <linux/atomic.h>
  30#include <asm/byteorder.h>
  31
  32#include "core.h"
  33
  34void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  35{
  36	ci->p = p + 1;
  37	ci->end = ci->p + (p[0] >> 16);
  38}
  39EXPORT_SYMBOL(fw_csr_iterator_init);
  40
  41int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  42{
  43	*key = *ci->p >> 24;
  44	*value = *ci->p & 0xffffff;
  45
  46	return ci->p++ < ci->end;
  47}
  48EXPORT_SYMBOL(fw_csr_iterator_next);
  49
  50static const u32 *search_leaf(const u32 *directory, int search_key)
  51{
  52	struct fw_csr_iterator ci;
  53	int last_key = 0, key, value;
  54
  55	fw_csr_iterator_init(&ci, directory);
  56	while (fw_csr_iterator_next(&ci, &key, &value)) {
  57		if (last_key == search_key &&
  58		    key == (CSR_DESCRIPTOR | CSR_LEAF))
  59			return ci.p - 1 + value;
  60
  61		last_key = key;
  62	}
  63
  64	return NULL;
  65}
  66
  67static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  68{
  69	unsigned int quadlets, i;
  70	char c;
  71
  72	if (!size || !buf)
  73		return -EINVAL;
  74
  75	quadlets = min(block[0] >> 16, 256U);
  76	if (quadlets < 2)
  77		return -ENODATA;
  78
  79	if (block[1] != 0 || block[2] != 0)
  80		/* unknown language/character set */
  81		return -ENODATA;
  82
  83	block += 3;
  84	quadlets -= 2;
  85	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  86		c = block[i / 4] >> (24 - 8 * (i % 4));
  87		if (c == '\0')
  88			break;
  89		buf[i] = c;
  90	}
  91	buf[i] = '\0';
  92
  93	return i;
  94}
  95
  96/**
  97 * fw_csr_string() - reads a string from the configuration ROM
  98 * @directory:	e.g. root directory or unit directory
  99 * @key:	the key of the preceding directory entry
 100 * @buf:	where to put the string
 101 * @size:	size of @buf, in bytes
 102 *
 103 * The string is taken from a minimal ASCII text descriptor leaf after
 104 * the immediate entry with @key.  The string is zero-terminated.
 105 * An overlong string is silently truncated such that it and the
 106 * zero byte fit into @size.
 107 *
 108 * Returns strlen(buf) or a negative error code.
 109 */
 110int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
 111{
 112	const u32 *leaf = search_leaf(directory, key);
 113	if (!leaf)
 114		return -ENOENT;
 115
 116	return textual_leaf_to_string(leaf, buf, size);
 117}
 118EXPORT_SYMBOL(fw_csr_string);
 119
 120static void get_ids(const u32 *directory, int *id)
 121{
 122	struct fw_csr_iterator ci;
 123	int key, value;
 124
 125	fw_csr_iterator_init(&ci, directory);
 126	while (fw_csr_iterator_next(&ci, &key, &value)) {
 127		switch (key) {
 128		case CSR_VENDOR:	id[0] = value; break;
 129		case CSR_MODEL:		id[1] = value; break;
 130		case CSR_SPECIFIER_ID:	id[2] = value; break;
 131		case CSR_VERSION:	id[3] = value; break;
 132		}
 133	}
 134}
 135
 136static void get_modalias_ids(struct fw_unit *unit, int *id)
 137{
 138	get_ids(&fw_parent_device(unit)->config_rom[5], id);
 139	get_ids(unit->directory, id);
 140}
 141
 142static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
 143{
 144	int match = 0;
 145
 146	if (id[0] == id_table->vendor_id)
 147		match |= IEEE1394_MATCH_VENDOR_ID;
 148	if (id[1] == id_table->model_id)
 149		match |= IEEE1394_MATCH_MODEL_ID;
 150	if (id[2] == id_table->specifier_id)
 151		match |= IEEE1394_MATCH_SPECIFIER_ID;
 152	if (id[3] == id_table->version)
 153		match |= IEEE1394_MATCH_VERSION;
 154
 155	return (match & id_table->match_flags) == id_table->match_flags;
 156}
 157
 158static const struct ieee1394_device_id *unit_match(struct device *dev,
 159						   struct device_driver *drv)
 160{
 161	const struct ieee1394_device_id *id_table =
 162			container_of(drv, struct fw_driver, driver)->id_table;
 163	int id[] = {0, 0, 0, 0};
 164
 165	get_modalias_ids(fw_unit(dev), id);
 166
 167	for (; id_table->match_flags != 0; id_table++)
 168		if (match_ids(id_table, id))
 169			return id_table;
 170
 171	return NULL;
 172}
 173
 174static bool is_fw_unit(struct device *dev);
 175
 176static int fw_unit_match(struct device *dev, struct device_driver *drv)
 177{
 178	/* We only allow binding to fw_units. */
 179	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
 180}
 181
 182static int fw_unit_probe(struct device *dev)
 183{
 184	struct fw_driver *driver =
 185			container_of(dev->driver, struct fw_driver, driver);
 186
 187	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
 188}
 189
 190static int fw_unit_remove(struct device *dev)
 191{
 192	struct fw_driver *driver =
 193			container_of(dev->driver, struct fw_driver, driver);
 194
 195	driver->remove(fw_unit(dev));
 196
 197	return 0;
 198}
 199
 200static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
 201{
 202	int id[] = {0, 0, 0, 0};
 203
 204	get_modalias_ids(unit, id);
 205
 206	return snprintf(buffer, buffer_size,
 207			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
 208			id[0], id[1], id[2], id[3]);
 209}
 210
 211static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
 212{
 213	struct fw_unit *unit = fw_unit(dev);
 214	char modalias[64];
 215
 216	get_modalias(unit, modalias, sizeof(modalias));
 217
 218	if (add_uevent_var(env, "MODALIAS=%s", modalias))
 219		return -ENOMEM;
 220
 221	return 0;
 222}
 223
 224struct bus_type fw_bus_type = {
 225	.name = "firewire",
 226	.match = fw_unit_match,
 227	.probe = fw_unit_probe,
 228	.remove = fw_unit_remove,
 229};
 230EXPORT_SYMBOL(fw_bus_type);
 231
 232int fw_device_enable_phys_dma(struct fw_device *device)
 233{
 234	int generation = device->generation;
 235
 236	/* device->node_id, accessed below, must not be older than generation */
 237	smp_rmb();
 238
 239	return device->card->driver->enable_phys_dma(device->card,
 240						     device->node_id,
 241						     generation);
 242}
 243EXPORT_SYMBOL(fw_device_enable_phys_dma);
 244
 245struct config_rom_attribute {
 246	struct device_attribute attr;
 247	u32 key;
 248};
 249
 250static ssize_t show_immediate(struct device *dev,
 251			      struct device_attribute *dattr, char *buf)
 252{
 253	struct config_rom_attribute *attr =
 254		container_of(dattr, struct config_rom_attribute, attr);
 255	struct fw_csr_iterator ci;
 256	const u32 *dir;
 257	int key, value, ret = -ENOENT;
 258
 259	down_read(&fw_device_rwsem);
 260
 261	if (is_fw_unit(dev))
 262		dir = fw_unit(dev)->directory;
 263	else
 264		dir = fw_device(dev)->config_rom + 5;
 265
 266	fw_csr_iterator_init(&ci, dir);
 267	while (fw_csr_iterator_next(&ci, &key, &value))
 268		if (attr->key == key) {
 269			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
 270				       "0x%06x\n", value);
 271			break;
 272		}
 273
 274	up_read(&fw_device_rwsem);
 275
 276	return ret;
 277}
 278
 279#define IMMEDIATE_ATTR(name, key)				\
 280	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
 281
 282static ssize_t show_text_leaf(struct device *dev,
 283			      struct device_attribute *dattr, char *buf)
 284{
 285	struct config_rom_attribute *attr =
 286		container_of(dattr, struct config_rom_attribute, attr);
 287	const u32 *dir;
 288	size_t bufsize;
 289	char dummy_buf[2];
 290	int ret;
 291
 292	down_read(&fw_device_rwsem);
 293
 294	if (is_fw_unit(dev))
 295		dir = fw_unit(dev)->directory;
 296	else
 297		dir = fw_device(dev)->config_rom + 5;
 298
 299	if (buf) {
 300		bufsize = PAGE_SIZE - 1;
 301	} else {
 302		buf = dummy_buf;
 303		bufsize = 1;
 304	}
 305
 306	ret = fw_csr_string(dir, attr->key, buf, bufsize);
 307
 308	if (ret >= 0) {
 309		/* Strip trailing whitespace and add newline. */
 310		while (ret > 0 && isspace(buf[ret - 1]))
 311			ret--;
 312		strcpy(buf + ret, "\n");
 313		ret++;
 314	}
 315
 316	up_read(&fw_device_rwsem);
 317
 318	return ret;
 319}
 320
 321#define TEXT_LEAF_ATTR(name, key)				\
 322	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
 323
 324static struct config_rom_attribute config_rom_attributes[] = {
 325	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
 326	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
 327	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
 328	IMMEDIATE_ATTR(version, CSR_VERSION),
 329	IMMEDIATE_ATTR(model, CSR_MODEL),
 330	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
 331	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
 332	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
 333};
 334
 335static void init_fw_attribute_group(struct device *dev,
 336				    struct device_attribute *attrs,
 337				    struct fw_attribute_group *group)
 338{
 339	struct device_attribute *attr;
 340	int i, j;
 341
 342	for (j = 0; attrs[j].attr.name != NULL; j++)
 343		group->attrs[j] = &attrs[j].attr;
 344
 345	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
 346		attr = &config_rom_attributes[i].attr;
 347		if (attr->show(dev, attr, NULL) < 0)
 348			continue;
 349		group->attrs[j++] = &attr->attr;
 350	}
 351
 352	group->attrs[j] = NULL;
 353	group->groups[0] = &group->group;
 354	group->groups[1] = NULL;
 355	group->group.attrs = group->attrs;
 356	dev->groups = (const struct attribute_group **) group->groups;
 357}
 358
 359static ssize_t modalias_show(struct device *dev,
 360			     struct device_attribute *attr, char *buf)
 361{
 362	struct fw_unit *unit = fw_unit(dev);
 363	int length;
 364
 365	length = get_modalias(unit, buf, PAGE_SIZE);
 366	strcpy(buf + length, "\n");
 367
 368	return length + 1;
 369}
 370
 371static ssize_t rom_index_show(struct device *dev,
 372			      struct device_attribute *attr, char *buf)
 373{
 374	struct fw_device *device = fw_device(dev->parent);
 375	struct fw_unit *unit = fw_unit(dev);
 376
 377	return snprintf(buf, PAGE_SIZE, "%d\n",
 378			(int)(unit->directory - device->config_rom));
 379}
 380
 381static struct device_attribute fw_unit_attributes[] = {
 382	__ATTR_RO(modalias),
 383	__ATTR_RO(rom_index),
 384	__ATTR_NULL,
 385};
 386
 387static ssize_t config_rom_show(struct device *dev,
 388			       struct device_attribute *attr, char *buf)
 389{
 390	struct fw_device *device = fw_device(dev);
 391	size_t length;
 392
 393	down_read(&fw_device_rwsem);
 394	length = device->config_rom_length * 4;
 395	memcpy(buf, device->config_rom, length);
 396	up_read(&fw_device_rwsem);
 397
 398	return length;
 399}
 400
 401static ssize_t guid_show(struct device *dev,
 402			 struct device_attribute *attr, char *buf)
 403{
 404	struct fw_device *device = fw_device(dev);
 405	int ret;
 406
 407	down_read(&fw_device_rwsem);
 408	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
 409		       device->config_rom[3], device->config_rom[4]);
 410	up_read(&fw_device_rwsem);
 411
 412	return ret;
 413}
 414
 415static ssize_t is_local_show(struct device *dev,
 416			     struct device_attribute *attr, char *buf)
 417{
 418	struct fw_device *device = fw_device(dev);
 419
 420	return sprintf(buf, "%u\n", device->is_local);
 421}
 422
 423static int units_sprintf(char *buf, const u32 *directory)
 424{
 425	struct fw_csr_iterator ci;
 426	int key, value;
 427	int specifier_id = 0;
 428	int version = 0;
 429
 430	fw_csr_iterator_init(&ci, directory);
 431	while (fw_csr_iterator_next(&ci, &key, &value)) {
 432		switch (key) {
 433		case CSR_SPECIFIER_ID:
 434			specifier_id = value;
 435			break;
 436		case CSR_VERSION:
 437			version = value;
 438			break;
 439		}
 440	}
 441
 442	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
 443}
 444
 445static ssize_t units_show(struct device *dev,
 446			  struct device_attribute *attr, char *buf)
 447{
 448	struct fw_device *device = fw_device(dev);
 449	struct fw_csr_iterator ci;
 450	int key, value, i = 0;
 451
 452	down_read(&fw_device_rwsem);
 453	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 454	while (fw_csr_iterator_next(&ci, &key, &value)) {
 455		if (key != (CSR_UNIT | CSR_DIRECTORY))
 456			continue;
 457		i += units_sprintf(&buf[i], ci.p + value - 1);
 458		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
 459			break;
 460	}
 461	up_read(&fw_device_rwsem);
 462
 463	if (i)
 464		buf[i - 1] = '\n';
 465
 466	return i;
 467}
 468
 469static struct device_attribute fw_device_attributes[] = {
 470	__ATTR_RO(config_rom),
 471	__ATTR_RO(guid),
 472	__ATTR_RO(is_local),
 473	__ATTR_RO(units),
 474	__ATTR_NULL,
 475};
 476
 477static int read_rom(struct fw_device *device,
 478		    int generation, int index, u32 *data)
 479{
 480	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
 481	int i, rcode;
 482
 483	/* device->node_id, accessed below, must not be older than generation */
 484	smp_rmb();
 485
 486	for (i = 10; i < 100; i += 10) {
 487		rcode = fw_run_transaction(device->card,
 488				TCODE_READ_QUADLET_REQUEST, device->node_id,
 489				generation, device->max_speed, offset, data, 4);
 490		if (rcode != RCODE_BUSY)
 491			break;
 492		msleep(i);
 493	}
 494	be32_to_cpus(data);
 495
 496	return rcode;
 497}
 498
 499#define MAX_CONFIG_ROM_SIZE 256
 500
 501/*
 502 * Read the bus info block, perform a speed probe, and read all of the rest of
 503 * the config ROM.  We do all this with a cached bus generation.  If the bus
 504 * generation changes under us, read_config_rom will fail and get retried.
 505 * It's better to start all over in this case because the node from which we
 506 * are reading the ROM may have changed the ROM during the reset.
 507 * Returns either a result code or a negative error code.
 508 */
 509static int read_config_rom(struct fw_device *device, int generation)
 510{
 511	struct fw_card *card = device->card;
 512	const u32 *old_rom, *new_rom;
 513	u32 *rom, *stack;
 514	u32 sp, key;
 515	int i, end, length, ret;
 516
 517	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
 518		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
 519	if (rom == NULL)
 520		return -ENOMEM;
 521
 522	stack = &rom[MAX_CONFIG_ROM_SIZE];
 523	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
 524
 525	device->max_speed = SCODE_100;
 526
 527	/* First read the bus info block. */
 528	for (i = 0; i < 5; i++) {
 529		ret = read_rom(device, generation, i, &rom[i]);
 530		if (ret != RCODE_COMPLETE)
 531			goto out;
 532		/*
 533		 * As per IEEE1212 7.2, during initialization, devices can
 534		 * reply with a 0 for the first quadlet of the config
 535		 * rom to indicate that they are booting (for example,
 536		 * if the firmware is on the disk of a external
 537		 * harddisk).  In that case we just fail, and the
 538		 * retry mechanism will try again later.
 539		 */
 540		if (i == 0 && rom[i] == 0) {
 541			ret = RCODE_BUSY;
 542			goto out;
 543		}
 544	}
 545
 546	device->max_speed = device->node->max_speed;
 547
 548	/*
 549	 * Determine the speed of
 550	 *   - devices with link speed less than PHY speed,
 551	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
 552	 *   - all devices if there are 1394b repeaters.
 553	 * Note, we cannot use the bus info block's link_spd as starting point
 554	 * because some buggy firmwares set it lower than necessary and because
 555	 * 1394-1995 nodes do not have the field.
 556	 */
 557	if ((rom[2] & 0x7) < device->max_speed ||
 558	    device->max_speed == SCODE_BETA ||
 559	    card->beta_repeaters_present) {
 560		u32 dummy;
 561
 562		/* for S1600 and S3200 */
 563		if (device->max_speed == SCODE_BETA)
 564			device->max_speed = card->link_speed;
 565
 566		while (device->max_speed > SCODE_100) {
 567			if (read_rom(device, generation, 0, &dummy) ==
 568			    RCODE_COMPLETE)
 569				break;
 570			device->max_speed--;
 571		}
 572	}
 573
 574	/*
 575	 * Now parse the config rom.  The config rom is a recursive
 576	 * directory structure so we parse it using a stack of
 577	 * references to the blocks that make up the structure.  We
 578	 * push a reference to the root directory on the stack to
 579	 * start things off.
 580	 */
 581	length = i;
 582	sp = 0;
 583	stack[sp++] = 0xc0000005;
 584	while (sp > 0) {
 585		/*
 586		 * Pop the next block reference of the stack.  The
 587		 * lower 24 bits is the offset into the config rom,
 588		 * the upper 8 bits are the type of the reference the
 589		 * block.
 590		 */
 591		key = stack[--sp];
 592		i = key & 0xffffff;
 593		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
 594			ret = -ENXIO;
 595			goto out;
 596		}
 597
 598		/* Read header quadlet for the block to get the length. */
 599		ret = read_rom(device, generation, i, &rom[i]);
 600		if (ret != RCODE_COMPLETE)
 601			goto out;
 602		end = i + (rom[i] >> 16) + 1;
 603		if (end > MAX_CONFIG_ROM_SIZE) {
 604			/*
 605			 * This block extends outside the config ROM which is
 606			 * a firmware bug.  Ignore this whole block, i.e.
 607			 * simply set a fake block length of 0.
 608			 */
 609			fw_err(card, "skipped invalid ROM block %x at %llx\n",
 610			       rom[i],
 611			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 612			rom[i] = 0;
 613			end = i;
 614		}
 615		i++;
 616
 617		/*
 618		 * Now read in the block.  If this is a directory
 619		 * block, check the entries as we read them to see if
 620		 * it references another block, and push it in that case.
 621		 */
 622		for (; i < end; i++) {
 623			ret = read_rom(device, generation, i, &rom[i]);
 624			if (ret != RCODE_COMPLETE)
 625				goto out;
 626
 627			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
 628				continue;
 629			/*
 630			 * Offset points outside the ROM.  May be a firmware
 631			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
 632			 * 7.7.18).  Simply overwrite this pointer here by a
 633			 * fake immediate entry so that later iterators over
 634			 * the ROM don't have to check offsets all the time.
 635			 */
 636			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
 637				fw_err(card,
 638				       "skipped unsupported ROM entry %x at %llx\n",
 639				       rom[i],
 640				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 641				rom[i] = 0;
 642				continue;
 643			}
 644			stack[sp++] = i + rom[i];
 645		}
 646		if (length < i)
 647			length = i;
 648	}
 649
 650	old_rom = device->config_rom;
 651	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
 652	if (new_rom == NULL) {
 653		ret = -ENOMEM;
 654		goto out;
 655	}
 656
 657	down_write(&fw_device_rwsem);
 658	device->config_rom = new_rom;
 659	device->config_rom_length = length;
 660	up_write(&fw_device_rwsem);
 661
 662	kfree(old_rom);
 663	ret = RCODE_COMPLETE;
 664	device->max_rec	= rom[2] >> 12 & 0xf;
 665	device->cmc	= rom[2] >> 30 & 1;
 666	device->irmc	= rom[2] >> 31 & 1;
 667 out:
 668	kfree(rom);
 669
 670	return ret;
 671}
 672
 673static void fw_unit_release(struct device *dev)
 674{
 675	struct fw_unit *unit = fw_unit(dev);
 676
 677	fw_device_put(fw_parent_device(unit));
 678	kfree(unit);
 679}
 680
 681static struct device_type fw_unit_type = {
 682	.uevent		= fw_unit_uevent,
 683	.release	= fw_unit_release,
 684};
 685
 686static bool is_fw_unit(struct device *dev)
 687{
 688	return dev->type == &fw_unit_type;
 689}
 690
 691static void create_units(struct fw_device *device)
 692{
 693	struct fw_csr_iterator ci;
 694	struct fw_unit *unit;
 695	int key, value, i;
 696
 697	i = 0;
 698	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 699	while (fw_csr_iterator_next(&ci, &key, &value)) {
 700		if (key != (CSR_UNIT | CSR_DIRECTORY))
 701			continue;
 702
 703		/*
 704		 * Get the address of the unit directory and try to
 705		 * match the drivers id_tables against it.
 706		 */
 707		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
 708		if (unit == NULL)
 709			continue;
 710
 711		unit->directory = ci.p + value - 1;
 712		unit->device.bus = &fw_bus_type;
 713		unit->device.type = &fw_unit_type;
 714		unit->device.parent = &device->device;
 715		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
 716
 717		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
 718				ARRAY_SIZE(fw_unit_attributes) +
 719				ARRAY_SIZE(config_rom_attributes));
 720		init_fw_attribute_group(&unit->device,
 721					fw_unit_attributes,
 722					&unit->attribute_group);
 723
 724		if (device_register(&unit->device) < 0)
 725			goto skip_unit;
 726
 727		fw_device_get(device);
 728		continue;
 729
 730	skip_unit:
 731		kfree(unit);
 732	}
 733}
 734
 735static int shutdown_unit(struct device *device, void *data)
 736{
 737	device_unregister(device);
 738
 739	return 0;
 740}
 741
 742/*
 743 * fw_device_rwsem acts as dual purpose mutex:
 744 *   - serializes accesses to fw_device_idr,
 745 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 746 *     fw_unit.directory, unless those accesses happen at safe occasions
 747 */
 748DECLARE_RWSEM(fw_device_rwsem);
 749
 750DEFINE_IDR(fw_device_idr);
 751int fw_cdev_major;
 752
 753struct fw_device *fw_device_get_by_devt(dev_t devt)
 754{
 755	struct fw_device *device;
 756
 757	down_read(&fw_device_rwsem);
 758	device = idr_find(&fw_device_idr, MINOR(devt));
 759	if (device)
 760		fw_device_get(device);
 761	up_read(&fw_device_rwsem);
 762
 763	return device;
 764}
 765
 766struct workqueue_struct *fw_workqueue;
 767EXPORT_SYMBOL(fw_workqueue);
 768
 769static void fw_schedule_device_work(struct fw_device *device,
 770				    unsigned long delay)
 771{
 772	queue_delayed_work(fw_workqueue, &device->work, delay);
 773}
 774
 775/*
 776 * These defines control the retry behavior for reading the config
 777 * rom.  It shouldn't be necessary to tweak these; if the device
 778 * doesn't respond to a config rom read within 10 seconds, it's not
 779 * going to respond at all.  As for the initial delay, a lot of
 780 * devices will be able to respond within half a second after bus
 781 * reset.  On the other hand, it's not really worth being more
 782 * aggressive than that, since it scales pretty well; if 10 devices
 783 * are plugged in, they're all getting read within one second.
 784 */
 785
 786#define MAX_RETRIES	10
 787#define RETRY_DELAY	(3 * HZ)
 788#define INITIAL_DELAY	(HZ / 2)
 789#define SHUTDOWN_DELAY	(2 * HZ)
 790
 791static void fw_device_shutdown(struct work_struct *work)
 792{
 793	struct fw_device *device =
 794		container_of(work, struct fw_device, work.work);
 795	int minor = MINOR(device->device.devt);
 796
 797	if (time_before64(get_jiffies_64(),
 798			  device->card->reset_jiffies + SHUTDOWN_DELAY)
 799	    && !list_empty(&device->card->link)) {
 800		fw_schedule_device_work(device, SHUTDOWN_DELAY);
 801		return;
 802	}
 803
 804	if (atomic_cmpxchg(&device->state,
 805			   FW_DEVICE_GONE,
 806			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
 807		return;
 808
 809	fw_device_cdev_remove(device);
 810	device_for_each_child(&device->device, NULL, shutdown_unit);
 811	device_unregister(&device->device);
 812
 813	down_write(&fw_device_rwsem);
 814	idr_remove(&fw_device_idr, minor);
 815	up_write(&fw_device_rwsem);
 816
 817	fw_device_put(device);
 818}
 819
 820static void fw_device_release(struct device *dev)
 821{
 822	struct fw_device *device = fw_device(dev);
 823	struct fw_card *card = device->card;
 824	unsigned long flags;
 825
 826	/*
 827	 * Take the card lock so we don't set this to NULL while a
 828	 * FW_NODE_UPDATED callback is being handled or while the
 829	 * bus manager work looks at this node.
 830	 */
 831	spin_lock_irqsave(&card->lock, flags);
 832	device->node->data = NULL;
 833	spin_unlock_irqrestore(&card->lock, flags);
 834
 835	fw_node_put(device->node);
 836	kfree(device->config_rom);
 837	kfree(device);
 838	fw_card_put(card);
 839}
 840
 841static struct device_type fw_device_type = {
 842	.release = fw_device_release,
 843};
 844
 845static bool is_fw_device(struct device *dev)
 846{
 847	return dev->type == &fw_device_type;
 848}
 849
 850static int update_unit(struct device *dev, void *data)
 851{
 852	struct fw_unit *unit = fw_unit(dev);
 853	struct fw_driver *driver = (struct fw_driver *)dev->driver;
 854
 855	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
 856		device_lock(dev);
 857		driver->update(unit);
 858		device_unlock(dev);
 859	}
 860
 861	return 0;
 862}
 863
 864static void fw_device_update(struct work_struct *work)
 865{
 866	struct fw_device *device =
 867		container_of(work, struct fw_device, work.work);
 868
 869	fw_device_cdev_update(device);
 870	device_for_each_child(&device->device, NULL, update_unit);
 871}
 872
 873/*
 874 * If a device was pending for deletion because its node went away but its
 875 * bus info block and root directory header matches that of a newly discovered
 876 * device, revive the existing fw_device.
 877 * The newly allocated fw_device becomes obsolete instead.
 878 */
 879static int lookup_existing_device(struct device *dev, void *data)
 880{
 881	struct fw_device *old = fw_device(dev);
 882	struct fw_device *new = data;
 883	struct fw_card *card = new->card;
 884	int match = 0;
 885
 886	if (!is_fw_device(dev))
 887		return 0;
 888
 889	down_read(&fw_device_rwsem); /* serialize config_rom access */
 890	spin_lock_irq(&card->lock);  /* serialize node access */
 891
 892	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
 893	    atomic_cmpxchg(&old->state,
 894			   FW_DEVICE_GONE,
 895			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
 896		struct fw_node *current_node = new->node;
 897		struct fw_node *obsolete_node = old->node;
 898
 899		new->node = obsolete_node;
 900		new->node->data = new;
 901		old->node = current_node;
 902		old->node->data = old;
 903
 904		old->max_speed = new->max_speed;
 905		old->node_id = current_node->node_id;
 906		smp_wmb();  /* update node_id before generation */
 907		old->generation = card->generation;
 908		old->config_rom_retries = 0;
 909		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
 910
 911		old->workfn = fw_device_update;
 912		fw_schedule_device_work(old, 0);
 913
 914		if (current_node == card->root_node)
 915			fw_schedule_bm_work(card, 0);
 916
 917		match = 1;
 918	}
 919
 920	spin_unlock_irq(&card->lock);
 921	up_read(&fw_device_rwsem);
 922
 923	return match;
 924}
 925
 926enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
 927
 928static void set_broadcast_channel(struct fw_device *device, int generation)
 929{
 930	struct fw_card *card = device->card;
 931	__be32 data;
 932	int rcode;
 933
 934	if (!card->broadcast_channel_allocated)
 935		return;
 936
 937	/*
 938	 * The Broadcast_Channel Valid bit is required by nodes which want to
 939	 * transmit on this channel.  Such transmissions are practically
 940	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
 941	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
 942	 * to narrow down to which nodes we send Broadcast_Channel updates.
 943	 */
 944	if (!device->irmc || device->max_rec < 8)
 945		return;
 946
 947	/*
 948	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
 949	 * Perform a read test first.
 950	 */
 951	if (device->bc_implemented == BC_UNKNOWN) {
 952		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
 953				device->node_id, generation, device->max_speed,
 954				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 955				&data, 4);
 956		switch (rcode) {
 957		case RCODE_COMPLETE:
 958			if (data & cpu_to_be32(1 << 31)) {
 959				device->bc_implemented = BC_IMPLEMENTED;
 960				break;
 961			}
 962			fallthrough;	/* to case address error */
 963		case RCODE_ADDRESS_ERROR:
 964			device->bc_implemented = BC_UNIMPLEMENTED;
 965		}
 966	}
 967
 968	if (device->bc_implemented == BC_IMPLEMENTED) {
 969		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
 970				   BROADCAST_CHANNEL_VALID);
 971		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 972				device->node_id, generation, device->max_speed,
 973				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 974				&data, 4);
 975	}
 976}
 977
 978int fw_device_set_broadcast_channel(struct device *dev, void *gen)
 979{
 980	if (is_fw_device(dev))
 981		set_broadcast_channel(fw_device(dev), (long)gen);
 982
 983	return 0;
 984}
 985
 986static void fw_device_init(struct work_struct *work)
 987{
 988	struct fw_device *device =
 989		container_of(work, struct fw_device, work.work);
 990	struct fw_card *card = device->card;
 991	struct device *revived_dev;
 992	int minor, ret;
 993
 994	/*
 995	 * All failure paths here set node->data to NULL, so that we
 996	 * don't try to do device_for_each_child() on a kfree()'d
 997	 * device.
 998	 */
 999
1000	ret = read_config_rom(device, device->generation);
1001	if (ret != RCODE_COMPLETE) {
1002		if (device->config_rom_retries < MAX_RETRIES &&
1003		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1004			device->config_rom_retries++;
1005			fw_schedule_device_work(device, RETRY_DELAY);
1006		} else {
1007			if (device->node->link_on)
1008				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1009					  device->node_id,
1010					  fw_rcode_string(ret));
1011			if (device->node == card->root_node)
1012				fw_schedule_bm_work(card, 0);
1013			fw_device_release(&device->device);
1014		}
1015		return;
1016	}
1017
1018	revived_dev = device_find_child(card->device,
1019					device, lookup_existing_device);
1020	if (revived_dev) {
1021		put_device(revived_dev);
1022		fw_device_release(&device->device);
1023
1024		return;
1025	}
1026
1027	device_initialize(&device->device);
1028
1029	fw_device_get(device);
1030	down_write(&fw_device_rwsem);
1031	minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1032			GFP_KERNEL);
1033	up_write(&fw_device_rwsem);
1034
1035	if (minor < 0)
1036		goto error;
1037
1038	device->device.bus = &fw_bus_type;
1039	device->device.type = &fw_device_type;
1040	device->device.parent = card->device;
1041	device->device.devt = MKDEV(fw_cdev_major, minor);
1042	dev_set_name(&device->device, "fw%d", minor);
1043
1044	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1045			ARRAY_SIZE(fw_device_attributes) +
1046			ARRAY_SIZE(config_rom_attributes));
1047	init_fw_attribute_group(&device->device,
1048				fw_device_attributes,
1049				&device->attribute_group);
1050
1051	if (device_add(&device->device)) {
1052		fw_err(card, "failed to add device\n");
1053		goto error_with_cdev;
1054	}
1055
1056	create_units(device);
1057
1058	/*
1059	 * Transition the device to running state.  If it got pulled
1060	 * out from under us while we did the initialization work, we
1061	 * have to shut down the device again here.  Normally, though,
1062	 * fw_node_event will be responsible for shutting it down when
1063	 * necessary.  We have to use the atomic cmpxchg here to avoid
1064	 * racing with the FW_NODE_DESTROYED case in
1065	 * fw_node_event().
1066	 */
1067	if (atomic_cmpxchg(&device->state,
1068			   FW_DEVICE_INITIALIZING,
1069			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1070		device->workfn = fw_device_shutdown;
1071		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1072	} else {
1073		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1074			  dev_name(&device->device),
1075			  device->config_rom[3], device->config_rom[4],
1076			  1 << device->max_speed);
1077		device->config_rom_retries = 0;
1078
1079		set_broadcast_channel(device, device->generation);
1080
1081		add_device_randomness(&device->config_rom[3], 8);
1082	}
1083
1084	/*
1085	 * Reschedule the IRM work if we just finished reading the
1086	 * root node config rom.  If this races with a bus reset we
1087	 * just end up running the IRM work a couple of extra times -
1088	 * pretty harmless.
1089	 */
1090	if (device->node == card->root_node)
1091		fw_schedule_bm_work(card, 0);
1092
1093	return;
1094
1095 error_with_cdev:
1096	down_write(&fw_device_rwsem);
1097	idr_remove(&fw_device_idr, minor);
1098	up_write(&fw_device_rwsem);
1099 error:
1100	fw_device_put(device);		/* fw_device_idr's reference */
1101
1102	put_device(&device->device);	/* our reference */
1103}
1104
1105/* Reread and compare bus info block and header of root directory */
1106static int reread_config_rom(struct fw_device *device, int generation,
1107			     bool *changed)
1108{
1109	u32 q;
1110	int i, rcode;
1111
1112	for (i = 0; i < 6; i++) {
1113		rcode = read_rom(device, generation, i, &q);
1114		if (rcode != RCODE_COMPLETE)
1115			return rcode;
1116
1117		if (i == 0 && q == 0)
1118			/* inaccessible (see read_config_rom); retry later */
1119			return RCODE_BUSY;
1120
1121		if (q != device->config_rom[i]) {
1122			*changed = true;
1123			return RCODE_COMPLETE;
1124		}
1125	}
1126
1127	*changed = false;
1128	return RCODE_COMPLETE;
1129}
1130
1131static void fw_device_refresh(struct work_struct *work)
1132{
1133	struct fw_device *device =
1134		container_of(work, struct fw_device, work.work);
1135	struct fw_card *card = device->card;
1136	int ret, node_id = device->node_id;
1137	bool changed;
1138
1139	ret = reread_config_rom(device, device->generation, &changed);
1140	if (ret != RCODE_COMPLETE)
1141		goto failed_config_rom;
1142
1143	if (!changed) {
1144		if (atomic_cmpxchg(&device->state,
1145				   FW_DEVICE_INITIALIZING,
1146				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1147			goto gone;
1148
1149		fw_device_update(work);
1150		device->config_rom_retries = 0;
1151		goto out;
1152	}
1153
1154	/*
1155	 * Something changed.  We keep things simple and don't investigate
1156	 * further.  We just destroy all previous units and create new ones.
1157	 */
1158	device_for_each_child(&device->device, NULL, shutdown_unit);
1159
1160	ret = read_config_rom(device, device->generation);
1161	if (ret != RCODE_COMPLETE)
1162		goto failed_config_rom;
1163
1164	fw_device_cdev_update(device);
1165	create_units(device);
1166
1167	/* Userspace may want to re-read attributes. */
1168	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1169
1170	if (atomic_cmpxchg(&device->state,
1171			   FW_DEVICE_INITIALIZING,
1172			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1173		goto gone;
1174
1175	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1176	device->config_rom_retries = 0;
1177	goto out;
1178
1179 failed_config_rom:
1180	if (device->config_rom_retries < MAX_RETRIES &&
1181	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1182		device->config_rom_retries++;
1183		fw_schedule_device_work(device, RETRY_DELAY);
1184		return;
1185	}
1186
1187	fw_notice(card, "giving up on refresh of device %s: %s\n",
1188		  dev_name(&device->device), fw_rcode_string(ret));
1189 gone:
1190	atomic_set(&device->state, FW_DEVICE_GONE);
1191	device->workfn = fw_device_shutdown;
1192	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1193 out:
1194	if (node_id == card->root_node->node_id)
1195		fw_schedule_bm_work(card, 0);
1196}
1197
1198static void fw_device_workfn(struct work_struct *work)
1199{
1200	struct fw_device *device = container_of(to_delayed_work(work),
1201						struct fw_device, work);
1202	device->workfn(work);
1203}
1204
1205void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1206{
1207	struct fw_device *device;
1208
1209	switch (event) {
1210	case FW_NODE_CREATED:
1211		/*
1212		 * Attempt to scan the node, regardless whether its self ID has
1213		 * the L (link active) flag set or not.  Some broken devices
1214		 * send L=0 but have an up-and-running link; others send L=1
1215		 * without actually having a link.
1216		 */
1217 create:
1218		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1219		if (device == NULL)
1220			break;
1221
1222		/*
1223		 * Do minimal initialization of the device here, the
1224		 * rest will happen in fw_device_init().
1225		 *
1226		 * Attention:  A lot of things, even fw_device_get(),
1227		 * cannot be done before fw_device_init() finished!
1228		 * You can basically just check device->state and
1229		 * schedule work until then, but only while holding
1230		 * card->lock.
1231		 */
1232		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1233		device->card = fw_card_get(card);
1234		device->node = fw_node_get(node);
1235		device->node_id = node->node_id;
1236		device->generation = card->generation;
1237		device->is_local = node == card->local_node;
1238		mutex_init(&device->client_list_mutex);
1239		INIT_LIST_HEAD(&device->client_list);
1240
1241		/*
1242		 * Set the node data to point back to this device so
1243		 * FW_NODE_UPDATED callbacks can update the node_id
1244		 * and generation for the device.
1245		 */
1246		node->data = device;
1247
1248		/*
1249		 * Many devices are slow to respond after bus resets,
1250		 * especially if they are bus powered and go through
1251		 * power-up after getting plugged in.  We schedule the
1252		 * first config rom scan half a second after bus reset.
1253		 */
1254		device->workfn = fw_device_init;
1255		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1256		fw_schedule_device_work(device, INITIAL_DELAY);
1257		break;
1258
1259	case FW_NODE_INITIATED_RESET:
1260	case FW_NODE_LINK_ON:
1261		device = node->data;
1262		if (device == NULL)
1263			goto create;
1264
1265		device->node_id = node->node_id;
1266		smp_wmb();  /* update node_id before generation */
1267		device->generation = card->generation;
1268		if (atomic_cmpxchg(&device->state,
1269			    FW_DEVICE_RUNNING,
1270			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1271			device->workfn = fw_device_refresh;
1272			fw_schedule_device_work(device,
1273				device->is_local ? 0 : INITIAL_DELAY);
1274		}
1275		break;
1276
1277	case FW_NODE_UPDATED:
1278		device = node->data;
1279		if (device == NULL)
1280			break;
1281
1282		device->node_id = node->node_id;
1283		smp_wmb();  /* update node_id before generation */
1284		device->generation = card->generation;
1285		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1286			device->workfn = fw_device_update;
1287			fw_schedule_device_work(device, 0);
1288		}
1289		break;
1290
1291	case FW_NODE_DESTROYED:
1292	case FW_NODE_LINK_OFF:
1293		if (!node->data)
1294			break;
1295
1296		/*
1297		 * Destroy the device associated with the node.  There
1298		 * are two cases here: either the device is fully
1299		 * initialized (FW_DEVICE_RUNNING) or we're in the
1300		 * process of reading its config rom
1301		 * (FW_DEVICE_INITIALIZING).  If it is fully
1302		 * initialized we can reuse device->work to schedule a
1303		 * full fw_device_shutdown().  If not, there's work
1304		 * scheduled to read it's config rom, and we just put
1305		 * the device in shutdown state to have that code fail
1306		 * to create the device.
1307		 */
1308		device = node->data;
1309		if (atomic_xchg(&device->state,
1310				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1311			device->workfn = fw_device_shutdown;
1312			fw_schedule_device_work(device,
1313				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1314		}
1315		break;
1316	}
1317}